JP2001339370A - Transmission channel redundant switch system - Google Patents

Transmission channel redundant switch system

Info

Publication number
JP2001339370A
JP2001339370A JP2000157238A JP2000157238A JP2001339370A JP 2001339370 A JP2001339370 A JP 2001339370A JP 2000157238 A JP2000157238 A JP 2000157238A JP 2000157238 A JP2000157238 A JP 2000157238A JP 2001339370 A JP2001339370 A JP 2001339370A
Authority
JP
Japan
Prior art keywords
transmission line
transmission
transmission channel
line
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000157238A
Other languages
Japanese (ja)
Inventor
Naoki Maeji
直記 前地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2000157238A priority Critical patent/JP2001339370A/en
Publication of JP2001339370A publication Critical patent/JP2001339370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a transmission channel redundant switch system that can avoid momentary interruption at execution of switch-back processing in the 1:N type transmission channel switch system and attain long time operation of Extra Traffic in a standby transmission channel. SOLUTION: The transmission channel redundant switch system of this invention is characterized in that the switch system does not fixedly reserve a standby system on the occurrence of a fault, but dynamically decides a transmission channel used for the standby system on the basis of 'quality of transmission channel' and 'priority of transmission channel' at that point of time when the fault takes place and is recovered, updates the priority of transmission channels on the basis of the priority of channels accommodated in each transmission channel and can revise the correspondence between a physical transmission channel and a channel number used for the transmission channel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、信号伝送システ
ムにおいて、障害が発生した伝送路を予備伝送路に切り
替える伝送路冗長切替方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission line redundancy switching system for switching a failed transmission line to a standby transmission line in a signal transmission system.

【0002】[0002]

【従来の技術】伝送路切替方式の詳細は文書(Bellcore
GR-253-CORE Issue 2、ITU-T G.783)に詳しく記載され
ているため、以下では省略するが、従来の伝送路切替方
式の概要は以下の通りである。
2. Description of the Related Art For details of a transmission path switching method, refer to a document (Bellcore
Since it is described in detail in GR-253-CORE Issue 2, ITU-T G.783), the description is omitted below, but the outline of the conventional transmission line switching method is as follows.

【0003】・従来の伝送路切替方式 伝送路切替方式は上記文書中でAPSバイトとして定義さ
れる制御信号をもちいて、装置間で通信を行なう。伝送
路に障害が発生した場合には、APSバイトを用いて相手
装置と制御状態の同期を取りながらchannelを予備伝送
路に切り替える。
[0003] The conventional transmission line switching system performs communication between devices using a control signal defined as an APS byte in the above document. When a failure occurs in the transmission line, the channel is switched to the backup transmission line while synchronizing the control state with the partner device using the APS byte.

【0004】伝送装置の予備切替方式を実現する以下の
図2のようなシステムについて考える。本システムは1:
N(図2では特に1:2)切替系と呼ばれる(本システム構成
はBellcore GR-253-CORE Issue 2およびITU-T G.783に
詳しく記述されている)。自局と対局は合計(N+1)本の伝
送路で接続され、そのうちの1本を予備系とする。N本の
伝送路は通常通信に使用される。これらの伝送路に障害
が生じた場合、信号を予備系に迂回させることで通信回
線の救済を行なう(図3を参照のこと)。
[0004] Consider a system as shown in FIG. 2 for realizing a standby switching system of a transmission apparatus. The system is 1:
N (particularly 1: 2 in FIG. 2) switching system (this system configuration is described in detail in Bellcore GR-253-CORE Issue 2 and ITU-T G.783). The own station and the opposite station are connected by a total of (N + 1) transmission lines, and one of them is used as a standby system. The N transmission paths are usually used for communication. When a failure occurs in these transmission paths, the communication line is relieved by diverting the signal to the standby system (see FIG. 3).

【0005】[0005]

【発明が解決しようとする課題】このように複数の伝送
路で、一つの予備伝送路を共有する場合、伝送路障害の
回復時には予備伝送路の使用を中止し解放しなくてはな
らない。この動作を切戻し処理を呼ぶ。これは、別の他
の伝送路で障害が発生した場合に予備伝送路を使用でき
るようにするためである。しかし、このような方式にお
いては、切戻し処理時に該当伝送路を使用する回線に瞬
断が発生する可能性がある。本瞬断は切替方式に依存す
るもので、回線使用者からすると不要な回線断であると
みなすことができる。ごく短い瞬断であれば回線の提供
するサービスに重大な影響をあたえることは少ないと考
えられるが、ネットワークとしては回線への影響を極力
抑えるべきである。
As described above, when one transmission line is shared by a plurality of transmission lines, the use of the standby transmission line must be stopped and released at the time of recovery from a transmission line failure. This operation is called a switchback process. This is to make it possible to use the spare transmission line when a failure occurs in another transmission line. However, in such a system, there is a possibility that an instantaneous interruption may occur in a line using the transmission line during the switchback processing. This instantaneous interruption depends on the switching method, and can be regarded as an unnecessary line interruption from the viewpoint of the line user. It is unlikely that a very short interruption will have a significant effect on the services provided by the line, but the network should minimize the effect on the line.

【0006】一方、Bellcore GR-253-CORE Issue 2、IT
U-T G.783の規定として、1:N切替方式においても、非切
戻し型とよばれる障害回復後に積極的に切戻し処理を行
なわない方式が記載されている。しかしこの非切戻し型
の伝送路切替においては、1:N切替の特徴であるExtra T
rafficの運用が実施できなくなるという問題点をもって
いる。すなわち、Extra Trafficは切戻し処理が完了す
るまで運用が再開されないため、サービスが提供できな
い時間が長くなる。なお、ここでExtra Trafficとは障
害のない状態において予備伝送路を通信経路として提供
するもので、ネットワーク資源の有効利用の観点から有
用なものである。
On the other hand, Bellcore GR-253-CORE Issue 2, IT
As a rule of UT G.783, even in the 1: N switching method, there is described a method called a non-revertive type that does not actively perform a revertive process after a failure recovery. However, in this non-revertive transmission line switching, Extra T which is a feature of 1: N switching is used.
There is a problem that the operation of raffic cannot be performed. That is, since the operation of Extra Traffic is not restarted until the switchback processing is completed, the time during which the service cannot be provided becomes longer. Here, Extra Traffic is to provide a spare transmission path as a communication path in a state without any trouble, and is useful from the viewpoint of effective use of network resources.

【0007】[0007]

【課題を解決するための手段】本発明における伝送路冗
長切替方式は、障害発生時の予備系を固定的に確保する
のではなく、障害の発生および回復時にその時点での
「伝送路の品質」と「伝送路の優先度」をもとに予備系
として使用する伝送路を動的に決定することと、各伝送
路収容されている回線の優先度をもとに伝送路の優先度
を更新することと、物理的な伝送路と伝送路を使用する
Channel番号の対応が変更可能であることとを特徴とす
る伝送路切替である。
According to the transmission line redundancy switching system of the present invention, a standby system at the time of occurrence of a failure is not fixedly secured, but at the time of occurrence and recovery of the failure, the "quality of the transmission line" at that time is determined. ) And "Priority of transmission line" to dynamically determine the transmission line to be used as the standby system, and to determine the priority of the transmission line based on the priority of the line accommodated in each transmission line. Updating and using physical transmission lines and transmission lines
Transmission path switching is characterized in that the correspondence of Channel numbers can be changed.

【0008】本発明の利点は以下の2点である。 1.従来の伝送路切替方式における切戻し処理で発生する
瞬断を回避すること。 2.予備伝送路でのExtra Trafficの長時間運用を可能と
すること。 1の「切戻しにともなう瞬断」は実運用上の制約となっ
ている。たとえば、従来の切替方式においては公衆網に
おいてはサービスに影響を与えないために休日の深夜に
切戻し作業を実施している。本発明によれば運用者の都
合で伝送路制御が可能となる。2については、切替要因
消滅時に伝送路の名称を変更することで、従来方式にあ
った「切替要因はなくなったが、切替を続行している状
態」を回避できる。なお、「切替要因はなくなったが、
切替を続行している状態」においては、予備系伝送路に
Extra Trafficを通すことはできない。
The advantages of the present invention are the following two points. 1. Avoid instantaneous interruptions that occur in the switching back process in the conventional transmission line switching method. 2. Enable long-term operation of Extra Traffic on the backup transmission line. The 1 “shutdown due to switchback” is a restriction in actual operation. For example, in the conventional switching system, a switch-back operation is performed at midnight on a holiday in order to prevent a service from being affected in a public network. According to the present invention, transmission path control can be performed at the convenience of the operator. Regarding item 2, by changing the name of the transmission path when the switching factor disappears, it is possible to avoid "the state in which the switching factor has disappeared but the switching is continued", which was in the conventional method. In addition, "The switching factor has disappeared,
In the state where switching is continued,
You cannot pass through Extra Traffic.

【0009】[0009]

【発明の実施の形態】§1.第1実施形態 障害回復時の処理としてブリッジ回路、スイッチ回路の
制御による切戻し処理を行なわず各伝送路のChannel番
号を振り替えることで切替非実行状態に移行する切替方
式の例を以下に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS §1. First Embodiment The following describes an example of a switching method in which the switching to the non-switching state is performed by changing the channel number of each transmission path without performing the switching process under the control of the bridge circuit and the switch circuit as the process at the time of failure recovery.

【0010】(1)実施例1の構成 図1は、本システムを構成する装置の機能ブロック図で
ある。伝送される信号は、ユーザーの信号を収容する主
信号とネットワークを監視、管理するための制御信号よ
りなる。図1の例では、2つのWorking Lineと1つのProt
ection Lineが用意されている。外部から受信した信号
はまず2to1スイッチ(1)を介して装置に取り込まれる。2
to1スイッチ(1)はそれぞれWorking Line1またはWorking
Line2とProtectionLineに接続されており、制御信号処
理部(5)からの指示に応じてWorking LineもしくはProte
ction Lineを選択し、主信号/制御信号分離部(2)に受け
渡す。主信号/制御信号分離部(2)は外部からの信号を主
信号と制御信号に分離する。
(1) Configuration of Embodiment 1 FIG. 1 is a functional block diagram of an apparatus constituting this system. The transmitted signal includes a main signal containing a user signal and a control signal for monitoring and managing the network. In the example of Fig. 1, two Working Lines and one Prot
Section Line is prepared. A signal received from the outside is first taken into the device via the 2to1 switch (1). Two
to1 switch (1) is Working Line 1 or Working Line respectively
Line 2 and Protection Line, and are connected to the working line or the protection line according to the instruction from the control signal processing unit (5).
ction Line is selected and passed to the main signal / control signal separation unit (2). The main signal / control signal separation unit (2) separates an external signal into a main signal and a control signal.

【0011】SDH装置において制御信号はオーバーヘッ
ドと呼ばれ、特に予備系切替に使用する領域をAPSバイ
トという。APSバイトはK1バイトおよびK2バイトにより
構成され、その内容は以下の通りである。 K1 bit 1-4 = 切替要求 K1 bit 5-8 = 切替要求を出しているchannel番号 K2 bit 1-4 = Protection Lineに接続されているchanne
l番号である(K2 bit6-8以降は本発明と直接関係しない
ので省略)。
In the SDH device, a control signal is called an overhead, and an area used particularly for switching the standby system is called an APS byte. The APS byte is composed of the K1 byte and the K2 byte, and the contents are as follows. K1 bit 1-4 = Switching request K1 bit 5-8 = Channel number issuing switching request K2 bit 1-4 = Channe connected to Protection Line
l number (K2 bits 6-8 and later are omitted because they are not directly related to the present invention).

【0012】受信制御信号選択部(3)は各伝送路から抽
出した制御信号から1つを選択する機能を有する。伝送
路情報管理設定部(4)については後述する。
The reception control signal selector (3) has a function of selecting one of the control signals extracted from each transmission line. The transmission path information management setting unit (4) will be described later.

【0013】制御信号処理部(5)は、受信制御信号選択
部(3)からの制御要求を受けて、現在の自装置の状態
(特に、1to2ブリッジ(7)、2to1スイッチ(1)、送信制御
信号)を保持し、そして送信する制御信号(APSバイト)
を決定し、受信APSバイトが変化もしくは管理者により
切替要求が発行された場合に自装置の状態を更新する。
同時に1to2ブリッジ(7)、2to1スイッチ(1)の制御を行な
う。
The control signal processing unit (5) receives the control request from the reception control signal selection unit (3), and receives the current state of its own device (in particular, the 1to2 bridge (7), the 2to1 switch (1), the transmission Control signal (APS byte) to hold and transmit
Is determined, and when the received APS byte changes or a switching request is issued by the administrator, the state of the own device is updated.
At the same time, it controls the 1to2 bridge (7) and the 2to1 switch (1).

【0014】主信号/制御信号合成部(6)は送信する主信
号と制御信号を合成する。1to2ブリッジ(7)は制御信号
処理部(5)からの制御によってProtection LineとWorkin
g Lineに信号を分岐させる機能を有する。
A main signal / control signal synthesizing section (6) synthesizes a main signal to be transmitted and a control signal. The 1to2 bridge (7) controls the protection line and workin by the control from the control signal processing unit (5).
It has a function to split the signal into g Line.

【0015】制御信号処理部(5)は送受信制御信号比較
部(4)から通知される制御情報をもとに以下の処理を行
なう。 2to1スイッチ(1)の制御 主信号/制御信号合成部(6)へ出力する制御信号の更新 1to2ブリッジ(7)の制御
The control signal processing unit (5) performs the following processing based on the control information notified from the transmission / reception control signal comparison unit (4). Control of 2to1 switch (1) Update of control signal output to main signal / control signal synthesis unit (6) Control of 1to2 bridge (7)

【0016】制御信号処理部(5)は受信制御信号選択部
(3)より新しい制御情報を受け取った場合、自局の状態
(送信制御信号、1to2ブリッジ(7)の状態、2to1スイッ
チ(1)の状態)を更新する。
The control signal processing unit (5) is a reception control signal selection unit.
(3) When newer control information is received, the state of its own station (transmission control signal, state of 1to2 bridge (7), state of 2to1 switch (1)) is updated.

【0017】(2)実施例1の動作 伝送装置の予備切替方式を実現する以下の図2のような
システムについて考える。本システムは1:N(図2では特
に1:2)切替系と呼ばれる。
(2) Operation of the First Embodiment Consider a system as shown in FIG. 2 for realizing the standby switching system of the transmission apparatus. This system is called a 1: N (particularly 1: 2 in FIG. 2) switching system.

【0018】・伝送路情報 伝送路情報管理設定部(4)に設定される伝送路情報を以
下に示す。各伝送路は、伝送路番号およびChannel情報
という2つの識別子によって管理される。伝送路番号は
伝送装置の物理的な伝送路を表わす。具体的には、光フ
ァイバーのような物理媒体がこれに相当する。Channel
情報は、物理的な伝送路がネットワーク的に担う機能を
表わす。具体的には、以下の情報をもつ。 1. 現用系(図2においては"Working"として表記)または
予備系(図2においては"Protection"として表記) 2. 現用系伝送路間の識別子(図2においては"Working-
1"のように表記)
Transmission line information Transmission line information set in the transmission line information management setting section (4) is shown below. Each transmission path is managed by two identifiers, a transmission path number and Channel information. The transmission path number indicates a physical transmission path of the transmission device. Specifically, a physical medium such as an optical fiber corresponds to this. Channel
The information represents a function that a physical transmission path performs in a network. Specifically, it has the following information. 1. Working system (indicated as "Working" in FIG. 2) or standby system (indicated as "Protection" in FIG. 2) 2. Identifier between active transmission lines (in FIG. 2, "Working-"
1 ")

【0019】・通常状態 図2、3、4は、ネットワーク上に切替が発生していな
い状態(通常状態)の例を図示したものである。図2に
おいては、伝送路0がProtection Channelとして、伝送
路1がWorking-1Channelとして、伝送路2がWorking-2 Ch
annelとして設定され運用されている。図3において
は、伝送路0がWorking-1 Channelとして、伝送路1がPro
tectionChannelとして、伝送路2がWorking-2 Channelと
して設定され運用されている。図4においては、伝送路
0がWorking-1 Channelとして、伝送路1がWorking-2 Cha
nnelとして、伝送路2がProtection Channelとして設定
され運用されている。
Normal State FIGS. 2, 3, and 4 show examples of a state in which no switching has occurred on the network (normal state). In FIG. 2, transmission line 0 is a Protection Channel, transmission line 1 is a Working-1 Channel, and transmission line 2 is a Working-2 Ch.
It is set and operated as annel. In FIG. 3, transmission line 0 is Working-1 Channel and transmission line 1 is Pro.
The transmission path 2 is set and operated as a Working-2 Channel as a tectionChannel. In FIG. 4, the transmission path
0 is Working-1 Channel, Transmission line 1 is Working-2 Cha
As the nnel, the transmission path 2 is set and operated as a protection channel.

【0020】・障害発生時の動作(1) 図5は、伝送路1において障害(光ファイバー断など)が
発生した場合の動作を示す。切替後、ネットワーク的に
は伝送路1を使用する回線を(一時的に)伝送路0に迂回し
た状態とっている。このときの設定情報は以下の通りで
ある。 伝送路0がProtection Channel 伝送路1がWorking-1 Channel 伝送路2がWorking-2 Channel
Operation When Failure Occurs (1) FIG. 5 shows an operation when a failure (such as an optical fiber break) occurs in the transmission line 1. After the switching, the network using the transmission line 1 is (temporarily) bypassed to the transmission line 0 in terms of the network. The setting information at this time is as follows. Transmission line 0 is Protection Channel Transmission line 1 is Working-1 Channel Transmission line 2 is Working-2 Channel

【0021】・障害回復(1) 図3は、伝送路1の障害(光ファイバー断など)が回復し
た場合の動作を示す。障害回復後、障害検出ノードは障
害回復を対向局に通知する。その後で、伝送路情報を以
下のように再設定する。 伝送路0がWorking-1 Channel 伝送路1がProtection Channel 伝送路2がWorking-2 Channel 同時に切替前の伝送路への主信号の送信を停止する。
Failure Recovery (1) FIG. 3 shows an operation when a failure in the transmission line 1 (such as an optical fiber break) is recovered. After recovery from the failure, the failure detection node notifies the opposite station of the failure recovery. After that, the transmission path information is reset as follows. Transmission line 0 is Working-1 Channel Transmission line 1 is Protection Channel Transmission line 2 is Working-2 Channel At the same time, transmission of the main signal to the transmission line before switching is stopped.

【0022】・障害発生時の動作(2) 図6は、上記図3につづいて伝送路2で障害が発生した
場合を示す。このときネットワーク的には伝送路1を使
用する回線を(一時的に)伝送路1に迂回した状態とって
いる。設定情報は以下の通りである。 伝送路0がWorking-1 Channel 伝送路1がProtection Channel 伝送路2がWorking-2 Channel
Operation When Failure Occurs (2) FIG. 6 shows a case where a failure has occurred in the transmission line 2 following FIG. At this time, a line using the transmission path 1 is (temporarily) bypassed to the transmission path 1 in terms of a network. The setting information is as follows. Transmission line 0 is Working-1 Channel Transmission line 1 is Protection Channel Transmission line 2 is Working-2 Channel

【0023】・障害回復(2) 図4は、伝送路2の障害が回復した場合の動作を示す。
障害回復後、障害検出ノードは障害回復を対向局に通知
する。その後で、伝送路情報を以下のように再設定す
る。 伝送路0がWorking-1 Channel 伝送路1がWorking-2 Channel 伝送路2がProtection Channel 同時に切替前の伝送路への主信号の送信を停止する。
Failure Recovery (2) FIG. 4 shows the operation when the failure of the transmission line 2 is recovered.
After recovery from the failure, the failure detection node notifies the opposite station of the failure recovery. After that, the transmission path information is reset as follows. Transmission path 0 is Working-1 Channel Transmission path 1 is Working-2 Channel Transmission path 2 is Protection Channel Simultaneously, transmission of the main signal to the transmission path before switching is stopped.

【0024】§2.第2実施形態 第1実施形態では、伝送路情報の更新を障害回復時に実
施していたが、第2実施形態では、切替完了時に実施す
る。 ・回線の優先度を以下の2段階とする。 Normal / Extra(Normalを高優先度とする) ・伝送路の品質を以下の3段階とする。 障害なし 重度の障害(光Fiber断など):以下SF障害とする。 軽度の障害(Bitエラーなど):以下SD障害とする。
§2. Second Embodiment In the first embodiment, the transmission line information is updated at the time of recovery from a failure. In the second embodiment, the update is performed when the switching is completed. -The priority of the line is set to the following two levels. Normal / Extra (Normal has the highest priority)-The quality of the transmission path is classified into the following three levels. No failure Severe failure (optical fiber disconnection, etc.): Hereinafter referred to as SF failure. Minor failure (Bit error, etc.): Hereinafter referred to as SD failure.

【0025】障害発生時における切替実施の判断は以下
の通りである。 切替実施の判断は、第1実施形態と同等である。
The decision to execute switching when a failure occurs is as follows. The determination of the execution of the switching is the same as that of the first embodiment.

【0026】・動作例(1) Normal回線にSF障害発生時→Extra回線を運用している
伝送路を予備系と判定し、切替処理を行なう。切替処理
後、Extra回線は障害発生伝送路を使用する。 上記につづいてSF障害の回復→その時点での状態をもと
に伝送路情報を更新する(Extra回線を収容している伝送
路を予備系とする)
Operation example (1) When an SF fault occurs on the Normal line → The transmission line operating the Extra line is determined to be the standby system, and switching processing is performed. After the switching process, the Extra line uses the faulty transmission line. Recovery of SF failure following the above → Update the transmission path information based on the state at that time (the transmission path accommodating the extra line is used as the standby system)

【0027】・動作例(2) Normal回線にSD障害発生時→Extra回線を運用している
伝送路を予備系と判定し、切替処理を行なう。切替処理
後、Extra回線は障害発生伝送路を使用する。 上記につづいて他のNormal回線にSF障害発生→SD障害に
より切替実施中のNormal回線と、SF障害発生のNormal回
線を収容する伝送路とを交換する。
Operation example (2) When an SD fault occurs on the Normal line → The transmission line operating the Extra line is determined to be the standby system, and switching processing is performed. After the switching process, the Extra line uses the faulty transmission line. Following the above, an SF failure has occurred in another Normal line → the Normal line currently being switched due to the SD failure is exchanged with the transmission line accommodating the Normal line in which the SF failure has occurred.

【0028】§3.補足 以上、この発明の実施形態を図面を参照して詳述してき
たが、具体的な構成はこの実施形態に限られるものでは
なく、この発明の要旨を逸脱しない範囲の設計の変更等
があってもこの発明に含まれる。
§3. The embodiments of the present invention have been described above in detail with reference to the drawings. Even this is included in the present invention.

【0029】[0029]

【発明の効果】第一の効果は、1:N型の伝送路切替方式
において切戻し処理実行時の瞬断を回避できることにあ
る。その理由は、従来ブリッジ回路やスイッチ回路を制
御することで実現していた切戻し処理を、伝送路の設定
情報の変更として実現するためである。第二の効果とし
て、第一の効果を実現しながらExtra Trafficの運用が
可能であることがある。その理由は、伝送路情報の更新
と同時に、同時に切替前の伝送路への主信号の送信を停
止するため、同時に切替前の伝送路(=再設定後のProte
ction Channel)はいずれのWorking Channelにも使用さ
れていないためである。第三の効果として、より柔軟な
切替方式が実現可能であることがあげられる。その理由
は、設定により予備伝送路と使用する伝送路の本数を可
変にできるため、5本の伝送路を1:4protectionにかぎら
ず、2:3Protection(3本の伝送路に2本分の予備伝送路を
確保する)方式の実現が容易であるためである。
The first effect is that an instantaneous interruption at the time of executing the switchback processing can be avoided in the 1: N transmission line switching system. The reason is that the switchback processing, which was conventionally realized by controlling the bridge circuit and the switch circuit, is realized as a change in the setting information of the transmission line. As a second effect, there is a case where the Extra Traffic can be operated while realizing the first effect. The reason is that the transmission of the main signal to the transmission line before switching is stopped at the same time as the transmission line information is updated.
ction Channel) is not used in any of the Working Channels. A third effect is that a more flexible switching method can be realized. The reason is that the number of spare transmission lines and the number of transmission lines to be used can be made variable by setting, so the five transmission lines are not limited to 1: 4 protection, but 2: 3 Protection (two transmission lines for three transmission lines). This is because it is easy to realize a method of securing a transmission path).

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明による伝送装置の一例を示すブロック
図である。
FIG. 1 is a block diagram illustrating an example of a transmission device according to the present invention.

【図2】 本発明による伝送システムの状態の一例(通
常状態)を示す説明図である。
FIG. 2 is an explanatory diagram showing an example (normal state) of the state of the transmission system according to the present invention.

【図3】 本発明による伝送システムの状態の一例(伝
送路1の障害回復→通常状態)を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of a state of the transmission system according to the present invention (failure recovery of transmission line 1 → normal state).

【図4】 本発明による伝送システムの状態の一例(伝
送路2の障害回復→通常状態)を示す説明図である。
FIG. 4 is an explanatory diagram showing an example of the state of the transmission system according to the present invention (failure recovery of transmission line 2 → normal state).

【図5】 本発明による伝送システムの状態の一例(伝
送路1での障害発生状態)を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of a state of the transmission system according to the present invention (a failure occurrence state in the transmission line 1).

【図6】 本発明による伝送システムの状態の一例(伝
送路2での障害発生状態)を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of a state of the transmission system according to the present invention (a failure occurrence state in the transmission line 2).

【符号の説明】[Explanation of symbols]

1……2to1スイッチ 2……主信号/制御信号分離部 3……受信制御信号選択部 4……伝送路情報管理設定部 5……制御信号処理部 6……主信号/制御信号合成部 7……1to2ブリッジ DESCRIPTION OF SYMBOLS 1 ... 2 to 1 switch 2 ... Main signal / control signal separation part 3 ... Reception control signal selection part 4 ... Transmission path information management setting part 5 ... Control signal processing part 6 ... Main signal / control signal synthesis part 7 …… 1 to 2 bridge

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数の伝送路で複数の予備伝送路を共有
することを特徴とする伝送路冗長切替方式。
1. A transmission line redundancy switching method wherein a plurality of backup transmission lines are shared by a plurality of transmission lines.
【請求項2】 予備伝送路への切替を、各伝送路に設定
された優先度に従って動的に決定することを特徴とする
請求項1記載の伝送路冗長切替方式。
2. The transmission line redundancy switching method according to claim 1, wherein the switching to the backup transmission line is dynamically determined according to the priority set for each transmission line.
【請求項3】 障害回復後、前記伝送路および前記予備
伝送路の物理番号と機能番号との対応関係を示す伝送路
情報を更新することを特徴とする請求項2記載の伝送路
冗長切替方式。
3. The transmission line redundancy switching method according to claim 2, wherein after the recovery from the failure, transmission line information indicating the correspondence between the physical numbers and the function numbers of the transmission line and the backup transmission line is updated. .
【請求項4】 切替処理後、前記伝送路および前記予備
伝送路の物理番号と機能番号との対応関係を示す伝送路
情報を更新することを特徴とする請求項2記載の伝送路
冗長切替方式。
4. The transmission line redundancy switching system according to claim 2, wherein after the switching process, transmission line information indicating a correspondence between a physical number and a function number of said transmission line and said backup transmission line is updated. .
JP2000157238A 2000-05-26 2000-05-26 Transmission channel redundant switch system Pending JP2001339370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000157238A JP2001339370A (en) 2000-05-26 2000-05-26 Transmission channel redundant switch system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000157238A JP2001339370A (en) 2000-05-26 2000-05-26 Transmission channel redundant switch system

Publications (1)

Publication Number Publication Date
JP2001339370A true JP2001339370A (en) 2001-12-07

Family

ID=18661902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000157238A Pending JP2001339370A (en) 2000-05-26 2000-05-26 Transmission channel redundant switch system

Country Status (1)

Country Link
JP (1) JP2001339370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051955A1 (en) * 2002-11-29 2004-06-17 Fujitsu Limited Communication unit, control method and program
JP2009239360A (en) * 2008-03-25 2009-10-15 Fujitsu Ltd Transmitter and network system
US9148241B2 (en) 2009-08-26 2015-09-29 Fujitsu Limited Transmission apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051955A1 (en) * 2002-11-29 2004-06-17 Fujitsu Limited Communication unit, control method and program
US7580348B2 (en) 2002-11-29 2009-08-25 Fujitsu Limited Communication apparatus, control method, and computer readable information recording medium
JP2009239360A (en) * 2008-03-25 2009-10-15 Fujitsu Ltd Transmitter and network system
US9148241B2 (en) 2009-08-26 2015-09-29 Fujitsu Limited Transmission apparatus

Similar Documents

Publication Publication Date Title
US7639604B2 (en) Packet routing apparatus and a method of communicating a packet
US5586112A (en) Digital crossconnect system for selecting alternate communication routes in case of a transmission fault
US7839772B2 (en) Line redundant device and method
JP2003101559A (en) Ring switching method and apparatus
US20060274782A1 (en) SDH transmission apparatus that can relieve ethernet signal failure
JP2002247038A (en) Method for forming ring in network, method for restoring fault and method for adding node address at the time of forming ring
US20050141415A1 (en) Extending SONET/SDH automatic protection switching
US20030235152A1 (en) Network system incorporating protection paths in the transmission bandwidth of a virtual concatenation signal
JP4036652B2 (en) Ring control node
US6526020B1 (en) Ring network system, protection method therefor
US6895024B1 (en) Efficient implementation of 1+1 port redundancy through the use of ATM multicast
JP2001186159A (en) Ring transmission system and its squelch method
EP1343262B1 (en) A method of restoring a facility failure in a communication network consisting of rings, a correpsonding communication network and network element
JP2001339370A (en) Transmission channel redundant switch system
JPH114206A (en) Terminal station equipment
JP2005012306A (en) Node device
JP2001326620A (en) Standby path access method and system
JP4045197B2 (en) Transmission apparatus and concatenation setting method
JP3608850B2 (en) SONET transmission equipment line connection change system
US7123582B2 (en) Data transmission system, and node equipment and network management equipment used in the same
JP2867865B2 (en) Protection line switching control method
JP3667682B2 (en) Information transmitter / receiver
US6990066B1 (en) Method for using a pre-configured ATM switch and traffic discard to facilitate UPSR selection
JPH06284101A (en) Method of data protection in data transmission equipment
US6987759B1 (en) Method for using a pre-configured TDM switch and traffic discard to facilitate UPSR selection

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030617