JP2001355230A - Ground improving method by mixing and stirring - Google Patents

Ground improving method by mixing and stirring

Info

Publication number
JP2001355230A
JP2001355230A JP2000177784A JP2000177784A JP2001355230A JP 2001355230 A JP2001355230 A JP 2001355230A JP 2000177784 A JP2000177784 A JP 2000177784A JP 2000177784 A JP2000177784 A JP 2000177784A JP 2001355230 A JP2001355230 A JP 2001355230A
Authority
JP
Japan
Prior art keywords
ground
slurry
cement
stirring
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000177784A
Other languages
Japanese (ja)
Other versions
JP3737016B2 (en
Inventor
Makoto Kato
誠 加藤
Hiroshi Wada
浩 和田
Nobunaga Ino
宣長 猪野
Noriaki Tanaka
憲章 田中
Fumiyuki Yokomizo
文行 横溝
Hiroyuki Nishigami
裕之 西上
Yoshimi Hosoya
芳巳 細谷
Tatsuyuki Matsuo
龍之 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
East Japan Railway Co
Original Assignee
Obayashi Corp
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, East Japan Railway Co filed Critical Obayashi Corp
Priority to JP2000177784A priority Critical patent/JP3737016B2/en
Publication of JP2001355230A publication Critical patent/JP2001355230A/en
Application granted granted Critical
Publication of JP3737016B2 publication Critical patent/JP3737016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve the strength of an improved ground while avoiding the deterioration of workability. SOLUTION: A ground improving device 32 provided with a stirring shaft 30 having a stirring/mixing vane 28 on the tip side is used in improving the ground 10 by a deep layer mixing process method. When the stirring shaft 30 reaches an improvement depth, the intrusion of the stirring shaft 30 is finished, and its extraction is started. When the stirring shaft 30 is extracted, the slurry including a solidifying agent such as cement is injected into the ground 10 while the stirring/mixing vane 28 is rotated, and ground sediment and the slurry are mixed and stirred. When the solidifying agent mixed and stirred with the ground sediment is solidified as time elapses, the columnar improved body 20 solidified with the ground sediment is created. The slurry including the cement mixed and stirred with the ground sediment has the water- cement ratio below 60%, and it is added with a viscosity reducing agent and the solidifying agent of 4 KN or above per unit volume of the slurry.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、深層混合処理工
法などの混合攪拌による地盤の改良工法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving ground by mixing and stirring such as a deep mixing method.

【0002】[0002]

【従来の技術】軟弱地盤の改良方法には,種々の工法が
開発され,実用に供用されている。このような地盤改良
の一種として、セメントや石灰などのセメント系固化材
を改良対象地盤にスラリーとして供給し、攪拌翼などに
より、原位置で地盤土砂と固化材とを機械的に混合攪拌
して、軟弱土を固化させて、地盤中に所定形状の改良体
を造成する深層混合処理工法が知られている。
2. Description of the Related Art Various methods for improving soft ground have been developed and put to practical use. As one type of such ground improvement, a cement-based solidifying material such as cement or lime is supplied as slurry to the ground to be improved, and the ground soil and the solidified material are mechanically mixed and stirred in situ with a stirring blade or the like. There is known a deep mixing method in which soft soil is solidified to form an improved body having a predetermined shape in the ground.

【0003】このような地盤改良工法において、地盤中
に造成される改良体の強度特性は、現地盤の土質性状に
大きく依存することも知られている。一般に、砂〜砂質
シルト〜シルト〜粘土〜関東ローム〜有機質土の順に強
度発現が小さくなる傾向が認められる。
[0003] In such a ground improvement method, it is also known that the strength characteristics of an improved body formed in the ground greatly depend on the soil properties of the ground. Generally, there is a tendency for the strength to decrease in the order of sand, sandy silt, silt, clay, Kanto loam, and organic soil.

【0004】ところで、深層混合処理工法で造成される
改良体の強度は、土質の違いによる差が大きく、現位置
土を排出,置換する高圧噴射攪拌工法に比べて、1/5
〜1/10程度と低い値になっており、さらに強度を高
くしようとする場合に、以下に説明するような技術的な
課題があった。
[0004] The strength of the improved body formed by the deep mixing method greatly differs depending on the difference in soil quality, and is one-fifth that of the high-pressure jet stirring method for discharging and replacing the in-situ soil.
The value is as low as about 1/10, and there is a technical problem as described below when trying to further increase the strength.

【0005】[0005]

【発明が解決しようとする課題】すなわち、深層混合処
理工法により、腐植土などの有機質土を除く砂,シル
ト,粘土,関東ロームにおいて高い強度発現を実現しよ
うとすると、例えば、セメントやセメント系固化材の添
加量を多くすることが考えられるが、固化材の量を多く
すると、スラリーの粘性が増加して、施工性が悪化し、
場合によっては、混合攪拌が困難になったり、所定の混
練ができないため、強度発現が不十分で、しかも不均一
となるという別の問題が発生する。
In order to achieve high strength in sand, silt, clay and Kanto loam excluding organic soil such as humus by the deep mixing method, for example, cement or cement-based solidification is required. It is conceivable to increase the addition amount of the material, but if the amount of the solidifying material is increased, the viscosity of the slurry increases, and the workability deteriorates,
In some cases, mixing and agitation become difficult or predetermined kneading cannot be performed, which causes another problem that strength is insufficiently developed and becomes non-uniform.

【0006】このため、従来の深層混合処理工法におい
ては、使用する固化材量を1.0KN〜3.0KN/m
3とし、かつ、ワーカビリティー確保のために水セメン
ト比を60〜120%程度としていた。
For this reason, in the conventional deep mixing method, the amount of the solidified material to be used is set to 1.0 KN to 3.0 KN / m.
3 , and the water-cement ratio was set to about 60 to 120% in order to secure workability.

【0007】本発明は、このような従来の問題点に鑑み
てなされたものであって、その目的とするところは、施
工性の低下を回避しつつ、従来低強度の改良効果しか確
保できなかった地層に対して、十分な改良効果を確保す
ることができる混合攪拌による地盤改良工法を提供する
ことにある。
SUMMARY OF THE INVENTION The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a conventional low strength improvement effect while avoiding a decrease in workability. It is an object of the present invention to provide a ground improvement method by mixing and stirring, which can ensure a sufficient improvement effect on a damaged formation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、現地盤土砂と、セメントなどの固化材を
含むスラリーとを現位置で混合攪拌して、地盤中で前記
現地盤土砂を前記スラリーにより固化させて、所定形状
の改良体を造成する地盤改良工法において、前記スラリ
ーは、水セメント比が60%未満であって、粘性低減剤
を添加し、かつ、前記固化材を単位体積当たり4KN以
上添加するようにした。このように構成した混合攪拌に
よる地盤改良工法によれば、スラリーの水セメント比を
60%未満にするとともに、かつ、固化材を単位体積当
たり4KN以上添加するので、地盤中に造成される改良
体の強度は、高圧噴射攪拌工法に比べても大きくなる。
この場合、スラリーの水セメント比を60%未満にする
と、スラリーの粘性が大きくなって施工性の低下が懸念
されるが、本発明では、スラリーに粘性低減材を添加す
るので、固化材の増加に伴なう、粘性増加による施工性
の低下を回避することができる。前記スラリーの水セメ
ント比は、より具体的には、60%未満の40%に設定
することができる。前記粘性低減剤は、後述する図4に
示すように、放置時間が1時間前後において、前記スラ
リーの粘性が2000CP以下になるようにその添加量
を設定することができる。この構成によれば、スラリー
の水セメント比ガ40%程度であっても、水セメント比
を60%以上とする従来工法と同等の施工性を確保する
ことができる。
In order to achieve the above object, the present invention provides a method for mixing and stirring a soil containing soil and a slurry containing a solidifying material such as cement at a current position and mixing the soil in the ground. In a ground improvement method for solidifying earth and sand with the slurry to form an improved body having a predetermined shape, the slurry has a water cement ratio of less than 60%, a viscosity reducing agent is added, and the solidified material is removed. 4 KN or more was added per unit volume. According to the ground improvement method by mixing and stirring configured as described above, the water-cement ratio of the slurry is less than 60% and the solidified material is added at 4 KN or more per unit volume, so that the improved body formed in the ground Is higher than that of the high-pressure jet stirring method.
In this case, if the water-cement ratio of the slurry is less than 60%, the viscosity of the slurry is increased, and there is a concern that the workability may be reduced. However, in the present invention, since the viscosity reducing material is added to the slurry, the solidified material increases. As a result, a decrease in workability due to an increase in viscosity can be avoided. More specifically, the water-cement ratio of the slurry can be set to 40%, which is less than 60%. As shown in FIG. 4 described below, the amount of the viscosity reducing agent can be set so that the viscosity of the slurry becomes 2000 CP or less when the standing time is about 1 hour. According to this configuration, even if the water cement ratio of the slurry is about 40%, the workability equivalent to the conventional construction method in which the water cement ratio is 60% or more can be secured.

【0009】[0009]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、添付図面に基づいて詳細に説明する。図1
は、本発明にかかる混合攪拌による地盤改良工法の一実
施例を示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG.
Shows an embodiment of the ground improvement method by mixing and stirring according to the present invention.

【0010】同図に示した地盤改良工法は、本発明を深
層混合処理工法に適用した場合を例示している。深層混
合処理工法により地盤10の改良を行う際には、先端側
に攪拌混合翼28が設けられた攪拌軸30を備えた地盤
改良装置32が用いられる。
The ground improvement method shown in FIG. 1 illustrates a case where the present invention is applied to a deep mixing treatment method. When the ground 10 is improved by the deep mixing method, a ground improvement device 32 having a stirring shaft 30 provided with a stirring and mixing blade 28 at the tip end is used.

【0011】攪拌軸30は、リーダ34に上下移動自在
に支持される駆動機構部36に装着されているととも
に、内部にセメントを含むスラリーの供給通路が設けら
れている。改良体20を造成する際には、まず、図1
(A)に示すように、攪拌軸30の位置決めが行われる。
The stirring shaft 30 is mounted on a drive mechanism 36 which is vertically movably supported by a reader 34, and has a supply passage for slurry containing cement therein. When constructing the improved body 20, first, FIG.
As shown in (A), the positioning of the stirring shaft 30 is performed.

【0012】攪拌軸30が位置決めされ、その鉛直度が
確認されると、攪拌軸30を回転させながら、攪拌軸3
0を地盤改良をする深度まで貫入させる(図1(B)参
照)。
When the stirring shaft 30 is positioned and its verticality is confirmed, the stirring shaft 30 is rotated while the stirring shaft 30 is rotated.
0 is penetrated to the depth where the ground improvement is required (see FIG. 1 (B)).

【0013】この攪拌軸30の貫入の際には、固化材
は、噴射させないが、圧縮空気を攪拌混合翼28に設け
られている噴射口から噴射させて、噴射口の詰まりを防
ぐ。そして、攪拌軸30が改良深度まで到達すると、攪
拌軸30の貫入を終了させて、引き抜き始める(図1
(C),(D)参照)。
When the agitating shaft 30 penetrates, the solidifying material is not injected, but compressed air is injected from the injection port provided in the stirring and mixing blade 28 to prevent the injection port from being clogged. Then, when the stirring shaft 30 reaches the improved depth, the penetration of the stirring shaft 30 is finished, and the stirring shaft 30 starts to be pulled out (FIG. 1).
(See (C) and (D)).

【0014】この攪拌軸30の引き抜きの際には、攪拌
混合翼28を回転させながら、地盤10中にセメントな
どの固化材を含むスラリーを噴射供給し、現地盤土砂と
スラリーとを混合攪拌する。
When the stirring shaft 30 is pulled out, a slurry containing a solidifying material such as cement is injected and supplied into the ground 10 while the stirring and mixing blades 28 are rotated, and the soil and the soil at the site are mixed and stirred. .

【0015】そして、現地盤土砂に混合攪拌されたスラ
リーに含まれている固化材が時間の経過と共に固化する
と、現地盤土砂を固化させた柱状の改良体20が造成さ
れる(図1(D)参照)。
Then, when the solidified material contained in the slurry mixed and stirred with the on-site soil is solidified with the passage of time, a columnar improved body 20 which solidifies the on-site soil is created (FIG. 1 (D)). )reference).

【0016】なお、深層混合処理工法には、攪拌軸30
の貫入時に固化材を噴射するタイプと、引き上げ時に噴
射するタイプとがあり、本実施例では、後者を例示した
が、前者のタイプであっても何ら問題はない。
In the deep mixing method, a stirring shaft 30 is used.
There are a type in which the solidified material is injected at the time of penetration and a type in which the material is injected at the time of lifting. In the present embodiment, the latter is exemplified, but the former type does not pose any problem.

【0017】以上のような深層混合処理工法としての基
本的な構成は、従来のこの種の工法と同じであるが、本
実施例の工法には、以下の点に顕著な特徴がある。すな
わち、本実施例の場合には、現地盤土砂と混合攪拌させ
るセメントなどの固化材を含むスラリーは、水セメント
比が60%未満になっているとともに、粘性低減剤が添
加され、かつ、固化材を単位体積当たり4KN以上添加
している。
The basic structure of the above-described deep mixing processing method is the same as that of the conventional method of this type. However, the method of this embodiment has the following remarkable features. That is, in the case of the present embodiment, the slurry containing a solidifying material such as cement mixed and stirred with on-site soil and sand has a water-cement ratio of less than 60%, a viscosity reducing agent is added, and the solidification is performed. The material is added at 4KN or more per unit volume.

【0018】このような構成のスラリーを用いると、水
セメント比を60%未満にするので、水分量が同じであ
れば、添加するセメントやセメント系固化材の量が多く
なり、その結果、地盤中に造成される改良体20の強度
が大きくなる。
When the slurry having such a structure is used, the water-cement ratio is reduced to less than 60%. Therefore, if the water content is the same, the amount of added cement or cement-based solidifying material increases, and as a result, The strength of the improved body 20 formed therein increases.

【0019】この場合、スラリーの水セメント比を60
%未満にすると、スラリーの粘性が大きくなって施工性
の低下が懸念されるが、本実施例では、スラリーに粘性
低減剤を添加するので、粘性増加に伴なう施工性の低下
を回避することができる。
In this case, the water-cement ratio of the slurry is 60
%, There is a concern that the viscosity of the slurry will increase and the workability will decrease. However, in this embodiment, since the viscosity reducing agent is added to the slurry, the decrease in the workability due to the increase in viscosity is avoided. be able to.

【0020】粘性低減剤は、例えば、スラリーの粘性
が、放置時間1時間前後において、2000CP以下に
なるようにその添加量を設定することができ、この粘性
値は、スラリーの水セメント比を60〜120%とする
従来工法と同等の施工性に相当している。
The amount of the viscosity reducing agent can be set, for example, so that the viscosity of the slurry becomes 2000 CP or less after about one hour of standing time. This is equivalent to the workability equivalent to that of the conventional method of setting up to 120%.

【0021】図2〜図4は、本発明の作用効果を確認す
るために行なった実験の結果を示している。図2および
図3は、本発明にかかる水セメント比が40%以下のス
ラリーを用いた場合の改良体の強度試験の結果を示して
おり、図2が材齢28日で、図3が材齢90日一軸圧縮
強度の測定結果である。
FIGS. 2 to 4 show the results of experiments conducted to confirm the effects of the present invention. 2 and 3 show the results of a strength test of the improved body using a slurry having a water-cement ratio of 40% or less according to the present invention. FIG. 2 shows a material age of 28 days, and FIG. It is a measurement result of 90 days old uniaxial compressive strength.

【0022】改良体の強度試験では、固化材として、
.JIS R5210普通ポルトランドセメント(N
と称する)、.JIS R5211高炉セメントB種
(BBと称する)、.セメント系固化材1(住友大阪
セメント株式会社製、タフロックB、商品名、TLBと
称する)、.セメント系固化材2(太平洋セメント株
式会社製、ジオセット23、商品名、GS23と称す
る)、.セメント系固化材3(太平洋セメント株式会
社製、ジオセット新、商品名、GS新と称する)、.
セメント系固化材4(宇部三菱セメント株式会社製、ユ
ースタビラー30、商品名、US30と称する)、.
セメント系固化材5(太平洋セメント株式会社製、ジオ
セットA、商品名、GSAと称する)、.セメント系
固化材6(太平洋セメント株式会社製、ジオセットB、
商品名、GSBと称する)の8種類を準備した。
In the strength test of the improved body,
. JIS R5210 ordinary Portland cement (N
),. JIS R5211 blast furnace cement type B (referred to as BB),. Cement-based solidifying material 1 (manufactured by Sumitomo Osaka Cement Co., Ltd., Tough Lock B, trade name, referred to as TLB),. Cement-based solidifying material 2 (manufactured by Taiheiyo Cement Corporation, Geoset 23, trade name, referred to as GS23),. Cement-based solidifying material 3 (manufactured by Taiheiyo Cement Corporation, Geoset new, trade name, GS new),.
Cement-based solidifying material 4 (manufactured by Ube Mitsubishi Cement Co., Ltd., Eustavir 30, trade name, US30);
Cement-based solidifying material 5 (manufactured by Taiheiyo Cement Corporation, Geoset A, trade name, referred to as GSA); Cement-based solidifying material 6 (manufactured by Taiheiyo Cement Corporation, Geoset B,
Eight types were prepared.

【0023】なお、本実施例でセメント系固化材と示称
しているものは、セメントと、スラグ,フライアッシュ
などのポゾラン物質と、硫酸,塩化カルシウムなどの無
機質化合物とを含むこれらの混合物の総称である。
In this embodiment, what is referred to as a cement-based solidifying material is a general term for a mixture of cement, a pozzolanic substance such as slag and fly ash, and an inorganic compound such as sulfuric acid and calcium chloride. It is.

【0024】現地盤土砂に対応させた土質材は、.
砂、.シルト、.粘土、.ロームの4種類を準備
した。
The soil material corresponding to the on-site soil is:.
sand,. Silt,. clay,. Four types of ROHM were prepared.

【0025】各固化材の添加量は、5.0KN/m3
し、水セメント比は、40%になるようにした。そし
て、スラリーに18Nの粘性低減剤(プロトパウダー、
三菱レイヨン株式会社製、商品名)を添加した。
The addition amount of each solidifying material was 5.0 KN / m 3 , and the water cement ratio was 40%. Then, a slurry of 18N viscosity reducing agent (proto powder,
(Trade name, manufactured by Mitsubishi Rayon Co., Ltd.).

【0026】供試体の作製は、JGS T821「安定
処理土の締固めをしない供試体作製方法」に準拠し、強
度試験は、JIS A1216「土の一軸圧縮試験方法」
に準拠して行なった。
The preparation of the specimen is in accordance with JGS T821 “Method of preparing specimen without compaction of stabilized soil”, and the strength test is based on JIS A1216 “Uniaxial compression test method of soil”.
Performed in accordance with

【0027】図2,3に示した強度試験結果から明らか
なように、改良すべき土質がロームを除いて、砂,シル
ト,粘土のそれぞれに対して、固化材を選択することに
より、10N/mm2以上の一軸圧縮強度が得られるこ
とが確認された。
As is clear from the strength test results shown in FIGS. 2 and 3, the soil to be improved except for the loam, and by selecting a solidifying material for each of sand, silt, and clay, 10N / It was confirmed that a uniaxial compressive strength of not less than mm 2 was obtained.

【0028】この一軸圧縮強度の大きさは、従来の深層
混合処理工法では、陸上施工で0.1〜0.4N/mm
2、海上施工で0.5〜2.5N/mm2となっていた設
計基準強度の2倍以上の値であり、また、高圧噴射攪拌
工法での設計強度基準、砂質土の1.0〜3.0N/m
2、粘性土の1.0N/mm2よりも、いずれも大きな
値になることが確認された。
In the conventional deep mixing method, the magnitude of the uniaxial compressive strength is 0.1 to 0.4 N / mm in onshore construction.
2, a value of more than 2 times the design strength, which has been a 0.5~2.5N / mm 2 at sea construction, also, the design strength criteria for high-pressure injection mixing method, the sandy soil 1.0 ~ 3.0 N / m
It was confirmed that both values were larger than m 2 and 1.0 N / mm 2 of the cohesive soil.

【0029】図4は、本発明のセメントなどの固化材を
含むスラリーに、粘性低減剤を添加した場合の粘性の経
時的な変化を測定した際の測定結果を示している。この
粘性試験では、粘性低減剤として、プロトパウダー(三
菱レイヨン株式会社製、商品名)を使用した。
FIG. 4 shows a measurement result obtained by measuring a temporal change in viscosity when a viscosity reducing agent is added to a slurry containing a solidifying material such as cement of the present invention. In this viscosity test, proto powder (trade name, manufactured by Mitsubishi Rayon Co., Ltd.) was used as a viscosity reducing agent.

【0030】スラリ−の固化材として普通ポルトランド
セメントを用い、水セメント比を40%に設定した。粘
性低減剤の添加量は、以下の表に示すように設定した。
また、この粘性試験では、比較のために、粘性低減剤を
添加しないスラリーの粘度も合わせて測定した。
Normal Portland cement was used as a solidifying material for the slurry, and the water cement ratio was set to 40%. The addition amount of the viscosity reducing agent was set as shown in the following table.
In this viscosity test, the viscosity of the slurry to which the viscosity reducing agent was not added was also measured for comparison.

【0031】[0031]

【表1】 [Table 1]

【0032】各スラリーは、セメントミキサーを用い
て、表1に示した配合で作製し、攪拌時間は3分とし
た。そして、時間の経過に従って、B型粘度計で粘度を
測定した。
Each slurry was prepared using a cement mixer with the composition shown in Table 1, and the stirring time was 3 minutes. Then, the viscosity was measured with a B-type viscometer over time.

【0033】図4は、粘性低減剤にプロトパウダーを用
いた場合の粘性試験の結果を示している。図4に示した
結果から、明らかなように、プロトパウダーを0.05
〜0.10KN/m3の範囲内で添加すると、水セメント
比が40%であっても、放置時間1時間前後において、
スラリーの粘度が約2000CP程度になることが判っ
た。
FIG. 4 shows the results of a viscosity test when proto powder is used as the viscosity reducing agent. As is clear from the results shown in FIG.
The addition in the range of ~0.10KN / m 3, even water-cement ratio be 40% in 1 hour before and after standing time,
It was found that the viscosity of the slurry was about 2000 CP.

【0034】この約2000CP程度の粘度は、図4に
示した、粘性低減剤を添加しない水セメント比が60%
のスラリーと同等であり、従来の深層混合処理工法の室
内配合試験標準仕様で、水セメント比が60から120
%に設定されている範囲内にも合致しており、粘度を約
2000CP程度にすると、水セメント比を60%にし
た場合と同等の施工性を確保することができることが確
認された。
The viscosity of about 2000 CP is such that the water-cement ratio without adding the viscosity reducing agent shown in FIG.
Is equivalent to the slurry in the standard specification of the indoor mixing test of the conventional deep mixing method, and the water-cement ratio is 60 to 120.
%, And it was confirmed that when the viscosity was about 2,000 CP, the workability equivalent to that when the water cement ratio was 60% could be secured.

【0035】なお、上記実施例では、地盤10中に柱状
の改良体20を造成する場合を例示したが、本発明の実
施は、これに限定されることはなく、柱状の改良体20
を隣接造成することなどにより、壁状,格子状,ブロッ
ク状など他の形状の改良体を造成する地盤改良工法にも
適用することができる。
In the above-described embodiment, the case where the columnar improved body 20 is formed in the ground 10 has been exemplified. However, the present invention is not limited to this.
It can also be applied to a ground improvement method of forming an improved body of another shape such as a wall shape, a lattice shape, a block shape, or the like by forming adjacently.

【0036】[0036]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかる混合攪拌による地盤改良工法によれば、
施工性の低下を回避しつつ、従来低強度の改良効果しか
確保できなかった地層に対しても、十分な改良効果を確
保することができる。
As described above in detail in the embodiments,
According to the ground improvement method by mixing and stirring according to the present invention,
While avoiding a decrease in workability, a sufficient improvement effect can be ensured even for a stratum in which only a low-strength improvement effect can be ensured conventionally.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる混合攪拌による地盤改良工法の
一実施例を示す施工工程の説明図である。
FIG. 1 is an explanatory view of a construction step showing one embodiment of a ground improvement method by mixing and stirring according to the present invention.

【図2】本発明にかかる地盤改良工法で用いるスラリー
を各種土質に適用した際の材齢28日における一軸圧縮
強度の測定値を示すグラフである。
FIG. 2 is a graph showing measured values of uniaxial compressive strength at a material age of 28 days when a slurry used in the soil improvement method according to the present invention is applied to various types of soil.

【図3】本発明にかかる地盤改良工法で用いるスラリー
を各種土質に適用した際の材齢90日における一軸圧縮
強度の測定値を示すグラフである。
FIG. 3 is a graph showing measured values of uniaxial compressive strength at 90 days of age when a slurry used in the soil improvement method according to the present invention is applied to various types of soil.

【図4】本発明にかかる地盤改良工法で用いるスラリー
に粘性低減剤を添加した際の粘度の経時的な変化の測定
値を示すグラフである。
FIG. 4 is a graph showing a measured value of a change over time in viscosity when a viscosity reducing agent is added to a slurry used in the ground improvement method according to the present invention.

【符号の説明】[Explanation of symbols]

10 地盤 20 改良体 32 地盤改良装置 10 ground 20 improved body 32 ground improvement device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 浩 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 猪野 宣長 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 田中 憲章 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 横溝 文行 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 西上 裕之 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 細谷 芳巳 東京都港区港南2丁目15番2号 株式会社 大林組本社内 (72)発明者 松尾 龍之 東京都清瀬市下清戸4−640 株式会社大 林組技術研究所内 Fターム(参考) 2D040 AA01 AB05 AC02 AC04 BB01 BD05 CA01 CA03 CB03  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroshi Wada 2-15-2 Konan, Minato-ku, Tokyo Obayashi Gumi head office (72) Inventor Nobunaga Ino 2-2-15-2 Konan, Minato-ku, Tokyo Obayashi Gumi head office (72) Inventor Noriaki Tanaka 2-1-2-2 Konan, Minato-ku, Tokyo Obayashi Gumi head office (72) Inventor Fumiyuki Yokomizo 2-15-2 Konan, Minato-ku, Tokyo Obayashi head office (72) Inventor Hiroyuki Nishigami 2- 15-2 Konan, Minato-ku, Tokyo Obayashi Gumi Corporation (72) Inventor Yoshimi Hosoya 2- 15-2 Konan, Minato-ku, Tokyo Obayashi Gumi Corporation (72 Inventor Tatsuyuki Matsuo 4-640 Shimoseito, Kiyose-shi, Tokyo F-term in Obayashi Corporation Technical Research Institute, Inc. (Reference) 2D040 AA01 AB05 AC02 AC04 BB01 BD05 CA01 CA03 CB03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 現地盤土砂と、セメントなどの固化材を
含むスラリーとを現位置で混合攪拌して、地盤中で前記
現地盤土砂を前記スラリーにより固化させて、所定形状
の改良体を造成する地盤改良工法において、 前記スラリーは、水セメント比が60%未満であって、
粘性低減剤を添加し、かつ、前記固化材を単位体積当た
り4KN以上添加することを特徴とする混合攪拌による
地盤改良工法。
1. An on-site soil and a slurry containing a solidifying material such as cement are mixed and stirred at a current position to solidify the on-site soil with the slurry in the ground to form an improved body having a predetermined shape. In the soil improvement method, the slurry has a water cement ratio of less than 60%,
A ground improvement method by mixing and stirring, wherein a viscosity reducing agent is added and the solidified material is added in an amount of 4 KN or more per unit volume.
【請求項2】 前記スラリーは、水セメント比を40%
に設定することを特徴とする請求項1記載の混合攪拌に
よる地盤改良工法。
2. The slurry has a water-cement ratio of 40%.
The ground improvement method by mixing and stirring according to claim 1, characterized in that:
【請求項3】 前記粘性低減剤は、前記スラリーの粘性
が2000CP以下になるようにその添加量を設定する
ことを特徴とする請求項1記載の混合攪拌による地盤改
良工法。
3. The method for improving ground by mixing and stirring according to claim 1, wherein the amount of the viscosity reducing agent is set so that the viscosity of the slurry is 2000 CP or less.
JP2000177784A 2000-06-14 2000-06-14 Ground improvement method by mixing and stirring Expired - Fee Related JP3737016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000177784A JP3737016B2 (en) 2000-06-14 2000-06-14 Ground improvement method by mixing and stirring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000177784A JP3737016B2 (en) 2000-06-14 2000-06-14 Ground improvement method by mixing and stirring

Publications (2)

Publication Number Publication Date
JP2001355230A true JP2001355230A (en) 2001-12-26
JP3737016B2 JP3737016B2 (en) 2006-01-18

Family

ID=18679327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000177784A Expired - Fee Related JP3737016B2 (en) 2000-06-14 2000-06-14 Ground improvement method by mixing and stirring

Country Status (1)

Country Link
JP (1) JP3737016B2 (en)

Also Published As

Publication number Publication date
JP3737016B2 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
CN106368214B (en) A kind of casing formula cement mixing method at pile operation method
CN107827422A (en) High waterproof simultaneous grouting slurry for seabed shield tunnel
CN101250872A (en) Flabbiness ground strengthened cement mortar stirring pile and pile-formation method thereof
JP2008088040A (en) Cement composition for fixing bolt and continuous construction method for the same
JP2001355233A (en) Forming method for cast-in-place pile by mixing and stirring
JP2007321005A (en) Cement-based solidifying material, and conditioning method of ground by using the solidifying material
JP2001355230A (en) Ground improving method by mixing and stirring
JP3574838B2 (en) Ground improvement compounding agent
JPH09157646A (en) Production of solidifying materail-bentonite injecting solution and powder for producing the same injecting solution
JP2901185B1 (en) Stabilizer injection management method in deep mixing treatment method construction
CN101487251A (en) Construction method of premixing pouring soil cement pile used for strengthening ground and pile produced thereby
JP2007217255A (en) Method of preparing soil cement slurry
JP2012149480A (en) Soil cement method
JP3831282B2 (en) Pile circumference fixing liquid and underground pile creation method
JP2850652B2 (en) Construction method of embedded pile root consolidation part
JP7266311B2 (en) Underground Impermeable Wall by In-Situ Stirring Method and Construction Method of Underground Impermeable Wall by In-Situ Stirring
JP4341884B2 (en) Foundation pile forming composition, manufacturing method thereof, and foundation pile forming method
JP2002363978A (en) Cast-in-place pile formed by mixing and stirring
JP2001207439A (en) Soil impoving method
JP2003232032A (en) Work execution method for fiber reinforced soil cement solidified body
JPH11263974A (en) Additive for hydraulic composition containing rejected soil
JP4464030B2 (en) Cement-based solidification material slurry for low-strength ground improvement method
JP6584354B2 (en) Jet grout method for liquefaction countermeasures
JP2001241032A (en) Ground improving material, and ground improving method
JP2023009992A (en) Quality management method of fluidization treated soil

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees