JP2001343227A - Method for measuring film thickness of thin film - Google Patents

Method for measuring film thickness of thin film

Info

Publication number
JP2001343227A
JP2001343227A JP2000165878A JP2000165878A JP2001343227A JP 2001343227 A JP2001343227 A JP 2001343227A JP 2000165878 A JP2000165878 A JP 2000165878A JP 2000165878 A JP2000165878 A JP 2000165878A JP 2001343227 A JP2001343227 A JP 2001343227A
Authority
JP
Japan
Prior art keywords
thin film
thickness
film
substrate
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000165878A
Other languages
Japanese (ja)
Inventor
Toru Maki
徹 牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2000165878A priority Critical patent/JP2001343227A/en
Publication of JP2001343227A publication Critical patent/JP2001343227A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a film thickness of extremely thin films to be measured even when common elements are included in substrates and the thin films. SOLUTION: An energy distribution of photoelectrons excited by applying X rays to a measurement object with the thin film formed on the substrate is measured. Elements not common are obtained from elements contained in the substrate and the thin film with the use of the photoelectron energy distribution. An atomic concentration of the element peculiar to the substrate and an atomic concentration of the element peculiar to the thin film are obtained. A photoelectron intensity ratio is obtained from a ratio of the atomic concentrations of the elements peculiar to the substrate and the thin film. The photoelectron intensity ratio is applied to a relation expression between the film thickness and the photoelectron intensity ratio, whereby the film thickness of the thin film is measured.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、基板上に成膜され
た薄膜の膜厚測定方法に関し、磁気ヘッドあるいは磁気
ディスクの保護膜に使用されるDLC薄膜やカーボン薄
膜の膜厚測定に好適な膜厚測定方法である。
The present invention relates to a method for measuring the thickness of a thin film formed on a substrate, and more particularly to a method for measuring the thickness of a DLC thin film or a carbon thin film used for a protective film of a magnetic head or a magnetic disk. This is a film thickness measuring method.

【0002】[0002]

【従来の技術】近年、ハードディスク等の磁気記録装置
の記録密度の増大は著しく、さらに高い記録密度が求め
られている。記録密度を増大させるために要する技術課
題の一つとして、磁気ヘッドあるいは磁気ディスクに設
けられている保護膜の薄膜化の点がある。
2. Description of the Related Art In recent years, the recording density of magnetic recording devices such as hard disks has increased remarkably, and higher recording densities have been demanded. One of the technical issues required to increase the recording density is to reduce the thickness of a protective film provided on a magnetic head or a magnetic disk.

【0003】ハードディスク等の磁気記録装置は、高速
回転する磁気ディスクに対して微小間隔をあけて磁気ヘ
ッドを配置することによって、磁気ディスクからのデー
タの読み出し、あるいは磁気ディスクへのデータの書き
込みを行う構成であり、磁気ヘッド及びは磁気ディスク
の表面にはカーボンを主体とする薄膜が成膜され、保護
膜が形成されている。記録密度を高めるには磁気ヘッド
の感度を高める必要があり、磁気ヘッドと磁気ディスク
との間隔を狭める必要がある。該間隔を狭めるために、
保護膜を薄膜化することが求められている。
A magnetic recording device such as a hard disk reads data from a magnetic disk or writes data to a magnetic disk by arranging a magnetic head at a minute interval with respect to a magnetic disk rotating at high speed. A thin film mainly composed of carbon is formed on the surface of a magnetic head and a magnetic disk, and a protective film is formed. In order to increase the recording density, it is necessary to increase the sensitivity of the magnetic head, and it is necessary to reduce the distance between the magnetic head and the magnetic disk. To narrow the interval,
There is a demand for a thinner protective film.

【0004】薄膜化を評価するには薄膜の膜厚を精度良
く測定する測定方法が必要であり、従来、薄膜の膜厚測
定方法としてエリプソメトリを用いた測定方法が知られ
ている。エリプソメトリを用いた測定方法は、光学的な
干渉を利用した測定方法であって簡易的に測定できると
いう利点があるが、近年使用されている保護膜は数nm
程度の非常に薄い膜厚となっており、このような薄い膜
厚では誤差が大きくなり実用性の点で問題がある。
In order to evaluate thinning, a measuring method for accurately measuring the thickness of a thin film is required. Conventionally, a measuring method using ellipsometry has been known as a method for measuring the thin film thickness. The measurement method using ellipsometry is a measurement method using optical interference and has the advantage that it can be easily measured. However, a protective film used recently has a thickness of several nm.
The thickness is extremely small, and the error becomes large at such a small thickness, and there is a problem in practicality.

【0005】また、原子間力顕微鏡(AFM)を用いた
測定方法も知られている。この測定方法は、保護膜が形
成されている部分と保護膜が形成されていない部分の間
に形成される段差を、探針の接触によって測定するもの
であり、膜厚を実測することができるという利点があ
る。しかしながら、膜厚を測定するために、保護膜の一
部をマスクして保護膜が形成されていない部分を形成し
て、膜厚に対応する段差部分を形成する必要があるとい
う問題があり、探針を接触させる測定方法であるため、
測定対象を損傷させるおそれがあるという問題もある。
さらに、測定のために段差が形成された磁気ヘッドや磁
気ディスクは、磁気ヘッドや磁気ディスクとして使用が
困難となったり、使用が制限されるという問題もある。
[0005] A measurement method using an atomic force microscope (AFM) is also known. In this measuring method, a step formed between a portion where the protective film is formed and a portion where the protective film is not formed is measured by contact of a probe, and the film thickness can be actually measured. There is an advantage. However, in order to measure the film thickness, there is a problem that it is necessary to form a portion where the protective film is not formed by masking a part of the protective film and form a step portion corresponding to the film thickness. Because it is a measurement method that contacts the probe,
There is also a problem that the measurement target may be damaged.
Further, there is a problem that a magnetic head or a magnetic disk in which a step is formed for measurement is difficult to use as a magnetic head or a magnetic disk, or its use is restricted.

【0006】[0006]

【発明が解決しようとする課題】従来の薄膜の膜厚測定
方法は、前記したように、数nm程度の非常に薄い膜厚
では測定精度が実用的でなくなるという問題や、段差を
形成するなど測定の前処理を要するという問題や、該前
処理や測定によって測定対象を損傷するおそれがあると
いう問題がある。一方、物質表面の元素組成や結合状態
を測定する方法として、ESCA(あるいはXPS)に
よる測定方法が知られている。ESCA(あるいはXP
S)は、既知の特定エネルギーを持つ軟X線を試料に照
射し、照射X線によって励起された光電子エネルギーを
測定することによって、試料の構成元素の同定や化学結
合状態の判別、構成元素の定量を行うことができる。
As described above, the conventional method for measuring the thickness of a thin film has a problem that the measurement accuracy becomes impractical for a very thin film thickness of about several nm, and a step is formed. There is a problem that a pretreatment for measurement is required, and a problem that the measurement target may be damaged by the pretreatment or measurement. On the other hand, as a method for measuring the elemental composition and the bonding state of the material surface, a measurement method by ESCA (or XPS) is known. ESCA (or XP
S) irradiates the sample with a soft X-ray having a known specific energy and measures the photoelectron energy excited by the irradiated X-ray to identify the constituent elements of the sample, determine the chemical bonding state, and determine the constituent elements. Quantitation can be performed.

【0007】このESCA(あるいはXPS)による測
定方法は、理論的に決められた特定深さから発生する光
電子数を測定するものである。そこで、光電子の発生数
と発生領域の深さとの関連性から試料の厚さを測定する
ことが考えられる。しかしながら、薄膜、基板(あるい
は下地膜)の元素組成や化学結合状態、基板(あるいは
下地膜)の粗さ、薄膜の面分布等によって光電子の発生
状態が異なるため、実際に薄膜の膜厚を測定することは
困難である。特に、薄膜がカーボンを主体として構成さ
れる場合には、内部に水素を含有していたり、主たる成
分であるC−C結合は、硬度が異なる化学結合であるs
p3軌道(ダイヤモンド結合)とsp2軌道(グラファ
イト結合)が複雑に混ざり合わさったものであるため、
下地膜から発生する光電子への影響を数値的に予測する
のは理論上においても困難的となる。
[0007] The measurement method using this ESCA (or XPS) measures the number of photoelectrons generated from a theoretically determined specific depth. Therefore, it is conceivable to measure the thickness of the sample from the relationship between the number of photoelectrons generated and the depth of the generation region. However, the photoelectron generation state varies depending on the elemental composition and chemical bonding state of the thin film and the substrate (or underlayer), the roughness of the substrate (or underlayer), the surface distribution of the thin film, etc., so the film thickness of the thin film is actually measured. It is difficult to do. In particular, when the thin film is mainly composed of carbon, the thin film contains hydrogen inside and the C—C bond as the main component is a chemical bond having different hardness.
Since the p3 orbital (diamond bond) and the sp2 orbital (graphite bond) are complexly mixed,
It is theoretically difficult to numerically predict the effect on photoelectrons generated from the underlayer.

【0008】また、現在磁気ヘッド用の基板にはAlT
iCという合金を使用しており、基板と薄膜は共に炭素
元素を含んでおり、基板中に含まれる炭化物化合物と、
保護膜中に含まれるカーボンを区別する必要がある。ま
た、両カーボンによる光電子の減衰が膜厚の測定に対し
てどのように影響を考慮する必要がある。したがって、
ESCA(あるいはXPS)による測定方法の薄膜の膜
厚測定への適用は、単に理論的なものであって実際への
適用には種々の問題が含まれている。
At present, a substrate for a magnetic head is AlT.
An alloy called iC is used, the substrate and the thin film both contain a carbon element, and a carbide compound contained in the substrate;
It is necessary to distinguish carbon contained in the protective film. In addition, it is necessary to consider how the attenuation of photoelectrons by both carbons affects the film thickness measurement. Therefore,
The application of the measurement method by ESCA (or XPS) to the measurement of the thickness of a thin film is merely theoretical, and its practical application involves various problems.

【0009】そこで、本発明は前記した従来の膜厚測定
方法の持つ問題点を解決し、極薄膜の膜厚測定を非破壊
で行うことを目的とし、また、基板と薄膜に共通する元
素が含まれる場合であっても膜厚測定を可能とすること
を目的とする。
Accordingly, the present invention has been made to solve the above-mentioned problems of the conventional film thickness measuring method, has an object to perform non-destructive film thickness measurement of an extremely thin film, and has an element common to a substrate and a thin film. It is an object of the present invention to be able to measure the film thickness even when it is included.

【0010】[0010]

【課題を解決するための手段】本発明は、ESCA(あ
るいはXPS)による測定方法を薄膜の膜厚測定に適用
したものであり、膜厚測定に用いる光電子の発生源であ
る元素を基板側と薄膜側とで異元素とすることによっ
て、基板と薄膜に共通する元素が含まれる構成の極薄膜
の膜厚測定を非破壊で行う。本発明の薄膜の膜厚測定方
法は、基板上に薄膜が成膜された測定対象に対してX線
を照射することによって励起される光電子のエネルギー
分布を測定し、この光電子のエネルギー分布を用いて基
板と薄膜の含有元素の内から互いに共通しない元素を求
め、基板に特有の元素の原子濃度と薄膜に特有の原子濃
度を求める。次に、基板と薄膜に特有の元素の原子濃度
から原子濃度比を求め、この原子濃度比を膜厚と原子濃
度比の関係式に適用して、薄膜の膜厚を測定する。
According to the present invention, a measurement method using ESCA (or XPS) is applied to the measurement of the thickness of a thin film. By using different elements on the thin film side, the thickness of an ultrathin film having a configuration including an element common to the substrate and the thin film is measured nondestructively. The method for measuring the thickness of a thin film of the present invention measures the energy distribution of photoelectrons excited by irradiating a measurement target having a thin film formed on a substrate with X-rays, and uses the energy distribution of the photoelectrons. From among the elements contained in the substrate and the thin film, elements that are not common to each other are determined, and the atomic concentration of the element specific to the substrate and the atomic concentration specific to the thin film are determined. Next, an atomic concentration ratio is determined from an atomic concentration of an element peculiar to the substrate and the thin film, and the atomic concentration ratio is applied to a relational expression between the film thickness and the atomic concentration ratio to measure the film thickness of the thin film.

【0011】薄膜の膜厚測定には光電子強度比が利用さ
れるが、本発明においては原子濃度比を利用することを
特徴としている。これによって、薄膜の元素組成や化学
結合状態、基板の粗さ、測定装置の状態といったデータ
のばらつきとなる影響を除去することができる。薄膜の
膜厚測定に用いる元素は基板と薄膜とで異元素とするこ
とによって、薄膜からの信号と基板からの信号とを見分
けることができる。特に、薄膜が組成成分としてカーボ
ンを含む場合、カーボンを薄膜に特有の元素とし、基板
に含まれる元素からカーボンを除く元素を基板に特有の
元素として選択する。
Although the photoelectron intensity ratio is used for measuring the thickness of a thin film, the present invention is characterized in that the atomic concentration ratio is used. As a result, it is possible to eliminate the influence of data variations such as the element composition and chemical bonding state of the thin film, the roughness of the substrate, and the state of the measuring device. By using different elements for measuring the thickness of the thin film between the substrate and the thin film, it is possible to distinguish between the signal from the thin film and the signal from the substrate. In particular, when the thin film contains carbon as a composition component, carbon is selected as an element specific to the thin film, and an element excluding carbon from elements contained in the substrate is selected as an element specific to the substrate.

【0012】カーボンを主体とする膜としては、例え
ば、DLC(Diamond Like Carbon)膜、スパッタカ
ーボン膜、カソーディックアーク膜等があり、磁気ディ
スクあるいは磁気ヘッドの保護膜として用いられてい
る。さらに、本発明は磁気ディスクあるいは磁気ヘッド
の製作プロセス内に適用することができる。第1の態様
では、磁気ディスクあるいは磁気ヘッドが備える基板を
測定対象とし、この成膜を行うプロセス内において本発
明の薄膜の基板の膜厚測定を行い、各基板内の膜厚分布
及び又は製作プロセスの行程間における膜厚のばらつき
を求める。
Examples of the film mainly composed of carbon include a DLC (Diamond Like Carbon) film, a sputtered carbon film, and a cathodic arc film, and are used as a protective film for a magnetic disk or a magnetic head. Further, the present invention can be applied in a manufacturing process of a magnetic disk or a magnetic head. In the first embodiment, the thickness of the substrate of the thin film of the present invention is measured in the process of forming the film, and the thickness distribution and / or the production in each substrate is measured in the process of forming the film. The variation in film thickness between process steps is determined.

【0013】また、第2の態様では、磁気ディスクある
いは磁気ヘッドが備える成膜部分を測定対象とし、この
成膜を行う製作プロセス内において測定対象中の特定部
位の薄膜について本発明の薄膜の膜厚測定を行い、各成
膜部分内の膜厚分布及び又は製作プロセスの行程間にお
ける膜厚のばらつきを求める。本発明によれば、非破壊
で磁気ディスクあるいは磁気ヘッド等の磁性層保護膜の
極薄膜の膜厚測定が可能となる。また、接触式測定法で
ありAFM法のように測定対象を傷つけることなく、膜
厚分布を迅速に測定することができる。また、エリプソ
メトリのような光学式測定方法では限界のある測定領域
について膜厚測定を行うことができ、光学式測定方法に
よる測定領域を補完することができる。
In a second aspect, a film formation portion provided on a magnetic disk or a magnetic head is set as a measurement target, and a thin film of a specific portion in a measurement target in a manufacturing process for forming the film is formed by the thin film of the present invention. A thickness measurement is performed to determine a film thickness distribution in each film forming portion and / or a film thickness variation between manufacturing process steps. According to the present invention, it is possible to non-destructively measure the thickness of an extremely thin magnetic layer protective film such as a magnetic disk or a magnetic head. In addition, it is a contact type measurement method, and the film thickness distribution can be quickly measured without damaging the measurement target unlike the AFM method. Further, in an optical measurement method such as ellipsometry, the film thickness can be measured in a limited measurement region, and the measurement region by the optical measurement method can be complemented.

【0014】本発明の薄膜の膜厚測定を磁気ディスクあ
るいは磁気ヘッドの保護膜の膜厚測定に適用した場合に
は、膜厚測定を製作プロセス内に組み込むことができる
ため、磁気ディスクや磁気ヘッドを測定のために製造ラ
インから取出す工程が不要となり、時間のロスを省くこ
とができる。また、非破壊測定であるため、製造ライン
中の磁気ディスクや磁気ヘッドを損傷することなく膜厚
測定を行うことができる。
When the thickness measurement of the thin film of the present invention is applied to the measurement of the thickness of a protective film of a magnetic disk or a magnetic head, the thickness measurement can be incorporated into the manufacturing process. A step of taking out from the production line for measurement becomes unnecessary, and time loss can be saved. Further, since the measurement is non-destructive, the film thickness can be measured without damaging the magnetic disk or the magnetic head in the production line.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態を図を
参照しながら詳細に説明する。X線を試料に照射し、こ
のX線照射によって励起される光電子のエネルギー分布
を測定する測定方法として、ESCAあるいはXPSと
呼ばれる測定方法が知られている。このESCA(ある
いはXPS)の測定に用いる測定構成は、例えば、X線
銃から発生させた軟X線(例えば、AlKα線:励起エ
ネルギー1463.6eV)を試料に照射し、励起され
た光電子を静電レンズにより集光し、静電半球型アナラ
イザでエネルギー分光し、分光した光電子のエネルギー
を検出器で検出する。測定結果はデータ処理によって、
元素毎に記録、定量分析が行われる。
Embodiments of the present invention will be described below in detail with reference to the drawings. As a measurement method for irradiating a sample with X-rays and measuring the energy distribution of photoelectrons excited by the X-ray irradiation, a measurement method called ESCA or XPS is known. The measurement configuration used for this ESCA (or XPS) measurement is, for example, that a sample is irradiated with soft X-rays (for example, AlKα ray: excitation energy 1463.6 eV) generated from an X-ray gun, and the excited photoelectrons are statically irradiated. The light is condensed by an electric lens, the energy is separated by an electrostatic hemispherical analyzer, and the energy of the separated photoelectrons is detected by a detector. The measurement results are processed by data processing.
Recording and quantitative analysis are performed for each element.

【0016】本発明の膜厚測定では、基板上に積層され
た薄膜に対してX線を照射したとき、X線照射によって
励起される光電子はある一定の深さ領域より発生し、ま
た、基板から発生した光電子が表面から飛び出す過程に
おいて、積層された薄膜を通過する際に薄膜中の原子と
の非弾性衝突によってエネルギー損失が発生し、基板か
ら発生する特定元素の光電子が表面から飛び出す量は、
積層された薄膜の膜厚によって一定の割合で減衰すると
いう性質を用いている。
In the film thickness measurement of the present invention, when a thin film laminated on a substrate is irradiated with X-rays, photoelectrons excited by the X-ray irradiation are generated from a certain depth region. In the process of photoelectrons emitted from the surface jumping out of the surface, energy loss occurs due to inelastic collision with atoms in the thin film when passing through the laminated thin film, the amount of photoelectrons of a specific element generated from the substrate jumping out of the surface is ,
The property of attenuating at a constant rate depending on the thickness of the laminated thin film is used.

【0017】図1は、本発明の膜厚測定の配置を説明す
るための概略図である。図1において、一様なX線が照
射されたときに、試料表面から深さzにおいて、ある原
子aから励起された光電子がエネルギー損失なしで真空
中に放出される光電子強度dIaは、 dIa=Fo・So・σa・na・exp(−dz/λ・sinα) …(1) で表される。なお、Foは照射されるX線強度、Soは検
出する光電子が発生する試料の有効面積、σは光イオン
化断面積、naは注目する原子aの深さzでの数密度、
αは放出角度で表面に平行な面とアナライザ軸とのなす
角度、λは非弾性散乱平均自由工程である。
FIG. 1 is a schematic diagram for explaining the arrangement of the film thickness measurement according to the present invention. In Figure 1, when uniform X-rays are irradiated, at a depth z from the sample surface, photoelectron intensity dI a photoelectron excited from one atom a is emitted into the vacuum without energy loss, dI a = F o · S o · σ a · n a · exp (-dz / λ · sinα) represented by (1). Note that the number density at F o is X-ray intensity to be irradiated, S o is the effective area of the sample photoelectrons detected occurs, sigma is photoionization cross-section, n a is the depth z of atoms a of interest,
α is the emission angle between the plane parallel to the surface and the analyzer axis, and λ is the inelastic scattering mean free path.

【0018】上記式(1)に示されるように、光電子が
薄膜中を通過するに伴って、光電子強度dIaは一定の
確率exp(−dz/λ・sinα)に従って減衰す
る。通常、真空中に放出される光電子の95%は深さ3
λまでの領域からのものであり、光電子は一定の深さ
(深さ3λ)領域より発生することができる。基板上に
1層の薄膜(膜厚d)が成膜された2層モデルについ
て、上記式(1)を適用すると、基板からの光電子強度
s、及び薄膜からの光電子強度Ioは積分によって以下
の式で表される。
As shown in the above equation (1), as the photoelectrons pass through the thin film, the photoelectron intensity dIa is attenuated according to a constant probability exp (-dz / λ · sinα). Usually, 95% of the photoelectrons emitted in a vacuum have a depth of 3
Photoelectrons can be generated from a region of constant depth (3λ depth). When the above equation (1) is applied to a two-layer model in which one thin film (thickness d) is formed on a substrate, the photoelectron intensity I s from the substrate and the photoelectron intensity I o from the thin film are obtained by integration. It is represented by the following equation.

【0019】 Is=Iss・exp(−dz/λs o・sinα) …(2) Io=Ioo・[1−exp(−dz/λo o・sinα)] …(3) なお、Iss=Fo・So・σs・ns・λs s、Ioo=Fo・So
・σo・no・λo oであり、λs sは基板物質の光電子の基
板中での平均自由工程、λs oは基板物質の光電子の薄膜
中での平均自由工程、λo oは薄膜物質の光電子の薄膜中
での平均自由工程である。
[0019] I s = I ss · exp ( -dz / λ s o · sinα) ... (2) I o = it oo · [1-exp (-dz / λ o o · sinα)] ... (3) It should be noted , I ss = F o · S o · σ s · ns · λ s s , I oo = F o · S o
Σ o no o λ o o , λ s s is the mean free path of the photoelectrons of the substrate material in the substrate, λ s o is the mean free path of the photo electrons of the substrate material in the thin film, λ o o Is the mean free path of the photoelectrons of the thin film material in the thin film.

【0020】膜厚dは、上記式(2),(3)から以下
の式で表すことができる。なお、光電子の運動エネルギ
ーが接近しているとき、λo os o=λと近似することが
できる。 d=λ・sinα・ln[(Io/RIs)+1] …(4) R=Ioo/Iss …(5) したがって、膜厚dは、平均自由工程λ、放出角度α、
比較係数R、及び基板と膜厚の光電子強度比(Io
s)を求め、式(4)に適用することによって求める
ことができる。
The film thickness d can be expressed by the following equation from the above equations (2) and (3). It should be noted that, when the kinetic energy of the photoelectron is approaching, it is possible to approximate the λ o o = λ s o = λ. d = λ · sin α · ln [(I o / R s ) +1] (4) R = I oo / I ss (5) Accordingly, the film thickness d is the mean free path λ, the emission angle α,
The comparison coefficient R and the photoelectron intensity ratio between the substrate and the film thickness (I o /
I s ) can be obtained by applying the equation (4).

【0021】以下、薄膜の膜厚測定の第1の態様につい
て説明する。第1の態様は、ESCA(あるいはXP
S)によって基板及び薄膜の原子濃度を求め、この原子
濃度比から得られる光電子強度比(Io/Is)を前記式
(4)に適用することによって、膜厚を求める。図2は
薄膜の膜厚測定の第1の態様を説明するためのフローチ
ャートである。はじめに、ESCA(あるいはXPS)
による測定装置において、基板(下地膜)上に薄膜が成
膜された試料に軟X線を照射し(ステップS1)、検出
器で選別された特定元素の光電子のエネルギー毎の光電
子数を検出して光電子のスペクトルを測定する(ステッ
プS2)。試料の構成元素や化学結合状態を同定し(ス
テップS3)、原子濃度を定量する(ステップS4)。
Hereinafter, a first mode of measuring the thickness of a thin film will be described. The first aspect is ESCA (or XP
The atomic concentration of the substrate and the thin film is obtained by S), and the film thickness is obtained by applying the photoelectron intensity ratio (I o / I s ) obtained from this atomic concentration ratio to the above equation (4). FIG. 2 is a flowchart for explaining a first mode of measuring the thickness of a thin film. First, ESCA (or XPS)
In the measuring apparatus according to the above, a sample in which a thin film is formed on a substrate (underlying film) is irradiated with soft X-rays (step S1), and the number of photoelectrons for each energy of photoelectrons of a specific element selected by a detector is detected. To measure the photoelectron spectrum (step S2). The constituent elements and the chemical bonding state of the sample are identified (Step S3), and the atomic concentration is quantified (Step S4).

【0022】次に、元素同定で得られた基板及び薄膜の
元素組成を比較し、基板と薄膜とで異なる元素を選択
し、基板に特有な元素と薄膜に特有な元素を選択する。
ここで、試料として、図3に示すようなAlTiCの基
板上にSi膜とDLC薄膜を成膜した膜構成の場合に
は、薄膜Sと基板Oに共にカーボンCを含む。図4は、
AlTiCの基板上にSi膜(2nm)とDLC薄膜
(3nm)を成膜した膜についての測定スペクトル例を
示し、横軸は結合エネルギー(eV)を示し、縦軸は光
電子の単位時間あたりの光電子数(CPS)を示してい
る。この測定スペクトルによる定性結果によれば、測定
試料の構成元素としてO,Ti,C,Si,Alが検出
される。
Next, the element compositions of the substrate and the thin film obtained by element identification are compared, different elements are selected for the substrate and the thin film, and an element peculiar to the substrate and an element peculiar to the thin film are selected.
Here, in the case of a film configuration in which a Si film and a DLC thin film are formed on an AlTiC substrate as shown in FIG. 3, both the thin film S and the substrate O contain carbon C. FIG.
The example of the measured spectrum about the film which formed the Si film (2 nm) and the DLC thin film (3 nm) on the AlTiC substrate is shown, the horizontal axis shows the binding energy (eV), and the vertical axis shows the photoelectrons per unit time of photoelectrons. Number (CPS). According to the qualitative result based on the measurement spectrum, O, Ti, C, Si, and Al are detected as constituent elements of the measurement sample.

【0023】図5,6は、各構成元素の測定データを示
している。図5(a)はO1sの測定データ,図5(b)
はTi2pの測定データ,図5(c)はC1sの測定デー
タ,図6(a)はSi2pの測定データ,図5(b)はA
l2pの測定データを示している。また、AlTiCの基
板から得られる測定データは図5(b)のTi2pの測定
データと図6(b)のAl2pの測定データであり、中間
層のSiから得られる測定データは図6(a)のSi2p
の測定データである。
FIGS. 5 and 6 show measurement data of each constituent element. FIG. 5 (a) shows the measured data of O1s, FIG. 5 (b)
5A shows the measured data of Ti2p, FIG. 5C shows the measured data of C1s, FIG. 6A shows the measured data of Si2p, and FIG.
12 shows measurement data of l2p. The measurement data obtained from the AlTiC substrate are the measurement data of Ti2p in FIG. 5B and the measurement data of Al2p in FIG. 6B, and the measurement data obtained from Si in the intermediate layer is FIG. Si2p
Is the measurement data.

【0024】そこで、ここでは、基板からの信号として
Al2pの測定データを用い、DLC膜の信号としてC1s
の測定データを用いる。なお、DLC膜から得られる測
定データは図5(c)のC1sの測定データのみである
が、C1sの測定データにはDLC膜からのカーボン及び
ハイドロカーボン、及びAlTiC基板からのカーボン
が含まれる。そこで、基板O中に含まれる炭化物成分と
薄膜S中のカーボンを区別するため、DLC特有のスペ
クトルを基にして測定スペクトルから基板中に含まれる
炭化物のスペクトルを波形分離法によって除去して定量
を行う(ステップS5)。選択した元素の原子濃度の濃
度比を求め(ステップS6)、選択した元素の原子濃度
の濃度比から光電子強度比(Io/Is)を求める(ステ
ップS7)。
Therefore, here, measurement data of Al2p is used as a signal from the substrate, and C1s is used as a signal of the DLC film.
Use the measurement data of The measurement data obtained from the DLC film is only the measurement data of C1s in FIG. 5C, but the measurement data of C1s includes carbon and hydrocarbon from the DLC film and carbon from the AlTiC substrate. Therefore, in order to distinguish the carbide component contained in the substrate O from the carbon in the thin film S, the spectrum of the carbide contained in the substrate is removed from the measurement spectrum based on the DLC-specific spectrum by a waveform separation method, and the quantification is performed. Perform (Step S5). The concentration ratio of the atomic concentration of the selected element is determined (step S6), and the photoelectron intensity ratio ( Io / Is ) is determined from the concentration ratio of the atomic concentration of the selected element (step S7).

【0025】次に、ステップS7で求めた光電子強度比
(Io/Is)、及び平均自由工程λ、放出角度α、比較
係数Rを前記式(4)に適用して膜厚dを求める。な
お、比較係数Rは、前記で選択した基板と薄膜の元素の
各単体について光電子強度Io,Isを求め、求めた光電
子強度はそれぞれIoo,Issに対応するものとし、この
強度比(Io/Is)からRを求めることができる。
Next, the photoelectron intensity ratio (I o / I s ) obtained in step S7, the mean free path λ, the emission angle α, and the comparison coefficient R are applied to the above equation (4) to obtain the film thickness d. . In Comparative coefficient R is photoelectron intensity I o for each single element of the substrate and the thin film selected in the obtains the I s, respectively photoelectron intensity determined I oo, and corresponds to I ss, the intensity ratio R can be obtained from (I o / I s ).

【0026】また、平均自由工程λは、式(4)を変形
して得られるln[(Io/RIs)+1]=d/λ(1
/sinα)から求めることができ、既存の膜厚につい
てln[(Io/RIs)+1]の値を1/sinαに対
してプロットし、このときの傾斜から求めることができ
る(ステップS8)。したがって、薄膜の膜厚測定の第
1の態様では、ESCA(あるいはXPS)によって、
基板及び薄膜の異元素の原子濃度から求めた光電子強度
比(Io/Is)を前記式(4)に適用することによっ
て、膜厚dを求めることができる。
The mean free path λ is ln [(I o / RI s ) +1] = d / λ (1) obtained by modifying equation (4).
/ Sin .alpha) that can be obtained from, values plotted against 1 / sin .alpha of ln [(I o / RI s ) +1] for an existing thickness can be determined from the slope of this time (step S8) . Therefore, in the first mode of measuring the thickness of a thin film, by ESCA (or XPS),
The film thickness d can be obtained by applying the photoelectron intensity ratio (I o / I s ) obtained from the atomic concentrations of the different elements of the substrate and the thin film to the above equation (4).

【0027】次に、薄膜の膜厚測定の第2の態様につい
て説明する。第2の態様は、あらかじめ膜厚が既知の膜
について原子濃度比(光電子強度比)を求めて、膜厚と
原子濃度比との関係を検量線として求めておき、この検
量線を用いて測定した原子濃度から膜厚を求めるもので
ある。図7は、横軸を膜厚d(nm)とし、縦軸を原子
濃度比による光電子強度比を自然対数ln(C1s/Al
2p)とした相関図であり、膜厚dを求める検量線を構成
している。
Next, a second mode for measuring the thickness of a thin film will be described. In the second embodiment, an atomic concentration ratio (photoelectron intensity ratio) is determined for a film having a known film thickness in advance, the relationship between the film thickness and the atomic concentration ratio is determined as a calibration curve, and measurement is performed using the calibration curve. The thickness is determined from the determined atomic concentration. In FIG. 7, the abscissa indicates the film thickness d (nm), and the ordinate indicates the natural logarithm ln (C1s / Al
2p), which constitutes a calibration curve for obtaining the film thickness d.

【0028】なお、測定点はSi膜(2nm)とDLC
膜(3nm,6nm,8nm)の合計の膜厚が5nm,
8nm,10nmの場合を示している。この実施例から
も、DLCの膜厚が5nm程度よりも薄い膜厚について
十分な直線関係が認められ、本発明の膜厚測定の信頼性
を検証することができる。なお、上記の説明では、DL
C膜の膜厚測定について示しているが、Si膜の膜厚測
定についても同様に行うことができる。
The measurement points were the Si film (2 nm) and the DLC
The total thickness of the films (3 nm, 6 nm, 8 nm) is 5 nm,
The cases of 8 nm and 10 nm are shown. This example also shows a sufficient linear relationship for a DLC film thickness of less than about 5 nm, so that the reliability of the film thickness measurement of the present invention can be verified. In the above description, DL
Although the measurement of the thickness of the C film is shown, the measurement of the thickness of the Si film can be similarly performed.

【0029】また、本発明の膜厚測定は、磁気ディスク
あるいは磁気ヘッドの製作プロセス内に適用することが
できる。磁気ディスクあるいは磁気ヘッドが備える基板
や成膜部分を測定対象とし、この成膜を行うプロセス内
において薄膜あるいは基板の膜厚測定を行い、各基板内
あるいは各成膜部分内の膜厚分布や製作プロセスの行程
間における膜厚のばらつきを求めることができる。
The film thickness measurement according to the present invention can be applied to a process for manufacturing a magnetic disk or a magnetic head. The substrate and film formation part of the magnetic disk or magnetic head are measured, and the film thickness of the thin film or substrate is measured during the film formation process, and the film thickness distribution and production within each substrate or each film formation part are measured. Variations in film thickness between process steps can be determined.

【0030】[0030]

【発明の効果】以上説明したように、本発明の薄膜の膜
厚測定方法によれば、極薄膜の膜厚測定を非破壊で行う
ことができ、また、基板と薄膜に共通する元素が含む場
合であっても膜厚測定を可能とすることができる。
As described above, according to the method for measuring the thickness of a thin film of the present invention, the thickness of an ultrathin film can be measured without destruction, and an element which is common to the substrate and the thin film is contained. Even in this case, the film thickness can be measured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の膜厚測定の配置を説明するための概略
図である。
FIG. 1 is a schematic diagram for explaining an arrangement for measuring a film thickness according to the present invention.

【図2】薄膜の膜厚測定の一態様を説明するためのフロ
ーチャートである。
FIG. 2 is a flowchart for explaining one mode of measuring the thickness of a thin film.

【図3】膜構成を説明するための概略図である。FIG. 3 is a schematic diagram for explaining a film configuration.

【図4】AlTiCの基板上にSi膜とDLC薄膜を成
膜した膜の測定スペクトル例である。
FIG. 4 is a measured spectrum example of a film in which a Si film and a DLC thin film are formed on an AlTiC substrate.

【図5】各構成元素の測定データ例である。FIG. 5 is an example of measurement data of each constituent element.

【図6】各構成元素の測定データ例である。FIG. 6 is an example of measurement data of each constituent element.

【図7】膜厚と原子濃度比(光電子強度比)の相関を示
す図である。
FIG. 7 is a diagram showing a correlation between a film thickness and an atomic concentration ratio (photoelectron intensity ratio).

【符号の説明】[Explanation of symbols]

S…薄膜、O…基板(下地膜)。 S: thin film, O: substrate (base film).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F067 AA28 BB02 BB18 CC00 CC13 EE03 EE04 FF07 HH04 JJ05 KK05 RR24 UU31 2G001 AA01 BA08 CA03 GA01 HA01 KA01 KA11 LA11 MA05 NA03 5D033 CA10 5D112 AA07 AA24 BC05 JJ01  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 2F067 AA28 BB02 BB18 CC00 CC13 EE03 EE04 FF07 HH04 JJ05 KK05 RR24 UU31 2G001 AA01 BA08 CA03 GA01 HA01 KA01 KA11 LA11 MA05 NA03 5D033 CA10 5D112 AA07 AA24 BC05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上に薄膜が成膜された測定対象に対
してX線を照射することによって励起される光電子のエ
ネルギー分布を測定し、該エネルギー分布を用いて、基
板と薄膜の含有元素の内から互いに共通しない元素を求
め、基板に特有の元素の原子濃度と薄膜に特有の原子濃
度を求め、前記基板と薄膜に特有の元素の原子濃度から
求めた原子濃度比を、膜厚と原子濃度比の関係式に適用
することによって、薄膜の膜厚を測定することを特徴と
する薄膜の膜厚測定方法。
An energy distribution of photoelectrons excited by irradiating a measurement target having a thin film formed on a substrate with X-rays is measured, and the element contained in the substrate and the thin film is measured using the energy distribution. From among the elements that are not common to each other, the atomic concentration of the element specific to the substrate and the atomic concentration specific to the thin film are obtained, and the atomic concentration ratio obtained from the atomic concentration of the element specific to the substrate and the thin film is represented by A method for measuring the thickness of a thin film, wherein the method is applied to a relational expression of an atomic concentration ratio to measure the thickness of the thin film.
【請求項2】 薄膜は組成成分としてカーボンを含み、
カーボンを薄膜に特有の元素とし、基板に含まれる元素
からカーボンを除く元素を基板に特有の元素として選択
することを特徴とする、請求項1記載の薄膜の膜厚測定
方法。
2. The thin film contains carbon as a composition component,
2. The method according to claim 1, wherein carbon is selected as an element peculiar to the thin film, and an element excluding carbon from elements contained in the substrate is selected as an element peculiar to the substrate.
【請求項3】 磁気ディスクあるいは磁気ヘッドが備え
る成膜部分を測定対象とし、該測定対象の製作プロセス
内において請求項1,又は2記載の薄膜の膜厚測定方法
による基板の膜厚測定を行い、各基板内の膜厚分布及び
又は製作プロセスの行程間における膜厚のばらつきを求
めることを特徴とする、請求項1,又は2記載の薄膜の
膜厚測定方法。
3. A method for measuring a thickness of a substrate by a method for measuring a thickness of a thin film according to claim 1, wherein a film-forming portion provided on a magnetic disk or a magnetic head is set as an object to be measured. 3. The method for measuring the thickness of a thin film according to claim 1, wherein a thickness distribution in each substrate and / or a variation in a thickness between steps of a manufacturing process are obtained.
【請求項4】 磁気ディスクあるいは磁気ヘッドが備え
る成膜部分を測定対象とし、該測定対象の製作プロセス
内において測定対象中の特定部位の薄膜について請求項
1,又は2記載の膜厚測定を行い、各成膜部分内の膜厚
分布及び又は製作プロセスの行程間における膜厚のばら
つきを求めることを特徴とする、請求項1,又は2記載
の薄膜の膜厚測定方法。
4. The film thickness measurement according to claim 1, wherein a film forming portion provided on the magnetic disk or the magnetic head is set as a measurement target, and the film thickness measurement according to claim 1 or 2 is performed on a thin film at a specific portion in the measurement target in a manufacturing process of the measurement target. 3. The thin film thickness measuring method according to claim 1, wherein a film thickness distribution in each film forming portion and / or a variation in film thickness between steps of a manufacturing process are obtained.
JP2000165878A 2000-06-02 2000-06-02 Method for measuring film thickness of thin film Pending JP2001343227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000165878A JP2001343227A (en) 2000-06-02 2000-06-02 Method for measuring film thickness of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000165878A JP2001343227A (en) 2000-06-02 2000-06-02 Method for measuring film thickness of thin film

Publications (1)

Publication Number Publication Date
JP2001343227A true JP2001343227A (en) 2001-12-14

Family

ID=18669286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000165878A Pending JP2001343227A (en) 2000-06-02 2000-06-02 Method for measuring film thickness of thin film

Country Status (1)

Country Link
JP (1) JP2001343227A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100633333B1 (en) 2005-02-23 2006-10-12 주식회사 하이닉스반도체 Composition Calculation Method for Multi Component Thin Film by Atomic Layer Deposition
US7375327B2 (en) 2002-04-15 2008-05-20 Kabushiki Kaisha Toshiba Method and device for measuring quantity of wear
JP2008539432A (en) * 2005-04-29 2008-11-13 リヴェラ インコーポレイテッド Techniques for analyzing data generated by instruments
US8310788B2 (en) 2007-11-28 2012-11-13 Sae Magnetics (H.K.) Ltd. Protective film forming method
CN110017798A (en) * 2019-04-04 2019-07-16 浙江上方电子装备有限公司 A kind of method and device detecting film thickness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7375327B2 (en) 2002-04-15 2008-05-20 Kabushiki Kaisha Toshiba Method and device for measuring quantity of wear
KR100633333B1 (en) 2005-02-23 2006-10-12 주식회사 하이닉스반도체 Composition Calculation Method for Multi Component Thin Film by Atomic Layer Deposition
JP2008539432A (en) * 2005-04-29 2008-11-13 リヴェラ インコーポレイテッド Techniques for analyzing data generated by instruments
US8310788B2 (en) 2007-11-28 2012-11-13 Sae Magnetics (H.K.) Ltd. Protective film forming method
CN110017798A (en) * 2019-04-04 2019-07-16 浙江上方电子装备有限公司 A kind of method and device detecting film thickness

Similar Documents

Publication Publication Date Title
TW457362B (en) Measurement of film thickness by inelastic electron scattering
Tidswell et al. X-ray specular reflection studies of silicon coated by organic monolayers (alkylsiloxanes)
Greczynski et al. X-ray photoelectron spectroscopy of thin films
Smith et al. Surface analysis by electron spectroscopy
US7582868B2 (en) Method of nano thin film thickness measurement by auger electron spectroscopy
US8007909B2 (en) Carbon film
Schneider et al. Quality control of ultra-thin and super-hard coatings by laser-acoustics
JP2003307414A (en) Abrasion loss measurement method and measurement device
JP2001343227A (en) Method for measuring film thickness of thin film
JP4335744B2 (en) Magnetic head
Tunmee et al. Study of synchrotron radiation near-edge X-ray absorption fine-structure of amorphous hydrogenated carbon films at various thicknesses
Greene et al. A technique for detecting critical loads in the scratch test for thin film adhesion
Hofmann et al. Determination and application of the depth resolution function in sputter profiling with secondary ion mass spectroscopy and Auger electron spectroscopy
JP4102515B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic storage device using the medium
US6259092B1 (en) Thickness determination of carbonaceous overlayers on substrates of differing material
JP2003028802A (en) Method for evaluating carbon film and method for manufacturing magnetic recording medium
Ebel et al. Influence of concentration gradients and surface roughness on measured reduced thicknesses of overlayers
Rismani et al. Developing an (Al, Ti) N x C y interlayer to improve the durability of the ta-C coating on magnetic recording heads
Kanda et al. Structural changes in diamond-like carbon films fabricated by Ga focused-ion-beam-assisted deposition caused by annealing
Tani et al. Elastic modulus measurement of ultrathin layer using gas cluster ion beam
Suzuki et al. Level of consistency in quantification and IMFP determination by the Tougaard method applied to XPS of a Langmuir–Blodgett film taken at widely different emission angles
JP2009063322A (en) Evaluation method of diamond-like thin film, evaluation device and evaluation program
Tsuji et al. Surface studies by grazing‐exit electron probe microanalysis (GE‐EPMA)
Ceresa et al. AES/XPS thickness measurement of the native oxide on single crystal Si wafers
Puttichaem et al. Scanning electron microscopy and energy-dispersive X-ray spectroscopy characterization of ultra thin diamond-like carbon film on magnetic recording head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090203