JP2001509874A - Gas turbine equipment with combustion chamber lined with ceramic blocks - Google Patents

Gas turbine equipment with combustion chamber lined with ceramic blocks

Info

Publication number
JP2001509874A
JP2001509874A JP53245998A JP53245998A JP2001509874A JP 2001509874 A JP2001509874 A JP 2001509874A JP 53245998 A JP53245998 A JP 53245998A JP 53245998 A JP53245998 A JP 53245998A JP 2001509874 A JP2001509874 A JP 2001509874A
Authority
JP
Japan
Prior art keywords
ceramic
layer
gas turbine
combustion chamber
ceramic block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP53245998A
Other languages
Japanese (ja)
Other versions
JP4294736B2 (en
Inventor
ナイデル、アンドレアス
ラシュケ、クラウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of JP2001509874A publication Critical patent/JP2001509874A/en
Application granted granted Critical
Publication of JP4294736B2 publication Critical patent/JP4294736B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/007Continuous combustion chambers using liquid or gaseous fuel constructed mainly of ceramic components

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Solid-Fuel Combustion (AREA)

Abstract

(57)【要約】 圧縮機とタービンとの間に中実のセラミックブロック(10)で内張りされた燃焼室(7)が配置され、ロータ(2)に動翼(5、6)が、このロータ(2)を包囲する車室(1)に静翼(3、4)がそれぞれ取り付けられ、特に少なくとも第1段のタービン翼列(3、5)がセラミック断熱層を有しているガスタービン設備において、本発明に基づいて、セラミックブロック(10)のセラミック層の「剥げ落ち」およびこれに伴うタービン翼の断熱層の破損を防止するために、セラミックブロック(10)が表面に被覆層(12、13)を備えている。   (57) [Summary] A combustion chamber (7) lined with a solid ceramic block (10) is arranged between the compressor and the turbine, and rotor blades (5, 6) surround the rotor (2). The present invention is particularly applicable to a gas turbine facility in which stationary vanes (3, 4) are attached to a cabin (1) to be mounted, and at least the first stage turbine cascade (3, 5) has a ceramic heat insulating layer. Based on this, the ceramic block (10) is provided with a coating layer (12, 13) on the surface in order to prevent the "peeling off" of the ceramic layer of the ceramic block (10) and the consequent damage of the thermal insulation layer of the turbine blade. ing.

