JP2001348218A - SiGe CRYSTAL AND MANUFACTURING METHOD THEREOF - Google Patents

SiGe CRYSTAL AND MANUFACTURING METHOD THEREOF

Info

Publication number
JP2001348218A
JP2001348218A JP2000164114A JP2000164114A JP2001348218A JP 2001348218 A JP2001348218 A JP 2001348218A JP 2000164114 A JP2000164114 A JP 2000164114A JP 2000164114 A JP2000164114 A JP 2000164114A JP 2001348218 A JP2001348218 A JP 2001348218A
Authority
JP
Japan
Prior art keywords
crystal
range
atoms
type
thermoelectric element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000164114A
Other languages
Japanese (ja)
Other versions
JP3952354B2 (en
Inventor
Takao Abe
孝夫 阿部
Ichiro Yonenaga
一郎 米永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2000164114A priority Critical patent/JP3952354B2/en
Priority to PCT/JP2001/004482 priority patent/WO2001096238A1/en
Publication of JP2001348218A publication Critical patent/JP2001348218A/en
Application granted granted Critical
Publication of JP3952354B2 publication Critical patent/JP3952354B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a SiGe crystal formed which not only attains large effects to have high performance index as a thermionic element, excellent workability and to be free from characteristic degradation or the generation of crack in use but stably attains the high performance index by being controlled to a dopant concentration to attain the high performance index, the manufacturing method thereof and the thermionic element using the crystal. SOLUTION: The size of the grain of the crystal is controlled to >=5×10-5 mm3 and the electrical resistance is controlled to 1×10-5-1×10-4 Ωm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱電素子材料とし
て好適に用いられるシリコンゲルマニウム(SiGe)
結晶及びその製造方法、並びにその結晶を用いた熱電素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to silicon germanium (SiGe) which is suitably used as a thermoelectric element material.
The present invention relates to a crystal, a method for producing the crystal, and a thermoelectric element using the crystal.

【0002】[0002]

【関連技術】p型半導体材料とn型半導体材料を2ヶ所
で接合させ、その2ヶ所の接合部位の間に温度差を与え
ると、いわゆるゼーベック効果によって、この2ヶ所の
接合部位の間に熱起電力が発生する。
2. Related Art When a p-type semiconductor material and an n-type semiconductor material are joined at two locations and a temperature difference is applied between the two locations, heat is applied between the two locations due to the so-called Seebeck effect. An electromotive force is generated.

【0003】この原理を応用した熱電素子は、可動部分
が無く構造が簡単であるため、これを用いて、信頼性が
高く又高寿命かつ保守の容易なエネルギー直接変換シス
テムを構成しうる可能性が高い。そのために、従来から
種々の熱電素子材料が製造開発されてきている。
Since a thermoelectric element applying this principle has no moving parts and has a simple structure, there is a possibility that a thermoelectric element having a high reliability, a long service life, and easy maintenance can be used. Is high. For this purpose, various thermoelectric element materials have been conventionally manufactured and developed.

【0004】その中でもSiGeは化学的に安定で代表
的な熱電素子材料として知られており、その性能の改良
や製造法について従来より多くの提案がなされている
〔特開昭61−149453号公報(米国特許第471
1971号、欧州特許第185499号)、特開平8−
56020号公報、特許第2623172号公報等〕。
[0004] Among them, SiGe is known as a chemically stable and typical thermoelectric element material, and many proposals have been made with respect to its performance improvement and manufacturing method as compared to the prior art (Japanese Patent Application Laid-Open No. 61-149453). (US Patent No. 471
1971; European Patent No. 185499);
No. 56020, Japanese Patent No. 2623172, etc.].

【0005】熱電素子の性能の指標である性能指数Zは
次の式(1)で与えられる。 Z=α2σ/k.........(1) 〔式(1)中、α:ゼーベック係数、σ:電気伝導度、
k:熱伝導度である。〕
[0005] A performance index Z, which is an index of the performance of a thermoelectric element, is given by the following equation (1). Z = α 2 σ / k. . . . . . . . . (1) [in the formula (1), α: Seebeck coefficient, σ: electric conductivity,
k: thermal conductivity. ]

【0006】各種の熱電素子材料の性能指数Zは、温度
との関係で、図2のように表わされる。図2から明らか
なように、従来の製造法によって得られたSiGe多結
晶体の場合は、実用温度領域といわれる200℃以上、
特に600℃迄の領域では、例えば、テルル系材料のB
2 Te3 やPbTeに比較して性能指数Zが劣ること
が実用上の弱点であった。
The performance index Z of various thermoelectric element materials is expressed as shown in FIG. 2 in relation to the temperature. As is clear from FIG. 2, in the case of the SiGe polycrystal obtained by the conventional manufacturing method, 200 ° C. or more, which is called a practical temperature range,
Particularly in the region up to 600 ° C., for example, the tellurium-based material B
The inferiority of the figure of merit Z as compared with i 2 Te 3 or PbTe was a practical weak point.

【0007】このため、この性能指数Zを向上させるた
めに材料中の伝導電子やホールの濃度を上げて電気伝導
度を高めるためにp型材料にはB、Al、Ga等のIII
族の元素を、n型材料はP、As、Sb等のV族の元素
をドーパーントとして添加することや又特開昭61−1
4953号公報や特開平8−56020号公報に開示さ
れるように、Pb、Sn、Fe、Ni、Cr等の金属や
これらの硅化物を添加することが試みられてきた。
Therefore, in order to improve the figure of merit Z, the concentration of conduction electrons and holes in the material is increased to increase the electric conductivity.
Group V elements such as P, As, and Sb as n-type materials may be added as dopant.
As disclosed in Japanese Patent No. 4953 and Japanese Patent Application Laid-Open No. 8-56020, attempts have been made to add metals such as Pb, Sn, Fe, Ni, Cr and silicides thereof.

【0008】これらの改良によって、SiGeの性能指
数Zは向上したが、実用化のためにはさらに一段の性能
指数の向上が求められている。
Although these improvements have improved the performance index Z of SiGe, further improvement in the performance index is required for practical use.

【0009】この他、従来のSiGeインゴットは、構
成成分となるSiとGe及びドーパント等の添加物の所
定量を混合後溶解してできるだけ均一な組成とした後冷
却する鋳込法又はブリッジマン法や、混合物を粉末焼結
法によって製造するため、得られるインゴットは結晶粒
子の集合凝結体である。
In addition, a conventional SiGe ingot is prepared by mixing a predetermined amount of Si, which is a constituent component, an additive such as Ge and a dopant, and then dissolving the mixture to obtain a composition as uniform as possible, followed by cooling, or cooling. In addition, since the mixture is produced by a powder sintering method, the obtained ingot is an aggregate of crystal grains.

【0010】このため、本格的な実用化を防げる次のよ
うな障害〜が生じていた。結晶粒界におけるキャ
リヤの散乱が避けられず電気伝導度の向上が妨げられ
る。実用温度域である200℃以上、特に500℃以
上の高温度熱源に近い部分において粒界偏析が生じ、特
性が時間と共に劣化する。組成の局所的な不均質が避
けられないため、このことによる特性の一層の低下が生
じたり、加工中、使用中におけるクラックの発生も起こ
り易い。
[0010] For this reason, there have been the following obstacles to prevent full-scale practical use. Carrier scattering at crystal grain boundaries is unavoidable, which hinders improvement in electrical conductivity. Grain boundary segregation occurs in a portion close to a high temperature heat source of 200 ° C. or higher, particularly 500 ° C. or higher, which is a practical temperature range, and the characteristics deteriorate with time. Since local inhomogeneity of the composition is unavoidable, this leads to further deterioration of the properties, and cracks are liable to occur during processing and use.

【0011】本発明者らは、上記した従来の製造法によ
る多結晶状のSiGeの問題点に鑑み、鋭意研究を重ね
たところ、SiGe結晶ブロックを構成する結晶粒子の
大きさを増大させること、好ましくは単結晶とすること
によって、上記した問題点を解決し実用化可能なSiG
e熱電素子を実現できることを着想し、その方法を実際
に種々検討した結果、チョクラルスキー法によってSi
xGe1-x(0<x<1)のxのほぼ全域に亘って結晶粒子
の大きさが5×10-5mm3以上のSiGe結晶インゴ
ットを作成することに成功し、熱電素子としての性能指
数の向上と加工性に優れ、使用中における特殊劣化やク
ラックの生じない新規なSiGe結晶材料について既に
提案した(特願平10−335894号)。
In view of the above-mentioned problems of the polycrystalline SiGe produced by the conventional manufacturing method, the present inventors have conducted intensive studies and found that the size of the crystal grains constituting the SiGe crystal block was increased. Preferably, a single crystal is used, which solves the above-mentioned problems and can be used for practical use.
e The idea of realizing a thermoelectric element was considered, and as a result of actually examining various methods, a Czochralski method was used.
We succeeded in producing a SiGe crystal ingot having a crystal grain size of 5 × 10 −5 mm 3 or more over almost the entire x of x Ge 1-x (0 <x <1), and as a thermoelectric element We have already proposed a novel SiGe crystal material which has improved performance index and excellent workability and does not cause special deterioration or cracks during use (Japanese Patent Application No. 10-335894).

【0012】[0012]

【発明が解決しようとする課題】上記した先の提案(特
願平10−335894号)により、熱電素子としての
性能指数の向上と加工性に優れ、使用中における特性劣
化やクラックの生じないSiGe結晶材料が得られるよ
うになったが、性能指数については更なる向上が求めら
れている。本発明者らは、引き続きこの新規なSiGe
結晶についての研究を進めることによって新たなる知見
を得、さらなる提案に及ぶものである。
According to the above-mentioned proposal (Japanese Patent Application No. 10-335894), SiGe is improved in the figure of merit as a thermoelectric element, has excellent workability, and does not cause characteristic deterioration or cracks during use. Although a crystalline material has been obtained, further improvement in the figure of merit is required. We continue to use this new SiGe
We have gained new insights by conducting research on crystals, and have extended our proposals.

【0013】以下、本発明の成り立ちについて説明す
る。熱電素子の性能の指標である性能指数Zは、式
(1)に示された通り、ゼーベック係数(α)の二乗と
電気伝導度(σ)との積(α2σ)に比例する。従っ
て、性能指数Zを向上させる1つの方法としてはこの積
を増加させること(すなわち、αとσを同時に増加させ
ること)が考えられるが、本発明者らがこの性能指数Z
について様々な調査を行ったところによれば、αはσに
対して減少関係にあり、αとσを同時に増加させること
ができないことがわかった。そこで、αとσとの関係か
らα2σの最適値を求めるべく後述する実験例1に示し
た実験を行った結果、α2σはσに対してピークを有す
ることを見出し、本発明を完成させた。
Hereinafter, the formation of the present invention will be described. The performance index Z, which is an index of the performance of the thermoelectric element, is proportional to the product (α 2 σ) of the square of the Seebeck coefficient (α) and the electrical conductivity (σ) as shown in Expression (1). Therefore, one way to improve the figure of merit Z is to increase this product (that is, to increase both α and σ at the same time).
According to various investigations, it has been found that α has a decreasing relationship with σ and α and σ cannot be increased simultaneously. Therefore, as a result of conducting an experiment shown in Experimental Example 1 described later to obtain an optimal value of α 2 σ from the relationship between α and σ, it was found that α 2 σ has a peak with respect to σ, Completed.

【0014】本発明は、熱電素子としての性能指数が高
く、かつ加工性に優れ、使用中における特性劣化やクラ
ックの発生もないという大きな効果が得られるだけでな
く、高い性能指数が得られるドーパント濃度に制御して
いるので、高い性能指数を安定的に得ることができるよ
うにしたSiGe結晶及びその製造方法並びにその結晶
を用いた熱電素子を提供することを目的とする。
The present invention provides a dopant which not only has a high performance index as a thermoelectric element, is excellent in workability, and has a great effect of not causing characteristic deterioration or cracking during use, and also has a high performance index. An object of the present invention is to provide a SiGe crystal, a method for producing the same, and a thermoelectric element using the crystal, which can stably obtain a high figure of merit because the concentration is controlled.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
に、本発明のSixGe1-x(0<X<1)結晶は、結晶
を構成する結晶粒の大きさが5×10-5mm3以上であ
り、電気抵抗率が1×10-5〜1×10-4Ωmの範囲で
あることを特徴とする。前記電気抵抗率は、2×10-5
〜7×10-5Ωmの範囲であることが好ましい。
In order to solve the above problems SUMMARY OF THE INVENTION, Si x Ge 1-x of the present invention (0 <X <1) crystal size of the crystal grains constituting the crystal 5 × 10 - 5 mm 3 or more, and the electrical resistivity is in the range of 1 × 10 −5 to 1 × 10 −4 Ωm. The electric resistivity is 2 × 10 −5
It is preferably in the range of 7 × 10 −5 Ωm.

【0016】また、本発明のSixGe1-x(0<X<
1)結晶は、結晶を構成する結晶粒の大きさが5×10
-5mm3以上であり、ドーパント濃度が、p型の場合は
0.8×1019〜1.5×1020atoms/cm3の範囲、n
型の場合は4×1018〜8×1019atoms/cm3の範囲で
あることを特徴とする。前記ドーパント濃度が、p型の
場合は1.3×1019〜6×1019atoms/cm3の範囲、
n型の場合は0.7×1019〜4×1019atoms/cm3
範囲であることが好ましい。
Further, according to the present invention, Si x Ge 1-x (0 <X <
1) The crystal has a crystal grain size of 5 × 10
-5 mm 3 or more, and the dopant concentration is in the range of 0.8 × 10 19 to 1.5 × 10 20 atoms / cm 3 in the case of p-type,
In the case of a mold, the range is 4 × 10 18 to 8 × 10 19 atoms / cm 3 . When the dopant concentration is p-type, the range is 1.3 × 10 19 to 6 × 10 19 atoms / cm 3 ;
In the case of the n-type, it is preferably in the range of 0.7 × 10 19 to 4 × 10 19 atoms / cm 3 .

【0017】本発明のSixGe1-x(0<X<1)結晶
の製造方法は、チョクラルスキー法によりSixGe1-x
(0<X<1)の結晶を引き上げる際に、引上げ結晶の
ドーパント濃度が、p型の場合は0.8×1019〜1.
5×1020atoms/cm3の範囲、n型の場合は4×1018
〜8×1019atoms/cm3になるようにドープ量を制御し
て結晶を引き上げることを特徴とする。
The method for producing a Si x Ge 1-x (0 <X <1) crystal of the present invention, Si x Ge 1-x by the Czochralski method
When the crystal of (0 <X <1) is pulled, the dopant concentration of the pulled crystal is 0.8 × 10 19 to 1.
5 × 10 20 atoms / cm 3 range, 4 × 10 18 for n-type
The crystal is pulled up by controlling the doping amount so as to be up to 8 × 10 19 atoms / cm 3 .

【0018】この際、前記ドーパント濃度は、p型の場
合は1.3×1019〜6×1019atoms/cm3の範囲、n
型の場合は0.7×1019〜4×1019atoms/cm3の範
囲になるようにドープ量を制御して結晶を引き上げるこ
とが好ましい。
At this time, the dopant concentration is in the range of 1.3 × 10 19 to 6 × 10 19 atoms / cm 3 for p-type,
In the case of a mold, it is preferable to pull the crystal by controlling the doping amount so as to be in the range of 0.7 × 10 19 to 4 × 10 19 atoms / cm 3 .

【0019】さらに、本発明の熱電素子は、上記したS
xGe1-x(0<X<1)の結晶を用いることを特徴と
するものである。
Further, the thermoelectric element of the present invention has the above-mentioned S
and is characterized in the use of crystals of i x Ge 1-x (0 <X <1).

【0020】[0020]

【発明の実施の形態】以下、本発明の実施の形態につい
て説明するが、本発明の技術思想から逸脱しない限り種
々の変更が可能なことはいうまでもない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below, but it goes without saying that various modifications can be made without departing from the technical idea of the present invention.

【0021】本発明のSixGe1-x(0<X<1)の結
晶を得るためには、通常用いられているチョクラルスキ
ー(CZ)法による結晶引き上げ装置を用いればよい。
この装置を用い、所要のSiとGe及びドーパント(p
型の場合はボロン、ガリウムなど、n型の場合はリン、
砒素、アンチモンなど)を石英ルツボ内で溶解し、例え
ば、Si単結晶を種結晶としてアルゴンガス(1気圧)
中で1〜10mm/Hrの引上速度で引き上げれば、結
晶粒の大きさが5×10-5mm3以上(平均粒径は約5
0μm以上)のSixGe1-x(0<X<1)の結晶を引
き上げることができる。
In order to obtain a crystal of Si x Ge 1-x (0 <X <1) according to the present invention, a crystal pulling apparatus generally used by the Czochralski (CZ) method may be used.
Using this apparatus, the required Si, Ge and dopant (p
Boron, gallium, etc. for the type, phosphorus for the n-type,
Arsenic, antimony, etc.) in a quartz crucible, for example, using an Si single crystal as a seed crystal and argon gas (1 atm)
If the crystal is pulled at a pulling speed of 1 to 10 mm / Hr, the size of the crystal grains is 5 × 10 −5 mm 3 or more (the average particle size is about 5
Si x Ge 1-x (0 over 0 .mu.m) <can be raised crystals of X <1).

【0022】本発明においては、引き上げ結晶の電気抵
抗率を1×10-5〜1×10-4Ωmの範囲とする必要が
あるので、石英ルツボ中に溶解するドーパントの量を調
整する必要がある。そのため、引き上げ結晶中のドーパ
ント濃度が、p型の場合は0.8×1019〜1.5×1
20atoms/cm3の範囲、好ましくは1.3×1019〜6
×1019atoms/cm3の範囲となるように、また、n型の
場合は4×101 8〜8×1019atoms/cm3の範囲、好
ましくは0.7×1019〜4×1019atoms/cm 3の範囲
になるようにドープ量を制御して結晶を引き上げる。実
際に石英ルツボに投入されるドープ剤の量は、ドーパン
トの種類と偏析係数、および投入されるSi,Geの量
によって計算により求められるため、通常のCZ法では
容易に決定することができる。
In the present invention, the electrical resistance of the pulled crystal is
1 × 10-Five~ 1 × 10-FourΩm range
To control the amount of dopant dissolved in the quartz crucible.
Need to be adjusted. Therefore, dopa in the pulled crystal
0.8 × 10 for the p-type19~ 1.5 × 1
020atoms / cmThree, Preferably 1.3 × 1019~ 6
× 1019atoms / cmThreeAnd the n-type
4 × 10 in case1 8~ 8 × 1019atoms / cmThreeRange, good
Preferably 0.7 × 1019~ 4 × 1019atoms / cm ThreeRange
The crystal is pulled up by controlling the doping amount so that Real
The amount of dopant added to the quartz crucible at the time
Type and segregation coefficient, and amount of Si and Ge
In the ordinary CZ method,
It can be easily determined.

【0023】このようにして引き上げられたSixGe
1-x(0<X<1)の結晶は、結晶を構成する結晶粒の
大きさが5×10-5mm3以上であり、電気抵抗率が1
×10- 5〜1×10-4Ωmの範囲にあるため、性能指数
が安定的に高く、特性劣化やクラックが生じにくい。従
って、これに通常行われる加工を施して熱電素子を形成
すれば、性能に優れた熱電素子を得ることができる。
The Si x Ge thus pulled up
The crystal of 1-x (0 <X <1) has a crystal grain size of 5 × 10 −5 mm 3 or more and an electric resistivity of 1 × 10 −5 mm 3 or more.
× 10 - 5 to 1 for the range of × 10 -4 [Omega] m, the performance index is stably high, damage or cracking is less likely. Therefore, if the thermoelectric element is formed by performing the usual processing, a thermoelectric element having excellent performance can be obtained.

【0024】[0024]

【実施例】以下に実験例をあげて本発明をさらに具体的
に説明する。 (実験例1)チョクラルスキー法により、ドーパントの
種類、ドーパント濃度、SiGe組成の異なる5種類の
結晶(A〜E)を引き上げ、それぞれの温度1000K
におけるゼーベック係数α、電気伝導度σ(電気抵抗率
ρ)、熱伝導度kを測定しα 2σを算出した。表1にこ
れらの物性値を示すとともに、図1に電気抵抗率とα2
σとの関係をプロットした。
The present invention will be described in more detail with reference to the following experimental examples.
Will be described. (Experimental example 1) The dopant of the dopant was obtained by the Czochralski method.
5 types with different types, dopant concentrations and SiGe compositions
Crystals (A to E) are pulled up and each temperature is 1000K
Coefficient α, electrical conductivity σ (electrical resistivity
ρ), measure the thermal conductivity k and calculate α Twoσ was calculated. Table 1
FIG. 1 shows the electrical resistivity and αTwo
The relationship with σ was plotted.

【0025】尚、それぞれの物性値の測定方法は以下の
通りである。また、顕微鏡観察したところ、いずれの結
晶も結晶粒の大きさは5×10-5mm3以上(平均粒径
は約50μm以上)であった。
The methods for measuring the physical properties are as follows. In addition, microscopic observation revealed that each crystal had a crystal grain size of 5 × 10 −5 mm 3 or more (average particle size of about 50 μm or more).

【0026】ゼーベック係数の測定 引上げた結晶から直径10mm厚さ1mmの円板状試料
を切り出し、これを用いてゼーベック係数を温度差法に
よって測定した。温度差法は、温度の異なる熱ブロック
で挟んだ試料の両接触面に生じた熱起電力を測定する方
法である。
Measurement of Seebeck coefficient A disk-shaped sample having a diameter of 10 mm and a thickness of 1 mm was cut out from the pulled crystal, and the Seebeck coefficient was measured by a temperature difference method using the sample. The temperature difference method is a method of measuring a thermoelectromotive force generated on both contact surfaces of a sample sandwiched between heat blocks having different temperatures.

【0027】電気伝導度の測定 引上げた結晶から3×1×10mm3 の試料を作製して
電気伝導度を4探針法によって測定した。4探針法は、
一直線上に並べられた4本の針の外側2本から電流を流
し、内部2本の針間に生ずる電位差を測定する方法であ
る。
Measurement of Electric Conductivity A sample of 3 × 1 × 10 mm 3 was prepared from the pulled crystal, and the electric conductivity was measured by a four probe method. The four-probe method
In this method, a current is applied from two outer needles of four needles arranged in a straight line, and a potential difference generated between two inner needles is measured.

【0028】熱伝導度の測定 引上げた結晶から直径10mm厚さ1mmの円板状試料
を切り出し、これを用いて熱伝導度をレーザーフラッシ
ュ法によって測定した。レーザーフラッシュ法は、試料
の表面にレーザーを瞬時照射し、裏面での温度変化によ
って熱伝導度を評価する方法である。
Measurement of Thermal Conductivity A disk-shaped sample having a diameter of 10 mm and a thickness of 1 mm was cut out from the pulled crystal, and the thermal conductivity was measured by a laser flash method. The laser flash method is a method of irradiating the surface of a sample with a laser instantaneously and evaluating the thermal conductivity based on a temperature change on the back surface.

【0029】図1より、α2σは電気抵抗率ρが1×1
-5〜1×10-4Ωmの範囲(すなわち、電気伝導度σ
が1×105〜1×104(1/Ωm))でピークをも
ち、特に、ρが2×10-5〜7×10-5Ωm(σが5×
104〜1.4×104(1/Ωm))付近で極大になる
ことがわかった。
From FIG. 1, α 2 σ indicates that the electric resistivity ρ is 1 × 1
0 -5 to 1 × 10 -4 Ωm (that is, electric conductivity σ).
Has a peak at 1 × 10 5 to 1 × 10 4 (1 / Ωm)). In particular, ρ is 2 × 10 −5 to 7 × 10 −5 Ωm (σ is 5 ×
It was found that the maximum value was observed at around 10 4 to 1.4 × 10 4 (1 / Ωm).

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【発明の効果】以上述べた如く、本発明のSixGe1-x
(0<X<1)の結晶によれば、熱電素子としての性能
指数が高く、かつ加工性に優れ、使用中における特性劣
化やクラックの発生もないという大きな効果が得られる
だけでなく、高い性能指数が得られるドーパント濃度に
制御しているので、高い性能指数を安定的に得ることが
できる。また、本発明方法によれば、上記SixGe1-x
(0<X<1)の結晶を効率的に製造することができ
る。
As described above, according to the present invention, the Si x Ge 1-x of the present invention is used.
According to the crystal of (0 <X <1), the thermoelectric element has a high figure of merit, is excellent in workability, and has not only a great effect of preventing property deterioration and cracking during use but also has a high effect. Since the dopant concentration is controlled to obtain a figure of merit, a high figure of merit can be stably obtained. Further, according to the present invention, the Si x Ge 1-x
Crystals of (0 <X <1) can be efficiently produced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実験例1における電気抵抗率とα2σとの関
係を示すグラフである。
FIG. 1 is a graph showing the relationship between electrical resistivity and α 2 σ in Experimental Example 1.

【図2】 各種の熱電素子材料の性能指数と温度との関
係を示すグラフである。
FIG. 2 is a graph showing the relationship between the performance index of various thermoelectric element materials and temperature.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 結晶を構成する結晶粒の大きさが5×1
-5mm3以上であり、電気抵抗率が1×10-5〜1×
10-4Ωmの範囲であることを特徴とするSixGe1-x
(0<X<1)の結晶。
1. The size of a crystal grain constituting a crystal is 5 × 1.
0 -5 mm 3 or more, and the electric resistivity is 1 × 10 -5 to 1 ×
Characterized in that it is in the range of 10 -4 Ωm Si x Ge 1- x
Crystals of (0 <X <1).
【請求項2】 前記電気抵抗率が2×10-5〜7×10
-5Ωmの範囲であることを特徴とする請求項1記載のS
xGe1-x(0<X<1)の結晶。
2. The electric resistivity is 2 × 10 −5 to 7 × 10.
2. The S according to claim 1, wherein said S is in the range of -5 .OMEGA.m.
crystal of i x Ge 1-x (0 <X <1).
【請求項3】 結晶を構成する結晶粒の大きさが5×1
-5mm3以上であり、ドーパント濃度が、p型の場合
は0.8×1019〜1.5×1020atoms/cm3の範囲、
n型の場合は4×1018〜8×1019atoms/cm3の範囲
であることを特徴とするSixGe1-x(0<X<1)の
結晶。
3. The size of a crystal grain constituting a crystal is 5 × 1.
0 −5 mm 3 or more, and the dopant concentration is in the range of 0.8 × 10 19 to 1.5 × 10 20 atoms / cm 3 in the case of p-type,
For n-type crystals, characterized in that in the range of 4 × 10 18 ~8 × 10 19 atoms / cm 3 Si x Ge 1-x (0 <X <1).
【請求項4】 前記ドーパント濃度が、p型の場合は
1.3×1019〜6×1019atoms/cm3の範囲、n型の
場合は0.7×1019〜4×1019atoms/cm3の範囲で
あることを特徴とするSixGe1-x(0<X<1)の結
晶。
4. The dopant concentration is in the range of 1.3 × 10 19 to 6 × 10 19 atoms / cm 3 for p-type, and 0.7 × 10 19 to 4 × 10 19 atoms for n-type. / Si x Ge 1-x, wherein the cm in the range of 3 (0 <X <1) crystal.
【請求項5】 チョクラルスキー法によりSixGe1-x
(0<X<1)の結晶を引き上げる際に、引上げ結晶の
ドーパント濃度が、p型の場合は0.8×1019〜1.
5×1020atoms/cm3の範囲、n型の場合は4×1018
〜8×1019atoms/cm3になるようにドープ量を制御し
て結晶を引き上げることを特徴とするSixGe1-x(0
<X<1)結晶の製造方法。
5. The method according to claim 1, wherein the Si x Ge 1-x is formed by the Czochralski method.
When the crystal of (0 <X <1) is pulled, the dopant concentration of the pulled crystal is 0.8 × 10 19 to 1.
5 × 10 20 atoms / cm 3 range, 4 × 10 18 for n-type
The Si x Ge 1-x (0) is characterized in that the crystal is pulled up by controlling the doping amount so as to become 88 × 10 19 atoms / cm 3.
<X <1) A method for producing a crystal.
【請求項6】 前記ドーパント濃度が、p型の場合は
1.3×1019〜6×1019atoms/cm3の範囲、n型の
場合は0.7×1019〜4×1019atoms/cm3の範囲に
なるようにドープ量を制御して結晶を引き上げることを
特徴とする請求項5に記載されたSixGe1-x(0<X
<1)結晶の製造方法。
6. The dopant concentration is in the range of 1.3 × 10 19 to 6 × 10 19 atoms / cm 3 for p-type, and 0.7 × 10 19 to 4 × 10 19 atoms for n-type. / Si according to claim 5 cm 3 range so as to control the doping amount of wherein the pulling crystal x Ge 1-x (0 < X
<1) A method for producing a crystal.
【請求項7】 請求項1〜4のいずれか1項記載のSi
xGe1-x(0<X<1)の結晶を用いることを特徴とす
る熱電素子。
7. The Si according to claim 1, wherein
A thermoelectric element using a crystal of x Ge 1-x (0 <X <1).
JP2000164114A 2000-06-01 2000-06-01 SiGe crystal and method for producing the same Expired - Fee Related JP3952354B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000164114A JP3952354B2 (en) 2000-06-01 2000-06-01 SiGe crystal and method for producing the same
PCT/JP2001/004482 WO2001096238A1 (en) 2000-06-01 2001-05-29 SiGe CRYSTAL AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164114A JP3952354B2 (en) 2000-06-01 2000-06-01 SiGe crystal and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001348218A true JP2001348218A (en) 2001-12-18
JP3952354B2 JP3952354B2 (en) 2007-08-01

Family

ID=18667777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164114A Expired - Fee Related JP3952354B2 (en) 2000-06-01 2000-06-01 SiGe crystal and method for producing the same

Country Status (2)

Country Link
JP (1) JP3952354B2 (en)
WO (1) WO2001096238A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021002221A1 (en) * 2019-07-03 2021-01-07

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8431071D0 (en) * 1984-12-08 1985-01-16 Univ Glasgow Alloys
JPH04285096A (en) * 1991-03-12 1992-10-09 Nec Corp Method for growing si-ge single crystal
JPH06120568A (en) * 1992-10-02 1994-04-28 Idemitsu Petrochem Co Ltd Manufacture of thermoelectric converting material
JPH0856020A (en) * 1994-06-08 1996-02-27 Nissan Motor Co Ltd Thermoelectric material and thermionic element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021002221A1 (en) * 2019-07-03 2021-01-07
WO2021002221A1 (en) * 2019-07-03 2021-01-07 住友電気工業株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and light sensor
JP7476191B2 (en) 2019-07-03 2024-04-30 住友電気工業株式会社 Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module and optical sensor
US12029127B2 (en) 2019-07-03 2024-07-02 Sumitomo Electric Industries, Ltd. Thermoelectric conversion material, thermoelectric conversion element, thermoelectric conversion module, and light sensor

Also Published As

Publication number Publication date
JP3952354B2 (en) 2007-08-01
WO2001096238A1 (en) 2001-12-20

Similar Documents

Publication Publication Date Title
Yim et al. Thermoelectric properties of Bi 2 Te 3-Sb 2 Te 3-Sb 2 Se 3 pseudo-ternary alloys in the temperature range 77 to 300 K
Jeon et al. Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals
Oh et al. Thermoelectric properties of the hot-pressed (Bi, Sb) 2 (Te, Se) 3 alloys
Jiang et al. Effect of TeI4 content on the thermoelectric properties of n-type Bi–Te–Se crystals prepared by zone melting
Zhai et al. Tunable optimum temperature range of high-performance zone melted bismuth-telluride-based solid solutions
Yamashita et al. Effect of annealing on thermoelectric properties of bismuth telluride compounds
Yu et al. Enhancing the thermoelectric performance of free solidified p-type Bi0. 5Sb1. 5Te3 alloy by manipulating its parent liquid state
Perrin et al. Study of the n-type Bi2Te2. 7Se0. 3 doped with bromine impurity
Gao et al. Simultaneous optimization of Seebeck, electrical and thermal conductivity in free-solidified Bi 0.4 Sb 1.6 Te 3 alloy via liquid-state manipulation
Vandersande et al. Effect of high temperature annealing on the thermoelectric properties of GaP doped SiGe
Kavei et al. Fabrication and characterization of the p-type (Bi 2 Te 3) x (Sb 2 Te 3) 1-x thermoelectric crystals prepared via zone melting.
Yamashita et al. Effect of the cooling rate on the thermoelectric properties of p-type (Bi0. 25Sb0. 75) 2Te3 and n-type Bi2 (Te0. 94Se0. 06) 3 after melting in the bismuth–telluride system
JP3952354B2 (en) SiGe crystal and method for producing the same
Bagieva et al. Influence of structural defects on the thermal conductivity of polycrystalline and single-crystal PbTe
JP3975676B2 (en) SiGe polycrystal
Yamashita et al. Influence of annealing on the distribution of thermoelectric figure of merit in bismuth-telluride ingots
Novikov et al. Thermoelectric properties of melt-spun and crystalline In0. 2Ce0. 1Co4Sb12. 3 ribbons
Yamashita et al. Enhancement of the thermoelectric figure of merit in p-and n-type Cu/Bi-Te/Cu composites
Jung et al. Thermoelectric Properties of Highly Deformed and Subsequently Annealed p-Type (Bi 0.25 Sb 0.75) 2 Te 3 Alloys
Satou et al. Influence of annealing on the spatial distribution of thermoelectric properties in bismuth-telluride specimens
Vining et al. Progress in Doping of Ruthenium Suicide (Ru2Si3)
RU2644913C2 (en) Low-temperature thermoelectric material and method of its production
Yonenaga et al. Thermal and electrical properties of Czochralski grown GeSi alloys
Yonenaga Carrier Mobility and Resistivity of n-and p-Type SixGe1-x (0.93< x< 0.96) Single Crystals
Fangary et al. Growth and characterization of Ag2Te single crystals

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees