JP2001345496A - Magnetic element - Google Patents

Magnetic element

Info

Publication number
JP2001345496A
JP2001345496A JP2000164598A JP2000164598A JP2001345496A JP 2001345496 A JP2001345496 A JP 2001345496A JP 2000164598 A JP2000164598 A JP 2000164598A JP 2000164598 A JP2000164598 A JP 2000164598A JP 2001345496 A JP2001345496 A JP 2001345496A
Authority
JP
Japan
Prior art keywords
magnetic
layers
granular
magnetic element
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000164598A
Other languages
Japanese (ja)
Inventor
Yoshinobu Sekiguchi
芳信 関口
Yoji Teramoto
洋二 寺本
Ryoji Fujiwara
良治 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2000164598A priority Critical patent/JP2001345496A/en
Publication of JP2001345496A publication Critical patent/JP2001345496A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3281Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Hall/Mr Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a magnetic element where a magnetoresistance change factor is large, a saturation magnetic field is small, and an element resistance is adjusted to an appropriate value, with less variation for stable characteristics. SOLUTION: There are provided a granular magnetic film 4 where manganese oxide fine particles having a perovskite structure represented by A1-xBxMnO3 (A represents La, Pr, Nd or Sm while B represents Ca, Sr, or Ba, with x>0.17.) are dispersed in dielectrics matrix; and two layers of magnetic layers 2 and 6 with different magnetic characteristics which face each other across the granular magnetic film. As the magnetization directions of the magnetic layers 2 and 6 are made parallel/non-parallel, the electric resistance along the lamination interface of the granular magnetic film 4 provides a different resistance value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、誘電体マトリック
ス中に、ぺロブスカイト構造を有するマンガン酸化物の
強磁性微粒子が、分散されているグラニュラー磁性膜を
有する磁気素子に関する。この磁気素子は、磁気ヘッ
ド、磁気記録装置などの用途に非常に有用である。
[0001] The present invention relates to a magnetic element having a granular magnetic film in which ferromagnetic fine particles of manganese oxide having a perovskite structure are dispersed in a dielectric matrix. This magnetic element is very useful for applications such as a magnetic head and a magnetic recording device.

【0002】[0002]

【従来の技術】磁気抵抗効果は、ある種の磁性体に磁界
を加えることにより電気抵抗が変化する現象であり、磁
界センサや磁気ヘッド等に利用されている。磁気抵抗効
果素子にはパーマロイ合金等の薄膜が広く利用されてき
た。これをハードディスク等の再生ヘッドに使用するこ
とで、高密度磁気記録が達成されている。しかし、パー
マロイ薄膜の磁気抵抗変化率は2〜3%程度と小さいの
で、さらなる高密度記録を達成しようとすると、充分な
感度が得られないという問題点があった。
2. Description of the Related Art The magnetoresistive effect is a phenomenon in which electric resistance changes when a magnetic field is applied to a certain kind of magnetic material, and is used for a magnetic field sensor, a magnetic head, and the like. Thin films such as permalloy have been widely used for magnetoresistive elements. By using this in a reproducing head such as a hard disk, high-density magnetic recording has been achieved. However, since the rate of change in magnetoresistance of the permalloy thin film is as small as about 2 to 3%, there is a problem that sufficient sensitivity cannot be obtained in order to achieve higher density recording.

【0003】近年、非磁性金属マトリックス中に磁性超
微粒子を分散させた所謂グラニュラー磁性膜が、スピン
に依存した伝導に基づく巨大磁気抵抗効果を示すことが
見出され(Pbys. Rev. Lett. 68, 3745(1992))、これ
により磁気抵抗効果ヘッド等の特性向上が期待されてい
る(特開平7−307013号)。このようなグラニュラ
ー磁性膜は、磁界を加えない状態では磁性超微粒子の性
質により各磁性超微粒子のスピンが互いに不規則な方向
を向いているために抵抗が高く、磁界を加えて各スピン
を磁界の方向に揃えると抵抗が低下し、その結果スピン
依存散乱に基づく磁気抵抗効果が発現する。グラニュラ
ー磁性膜は比較的作製が容易であることから次世代の磁
気抵抗効果素子として期待されているものの、この場合
の磁性超微粒子は超常磁性を示すため、飽和磁界が本質
的に非常に大きいという問題を有している。
In recent years, it has been found that a so-called granular magnetic film in which magnetic ultrafine particles are dispersed in a nonmagnetic metal matrix exhibits a giant magnetoresistance effect based on spin-dependent conduction (Pbys. Rev. Lett. 68). , 3745 (1992)), which is expected to improve the characteristics of a magnetoresistive head and the like (Japanese Patent Application Laid-Open No. 7-3070013). Such a granular magnetic film has a high resistance in the absence of a magnetic field because the spins of each magnetic ultrafine particle are oriented in an irregular direction due to the properties of the magnetic ultrafine particles. , The resistance decreases, and as a result, a magnetoresistance effect based on spin-dependent scattering is exhibited. Granular magnetic films are expected to be next-generation magnetoresistive elements because they are relatively easy to fabricate, but in this case, the magnetic ultrafine particles exhibit superparamagnetism, so the saturation magnetic field is essentially very large. Have a problem.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上述したグ
ラニュラー磁性膜の課題を解決すべくなされたものであ
り、磁気抵抗変化率が大きく、飽和磁界が小さく、素子
抵抗を適当な値に調整することができ、しかもバラツキ
が小さい安定した特性が得られる磁気素子を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the granular magnetic film, and has a large magnetoresistance change rate, a small saturation magnetic field, and an element resistance adjusted to an appropriate value. It is another object of the present invention to provide a magnetic element which can perform stable operation with a small variation.

【0005】[0005]

【課題を解決するための手段】本発明の磁気素子は、一
般式A1-xxMnO3(AはLa、Pr、Nd又はSm
を示し、BはCa、Sr又はBaを示す。x>0.1
7)で表されるぺロブスカイト構造を有するマンガン酸
化物微粒子が誘電体マトリックス中に分散されて成るグ
ラニュラー磁性膜と、該グラニュラー磁性膜を挟んで対
向する磁化特性の異なる2層の磁性層を具備し、該2層
の磁性層の磁化方向を平行/反平行とすることに対応し
て、グラニュラー磁性膜の積層界面に沿う方向の電気抵
抗が異なる抵抗値を有することを特徴とする。
The magnetic element of the present invention has the general formula A 1 -xB x MnO 3 (where A is La, Pr, Nd or Sm).
And B represents Ca, Sr or Ba. x> 0.1
7) a granular magnetic film in which manganese oxide fine particles having a perovskite structure represented by 7) are dispersed in a dielectric matrix, and two magnetic layers having different magnetization characteristics opposed to each other with the granular magnetic film interposed therebetween. According to the feature that the magnetization directions of the two magnetic layers are parallel / antiparallel, the electrical resistance in the direction along the lamination interface of the granular magnetic films has different resistance values.

【0006】グラニュラー磁性膜を挟む2層の磁性層
(以下、強磁性層という)の磁化の向きが同一向き(以
下「平行」という)の場合には、2層の強磁性層の磁化
によって生じる磁界により、グラニュラー磁性膜中に分
散しているマンガン酸化物の個々の微粒子は、2層の強
磁性層と同一の向きに磁化される。したがって、マンガ
ン酸化物微粒子は同じスピン伝導帯を有し、かつ、伝導
電子がトンネル可能な拒離にあるので、この状態におい
て、グラニュラー磁性膜に形成された2つの電極間に電
圧を印加すると、伝導電子が、微粒子間をトンネル効果
により伝導し、トンネル電流が流れる。
When the magnetization directions of two magnetic layers (hereinafter, referred to as ferromagnetic layers) sandwiching the granular magnetic film are the same (hereinafter, referred to as "parallel"), the magnetization is generated by the magnetization of the two ferromagnetic layers. By the magnetic field, the individual fine particles of manganese oxide dispersed in the granular magnetic film are magnetized in the same direction as the two ferromagnetic layers. Therefore, the manganese oxide fine particles have the same spin conduction band, and the conduction electrons are in a rejection capable of tunneling. In this state, when a voltage is applied between the two electrodes formed on the granular magnetic film, The conduction electrons are conducted between the fine particles by a tunnel effect, and a tunnel current flows.

【0007】一方、グラニュラー磁性膜を挟む2層の強
磁性層の磁化が反対向き(以下「反平行」という)の場
合は磁界が小さく、個々のマンガン酸化物の微粒子を磁
化できない。また、例えば強磁性マンガン酸化物La
1-xSrxMnO3(x≧0.25)は保磁力が小さいの
で、強磁性層のどちらか一方の磁化が反転すると磁化は
バラバラとなり、隣接微粒子が同じスピンの伝導帯を有
する確率が小さくなる。このため、グラニュラー磁性膜
に形成された2つの電極間に電圧を印加しても、伝導電
子が、微粒子間をトンネルできる確率が大幅に低下し、
2層の強磁性層の磁化の向きが平行の場合と比較して高
抵抗になる。
On the other hand, when the magnetizations of the two ferromagnetic layers sandwiching the granular magnetic film are in opposite directions (hereinafter, referred to as "anti-parallel"), the magnetic field is small and individual manganese oxide fine particles cannot be magnetized. Also, for example, ferromagnetic manganese oxide La
Since 1-x Sr x MnO 3 (x ≧ 0.25) has a small coercive force, when either one of the ferromagnetic layers reverses the magnetization, the magnetization becomes scattered, and the probability that adjacent fine particles have a conduction band of the same spin is high. Become smaller. For this reason, even if a voltage is applied between the two electrodes formed on the granular magnetic film, the probability that conduction electrons can tunnel between the particles is greatly reduced,
The resistance becomes higher as compared with the case where the magnetization directions of the two ferromagnetic layers are parallel.

【0008】つまり、グラニュラー磁性膜を挟む2層の
強磁性層のどちらか一方の磁化を、外部磁界により反転
させることにより、巨大磁気抵抗変化を得ることができ
る。また、例えば強磁性マンガン酸化物La1-xSrx
nO3(x≧0.25)は、伝導帯のスピン分極率はほぼ
100%と、金属強磁性微粒子より大きいので、グラニ
ュラー磁性膜を挟む強磁性層の磁化方向が平行/反平行
状態に対応するグラニュラー膜の磁気抵抗変化が大きく
なる。
That is, a giant magnetoresistance change can be obtained by reversing the magnetization of one of the two ferromagnetic layers sandwiching the granular magnetic film by an external magnetic field. Also, for example, ferromagnetic manganese oxide La 1-x Sr x M
nO 3 (x ≧ 0.25) has a spin polarization in the conduction band of almost 100%, which is larger than the metal ferromagnetic fine particles, so that the magnetization directions of the ferromagnetic layers sandwiching the granular magnetic film correspond to the parallel / antiparallel state. The change in magnetoresistance of the granular film increases.

【0009】[0009]

【発明の実施の形態】図1は、本発明の実施形態を例示
する磁気素子(スピンバルブデバイス)の概略構成図で
ある。同図下より、反強磁性層1、第1の強磁性層2、
非磁性絶縁層3、グラニュラー磁性膜4が順次積層さ
れ、さらにグラニュラー磁性膜4の上面両端には、グラ
ニュラー磁性膜4の膜面に平行に電流を流すための1対
の電極7が形成され、またグラニュラー磁性膜4の上面
の1対の電極7に挟まれた部分には、非磁性絶縁層5、
第2の強磁性層6が順次積層されている。
FIG. 1 is a schematic configuration diagram of a magnetic element (spin valve device) illustrating an embodiment of the present invention. From the bottom of the figure, the antiferromagnetic layer 1, the first ferromagnetic layer 2,
A non-magnetic insulating layer 3 and a granular magnetic film 4 are sequentially laminated, and a pair of electrodes 7 for flowing a current parallel to the film surface of the granular magnetic film 4 are formed on both ends of the upper surface of the granular magnetic film 4. A nonmagnetic insulating layer 5 is provided on a portion of the upper surface of the granular magnetic film 4 between the pair of electrodes 7.
The second ferromagnetic layers 6 are sequentially stacked.

【0010】グラニュラー磁性膜4は、一般式A1-xx
MnO3(AはLa、Pr、Nd又はSmを示し、Bは
Ca、Sr又はBaを示す。x>0.17)で表される
ぺロブスカイト構造を有するマンガン酸化物微粒子が誘
電体マトリックス中に分散されて成る。マンガン酸化物
微粒子としては、特に、La1-xSrxMnO3(x≧0.
25)のぺロブスカイト構造を有するもの(以下、適宜
「LSMO粒子」という)を用いることが好ましい。L
SMO粒子以外にも、Nd1-xSrxMnO3、Pr1-x
xMnO3、La1-xSrxMnO3等も使用できる。
The granular magnetic film 4 has the general formula A 1-x B x
Manganese oxide fine particles having a perovskite structure represented by MnO 3 (A represents La, Pr, Nd or Sm, B represents Ca, Sr or Ba; x> 0.17) are contained in a dielectric matrix. Become distributed. As the manganese oxide fine particles, La 1-x Sr x MnO 3 (x ≧ 0.
It is preferable to use those having a perovskite structure of 25) (hereinafter, appropriately referred to as “LSMO particles”). L
In addition to SMO particles, Nd 1-x Sr x MnO 3 , Pr 1-x C
a x MnO 3 , La 1-x Sr x MnO 3 and the like can also be used.

【0011】一方、誘電体マトリックスとしては、Si
2、A123、ZrO2等の酸化物、SiN、AIN、
BN等の窒化物を用いることが好ましい。
On the other hand, as the dielectric matrix, Si
Oxides such as O 2 , A 12 O 3 , ZrO 2 , SiN, AIN,
It is preferable to use a nitride such as BN.

【0012】グラニュラー磁性膜4においては、誘電体
マトリックス中に分散させたマンガン酸化物微粒子が、
少なくとも結晶の1軸に対して配向させたものであるこ
とが好ましい。なおここで「配向させた」とは、各粒子
が実質的にほぼ配向している状態含み、また大部分の微
粒子が配向し、一部は配向していない場合を含む。
In the granular magnetic film 4, manganese oxide fine particles dispersed in a dielectric matrix are:
Preferably, the crystal is oriented at least with respect to one axis of the crystal. Here, “oriented” includes a state where each particle is substantially substantially oriented, and includes a case where most of the fine particles are oriented and a part is not oriented.

【0013】これにより、一方の強磁性層の磁化変化に
応じて、マンガン酸化物微粒子の大部分が一斉に磁化状
態を変化する。また、マンガン酸化物微粒子の磁化容易
軸方向に外部磁界を印加することにより、マンガン酸化
物微粒子の磁化状態を変化させるのに必要な磁界を小さ
くできる。
Thus, most of the manganese oxide fine particles simultaneously change the magnetization state according to the change in the magnetization of one ferromagnetic layer. Further, by applying an external magnetic field in the direction of the easy axis of magnetization of the manganese oxide fine particles, the magnetic field necessary for changing the magnetization state of the manganese oxide fine particles can be reduced.

【0014】マンガン酸化物微粒子の平均粒径は、5n
m以下であることが好ましい。これにより、マンガン酸
化物微粒子の磁化を弱い外部磁場で生じさせると共に、
粒子数が3以上で起こる高次トンネルを生じ易くするこ
とができる。
The average particle size of the manganese oxide fine particles is 5 n
m or less. As a result, the magnetization of the manganese oxide fine particles is generated by a weak external magnetic field,
Higher-order tunneling that occurs when the number of particles is 3 or more can be easily caused.

【0015】グラニュラー磁性膜4の厚さは2〜10n
m程度が好ましい。
The thickness of the granular magnetic film 4 is 2 to 10 n.
m is preferable.

【0016】第1の強磁性層2及び第2の強磁性層6
は、それぞれ軟磁気特性を有する強磁性体で形成されて
いることが好ましい。図1の例においては、第1の強磁
性層2は反強磁性層1に接しているため、磁化方向が固
定されている。第2の強磁性層6は外部磁界により磁化
方向を変化できる。
First ferromagnetic layer 2 and second ferromagnetic layer 6
Is preferably formed of a ferromagnetic material having soft magnetic properties. In the example of FIG. 1, since the first ferromagnetic layer 2 is in contact with the antiferromagnetic layer 1, the magnetization direction is fixed. The magnetization direction of the second ferromagnetic layer 6 can be changed by an external magnetic field.

【0017】第1の強磁性層2及び第2の強磁性層6
は、金属コバルトまたは金属鉄を含む金属化合物もしく
は少なくともこれらの金属化合物を含む多層で構成され
た強磁性層であることが好ましい。また、少なくとも1
層が、ぺロブスカイト型マンガン酸化物で構成されてい
ることも好ましい。
First ferromagnetic layer 2 and second ferromagnetic layer 6
Is preferably a ferromagnetic layer composed of a metal compound containing metallic cobalt or metallic iron or a multilayer containing at least these metallic compounds. Also, at least one
It is also preferable that the layer is composed of perovskite-type manganese oxide.

【0018】第1の強磁性層2と第2の強磁性層6は、
磁化特性の異なる層であるが、具体的には、NiFe、
CoFe、Co、およびこれらの積層膜等で構成され
る。図1の構成では、第1の強磁性層の磁化方向が固定
されている為、強磁性層単体の保磁力は同じでもよい。
The first ferromagnetic layer 2 and the second ferromagnetic layer 6
Although the layers have different magnetization characteristics, specifically, NiFe,
It is composed of CoFe, Co, and a laminated film thereof. In the configuration of FIG. 1, since the magnetization direction of the first ferromagnetic layer is fixed, the coercive force of the ferromagnetic layer alone may be the same.

【0019】第1の強磁性層2及び第2の強磁性層6の
厚さは10〜25nm程度が好ましい。
The thickness of the first ferromagnetic layer 2 and the second ferromagnetic layer 6 is preferably about 10 to 25 nm.

【0020】図1に示した例においては、グラニュラー
磁性膜4と、上下の強磁性層2、6の間に、それぞれ非
磁性絶縁層3、5を設けている。非磁性絶縁層3、5と
しては、SiO2、A123、ZrO2等の酸化物、Si
N、AIN、BN等の窒化物を用いることが好ましい。
非磁性絶縁層3、5を設けることにより、グラニュラー
磁性膜4を電気的・磁気的に分離し、強磁性層2、6へ
の漏れ電流を抑制すると共に、上下の強磁性層2、6に
よるグラニュラー磁性膜4の保磁力の増加を抑制するこ
とができる。
In the example shown in FIG. 1, nonmagnetic insulating layers 3 and 5 are provided between the granular magnetic film 4 and the upper and lower ferromagnetic layers 2 and 6, respectively. As the nonmagnetic insulating layers 3 and 5, oxides such as SiO 2 , A1 2 O 3 and ZrO 2 , Si
It is preferable to use a nitride such as N, AIN, or BN.
By providing the non-magnetic insulating layers 3 and 5, the granular magnetic film 4 is electrically and magnetically separated, the leakage current to the ferromagnetic layers 2 and 6 is suppressed, and the upper and lower ferromagnetic layers 2 and 6 are used. An increase in the coercive force of the granular magnetic film 4 can be suppressed.

【0021】この磁気素子において、上下の強磁性層
2、6の磁化方向が同じであると、グラニュラー磁性膜
4中のLSMO粒子が強磁性層2、6と同じ方向に磁化
される。LSMO粒子は強磁性特性を有しており、その
伝導帯は交換相互作用により、図2(a)に示すように
2つの伝導帯301、302に分離する。ここで、電子
エネルギーレベルの低い伝導帯302に存在する電子は
アップスピン、電子エネルギーレベルの高い伝導帯30
1に存在する電子はダウンスピンである。すなわち、L
SMO粒子の磁化の向きと電子の角運動量の向きが平行
な電子はアップスピン、強磁性体の磁化Mの向きと角運
動量の向きが反平行な電子はダウンスピンである。
In this magnetic element, if the magnetization directions of the upper and lower ferromagnetic layers 2 and 6 are the same, the LSMO particles in the granular magnetic film 4 are magnetized in the same direction as the ferromagnetic layers 2 and 6. The LSMO particles have ferromagnetic properties, and the conduction band is separated into two conduction bands 301 and 302 by exchange interaction as shown in FIG. Here, electrons existing in the conduction band 302 having a low electron energy level are up-spin, and the conduction band 30 having a high electron energy level is present.
The electron present in 1 is down spin. That is, L
Electrons in which the direction of magnetization of the SMO particles and the direction of angular momentum of electrons are parallel are up-spin, and electrons in which the direction of magnetization M of the ferromagnetic material is antiparallel to the direction of angular momentum are down-spin.

【0022】また、隣接する他方のLSMO粒子も同一
の方向に磁化されると、エネルギーレベルに対する電子
の状態密度の分布曲線は全く同じになる。したがって、
図2(b)に示すように、アップスピンに対して伝導帯
304、ダウンスピンに対して伝導帯303の2つの伝
導帯に分離したエネルギー状態図を描くことができる。
When the other adjacent LSMO particle is also magnetized in the same direction, the distribution curve of the electron state density with respect to the energy level becomes exactly the same. Therefore,
As shown in FIG. 2B, it is possible to draw an energy phase diagram separated into two conduction bands, a conduction band 304 for up spin and a conduction band 303 for down spin.

【0023】グラニュラー膜中では、隣接するLSMO
粒子間は充分接近している。つまり、粒子間の絶縁層は
非常に薄いので、図1の一対の電極7に適当なバイアス
電圧を印加すると、電子が一方のLSMO粒子から他方
のLSMO粒子へ絶縁層をトンネル可能である。しか
し、電子がトンネルする際は、スピン角運動量の保存が
不可欠なので、両方のLSMO粒子の伝導帯に同じスピ
ンのエネルギーレベルが存在しなければならない。
In the granular film, the adjacent LSMO
The particles are close enough. That is, since the insulating layer between the particles is very thin, when an appropriate bias voltage is applied to the pair of electrodes 7 in FIG. 1, electrons can tunnel through the insulating layer from one LSMO particle to the other LSMO particle. However, when electrons tunnel, conservation of spin angular momentum is essential, so the same spin energy level must exist in the conduction band of both LSMO particles.

【0024】隣接するLSMO粒子の磁化の向きが平行
の時は、図2(a)(b)に示すように、両方のアップ
スピンの伝導帯の中にフェルミレベルが存在するので、
一方のLSMO粒子中のフェルミレベルにあるアップス
ピン電子は、他方のLSMO粒子中の同一エネルギーレ
ベルに遷移することができ、その結果、電極7間の電気
抵抗は小さくなる。
When the magnetization directions of the adjacent LSMO particles are parallel, as shown in FIGS. 2A and 2B, the Fermi level exists in the conduction band of both up spins.
Upspin electrons at the Fermi level in one LSMO particle can transition to the same energy level in the other LSMO particle, resulting in a lower electrical resistance between the electrodes 7.

【0025】一方、上下の強磁性層2、6の磁化が反平
行の状態では、それぞれの磁場が打ち消し合うため、グ
ラニュラー膜中のLSMO粒子の磁化が揃うには不十分
となり、各粒子の一磁化方向はバラバラとなる。LSM
O粒子の磁化が揃っていない状態の代表例として、隣接
する2つのLSMO粒子が反平行に磁化された場合につ
いて説明する。
On the other hand, when the magnetizations of the upper and lower ferromagnetic layers 2 and 6 are anti-parallel, the respective magnetic fields cancel each other out, so that the magnetization of the LSMO particles in the granular film becomes insufficient, and one of the particles is lost. The magnetization directions vary. LSM
As a representative example of a state where the magnetizations of the O particles are not aligned, a case where two adjacent LSMO particles are magnetized in antiparallel will be described.

【0026】図3は、隣接する2つのLSMO粒子が反
平行に磁化された場合の伝導帯模式図である。図3
(a)は、図2(a)と同じ方向に磁化されており、ア
ップスピンの伝導帯の中にフェルミレベルが存在する。
しかし、図3(b)は、逆方向に磁化されているので、
図2(a)と異なり、フェルミレベルは、アップスピン
の伝導帯の中に存在する。この状態では、電極7に適当
なバイアス電圧を印加しても、遷移先にスピン角運動量
を保存できる状態が存在しないので、電子はLSMO粒
子間を絶縁層を介してトンネルすることができない。隣
接する2つのLSMO粒子が反平行以外に磁化されてい
る場合も同様にトンネルすることができないため、1対
の電極7間の電気抵抗は非常に大きくなる。
FIG. 3 is a schematic diagram of a conduction band when two adjacent LSMO particles are magnetized in antiparallel. FIG.
2A is magnetized in the same direction as in FIG. 2A, and a Fermi level exists in the up-spin conduction band.
However, FIG. 3 (b) is magnetized in the opposite direction,
Unlike FIG. 2A, the Fermi level exists in the conduction band of the upspin. In this state, even if an appropriate bias voltage is applied to the electrode 7, there is no state where the spin angular momentum can be preserved at the transition destination, so that electrons cannot tunnel between the LSMO particles via the insulating layer. Similarly, tunneling cannot be performed when two adjacent LSMO particles are magnetized other than antiparallel, so that the electric resistance between the pair of electrodes 7 becomes extremely large.

【0027】したがって、グラニュラー磁性膜4を挟ん
で対向する2層の磁性層2、6のうち、容易に磁化方向
を反転できる方の磁性層の磁化を変化させ、2層の強磁
性層2、6の磁化方向を平行/反平行とすることによ
り、グラニュラー磁性膜4の抵抗が大きく変化でき、磁
気抵抗変化の大きなスピンバルブデバイス等の磁気素子
を実現できる。
Accordingly, of the two magnetic layers 2 and 6 opposed to each other with the granular magnetic film 4 interposed therebetween, the magnetization of the magnetic layer whose magnetization direction can be easily reversed is changed to change the magnetization of the two ferromagnetic layers 2 and 6. By making the magnetization directions of 6 parallel / antiparallel, the resistance of the granular magnetic film 4 can be largely changed, and a magnetic element such as a spin valve device having a large change in magnetoresistance can be realized.

【0028】本発明の磁気素子を用いて、例えば、この
磁気素子が半選択電流が流れる2本の配線の近傍に配置
され、同時に2本の配線を半選択電流が流れた時に発生
する磁場により、磁気素子の磁化特性の異なる2層の強
磁性層のどちらか一層に情報を磁化方向として記録し、
2層の磁性層の磁化方向を平行/反平行とすることで情
報を読み出す磁気メモリーを構成することができる。
By using the magnetic element of the present invention, for example, this magnetic element is arranged near two wirings through which a half-select current flows, and simultaneously passes through two wirings by a magnetic field generated when the half-select current flows. Recording information as a magnetization direction on one of the two ferromagnetic layers having different magnetization characteristics of the magnetic element;
By making the magnetization directions of the two magnetic layers parallel / anti-parallel, a magnetic memory from which information is read can be configured.

【0029】図4は、具体的に、本発明の磁気素子(ス
ピンバルブデバイス)を磁気メモリ(固体メモリ)とし
て使用する場合の一例を示すものである。半選択電流が
流れる2本の配線の近傍に各デバイス(スピンバルブ素
子401)を配置し、2本の磁場形成用配線403に同
時に半選択電流(交点にある素子のみの磁化を変化させ
る)が流れた時に発生する磁場により、2層の強磁性層
のどちらか一層に情報を磁化方向としてスピンバルブデ
バイスへの情報の記録を行なうことができる。また、情
報の読み出しは、デバイスの抵抗変化や抵抗の時間変化
を信号検出ライン402により検出することで行うこと
ができる。
FIG. 4 specifically shows an example in which the magnetic element (spin valve device) of the present invention is used as a magnetic memory (solid memory). Each device (spin valve element 401) is arranged near two wirings through which a half-selection current flows, and a half-selection current (changes the magnetization of only the element at the intersection) is simultaneously applied to the two magnetic field forming wirings 403. Due to the magnetic field generated when flowing, information can be recorded on the spin valve device in one of the two ferromagnetic layers with the information as the magnetization direction. In addition, reading of information can be performed by detecting a change in resistance of the device or a change in time of the resistance with the signal detection line 402.

【0030】このような記録再生においては、磁化特性
の異なる2層の強磁性層の磁化方向を、外部磁界または
近傍を流れる電流により発生する磁界により、平行/反
平行とすることに対応して、電気抵抗が変化するを利用
している。本発明の磁気素子では、特定のマンガン酸化
物の微粒子が誘電体マトリックス中に分散されているグ
ラニュラー磁性膜を2層の磁性層間に配置し、2層の磁
性層の磁化方向が平行または平行以外の状態となること
に対応して、グラニュラー磁性膜の積層界面に沿う方向
の電気抵抗が大きく変化する。これにより、従来のスピ
ンバルブデバイスに比較して、磁気抵抗変化の大きいデ
バイスが得られる。
In such recording / reproducing, the magnetization directions of the two ferromagnetic layers having different magnetization characteristics are made parallel / antiparallel by an external magnetic field or a magnetic field generated by a current flowing in the vicinity. Utilizes that the electrical resistance changes. In the magnetic element of the present invention, a granular magnetic film in which fine particles of a specific manganese oxide are dispersed in a dielectric matrix is disposed between two magnetic layers, and the magnetization directions of the two magnetic layers are parallel or other than parallel. In response to the state described above, the electric resistance in the direction along the lamination interface of the granular magnetic film greatly changes. As a result, a device having a large change in magnetoresistance compared to a conventional spin valve device can be obtained.

【0031】[0031]

【実施例】以下、実施例により本発明をさらに詳細に説
明する。
The present invention will be described in more detail with reference to the following examples.

【0032】<実施例1>図1に示した構成の磁気素子
を、以下の通り作製した。
Example 1 A magnetic element having the structure shown in FIG. 1 was manufactured as follows.

【0033】本実施例では、誘電体マトリックスとして
A123絶縁膜を用い、このA123絶縁膜中に平均粒
径およそ3nmのLa1-xSrxMnO3(0.25≦x≦
0.85)で表されるぺロブスカイト構造を有するマン
ガン酸化物微粒子を分散させてなるグラニュラー磁性膜
4を成膜した。このグラニュラー磁性膜4中において、
マンガン酸化物微粒子はひとつの結晶軸方向にほぼ配向
し、各粒子間の間隔は約1nmで分散するように形成し
た。
[0033] In the present embodiment, using A1 2 O 3 insulating film as a dielectric matrix, the A1 2 O 3 having an average particle diameter of about 3nm in the insulating film La 1-x Sr x MnO 3 (0.25 ≦ x ≤
0.85) to form a granular magnetic film 4 in which manganese oxide fine particles having a perovskite structure are dispersed. In this granular magnetic film 4,
The manganese oxide fine particles were formed such that they were substantially oriented in one crystal axis direction, and the distance between the particles was dispersed at about 1 nm.

【0034】また、第1の強磁性層2としては厚さ10
nmのNiFe、第2の強磁性層6としては厚さ10n
mのCo、反強磁性層1としては厚さ25nmのMnF
e、非磁性絶縁層3、5としては、厚さ1nmのAl2
3を形成した。
The first ferromagnetic layer 2 has a thickness of 10
nm of NiFe, and the thickness of the second ferromagnetic layer 6 is 10 n.
m, MnF having a thickness of 25 nm as the antiferromagnetic layer 1
e, the nonmagnetic insulating layers 3 and 5 are made of Al 2 having a thickness of 1 nm;
O 3 was formed.

【0035】この磁気素子の磁気特性を測定した結果、
外部磁場による第2強磁性層の磁化方向の変化に対応し
て、大きな抵抗変化が得られ、しかも、その変化量は、
従来のCo微粒子を利用したグラニュラースピンバルブ
構造に比較して大きいという良好な結果が得られた。
As a result of measuring the magnetic characteristics of this magnetic element,
In response to the change in the magnetization direction of the second ferromagnetic layer due to the external magnetic field, a large resistance change is obtained, and the change amount is
A good result was obtained, which was larger than the conventional granular spin valve structure using Co fine particles.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
磁気抵抗変化率が大きく、飽和磁界が小さく、素子抵抗
を適当な値に調整することができ、しかもバラツキが小
さい安定した特性が得られる磁気素子を提供できる。
As described above, according to the present invention,
It is possible to provide a magnetic element which has a large magnetoresistance change rate, a small saturation magnetic field, can adjust the element resistance to an appropriate value, and has stable characteristics with little variation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態を例示する磁気素子(スピン
バルブデバイス)の概略構成図である。
FIG. 1 is a schematic configuration diagram of a magnetic element (spin valve device) illustrating an embodiment of the present invention.

【図2】グラニュラー磁性膜中の隣接するLSMO粒子
の磁化平行における電子構造の模式図である。
FIG. 2 is a schematic diagram of an electronic structure of adjacent LSMO particles in a granular magnetic film in a magnetization parallel state.

【図3】グラニュラー磁性膜中の隣接するLSMO粒子
の磁化反平行における電子構造の模式図である。
FIG. 3 is a schematic diagram of an electronic structure of an adjacent LSMO particle in a granular magnetic film when the magnetization thereof is antiparallel.

【図4】本発明の磁気素子(スピンバルブデバイス)を
磁気メモリ(固体メモリ)として使用する場合の駆動方
法の一例を示す図である。
FIG. 4 is a diagram showing an example of a driving method when the magnetic element (spin valve device) of the present invention is used as a magnetic memory (solid memory).

【符号の説明】[Explanation of symbols]

1 反強磁性層 2 第1の強磁性層 4 グラニュラー磁性膜 3、5 非磁性絶縁層 6 第2の強磁性層 7 電極 301 磁化平行におけるLSMO粒子のダウンスピ
ンの伝導帯 302 磁化平行におけるLSMO粒子のアップスピ
ンの伝導帯 303 磁化平行における他のLSMO粒子のダウン
スピンの伝導帯 304 磁化平行における他のLSMO粒子のダウン
スピンの伝導帯 305 磁化反平行における他のLSMO粒子のアッ
プスピンの伝導帯 306 磁化平行における他のLSMO粒子のアップ
スピンの伝導帯
REFERENCE SIGNS LIST 1 antiferromagnetic layer 2 first ferromagnetic layer 4 granular magnetic film 3, 5 nonmagnetic insulating layer 6 second ferromagnetic layer 7 electrode 301 conduction band of down spin of LSMO particle in parallel magnetization 302 LSMO particle in parallel magnetization Conduction band of down-spin of another LSMO particle in parallel magnetization 304 conduction band of down-spin of another LSMO particle in parallel magnetization 305 conduction band of up-spin of another LSMO particle in anti-parallel magnetization 306 Up-spin conduction band of other LSMO particles in parallel magnetization

フロントページの続き (72)発明者 藤原 良治 東京都大田区下丸子3丁目30番2号 キヤ ノン株式会社内 Fターム(参考) 2G017 AA02 AB07 AD55 AD63 AD65 5D034 BA03 BA04 BA05 CA08 5E049 AA09 BA12 CB02 DB02 DB12Continued on the front page (72) Inventor Ryoji Fujiwara 3-30-2 Shimomaruko, Ota-ku, Tokyo F-term in Canon Inc. (reference) 2G017 AA02 AB07 AD55 AD63 AD65 5D034 BA03 BA04 BA05 CA08 5E049 AA09 BA12 CB02 DB02 DB12

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 一般式A1-xxMnO3(AはLa、P
r、Nd又はSmを示し、BはCa、Sr又はBaを示
す。x>0.17)で表されるぺロブスカイト構造を有
するマンガン酸化物微粒子が誘電体マトリックス中に分
散されて成るグラニュラー磁性膜と、該グラニュラー磁
性膜を挟んで対向する磁化特性の異なる2層の磁性層を
具備し、該2層の磁性層の磁化方向を平行/反平行とす
ることに対応して、グラニュラー磁性膜の積層界面に沿
う方向の電気抵抗が異なる抵抗値を有することを特徴と
する磁気素子。
A compound represented by the general formula A 1-x B x MnO 3 (A is La, P
r represents Nd or Sm, and B represents Ca, Sr or Ba. x> 0.17) a granular magnetic film in which manganese oxide fine particles having a perovskite structure represented by x> 0.17) are dispersed in a dielectric matrix, and two layers having different magnetization characteristics opposed to each other with the granular magnetic film interposed therebetween. A magnetic layer, wherein the two magnetic layers have different electrical resistances in a direction along a lamination interface of the granular magnetic films in accordance with the magnetization direction of the two magnetic layers being parallel / antiparallel. Magnetic element.
【請求項2】 マンガン酸化物微粒子が、少なくともぺ
ロブスカイト結晶の1軸に対して配向している請求項1
記載の磁気素子。
2. The manganese oxide fine particles are oriented at least to one axis of perovskite crystal.
The magnetic element as described in the above.
【請求項3】 マンガン酸化物微粒子の平均粒径が、5
nm以下である請求項1記載の磁気素子。
3. The manganese oxide fine particles having an average particle size of 5
The magnetic element according to claim 1, wherein the thickness is not more than nm.
【請求項4】 グラニュラー磁性膜と、グラニュラー磁
性膜を挟む磁性層との間に、非磁性絶縁層が設けられて
いる請求項1記載の磁気素子。
4. The magnetic element according to claim 1, wherein a nonmagnetic insulating layer is provided between the granular magnetic film and a magnetic layer sandwiching the granular magnetic film.
【請求項5】 マンガン酸化物微粒子が、La1-xSrx
MnO3(0.25≦x≦0.85)で表されるぺロブス
カイト構造を有する請求項1記載の磁気素子。
5. The method according to claim 1, wherein the manganese oxide fine particles are La 1-x Sr x
2. The magnetic element according to claim 1, having a perovskite structure represented by MnO 3 (0.25 ≦ x ≦ 0.85).
【請求項6】 誘電体マトリックスが、SiO2、A12
3、ZrO2、SiN、AIN又はBNから成る請求項
1記載の磁気素子。
6. The method according to claim 1, wherein the dielectric matrix is SiO 2 , Al 2.
2. The magnetic element according to claim 1, comprising O 3 , ZrO 2 , SiN, AIN or BN.
【請求項7】 磁化特性の異なる2層の磁性層の少なく
ともどちらか一方の磁性層が、別の磁化特性の異なる磁
性体又は反強磁性層に接している請求項1記載の磁気素
子。
7. The magnetic element according to claim 1, wherein at least one of the two magnetic layers having different magnetization characteristics is in contact with another magnetic material having different magnetization characteristics or an antiferromagnetic layer.
【請求項8】 磁化特性の異なる2層の強磁性層が、金
属コバルトまたは金属鉄を含む金属化合物もしくは少な
くともこれらの金属化合物を含む多層で構成された強磁
性層である請求項1記載の磁気素子。
8. The magnetic material according to claim 1, wherein the two ferromagnetic layers having different magnetization characteristics are ferromagnetic layers composed of a metal compound containing metallic cobalt or metallic iron, or a multilayer containing at least these metallic compounds. element.
【請求項9】 磁化特性の異なる2層の強磁性層の少な
くとも1層が、ぺロブスカイト型マンガン酸化物で構成
されている請求項1記載の磁気素子。
9. The magnetic element according to claim 1, wherein at least one of the two ferromagnetic layers having different magnetization characteristics is made of perovskite-type manganese oxide.
【請求項10】 請求項1〜9の何れか一項記載の磁気
素子が2本の配線が交差する近傍に配置され、2本の配
線を同時に半選択電流が流れた時に発生する磁場によ
り、前記磁気素子の磁化特性の異なる2層の強磁性層の
どちらか一層に情報を磁化方向として記録し、2層の磁
性層の磁化方向を平行/反平行とすることで情報を読み
出す磁気メモリー。
10. A magnetic element according to claim 1, wherein the magnetic element is arranged near a crossing of two wires, and a magnetic field generated when a half-selection current flows through the two wires simultaneously. A magnetic memory in which information is recorded as a magnetization direction on one of two ferromagnetic layers having different magnetization characteristics of the magnetic element, and the information is read out by making the magnetization directions of the two magnetic layers parallel / anti-parallel.
JP2000164598A 2000-06-01 2000-06-01 Magnetic element Pending JP2001345496A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000164598A JP2001345496A (en) 2000-06-01 2000-06-01 Magnetic element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000164598A JP2001345496A (en) 2000-06-01 2000-06-01 Magnetic element

Publications (1)

Publication Number Publication Date
JP2001345496A true JP2001345496A (en) 2001-12-14

Family

ID=18668197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000164598A Pending JP2001345496A (en) 2000-06-01 2000-06-01 Magnetic element

Country Status (1)

Country Link
JP (1) JP2001345496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580563A1 (en) * 2004-03-23 2005-09-28 Siemens Aktiengesellschaft Arrangement for potential-free current measurements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1580563A1 (en) * 2004-03-23 2005-09-28 Siemens Aktiengesellschaft Arrangement for potential-free current measurements
US7336064B2 (en) 2004-03-23 2008-02-26 Siemens Aktiengesellschaft Apparatus for current measurement

Similar Documents

Publication Publication Date Title
KR100344030B1 (en) Magnetic element, magnetic memory device, magnetoresistance effect head, and magnetic storage system
US6839273B2 (en) Magnetic switching device and magnetic memory using the same
KR100678758B1 (en) Spin-injection device and magnetic device using spin-injection device
US7348589B2 (en) Low power consumption magnetic memory and magnetic information recording device
KR100421408B1 (en) Magnetoresistive element and magnetic memory device
JP3293437B2 (en) Magnetoresistive element, magnetoresistive head and memory element
JP2001195878A (en) Magnetic resistance effective memory, reproducing method for information stored in the memory, and its reproducing device
JP4076197B2 (en) Magnetic element, storage device, magnetic reproducing head, three-terminal element, and magnetic disk device
JP2006303159A (en) Spin injection magnetic domain moving element and device using this
JP2004193595A (en) Magnetic cell and magnetic memory
JP2001077442A (en) Memory element
JP2007531180A (en) Laminated free layer to stabilize magnetoresistive head with low magnetostriction
JP2007531177A (en) Synthetic free layer to stabilize magnetoresistive head
JPH1041132A (en) Magnetic resistance effect film
JP3556457B2 (en) Spin-dependent conductive element and electronic and magnetic components using the same
JP3697369B2 (en) Magnetic element, magnetic memory device, magnetoresistive head, magnetic head gimbal assembly, and magnetic recording system
JP3977576B2 (en) Magnetic memory device
JP3559722B2 (en) Magnetoresistive element, solid-state memory
JP3547974B2 (en) Magnetic element, magnetic head and magnetic storage device using the same
JP2003229614A (en) Magnetic material, magnetoresistance effect device using such magnetic material and magnetic device using such magneto resistive effect device
JP3524486B2 (en) Magnetoresistance element and memory element using the element
JP3836779B2 (en) Magnetoresistive element and magnetic memory
JP2001076479A (en) Magnetic memory element
JP3520192B2 (en) Magnetic element and magnetic component and electronic component using the same
JP3455055B2 (en) Magnetic element, magnetic head and magnetic storage device using the same