Description

【発明の詳細な説明】 燃焼室がセラミックブロックで内張りされているガスタービン設備 本発明は、中実のセラミックブロックで内張りされた燃焼室、動翼が固定され たロータおよび静翼が固定された車室を備え、特に少なくとも第1段のタービン 翼がセラミック断熱層を有しているガスタービン設備に関する。 この種のガスタービンは、例えばドイツ特許出願公開第4343319号明細 書で知られている。非常に高い入口温度を実現するために、最新のガスタービン において燃焼室、特にその炎筒は熱的に極端に大きく負荷できるように形成され ている。この目的のために、燃焼室の内壁はセラミック断熱層で覆われるか、あ るいは中実のセラミックブロックからなるシールドが設けられる。 これに加えて、ガスタービン設備のタービン翼、特に燃焼室に隣接する第1段 のタービン翼には、しばしば熱保護層としてセラミック断熱層が設けられている 。このセラミック断熱層は、例えば酸化イットリウム安定化酸化ジルコニウム層 から成っている。 実験の結果、燃焼室の内張りに中実のセラミックブロックを利用する場合、敏 感なセラミック断熱層を備えたタービン翼との関連において、このセラミック断 熱層がひどい機械的摩耗を受けることが確認されている。 本発明の課題は、冒頭に述べた形式のガスタービン設備において、一方では燃 焼室およびタービン翼を熱的過負荷から保護し、他方ではタービン翼の寿命を長 くすることができるような処置を講ずることにある。 この課題は本発明に基づいて、セラミックブロックが表面に被覆層を備えてい ることによって解決される。 セラミックブロックは他の材料、例えば耐熱合金から成る断熱板よりも高い材 料温度にすることができ、且つ許容されるという利点を有する。またセラミック ブロックの固定要素を冷却するだけでよい。この結果、例えば高い許容材料温度 のために、燃焼室内張りの表面に到達する不完全燃焼粒子はそこで完全燃焼し、 これによって排気ガス中における有毒な一酸化炭素(CO)が無害な二酸化炭素 (CO2)に変換されるために少量となる。その上に、金属内張りに比べて必要 な冷却空気量が少量となり、その分の空気は燃焼用に利用できる。これによって 火炎温度が低下し、環境を汚染する窒素酸化物の発生量が著しく減少する。従っ て効率上並びに環境上の理由から中実のセラミックブロックによって燃焼室を内 張りすることが有利である。しかしこのようなセラミックブロックを利用する場 合、その表面から粒子が剥がれ落ち、この粒子が燃焼ガス流とタービン翼との大 きな相対速度のために弾丸のようにタービン翼に衝突し、激しい摩耗作用を生ず るという問題がある。 セラミックブロックを本発明に基づいて被覆することによって、セラミックブ ロックの表面からのそのような粒子の剥げ落ちは有効に防止される。この場合特 に、セラミックブロックが燃焼室壁に取り付けられる前に、これを被覆すること が有利である。この被覆はそのために、熱的な繰り返し負荷の際における剥げ落 ちを防止するために、セラミックブロックへの良好な接着および被覆層の良好な 結合が保証されるように実施しなければならない。これによってセラミックブロ ックの被覆層は表面粒子を固定するための層を形成する。従って、燃焼室内張り として中実のセラミックブロックをタービン翼におけるセラミック断熱層と組み 合わせて利用することができる。 本発明の実施形態において、被覆層は金属材料から成り、特に真空プラズマス プレイ(VPS)法によって設けられる。 このためにVPS法で種々に形成できる腐食保護層を利用することができ、例 えばMCrAlY(ここでMはNiあるいはCoである)を利用することができ る。 セラミックカバー層と、接着剤としての金属ボンドコート(Bondcoat)とから成 る複合被覆層を採用することもできる。そのセラミックカバー層は、有利にはエ アプラズマスプレイ(APS)法によって設けられる。 VPS・ボンドコートを設けることなく、セラミック層でセラミックブロック を直接被覆することも考えられる。 セラミックブロックとセラミックAPS・被覆層との熱膨張係数の僅かな差が 熱的繰り返し負荷に対する強度に有効に作用する。断熱層としてセラミック層を 利用することにより、燃焼室内張りを冷却するために必要な冷却空気量が一層減 少されるという追加的な利点が得られる。そのセラミック層として、例えばY2 3安定化ZrO2のような通常の断熱層あるいはまたSiO2ないしAl23が 考えられる。 本発明においてまた、セラミックカバー層がエアプラズマスプレイ(APS) 法によって設けられることが有利である。 APS法はVPS法に比べてコスト的に有利である。 特にセラミックブロックを多層構造で被覆することも、熱的な観点あるいは被 覆層の良好な結合の観点から有利である。 全般的に接着層並びにその外側の層は、熱膨張挙動および化学的組成が層の厚 さに関して連続的に変化するような段階層として形成される。 以下図に示した実施例を参照して本発明を詳細に説明する。 図1はガスタービン設備の部分概略縦断面図、 図2は被覆層を明瞭にするために歪曲して拡大して描いた燃焼室壁の部分横断 面図である。 図1には本発明に基づくガスタービン設備が縦断面図で示されている。このガ スタービン設備は車室1とロータ2とを備え、この車室1には静翼3、4が、ロ ータ2には動翼5、6がそれぞれ固定されている。燃焼室7にバーナ14、15 を介して燃料が注入され、この燃料は圧縮機16からの空気で燃焼される。この 圧縮機16はガスタービン設備の入口部分として示されている。流入空気(矢印 17、18)は燃焼室7に流入する前に、この入口部分内において圧縮される。 燃焼ガスの膨張がタービンを駆動する働きをする。電気エネルギを発生するた めに、タービンロータに接続された連結軸19によって発電機20が駆動される 。 図2には環状燃焼室の表面部位が拡大横断面図で示されている。例えば金属か ら成る燃焼室壁11に、セラミックブロック10が固定要素8、9によって固定 されている。このセラミックブロック10は、例えば酸化けい素あるいは酸化ア ルミニウムから成っている。 図2にはセラミックブロック10の二つの層から成る被覆層が拡大して示され ている。その下側層は接着層(ボンドコート)12であり、上側層はこの上側層 12に特に良好に付着するセラミック層13である。これらの下側層12および 上側層13は一緒に、セラミックブロック10を覆い、このセラミックブロック 10の表面から剥げ落ちる粒子を結合する固い層を形成している。これによって そのような粒子が車室あるいはまたロータにあるタービン翼の断熱層に侵食作用 を与えることはなくなる。その接着剤層12は、好適には金属・クロム・アルミ ニウム・イットリウム・合金(MCrAlY)から成り、断熱層13は好適には 酸化イットリウム安定化酸化ジルコニウム、SiO2あるいはAl23から成っ ている。 図2には範囲21に例えばセラミックブロックの単一被覆層22が示されてい る。この被覆層はセラミックスから成っている。DETAILED DESCRIPTION OF THE INVENTION       Gas turbine equipment with combustion chamber lined with ceramic blocks   The present invention provides a combustion chamber lined with solid ceramic blocks, With a fixed rotor and stationary vanes, in particular at least a first stage turbine The present invention relates to a gas turbine facility in which a blade has a ceramic heat insulating layer.   A gas turbine of this kind is described, for example, in DE-A 43 43 319. Known in the book. State-of-the-art gas turbines to achieve very high inlet temperatures The combustion chamber, especially its flame tube, is formed so that it can be extremely thermally loaded. ing. For this purpose, the inner walls of the combustion chamber are covered with a ceramic insulation layer or Alternatively, a shield made of a solid ceramic block is provided.   In addition to this, the turbine blades of the gas turbine installation, especially the first stage adjacent to the combustion chamber Turbine blades are often provided with a ceramic insulation layer as a thermal protection layer . This ceramic insulation layer may be, for example, a yttrium oxide stabilized zirconium oxide layer. Consists of   As a result of experiments, when using a solid ceramic block for the lining of the combustion chamber, In the context of turbine blades with a sensitive ceramic thermal barrier, It has been found that the thermal layer undergoes severe mechanical wear.   The object of the present invention is to provide a gas turbine system of the type Protects the firing chamber and turbine blades from thermal overload, while extending the life of the turbine blades To take steps that can make it worse.   This object is achieved according to the invention in that the ceramic block has a coating layer on the surface. It is solved by doing.   Ceramic blocks are higher than other materials, for example, heat-insulating plates made of heat-resistant alloys. It has the advantage that the feed temperature can be kept and is acceptable. Also ceramic It is only necessary to cool the fixed elements of the block. As a result, for example, a high allowable material temperature Due to the incompletely burned particles reaching the surface of the combustion chamber lining, they burn completely there, This reduces toxic carbon monoxide (CO) in the exhaust gas to harmless carbon dioxide It becomes a small amount because it is converted to (CO2). On top of that, it is necessary compared to metal lining The required amount of cooling air becomes small, and the air can be used for combustion. by this The flame temperature is reduced and the amount of nitrogen oxides polluting the environment is significantly reduced. Follow The combustion chamber is enclosed by a solid ceramic block for efficiency and environmental reasons. Tensioning is advantageous. However, when using such a ceramic block, In this case, particles are peeled off from the surface, and the particles form a large part between the combustion gas flow and the turbine blade. Impacts the turbine blades like a bullet due to the relative velocity Problem.   By coating the ceramic block according to the invention, the ceramic block is The shedding of such particles from the surface of the lock is effectively prevented. In this case, Before the ceramic block is attached to the combustion chamber wall, Is advantageous. This coating is therefore subject to flaking during thermal cyclic loading. Good adhesion to the ceramic block and good coating layer to prevent Must be performed so that the coupling is guaranteed. This allows the ceramic block The coating layer of the pack forms a layer for fixing the surface particles. Therefore, the combustion chamber lining A solid ceramic block as a ceramic insulation layer in a turbine blade Can be used together.   In an embodiment of the invention, the coating layer is made of a metallic material, in particular a vacuum plasma It is provided by a play (VPS) method.   For this purpose, a corrosion protection layer that can be variously formed by the VPS method can be used. For example, MCrAlY (where M is Ni or Co) can be used. You.   It consists of a ceramic cover layer and a metal bond coat (Bondcoat) as an adhesive. A composite coating layer can also be employed. The ceramic cover layer is advantageously It is provided by a plasma spray (APS) method.   Ceramic block with ceramic layer without VPS / bond coat It is also conceivable to coat directly.   The slight difference in the coefficient of thermal expansion between the ceramic block and the ceramic APS / coating layer Effectively affects the strength against repeated thermal loads. Ceramic layer as heat insulation layer Utilization reduces the amount of cooling air required to cool the combustion chamber lining. The additional advantage of being reduced is obtained. As the ceramic layer, for example, YTwo OThreeStabilized ZrOTwoOrdinary heat-insulating layer such asTwoOr AlTwoOThreeBut Conceivable.   In the present invention, the ceramic cover layer may be an air plasma spray (APS). Advantageously, it is provided by a method.   The APS method is more cost effective than the VPS method.   In particular, coating the ceramic block with a multilayer structure is not possible from a thermal point of view or coating. It is advantageous in terms of good bonding of the overlayer.   In general, the adhesive layer and its outer layer have thermal expansion behavior and chemical composition It is formed as a graded layer that changes continuously with respect to its height.   Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.   FIG. 1 is a partial schematic longitudinal sectional view of a gas turbine facility,   Figure 2 shows a section across the combustion chamber wall, distorted and enlarged for clarity of the coating. FIG.   FIG. 1 shows a gas turbine installation according to the invention in longitudinal section. This mo The turbine apparatus includes a casing 1 and a rotor 2. The rotors 5 and 6 are fixed to the rotor 2 respectively. Burners 14, 15 in combustion chamber 7 , And is burned with air from the compressor 16. this The compressor 16 is shown as an inlet section of a gas turbine facility. Inflow air (arrow 17, 18) are compressed in this inlet section before flowing into the combustion chamber 7.   The expansion of the combustion gases serves to drive the turbine. To generate electrical energy For this purpose, the generator 20 is driven by the connecting shaft 19 connected to the turbine rotor. .   FIG. 2 shows an enlarged cross-sectional view of the surface portion of the annular combustion chamber. For example, metal The ceramic block 10 is fixed to the combustion chamber wall 11 by the fixing elements 8 and 9. Have been. The ceramic block 10 is made of, for example, silicon oxide or oxide oxide. Made of Luminium.   FIG. 2 shows a two-layer coating of the ceramic block 10 on an enlarged scale. ing. The lower layer is an adhesive layer (bond coat) 12, and the upper layer is the upper layer. 12 is a ceramic layer 13 which adheres particularly well. These lower layers 12 and The upper layer 13 together covers the ceramic block 10, 10 form a hard layer that binds the particles that flake off from the surface. by this Such particles can erode the thermal insulation of the turbine blades in the cabin or also in the rotor Will not be given. The adhesive layer 12 is preferably made of metal, chromium, aluminum, The heat insulating layer 13 is made of an alloy of nickel, yttrium and alloy (MCrAlY). Yttrium oxide stabilized zirconium oxide, SiOTwoOr AlTwoOThreeConsists of ing.   FIG. 2 shows a single covering layer 22 of, for example, a ceramic block in an area 21. You. This coating layer is made of ceramics.

Claims (1)

【特許請求の範囲】 1.中実のセラミックブロック(10)で内張りされた燃焼室(7)、動翼(5 、6)が固定されたロータ(2)および静翼(3、4)が固定された車室(1) を備え、特に少なくとも第1段のタービン翼がセラミック断熱層を有しているガ スタービン設備において、セラミックブロック(10)が表面に被覆層(12、 13)を備えていることを特徴とするガスタービン設備。 2.被覆層(12、13)が金属材料から成り、真空プラズマスプレイ(VPS )法によって設けられることを特徴とする請求項1記載のガスタービン設備。 3.被覆層がボンドコートとセラミックカバー層とから成り、セラミックカバー 層(13)がエアプラズマスプレイ(APS)法によって設けられることを特徴 とする請求項2記載のガスタービン設備。 4.被覆層がセラミック層として形成されていることを特徴とする請求項1ない し3のいずれか1つに記載のガスタービン設備。 5.セラミックブロック(10)が多層構造をしていることを特徴とする請求項 1ないし4のいずれか1つに記載のガスタービン設備。[Claims] 1. Combustion chamber (7) lined with solid ceramic block (10), bucket (5 , 6) fixed to the rotor (2) and stationary vanes (3, 4) to the vehicle compartment (1) Wherein at least the first stage turbine blades have a ceramic insulation layer. In the turbine plant, a ceramic block (10) is provided with a coating layer (12, 13) A gas turbine facility comprising: 2. The coating layers (12, 13) are made of a metal material, and are formed by vacuum plasma spray (VPS). The gas turbine equipment according to claim 1, wherein the gas turbine equipment is provided by a method. 3. The coating layer comprises a bond coat and a ceramic cover layer, and the ceramic cover The layer (13) is provided by an air plasma spray (APS) method. The gas turbine equipment according to claim 2, wherein 4. 2. The method according to claim 1, wherein the coating layer is formed as a ceramic layer. The gas turbine equipment according to any one of Items 3 to 3. 5. 2. The ceramic block according to claim 1, wherein the ceramic block has a multilayer structure. The gas turbine equipment according to any one of 1 to 4.
JP53245998A 1997-01-29 1998-01-29 Gas turbine equipment with combustion chamber lined with ceramic blocks Expired - Lifetime JP4294736B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19704976A DE19704976C2 (en) 1997-01-29 1997-01-29 Gas turbine system with a combustion chamber casing lined with ceramic stones
DE19704976.1 1997-01-29
PCT/DE1998/000324 WO1998034068A1 (en) 1997-01-29 1998-01-29 Gas turbine installation with a ceramic-covered combustion chamber housing

Publications (2)

Publication Number Publication Date
JP2001509874A true JP2001509874A (en) 2001-07-24
JP4294736B2 JP4294736B2 (en) 2009-07-15

Family

ID=7819815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53245998A Expired - Lifetime JP4294736B2 (en) 1997-01-29 1998-01-29 Gas turbine equipment with combustion chamber lined with ceramic blocks

Country Status (6)

Country Link
EP (1) EP0960308B1 (en)
JP (1) JP4294736B2 (en)
DE (2) DE19704976C2 (en)
RU (1) RU2178530C2 (en)
UA (1) UA41485C2 (en)
WO (1) WO1998034068A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1072573A1 (en) 1999-07-30 2001-01-31 Siemens Aktiengesellschaft Method of making a refractory body and ceramic combustion chamber stone
PL200773B1 (en) * 2003-04-18 2009-02-27 System Spo & Lstrok Ka Akcyjna Method for applying anticorrosive coating on furnace waterwalls
US20100285415A1 (en) * 2007-11-23 2010-11-11 Boettcher Andreas Burner Element and Burner Having Aluminum Oxide Coating and Method for Coating a Burner Element
EP2169311A1 (en) * 2008-09-29 2010-03-31 Siemens Aktiengesellschaft Material mixture for producing a fire-retardant material, fire-retardant moulding body and method for its manufacture
EP2233835A1 (en) * 2009-03-23 2010-09-29 Siemens Aktiengesellschaft Combustion chamber brazed with ceramic inserts
ITMI20111519A1 (en) 2011-08-08 2013-02-09 Ansaldo Energia Spa TILE OF CERAMIC MATERIAL FOR THE COATING OF COMBUSTION CHAMBERS, IN PARTICULAR OF GAS TURBINES, AND ITS RELATED MANUFACTURING METHOD
RU2554690C1 (en) * 2014-07-01 2015-06-27 Акционерное общество "Военно-промышленная корпорация "Научно-производственное объединение машиностроения"(АО"ВПК"НПО машиностроения") Cruise missile engine combustion chamber

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL69245C (en) * 1946-01-09
US2763919A (en) * 1950-07-28 1956-09-25 Thompson Prod Inc Coated refractory body
US4159357A (en) * 1975-03-13 1979-06-26 Motoren- Und Turbinen-Union Munchen Gmbh Process for surface treating parts made of ceramic material
DE2630247A1 (en) * 1976-07-06 1978-01-19 Daimler Benz Ag Exhaust gas pipe for internal combustion engines - lined with thermal insulation so gas has high temp. when it meets purificn. catalyst
DE3446649A1 (en) * 1984-12-20 1986-06-26 G + H Montage Gmbh, 6700 Ludwigshafen Lining for high-temperature gas turbines
DE3638658C1 (en) * 1986-11-12 1988-04-21 Daimler Benz Ag Heat-insulating lining for a gas turbine
AU2211488A (en) * 1987-10-01 1989-04-06 Gte Laboratories Incorporated Oxidation resistant, high temperature thermal cyling resistant coatings on silicon-based substrates and process for the production thereof
US5169674A (en) * 1990-10-23 1992-12-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method of applying a thermal barrier coating system to a substrate
US5391404A (en) * 1993-03-15 1995-02-21 The United States Of America As Represented By The National Aeronautics And Space Administration Plasma sprayed mullite coatings on silicon-base ceramics
DE4343319A1 (en) * 1993-12-18 1995-06-22 Abb Patent Gmbh Combustion chamber with a ceramic lining
JP4245661B2 (en) * 1995-06-26 2009-03-25 ゼネラル・エレクトリック・カンパニイ Thermal barrier coating composite protected by multiple coatings

Also Published As

Publication number Publication date
DE59802328D1 (en) 2002-01-17
WO1998034068A1 (en) 1998-08-06
EP0960308B1 (en) 2001-12-05
DE19704976C2 (en) 1999-02-25
EP0960308A1 (en) 1999-12-01
UA41485C2 (en) 2001-09-17
JP4294736B2 (en) 2009-07-15
DE19704976A1 (en) 1998-07-30
RU2178530C2 (en) 2002-01-20

Similar Documents

Publication Publication Date Title
US20210025592A1 (en) Methods of repairing a thermal barrier coating of a gas turbine component and the resulting components
EP0965730B1 (en) Article having durable ceramic coating with localised abradable portion
US4594053A (en) Housing for a fluid flow or jet engine
US6197424B1 (en) Use of high temperature insulation for ceramic matrix composites in gas turbines
US11174557B2 (en) Thermal barrier coating system compatible with overlay
RU2423544C2 (en) Multi-layer thermo-protecting coating for part out of alloy on base of cobalt or nickel and part with such coating
RU2392349C2 (en) Coating for part out of heat-resistant alloy based on iron or nickel or cobalt
US6761956B2 (en) Ventilated thermal barrier coating
US20100196615A1 (en) Method for forming an oxidation-resistant film
US20040009365A1 (en) Temperature-stable protective coating over a metallic substrate surface
US20050111966A1 (en) Construction of static structures for gas turbine engines
CN106150569B (en) System for turbine shroud to be thermally isolated
US6916551B2 (en) Thermal barrier coating material, gas turbine parts and gas turbine
JP3872632B2 (en) Thermal barrier coating material, gas turbine member and gas turbine using the same
CA2366184A1 (en) Gas turbine blade/vane and gas turbine
US20090162139A1 (en) Thermally Insulated Flange Bolts
EP3184668A1 (en) Gas turbine component with improved thermal barrier coating system
US6226978B1 (en) Hot gas-carrying gas collection pipe of gas turbine
JP2001509874A (en) Gas turbine equipment with combustion chamber lined with ceramic blocks
JP2991795B2 (en) Ceramics-coated carbon fiber reinforced carbon composite for ground equipment and gas turbine components using the same
CN100535166C (en) Metal protective coating
JPH08226304A (en) Ceramic stator blade
Hara et al. Development of Ceramic Components for a Power Generating Gas Turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071026

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071203

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081028

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term