JP2001335361A - Ferrite material powder and method for manufacturing ferrite magnet - Google Patents

Ferrite material powder and method for manufacturing ferrite magnet

Info

Publication number
JP2001335361A
JP2001335361A JP2000151019A JP2000151019A JP2001335361A JP 2001335361 A JP2001335361 A JP 2001335361A JP 2000151019 A JP2000151019 A JP 2000151019A JP 2000151019 A JP2000151019 A JP 2000151019A JP 2001335361 A JP2001335361 A JP 2001335361A
Authority
JP
Japan
Prior art keywords
raw material
material powder
magnetoplumbite
aqueous solution
chloride aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000151019A
Other languages
Japanese (ja)
Inventor
Etsushi Oda
悦志 尾田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2000151019A priority Critical patent/JP2001335361A/en
Priority to EP00121790A priority patent/EP1090884B1/en
Priority to DE60045541T priority patent/DE60045541D1/en
Priority to US09/680,324 priority patent/US6630084B1/en
Priority to CNB001295829A priority patent/CN1167088C/en
Priority to KR1020000059178A priority patent/KR100733158B1/en
Publication of JP2001335361A publication Critical patent/JP2001335361A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a magnetplumbite-type ferrite material powder having fine particles, sharp particle distribution and uniform composition, at a low manufacturing cost. SOLUTION: The chloride-dissolved mixture solution containing a chloride of iron, a chloride of strontium and at least one chloride of metal selected from lanthanum, cobalt, manganese and nickel is sprayed into a roasting furnace 10 in the heated atmosphere, and the chloride-dissolved mixture solution is changed to the magnetoplumbite-type ferrite material powder 16. In this process, an inflammable gas and/or oxygen gas are blown into or an inflammable solvent is sprayed into the area 17 where the above chloride-dissolved solution is changed into the magnetoplumbite-type ferrite material powder.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、噴霧熱分解法によ
るフェライト原料粉末、および当該原料粉末を用いるフ
ェライト磁石の製造方法に関する。
The present invention relates to a ferrite raw material powder by a spray pyrolysis method and a method for producing a ferrite magnet using the raw material powder.

【0002】[0002]

【従来の技術】フェライトは二価の陽イオン金属の酸化
物と三価の鉄の酸化物とが作る化合物の総称であり、フ
ェライト磁石は各種回転機やスピーカーなどの種々の用
途に使用されている。フェライト磁石の材料としては、
六方晶のM型マグネトプランバイト構造を持つSrフェ
ライト(SrFe1219)またはBaフェライト(Ba
Fe1219)が広く用いられている。M型マグネトプラ
ンバイト構造フェライトの基本組成は、通常、AO・6
Fe23の化学式で表現される。元素Aは二価陽イオン
となる金属であり、Sr、Ba、Pb、Caなどから選
択される。これらのフェライトは、酸化鉄とストロンチ
ウム(Sr)、バリウム(Ba)などの炭酸塩を原料と
し、粉末冶金法によって比較的安価に製造される。
2. Description of the Related Art Ferrite is a general term for a compound formed from a divalent cation metal oxide and a trivalent iron oxide. Ferrite magnets are used for various applications such as rotating machines and speakers. I have. As a material for ferrite magnets,
Sr ferrite (SrFe 12 O 19 ) or Ba ferrite (Ba) having a hexagonal M-type magnetoplumbite structure
Fe 12 O 19 ) is widely used. The basic composition of M-type magnetoplumbite structure ferrite is usually AO · 6
It is represented by the chemical formula of Fe 2 O 3 . The element A is a metal that becomes a divalent cation, and is selected from Sr, Ba, Pb, Ca, and the like. These ferrites are produced at relatively low cost by powder metallurgy using iron oxide and carbonates such as strontium (Sr) and barium (Ba) as raw materials.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の製造方法には次の問題点がある。
However, the above conventional manufacturing method has the following problems.

【0004】(1)固体の原料混合粉末を混合分散する
ため、組成の均一混合性が必ずしも十分でなく、製品の
磁気特性が充分なレベルに至らない。
(1) Since a solid raw material mixed powder is mixed and dispersed, uniform mixing of the composition is not always sufficient, and the magnetic properties of the product do not reach a sufficient level.

【0005】(2)仮焼温度が1150〜1400℃と
いう高温であるためコストが上昇する。
(2) The cost increases because the calcining temperature is as high as 1150-1400 ° C.

【0006】(3)仮焼工程で磁粉が粒成長するため、
次工程の粉砕工程で1μm以下までボールミルなどで機
械的に粉砕する際に長時間を要し、この際に粉砕媒体の
磨耗などによる不純物の混入や組成のずれがおこる、微
粉砕後の磁粉の粒度分布がシャープにならないなどの問
題が発生し、製品の磁気特性を劣化する。
(3) Since the magnetic powder grows in the calcining step,
It takes a long time to mechanically pulverize with a ball mill or the like down to 1 μm or less in the next pulverization step. At this time, mixing of impurities due to abrasion of the pulverization medium or deviation of the composition occurs. Problems such as the particle size distribution not being sharpened occur, and the magnetic properties of the product deteriorate.

【0007】本発明はかかる諸点に鑑みてなされたもの
であり、その主な目的は、組成および粒度が均一かつ微
細なフェライト原料粉末の製造方法を提供することにあ
る。
The present invention has been made in view of the above points, and a main object of the present invention is to provide a method for producing a fine ferrite raw material powder having a uniform composition and particle size.

【0008】[0008]

【課題を解決するための手段】本発明によるマグネトプ
ランバイト型フェライト原料粉末の製造方法は、鉄の塩
化物およびストロンチウムの塩化物が溶解した混合塩化
物水溶液を加熱雰囲気の焙焼炉内に噴霧することによっ
て前記混合塩化物水溶液をマグネトプランバイト型フェ
ライト原料粉末に変化させる工程と、前記混合塩化物水
溶液をマグネトプランバイト型フェライト原料粉末に変
化させる領域に対して、可燃性ガスおよび/または酸素
ガスを吹き込む工程とを包含する。
The method for producing a raw material powder of magnetoplumbite type ferrite according to the present invention comprises spraying a mixed chloride aqueous solution in which iron chloride and strontium chloride are dissolved into a roasting furnace in a heating atmosphere. Converting the mixed chloride aqueous solution into a magnetoplumbite-type ferrite raw material powder by applying a combustible gas and / or oxygen to a region where the mixed chloride aqueous solution is converted into a magnetoplumbite-type ferrite raw material powder. Injecting gas.

【0009】本発明による他のマグネトプランバイト型
フェライト原料粉末の製造方法は、鉄の塩化物およびス
トロンチウムの塩化物が溶解した混合塩化物水溶液を加
熱雰囲気の焙焼炉内に噴霧することによって前記混合塩
化物水溶液をマグネトプランバイト型フェライト原料粉
末に変化させる工程と、前記混合塩化物水溶液をマグネ
トプランバイト型フェライト原料粉末に変化させる領域
に対して、可燃性溶剤を噴霧する工程とを包含する。
Another method for producing a magnetoplumbite-type ferrite raw material powder according to the present invention is characterized in that a mixed chloride aqueous solution in which iron chloride and strontium chloride are dissolved is sprayed into a roasting furnace in a heated atmosphere. A step of changing the mixed chloride aqueous solution into a magnetoplumbite-type ferrite raw material powder, and a step of spraying a flammable solvent onto a region where the mixed chloride aqueous solution is changed into a magnetoplumbite-type ferrite raw material powder. .

【0010】好ましい実施形態において、前記混合塩化
物水溶液には、鉄の塩化物およびストロンチウムの塩化
物、ならびに、ランタン、コバルト、マンガンおよびニ
ッケルの塩化物からなる群から選択される少なくとも1
種の塩化物が溶解しており、しかも前記混合塩化物水溶
液が酸性である。
In a preferred embodiment, the mixed chloride aqueous solution contains at least one selected from the group consisting of iron chloride and strontium chloride, and lanthanum, cobalt, manganese and nickel chloride.
The seed chloride is dissolved, and the mixed chloride aqueous solution is acidic.

【0011】前記混合塩化物水溶液の噴霧は、温度が8
00℃以上1300℃以下の炉内において実行されるこ
とが好ましい。
The spraying of the mixed chloride aqueous solution has a temperature of 8
It is preferably performed in a furnace at a temperature of from 00 ° C to 1300 ° C.

【0012】前記混合塩化物水溶液の噴霧は、温度が1
000℃以上1200℃以下の炉内において実行される
ことがより好ましい。
The temperature of the spray of the mixed chloride aqueous solution is 1
More preferably, it is performed in a furnace at a temperature of from 000 ° C to 1200 ° C.

【0013】好ましい実施形態においては、前記混合塩
化物水溶液の原料として、製鉄所における酸洗によって
生じる廃液を用いる。
In a preferred embodiment, a waste liquid produced by pickling in an ironworks is used as a raw material of the mixed chloride aqueous solution.

【0014】好ましい実施形態においては、前記混合塩
化物水溶液の噴霧を前記製鉄所における塩酸回収装置を
用いて行う。
[0014] In a preferred embodiment, the mixed chloride aqueous solution is sprayed by using a hydrochloric acid recovery device in the steel mill.

【0015】好ましい実施形態においては、前記フェラ
イト原料粉末に対して熱処理を行う工程を更に包含す
る。前記熱処理は、800℃以上1200℃以下の温度
で実行されることが好ましい。
In a preferred embodiment, the method further includes a step of performing a heat treatment on the ferrite raw material powder. The heat treatment is preferably performed at a temperature of 800 ° C. or more and 1200 ° C. or less.

【0016】本発明によるフェライト磁石の製造方法
は、上記何れかのマグネトプランバイト型フェライト原
料粉末の製造方法によって製造されたフェライト原料粉
末を用意する工程と、前記フェライト原料粉末を用いて
永久磁石を作製する工程とを包含することを特徴とす
る。
The method for producing a ferrite magnet according to the present invention comprises the steps of preparing a ferrite raw material powder produced by any of the above-described methods for producing a magnetoplumbite ferrite raw material powder, and forming a permanent magnet using the ferrite raw material powder. And a manufacturing step.

【0017】[0017]

【発明の実施の形態】本発明者は、鉄の塩化物およびス
トロンチウムの塩化物が溶解した混合塩化物水溶液を加
熱雰囲気の焙焼炉内に噴霧し、それによって組成および
粒度が均一で微細なマグネトプランバイト型フェライト
原料粉末を作製する種々の実験を行った。その結果、焙
焼炉内の前記混合塩化物水溶液をマグネトプランバイト
型フェライト原料粉末に変化させる領域に可燃性ガスお
よび/または酸素ガスを吹き込むことにより、フェライ
ト化反応が起こる領域の温度を効果的に上昇させること
ができ、それによって比較的低い焙焼炉内の温度で効率
的にマグネトプランバイト型フェライトの原料粉末を製
造し得ることを見出した。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventor has sprayed a mixed chloride aqueous solution in which iron chloride and strontium chloride are dissolved into a roasting furnace in a heating atmosphere, whereby the composition and particle size are uniform and fine. Various experiments for producing magnetoplumbite-type ferrite raw material powder were performed. As a result, by injecting a combustible gas and / or an oxygen gas into a region where the mixed chloride aqueous solution in the roasting furnace is converted into a magnetoplumbite type ferrite raw material powder, the temperature of the region where the ferrite conversion reaction occurs can be effectively reduced. It has been found that the raw material powder of magnetoplumbite-type ferrite can be efficiently produced at a relatively low roasting furnace temperature.

【0018】また、本発明者は、焙焼炉内の前記混合塩
化物水溶液をマグネトプランバイト型フェライト原料粉
末に変化させる領域に、可燃性溶剤を噴霧することによ
っても、フェライト化反応が起こる領域の温度を効果的
に上昇させることができ、それによって比較的低い焙焼
炉内の温度で効率的にマグネトプランバイト型フェライ
トの原料粉末を製造し得ることを見出した。
The inventor has also proposed that a region where the mixed chloride aqueous solution in the roasting furnace is converted into a magnetoplumbite-type ferrite raw material powder is sprayed with a flammable solvent, so that the region where the ferrite-forming reaction occurs also occurs. Has been found to be able to effectively increase the temperature, and thereby the raw powder of magnetoplumbite-type ferrite can be efficiently produced at a relatively low temperature in the roasting furnace.

【0019】噴霧熱分解法によって実質的にマグネトプ
ランバイト型フェライトからなる原料粉末を製造すれ
ば、フェライトの製造工程において、仮焼および粉砕な
どの諸工程を省略することができるため、生産性が向上
し、製造コストが低減される。また、粉砕工程で異物が
混入したり、組成がずれる、超微粉の形成によって粒度
分布がブロードになるなどによって製品の特性が劣化す
るという問題を回避することができる。更に、粒度がサ
ブミクロンレベルの微細な粉末粒子が生成されるため、
後の粉砕工程の時間を短縮したり、粉砕工程自体を省略
することができる。加えて、混合塩化物水溶液中におい
ては、鉄、ストロンチウムなどの各元素が原子レベルで
均一に分散しているため、粉末粒子間で組成の均一性が
向上し、その結果、最終的に得られる磁石の組成も均一
化される。
If a raw material powder substantially consisting of magnetoplumbite type ferrite is produced by the spray pyrolysis method, various steps such as calcination and pulverization can be omitted in the ferrite production process, so that the productivity is reduced. Improved and reduced manufacturing costs. In addition, it is possible to avoid the problem that the characteristics of the product are deteriorated due to foreign substances being mixed in the pulverizing step, the composition being shifted, and the particle size distribution being broadened due to the formation of ultrafine powder. Furthermore, since fine powder particles with a particle size of submicron level are generated,
The time of the subsequent pulverization step can be shortened, or the pulverization step itself can be omitted. In addition, in the mixed chloride aqueous solution, since the elements such as iron and strontium are uniformly dispersed at the atomic level, the uniformity of the composition between the powder particles is improved, and as a result, it is finally obtained. The composition of the magnet is also made uniform.

【0020】更に、本発明の方法によれば、フェライト
化反応が起こる領域の温度を効果的に上昇させることが
できるため、焙焼炉内全体の温度が比較的低い温度で
も、マグネトプランバイト型フェライトの原料粉末を生
成することが可能になり、製造コストの低減を達成する
ことができる。
Further, according to the method of the present invention, since the temperature of the region where the ferrite-forming reaction occurs can be effectively raised, even if the temperature of the entire roasting furnace is relatively low, the magnetoplumbite type can be used. Ferrite raw material powder can be generated, and a reduction in manufacturing cost can be achieved.

【0021】混合塩化物水溶液には、マグネトプランバ
イト型フェライトの主要元素である鉄およびストロンチ
ウムの塩化物と、ランタン、コバルト、マンガンおよび
ニッケルの塩化物なる群から選択される少なくとも1種
の塩化物とを含んでいる。このように、ランタン、コバ
ルト、マンガンおよびニッケルの塩化物なる群から選択
される少なくとも1種の塩化物が前記混合塩化物水溶液
に含まれていることで、マグネトプランバイト型フェラ
イトの原料粉末およびこの粉末から作製したフェライト
磁石の磁気特性が向上する。
The mixed chloride aqueous solution contains iron and strontium chlorides, which are main elements of magnetoplumbite ferrite, and at least one chloride selected from the group consisting of lanthanum, cobalt, manganese and nickel chlorides. And As described above, since at least one chloride selected from the group consisting of lanthanum, cobalt, manganese, and nickel chloride is contained in the mixed chloride aqueous solution, the raw powder of magnetoplumbite-type ferrite and The magnetic properties of the ferrite magnet made from the powder are improved.

【0022】混合塩化物水溶液に含まれる鉄の塩化物の
濃度は20重量%以上35重量%以下が好ましい。ま
た,前記混合塩化物水溶液に含まれるストロンチウムの
塩化物の濃度は1.9重量%以上4.9重量%以下が好
ましい。
The concentration of iron chloride contained in the mixed chloride aqueous solution is preferably from 20% by weight to 35% by weight. The concentration of strontium chloride contained in the mixed chloride aqueous solution is preferably 1.9% by weight or more and 4.9% by weight or less.

【0023】前記混合塩化物水溶液に含まれるランタン
の塩化物の濃度は0重量%以上2重量%以下が好まし
い。また、前記混合塩化物水溶液に含まれるコバルト、
マンガンおよびニッケルの塩化物の濃度は、それぞれ、
0重量%以上1重量%以下が好ましい。
The concentration of lanthanum chloride contained in the mixed chloride aqueous solution is preferably from 0% by weight to 2% by weight. Further, cobalt contained in the mixed chloride aqueous solution,
The concentrations of manganese and nickel chloride, respectively,
It is preferably from 0% by weight to 1% by weight.

【0024】混合塩化物水溶液には、大気中で長時間放
置した場合、鉄の化合物が沈殿となって生じ、溶液の組
成均一性が失われる。この水溶液に塩酸などの酸を添加
して、溶液を酸性に保つことで水溶液中の沈殿の生成を
防ぐことができ、これにより混合塩化物水溶液の組成均
一性を保つことができる。この水溶液の酸性度はpH≦
6が好ましく、pH≦2がより好ましい。
If the mixed chloride aqueous solution is left in the air for a long time, the iron compound precipitates and the composition uniformity of the solution is lost. By adding an acid such as hydrochloric acid to the aqueous solution and keeping the solution acidic, it is possible to prevent the formation of a precipitate in the aqueous solution, thereby maintaining the composition uniformity of the mixed chloride aqueous solution. The acidity of this aqueous solution is pH ≤
6 is preferable, and pH ≦ 2 is more preferable.

【0025】混合塩化物水溶液には、必要に応じて、H
3BO3、B23などを0.3重量%以下程度や他の化合
物、例えばCa、Si、Pb、Al、Ga、Cr、S
n、In、Co、Ni、Ti、Mn、Cu、Ge、N
b、Zr、Li、Mo、Bi、希土類元素(Yを含む)
などを含む化合物を2重量%以下程度添加してもよい。
また、微量であれば不可避成分などの不純物を含有して
いてもよい。
In the mixed chloride aqueous solution, if necessary,
3 BO 3 , B 2 O 3, etc. in an amount of about 0.3% by weight or less and other compounds such as Ca, Si, Pb, Al, Ga, Cr, S
n, In, Co, Ni, Ti, Mn, Cu, Ge, N
b, Zr, Li, Mo, Bi, rare earth element (including Y)
And the like may be added in an amount of about 2% by weight or less.
If the amount is small, it may contain impurities such as unavoidable components.

【0026】混合塩化物水溶液の主原料である塩化鉄水
溶液として、製鉄所の圧延工程において鋼板などの塩酸
酸洗工程で生じる廃液を用いることができる。ストロン
チウム、ランタン、コバルト、マンガンおよびニッケル
などの塩化物水溶液は、炭酸ストロンチウム、塩化スト
ロンチウム、酸化ランタン、塩化ランタン、酸化コバル
ト、塩化コバルト、金属マンガン、酸化マンガン、塩化
マンガン、金属ニッケル、酸化ニッケル、塩化ニッケル
などのストロンチウム原料、ランタン原料、コバルト原
料、マンガン原料およびニッケル原料を塩酸または塩化
鉄溶液に直接溶解することにより、効率的に得られる。
As the aqueous solution of iron chloride, which is the main raw material of the aqueous solution of the mixed chloride, a waste liquid generated in a pickling step of hydrochloric acid of a steel plate or the like in a rolling step of an ironworks can be used. Aqueous chloride solutions such as strontium, lanthanum, cobalt, manganese and nickel include strontium carbonate, strontium chloride, lanthanum oxide, lanthanum chloride, cobalt oxide, cobalt chloride, metal manganese, manganese oxide, manganese chloride, metal nickel, nickel oxide, chloride It can be obtained efficiently by directly dissolving a strontium raw material such as nickel, a lanthanum raw material, a cobalt raw material, a manganese raw material and a nickel raw material in a hydrochloric acid or iron chloride solution.

【0027】混合塩化物水溶液は、温度が800℃以上
1400℃以下の焙焼炉内に噴霧されることが好まし
い。焙焼炉内の温度が800℃より低い場合、噴霧した
水溶液の乾燥、熱分解、酸化の反応が十分でなく、作製
した原料粉末中に鉄およびストロンチウムの塩化物など
の鉄およびストロンチウム化合物が多量に未反応で残留
してしまう。1300℃より高温の場合、作製した粉末
の粒子が凝集し、この原料粉末から作製した焼結磁石な
どの磁気的配向度が低下してしまう。また、焙焼炉内の
温度が800以上1000℃未満の場合、作製した原料
粉末には、マグネトプランバイト型フェライト以外に酸
化鉄やストロンチウム、ランタン、コバルト、マンガ
ン、ニッケルの塩化物などのストロンチウム、ランタ
ン、コバルト、マンガン、ニッケルの化合物が含まれる
ことがある。よって、混合塩化物水溶液は、温度が10
00℃以上1300℃以下の焙焼炉内に噴霧されること
がより好ましい。
The mixed chloride aqueous solution is preferably sprayed into a roasting furnace having a temperature of 800 ° C. or more and 1400 ° C. or less. When the temperature in the roasting furnace is lower than 800 ° C., the reaction of drying, thermal decomposition and oxidation of the sprayed aqueous solution is not sufficient, and a large amount of iron and strontium compounds such as iron and strontium chloride are contained in the prepared raw material powder. And remains unreacted. When the temperature is higher than 1300 ° C., the particles of the produced powder aggregate, and the degree of magnetic orientation of a sintered magnet or the like produced from the raw material powder is reduced. Further, when the temperature in the roasting furnace is 800 or more and less than 1000 ° C., the prepared raw material powder includes strontium such as iron oxide and strontium, lanthanum, cobalt, manganese, and nickel chloride in addition to magnetoplumbite-type ferrite. May contain lanthanum, cobalt, manganese, nickel compounds. Therefore, the mixed chloride aqueous solution has a temperature of 10
More preferably, it is sprayed into a roasting furnace at a temperature of from 00 ° C to 1300 ° C.

【0028】本発明によれば、焙焼炉内の混合塩化物水
溶液をマグネトプランバイト型フェライト原料粉末に変
化させる領域に可燃性ガスや酸素ガスを吹き込むか、可
燃性溶剤を噴霧することにより、この反応領域の温度を
周囲の温度よりもより高温にすることができる。このた
め、炉内温度が1000℃以下と比較的低い場合でも、
反応領域ではマグネトプランバイト型フェライトへの変
化に十分な温度を得ることができる。これにより焙焼炉
のランニングコストを低減することができる。また、可
燃性ガスおよび/または酸素ガスを吹き込むか、可燃性
溶剤を噴霧することにより、作製した原料粉末の粒子形
状などを改善することができ、この原料粉末およびこの
粉末から作製したフェライト磁石の磁気特性が向上す
る。
According to the present invention, a flammable gas or oxygen gas is blown into a region where the mixed chloride aqueous solution in the roasting furnace is changed into a raw material powder of magnetoplumbite type ferrite, or a flammable solvent is sprayed. The temperature of the reaction zone can be higher than the ambient temperature. For this reason, even when the furnace temperature is relatively low at 1000 ° C. or less,
In the reaction zone, a temperature sufficient for changing to magnetoplumbite ferrite can be obtained. Thereby, the running cost of the roasting furnace can be reduced. Further, by blowing a flammable gas and / or an oxygen gas or spraying a flammable solvent, the particle shape and the like of the prepared raw material powder can be improved. Magnetic properties are improved.

【0029】本発明に好適に用いられ得る可燃性ガス
は、例えば、LPG、LNG、石炭ガス、都市ガス、水
性ガス、発生炉ガス、水素、一酸化炭素、メタン、エタ
ン、プロパン、ブタン、エチレン、プロピレン、ブチレ
ン、アセチレンなどである。また、本発明に好適に用い
られ得る可燃性溶剤は、例えば、メチルアルコール、エ
チルアルコール、エーテル、アセトン、ベンゼン、ガソ
リン、軽油などである。
The flammable gas which can be suitably used in the present invention is, for example, LPG, LNG, coal gas, city gas, water gas, generator gas, hydrogen, carbon monoxide, methane, ethane, propane, butane, ethylene. , Propylene, butylene, acetylene and the like. Further, flammable solvents that can be suitably used in the present invention include, for example, methyl alcohol, ethyl alcohol, ether, acetone, benzene, gasoline, light oil and the like.

【0030】なお、焙焼炉内の温度が800以上100
0℃未満の場合でも、作製した原料粉末に対して追加的
な熱処理を施せば、未反応の粉末同士が容易に反応し、
フェライト化が促進される。その結果、十分な磁気特性
を示すハードフェライト磁粉を得ることができる。この
追加的な熱処理の温度は800℃以上1200℃以下で
あることが好ましい。
The temperature in the roasting furnace is 800 or more and 100 or more.
Even when the temperature is lower than 0 ° C., if an additional heat treatment is performed on the prepared raw material powder, unreacted powders easily react with each other,
Ferrite formation is promoted. As a result, hard ferrite magnetic powder exhibiting sufficient magnetic properties can be obtained. It is preferable that the temperature of the additional heat treatment be 800 ° C. or more and 1200 ° C. or less.

【0031】上記の追加的な熱処理は、本発明による方
法で作製した原料粉末粒子中に残存している塩化物を十
分に除去させるという効果も有している。従って、作製
した原料粉末が十分にフェライト化されているような場
合であっても、追加的な熱処理を行う意義はある。更
に、追加的な熱処理によって作製した原料粉末を粒成長
させ、望ましい平均粒度にコントロールしてもよい。
The additional heat treatment also has the effect of sufficiently removing chloride remaining in the raw material powder particles produced by the method according to the present invention. Therefore, even if the produced raw material powder is sufficiently ferritized, it is significant to perform additional heat treatment. Further, the raw material powder produced by the additional heat treatment may be grown to a desired average particle size.

【0032】本発明によるマグネトプランバイト型フェ
ライト原料粉末の製造に用いる焙焼炉としては、製鉄所
の圧延工程において鋼板などの塩酸酸洗工程に用いる塩
酸の回収設備を用いれば、効率的にマグネトプランバイ
ト型フェライト原料粉末を製造することができる。
The roasting furnace used in the production of the magnetoplumbite type ferrite raw material powder according to the present invention can be efficiently used as a roasting furnace for a hydrochloric acid pickling process used in a steel plate rolling process in a steel mill rolling process. A plumbite type ferrite raw material powder can be manufactured.

【0033】図1は、混合溶液を噴霧して粉末を生成す
るために使用する噴霧焙焼炉10の概略構成例を示す断
面図である。上述の混合溶液(Solution)は、ノズル1
4を介して炉10の内部13に吹き込まれる。炉内部1
3の雰囲気ガスは、開口部12を介して導入されたバー
ナーガス(図では、太い矢印19で示されている)によ
って加熱される。噴霧された混合溶液の液滴は、加熱雰
囲気(熱風)に接し、乾燥・熱分解することによってフ
ェライト化する。フェライト化が生じる領域17を図1
においては破線で囲んで模式的に表現している。
FIG. 1 is a cross-sectional view showing a schematic configuration example of a spray roasting furnace 10 used for producing a powder by spraying a mixed solution. The above mixed solution (Solution)
4 and blown into the interior 13 of the furnace 10. Furnace interior 1
The atmosphere gas of No. 3 is heated by a burner gas (indicated by a thick arrow 19 in the figure) introduced through the opening 12. The sprayed droplets of the mixed solution come into contact with a heated atmosphere (hot air), and are dried and thermally decomposed to form ferrite. Region 17 where ferrite formation occurs is shown in FIG.
Is schematically represented by a broken line.

【0034】本発明では、この領域17に対して、可燃
性ガスおよび/または酸素ガスを吹き込むか、可燃性溶
剤を噴霧する。このような可燃性ガスおよび/または酸
素ガスや可燃性溶剤は、例えば開口部18を介して行わ
れる。図では、開口部18を介して導入されたガスや溶
剤を太い矢印20で示している。
In the present invention, a flammable gas and / or an oxygen gas is blown into this region 17 or a flammable solvent is sprayed. Such a flammable gas and / or an oxygen gas or a flammable solvent is performed, for example, through the opening 18. In the figure, the gas or the solvent introduced through the opening 18 is indicated by a thick arrow 20.

【0035】このようにしてフェライト化反応が起こる
領域17の温度を効果的に上昇させることができ、それ
によって比較的低い焙焼炉内の温度で効率的にマグネト
プランバイト型フェライトの原料粉末を製造し得る。
In this manner, the temperature of the region 17 where the ferrite-forming reaction takes place can be effectively increased, whereby the raw material powder of the magnetoplumbite ferrite can be efficiently produced at a relatively low temperature in the roasting furnace. Can be manufactured.

【0036】生成したフェライト結晶の粉末16は、炉
内部13の底部15から外部へ取り出される。フェライ
ト化反応によって炉内部13内で生成された水蒸気、塩
酸、フェライト粉末超微粒子などは、排気口11を介し
て炉外へ排出される。この例では、バーナーガスを雰囲
気ガスに吹き付け、それによって炉内部13に渦を形成
する構成が採用されている。
The generated ferrite crystal powder 16 is taken out from the bottom 15 of the furnace interior 13. Water vapor, hydrochloric acid, ultrafine particles of ferrite powder, and the like generated in the furnace interior 13 by the ferrite-forming reaction are discharged out of the furnace through the exhaust port 11. In this example, a configuration is employed in which a burner gas is blown onto the atmosphere gas, thereby forming a vortex in the furnace interior 13.

【0037】なお、上記の炉10では雰囲気ガスを加熱
するためにバーナーガスを使用するが、その代わりに電
熱ヒータを用いても良い。また、雰囲気ガスとしては大
気を用いれば良い。
Although the above-described furnace 10 uses a burner gas to heat the atmospheric gas, an electric heater may be used instead. In addition, air may be used as the atmosphere gas.

【0038】また、フェライト化反応が生じる領域17
に対する可燃性ガスおよび/または酸素ガスの吹き込み
や可燃性溶剤の噴霧は、図1に示される構成によって限
定されない。開口部18の位置を開口部12の位置と同
じレベルに設けても良いし、開口部12の位置よりも低
いレベルに設けても良い。ガス吹き込みの向きや、溶剤
噴霧の向きも、図示されるものに限定されない。更に、
開口部18にはノズル等を挿入してもよい。
The region 17 where the ferrite-forming reaction takes place
The blowing of the flammable gas and / or the oxygen gas into and the spraying of the flammable solvent are not limited by the configuration shown in FIG. The position of the opening 18 may be provided at the same level as the position of the opening 12, or may be provided at a level lower than the position of the opening 12. The direction of gas blowing and the direction of solvent spray are not limited to those shown in the drawings. Furthermore,
A nozzle or the like may be inserted into the opening 18.

【0039】[0039]

【実施例】以下、本発明の実施例を説明する。Embodiments of the present invention will be described below.

【0040】(実施例1)まず、酸化物換算重量でSr
O・5.8Fe23となるように、FeCl2およびS
rCl2を秤量し、これらを純水中に溶解した。このと
き、FeCl2の濃度が28重量%となるように調整
し、この溶液に塩酸を添加することによってpH=0と
した。この溶液を、マグネトプランバイト型フェライト
原料粉末に変化させる領域に酸素ガスを吹き込んで、前
記領域の温度が1100℃となっている焙焼炉内に噴霧
し、マグネトプランバイト型フェライト原料粉末を作製
した。
Example 1 First, Sr in terms of oxide equivalent weight.
O · 5.8Fe 2 O 3 so that FeCl 2 and S
rCl 2 was weighed and dissolved in pure water. At this time, the concentration of FeCl 2 was adjusted to be 28% by weight, and pH = 0 by adding hydrochloric acid to the solution. This solution is blown with oxygen gas into a region to be converted into a magnetoplumbite ferrite raw material powder, and sprayed into a roasting furnace having a temperature of 1100 ° C. in the region to produce a magnetoplumbite ferrite raw material powder. did.

【0041】酸素ガスを吹き込まなかった段階では、前
記領域の温度は1000℃であったため、この場合酸素
を吹き込んだことによって前記領域の温度は100℃上
昇した。
At the stage where the oxygen gas was not blown, the temperature of the region was 1000 ° C., and in this case, the temperature of the region was raised by 100 ° C. by blowing oxygen.

【0042】作製した原料粉末の組成は、Fe:Sr=
91:9(重量比)であり、ほとんど組成ずれはみられ
なかった。また、X線回折装置で調査した結果、ほぼ単
相のSrFe1219であった。加えて、試料振動型磁力
計(VSM)で磁気特性を調査したところ、表1に示す
結果となり、優れた特性が得られた。
The composition of the prepared raw material powder was Fe: Sr =
The ratio was 91: 9 (weight ratio), and almost no composition deviation was observed. In addition, as a result of examination with an X-ray diffractometer, it was almost single-phase SrFe 12 O 19 . In addition, when the magnetic characteristics were examined with a sample vibration magnetometer (VSM), the results were as shown in Table 1, and excellent characteristics were obtained.

【0043】次に、作製した原料粉末にCaCO3
0.9重量%、SiO2を0.45重量%添加して、純
水溶媒で45%スラリーとし、湿式ボールミルで1時間
混合した後、スラリー中の溶媒を除去しながら磁場中で
プレス成形した。成形体を1210℃で30分間焼結し
た。得られた焼結磁石の磁気特性は表2に示すように、
優れた特性となることがわかる。
Next, 0.9% by weight of CaCO 3 and 0.45% by weight of SiO 2 were added to the prepared raw material powder to form a 45% slurry with a pure water solvent and mixed for 1 hour with a wet ball mill. Press molding was performed in a magnetic field while removing the solvent in the slurry. The compact was sintered at 1210 ° C. for 30 minutes. The magnetic properties of the obtained sintered magnet are as shown in Table 2,
It can be seen that the characteristics are excellent.

【0044】同様に上記原料粉末から、モーター用のC
型形状焼結磁石を作製し、これを従来の材質の焼結磁石
に代えてモーター中に組み込み、定格条件で動作させた
ところ、良好な特性を得た。また、そのトルクを測定し
たところ、従来に比べて上昇していた。
Similarly, from the above raw material powder, C
Sintered magnets were fabricated and replaced with conventional sintered magnets in a motor, and operated under rated conditions. As a result, good characteristics were obtained. Also, when the torque was measured, it was higher than before.

【0045】また、上記原料粉末からボンド磁石を作製
したところ、本実施例の焼結磁石と同様の結果が得られ
た。
When a bonded magnet was prepared from the above raw material powder, the same result as that of the sintered magnet of this example was obtained.

【0046】また、上記原料粉末を、磁気記録媒体に使
用したところ、高出力で高いS/Nが得られた。
When the above raw material powder was used for a magnetic recording medium, a high output and a high S / N were obtained.

【0047】また、上記原料粉末をターゲットとして用
い、スパッタ法により薄膜磁性層を有する磁気記録媒体
を作製したところ、高出力で高いS/Nが得られた。
When a magnetic recording medium having a thin-film magnetic layer was produced by sputtering using the above raw material powder as a target, a high output and a high S / N were obtained.

【0048】(実施例2)マグネトプランバイト型フェ
ライト原料粉末に変化させる領域に可燃性溶剤としてエ
タノールを噴霧した以外は実施例1と同様にマグネトプ
ランバイト型フェライト原料粉末および焼結磁石を作製
した。エタノールの噴霧により前記領域の温度は80℃
上昇し、1080℃となった。
(Example 2) A magnetoplumbite-type ferrite raw material powder and a sintered magnet were produced in the same manner as in Example 1, except that ethanol was sprayed as a flammable solvent in a region to be changed to the magnetoplumbite-type ferrite raw material powder. . The temperature of the area is 80 ° C by spraying ethanol.
The temperature rose to 1080 ° C.

【0049】実施例2について、原料粉末および焼結磁
石の磁気特性は表1および表2の通りであり、優れた特
性であった。
In Example 2, the magnetic properties of the raw material powder and the sintered magnet were as shown in Tables 1 and 2, and were excellent.

【0050】(比較例1)Fe23とSrCO3を原料
とし、酸化物換算重量でSrO・5.8Fe23となる
ように混合し、大気中において1300℃で3時間仮焼
し、ローラーミルで粉砕しフェライト仮焼体磁石粉末を
作製した。この粉末を1100℃で1h熱処理した後に
VSMを用いて磁気特性を測定したところ、表1の様な
結果が得られた。また、作製したフェライト仮焼体磁石
粉末から実施例1と同様にして焼結磁石を作製したとこ
ろ、磁気特性は表2の通りであった。
[0050] (Comparative Example 1) Fe 2 O 3 and SrCO 3 were used as starting materials and mixed so that SrO · 5.8Fe 2 O 3 in terms of oxides by weight, 3 hours calcined Mr 1300 ° C. in air Then, the mixture was pulverized with a roller mill to prepare a calcined ferrite magnet powder. After heat treatment of this powder at 1100 ° C. for 1 hour, the magnetic properties were measured using VSM, and the results shown in Table 1 were obtained. Further, when a sintered magnet was produced from the produced ferrite calcined magnet powder in the same manner as in Example 1, the magnetic properties were as shown in Table 2.

【0051】(比較例2)マグネトプランバイト型フェ
ライト原料粉末に変化させる領域に酸素ガスなどを吹き
込まず、前記領域の温度が1000℃となっている焙焼
炉内に混合塩化物水溶液噴霧した以外は実施例1と同様
にマグネトプランバイト型フェライト原料粉末および焼
結磁石を作製した。これらの磁気特性は表1および表2
の通りであった。
(Comparative Example 2) Except that the mixed chloride aqueous solution was sprayed into a roasting furnace having a temperature of 1000 ° C. without blowing oxygen gas or the like into the region to be changed to the magnetoplumbite type ferrite raw material powder. Produced a raw material powder of magnetoplumbite ferrite and a sintered magnet in the same manner as in Example 1. These magnetic properties are shown in Tables 1 and 2.
It was as follows.

【0052】[0052]

【表1】 [Table 1]

【0053】[0053]

【表2】 [Table 2]

【0054】(実施例3〜9、参考例1〜2)酸化物換
算重量でSrO・5.8Fe23となるように、FeC
2およびSrCl2を秤量し、これらを純水中に溶解し
た。このとき、FeCl2の濃度が28重量%となるよ
うに調整した。この溶液にLaCl3を0.93重量%
添加した場合(実施例3)、CoCl2を0.49重量
%添加した場合(実施例4)、MnCl2を0.48重
量%添加した場合(実施例5)、NiCl2を0.49
重量%添加した場合(実施例6)、ZnCl2を0.5
2重量%添加した場合(参考例1)、CuCl2を0.
49重量%添加した場合(参考例2)、LaCl3
0.93重量%とCoCl2を0.49重量%添加した
場合(実施例7)、LaCl3を0.93重量%とMn
Cl2を0.48重量%添加した場合(実施例8)、L
aCl3を0.93重量%とNiCl2を0.49重量%
添加した場合(実施例9)の各々において、実施例1と
同様にマグネトプランバイト型フェライト原料粉末およ
び焼結磁石を作製した。これらの焼結磁石の磁気特性は
表3の通りであり、優れた特性であった。
(Examples 3 to 9 and Reference Examples 1 and 2) FeC was added so that SrO · 5.8Fe 2 O 3 in terms of oxide was obtained.
l 2 and SrCl 2 were weighed and dissolved in pure water. At this time, the concentration of FeCl 2 was adjusted to be 28% by weight. 0.93% by weight of LaCl 3 was added to this solution.
When added (Example 3), when 0.49% by weight of CoCl 2 was added (Example 4), when 0.48% by weight of MnCl 2 was added (Example 5), 0.49% by weight of NiCl 2 was added.
% By weight (Example 6), 0.5% ZnCl 2 was added.
When 2% by weight was added (Reference Example 1), CuCl 2 was added in an amount of 0.
When 49% by weight was added (Reference Example 2), when 0.93% by weight of LaCl 3 and 0.49% by weight of CoCl 2 were added (Example 7), 0.93% by weight of LaCl 3 and Mn were added.
When 0.48% by weight of Cl 2 was added (Example 8), L
0.93% by weight of aCl 3 and 0.49% by weight of NiCl 2
In each case of the addition (Example 9), a magnetoplumbite-type ferrite raw material powder and a sintered magnet were produced in the same manner as in Example 1. The magnetic properties of these sintered magnets are as shown in Table 3 and were excellent.

【0055】[0055]

【表3】 [Table 3]

【0056】[0056]

【発明の効果】本発明によれば、微細かつ粒度分布がシ
ャープで組成の均一なマグネトプランバイト型フェライ
ト原料粉末を製造することが可能となり、このフェライ
ト原料粉末を用いて製造したフェライト磁石の品質特性
を向上させることができる。
According to the present invention, it is possible to produce a magnetoplumbite-type ferrite raw material powder having a fine and sharp particle size distribution and a uniform composition, and the quality of the ferrite magnet produced using this ferrite raw material powder is improved. The characteristics can be improved.

【0057】また、従来の工程における仮焼、粉砕など
の諸工程を省略することができ、焙焼炉内の温度も比較
的低温で操業できるため、生産性が向上し、製造コスト
が低減される。
In addition, since various steps such as calcination and pulverization in the conventional steps can be omitted, and the operation in the roasting furnace can be performed at a relatively low temperature, the productivity is improved and the production cost is reduced. You.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるフェライト磁粉の製造方法に好適
に用いられる噴霧焙焼炉の一構成例を示す断面図であ
る。
FIG. 1 is a cross-sectional view showing one configuration example of a spray roasting furnace suitably used in a method for producing ferrite magnetic powder according to the present invention.

【符号の説明】[Explanation of symbols]

10 噴霧焙焼炉 12 バーナーガス導入用開口部 13 炉内部 14 ノズル 16 フェライト原料粉末 17 フェライト化が生じる領域 18 可燃性ガス、酸素ガス、可燃性溶剤の導入用開
口部 19 バーナーガスを示す太い矢印 20 可燃性ガス、酸素ガス、可燃性溶剤を示す太い
矢印
DESCRIPTION OF SYMBOLS 10 Spray roasting furnace 12 Burner gas introduction opening 13 Inside of furnace 14 Nozzle 16 Ferrite raw material powder 17 Region where ferrite is formed 18 Opening for introduction of flammable gas, oxygen gas, flammable solvent 19 Thick arrow indicating burner gas 20 Thick arrows indicating flammable gas, oxygen gas and flammable solvent

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4G002 AA08 AB02 AC02 AE02 4G018 AA01 AA09 AA13 AA21 AA22 AA23 AB04 AC13 AC16 5E040 AB04 AB09 BD01 CA01 HB00 HB01 HB09 HB15 HB17 NN18 5E062 CC01 CD01 CD02 CE04 CF01 CG01 CG02  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4G002 AA08 AB02 AC02 AE02 4G018 AA01 AA09 AA13 AA21 AA22 AA23 AB04 AC13 AC16 5E040 AB04 AB09 BD01 CA01 HB00 HB01 HB09 HB15 HB17 NN18 5E062 CC01 CD01 CD01 CE04 CF01 CG01 CG02

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 鉄の塩化物およびストロンチウムの塩化
物が溶解した混合塩化物水溶液を加熱雰囲気の焙焼炉内
に噴霧することによって前記混合塩化物水溶液をマグネ
トプランバイト型フェライト原料粉末に変化させる工程
と、 前記混合塩化物水溶液をマグネトプランバイト型フェラ
イト原料粉末に変化させる領域に対して、可燃性ガスお
よび/または酸素ガスを吹き込む工程とを包含するマグ
ネトプランバイト型フェライト原料粉末の製造方法。
1. A mixed chloride aqueous solution in which iron chloride and strontium chloride are dissolved is sprayed into a roasting furnace in a heating atmosphere to convert the mixed chloride aqueous solution into a magnetoplumbite type ferrite raw material powder. A method for producing a magnetoplumbite-type ferrite raw material powder, comprising: a step of injecting a combustible gas and / or an oxygen gas into a region where the mixed chloride aqueous solution is changed into the magnetoplumbite-type ferrite raw material powder.
【請求項2】 鉄の塩化物およびストロンチウムの塩化
物が溶解した混合塩化物水溶液を加熱雰囲気の焙焼炉内
に噴霧することによって前記混合塩化物水溶液をマグネ
トプランバイト型フェライト原料粉末に変化させる工程
と、 前記混合塩化物水溶液をマグネトプランバイト型フェラ
イト原料粉末に変化させる領域に対して、可燃性溶剤を
噴霧する工程とを包含するマグネトプランバイト型フェ
ライト原料粉末の製造方法。
2. A mixed chloride aqueous solution in which iron chloride and strontium chloride are dissolved is sprayed into a roasting furnace in a heating atmosphere to convert the mixed chloride aqueous solution into a magnetoplumbite type ferrite raw material powder. A method for producing a magnetoplumbite-type ferrite raw material powder, comprising: a step of spraying a flammable solvent onto a region where the mixed chloride aqueous solution is converted into the magnetoplumbite-type ferrite raw material powder.
【請求項3】 前記混合塩化物水溶液には、鉄の塩化物
およびストロンチウムの塩化物、ならびに、ランタン、
コバルト、マンガンおよびニッケルの塩化物からなる群
から選択される少なくとも1種の塩化物が溶解してお
り、しかも前記混合塩化物水溶液が酸性であることを特
徴とする請求項1または2に記載のマグネトプランバイ
ト型フェライト原料粉末の製造方法。
3. The mixed chloride aqueous solution includes iron chloride and strontium chloride, and lanthanum;
3. The mixed chloride aqueous solution according to claim 1, wherein at least one chloride selected from the group consisting of cobalt, manganese, and nickel chlorides is dissolved, and the mixed chloride aqueous solution is acidic. Manufacturing method of magnetoplumbite type ferrite raw material powder.
【請求項4】 前記混合塩化物水溶液の噴霧は、温度が
800℃以上1300℃以下の炉内において実行される
ことを特徴とする請求項1から3の何れかに記載のマグ
ネトプランバイト型フェライト原料粉末の製造方法。
4. The magnetoplumbite ferrite according to claim 1, wherein the spraying of the mixed chloride aqueous solution is performed in a furnace having a temperature of 800 ° C. or more and 1300 ° C. or less. Production method of raw material powder.
【請求項5】 前記混合塩化物水溶液の噴霧は、温度が
1000℃以上1200℃以下の炉内において実行され
ることを特徴とする請求項4に記載のマグネトプランバ
イト型フェライト原料粉末の製造方法。
5. The method according to claim 4, wherein the spraying of the mixed chloride aqueous solution is performed in a furnace having a temperature of 1000 ° C. or more and 1200 ° C. or less. .
【請求項6】 前記混合塩化物水溶液の原料として、製
鉄所における酸洗によって生じる廃液を用いることを特
徴とする請求項1から5の何れかに記載のマグネトプラ
ンバイト型フェライト原料粉末の製造方法。
6. The method for producing a magnetoplumbite-type ferrite raw material powder according to claim 1, wherein a waste liquid generated by pickling at an ironworks is used as a raw material of the mixed chloride aqueous solution. .
【請求項7】 前記混合塩化物水溶液の噴霧を前記製鉄
所における塩酸回収装置を用いて行うことを特徴とする
請求項6に記載のマグネトプランバイト型フェライト原
料粉末の製造方法。
7. The method for producing a magnetoplumbite-type ferrite raw material powder according to claim 6, wherein the spraying of the mixed chloride aqueous solution is performed using a hydrochloric acid recovery device in the steel mill.
【請求項8】 前記フェライト原料粉末に対して熱処理
を行う工程を更に包含する請求項1から7の何れかに記
載のマグネトプランバイト型フェライト原料粉末の製造
方法。
8. The method for producing a magnetoplumbite-type ferrite raw material powder according to claim 1, further comprising a step of performing a heat treatment on the ferrite raw material powder.
【請求項9】 前記熱処理は800℃以上1200℃以
下の温度で実行されることを特徴とする請求項8に記載
のマグネトプランバイト型フェライト原料粉末の製造方
法。
9. The method of claim 8, wherein the heat treatment is performed at a temperature of 800 ° C. or more and 1200 ° C. or less.
【請求項10】 請求項1から9の何れかに記載のマグ
ネトプランバイト型フェライト原料粉末の製造方法によ
って製造されたフェライト原料粉末を用意する工程と、
前記フェライト原料粉末を用いて永久磁石を作製する工
程とを包含するフェライト磁石の製造方法。
10. A step of preparing a ferrite raw material powder produced by the method for producing a magnetoplumbite ferrite raw material powder according to any one of claims 1 to 9,
Producing a permanent magnet using the ferrite raw material powder.
JP2000151019A 1999-10-08 2000-05-23 Ferrite material powder and method for manufacturing ferrite magnet Pending JP2001335361A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2000151019A JP2001335361A (en) 2000-05-23 2000-05-23 Ferrite material powder and method for manufacturing ferrite magnet
EP00121790A EP1090884B1 (en) 1999-10-08 2000-10-05 Method of making ferrite material powder by spray pyrolysis process and method of producing ferrite magnet
DE60045541T DE60045541D1 (en) 1999-10-08 2000-10-05 Process for the production of ferritic powders by means of spray pyrolysis and process for the production of a ferrite-containing magnet
US09/680,324 US6630084B1 (en) 1999-10-08 2000-10-06 Method of making ferrite material powder by spray pyrolysis process and method of producing ferrite magnet
CNB001295829A CN1167088C (en) 1999-10-08 2000-10-08 Ferrite raw material powder made by spraying pyrolysis method and making method of ferrimagnetics
KR1020000059178A KR100733158B1 (en) 1999-10-08 2000-10-09 The method of manufacturing Ferrite raw material powder and Ferrite magnet by spray thermo decomposing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151019A JP2001335361A (en) 2000-05-23 2000-05-23 Ferrite material powder and method for manufacturing ferrite magnet

Publications (1)

Publication Number Publication Date
JP2001335361A true JP2001335361A (en) 2001-12-04

Family

ID=18656641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151019A Pending JP2001335361A (en) 1999-10-08 2000-05-23 Ferrite material powder and method for manufacturing ferrite magnet

Country Status (1)

Country Link
JP (1) JP2001335361A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124241A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Method and apparatus for manufacturing iron oxide
CN101894648A (en) * 2010-07-02 2010-11-24 北矿磁材科技股份有限公司 Bonded ferrite magnetic powder, preparation method thereof and bonded permanent magnet
JP2022532644A (en) * 2019-07-15 2022-07-15 漢陽大学校エリカ産学協力団 Hexagonal plate-shaped ferrite structure and its manufacturing method
CN116408194A (en) * 2022-12-29 2023-07-11 安徽万磁电子股份有限公司 Process for preparing high-performance permanent magnetic ferrite by secondarily adding rare earth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124241A (en) * 2004-10-29 2006-05-18 Jfe Steel Kk Method and apparatus for manufacturing iron oxide
JP4599991B2 (en) * 2004-10-29 2010-12-15 Jfeスチール株式会社 Iron oxide production method and apparatus
CN101894648A (en) * 2010-07-02 2010-11-24 北矿磁材科技股份有限公司 Bonded ferrite magnetic powder, preparation method thereof and bonded permanent magnet
JP2022532644A (en) * 2019-07-15 2022-07-15 漢陽大学校エリカ産学協力団 Hexagonal plate-shaped ferrite structure and its manufacturing method
JP7323221B2 (en) 2019-07-15 2023-08-08 漢陽大学校エリカ産学協力団 Hexagonal plate-shaped ferrite structure and manufacturing method thereof
CN116408194A (en) * 2022-12-29 2023-07-11 安徽万磁电子股份有限公司 Process for preparing high-performance permanent magnetic ferrite by secondarily adding rare earth
CN116408194B (en) * 2022-12-29 2024-04-16 安徽万磁电子股份有限公司 Process for preparing high-performance permanent magnetic ferrite by secondarily adding rare earth

Similar Documents

Publication Publication Date Title
KR100733158B1 (en) The method of manufacturing Ferrite raw material powder and Ferrite magnet by spray thermo decomposing method
Abraham et al. Enhanced magneto-optical and photo-catalytic properties of transition metal cobalt (Co2+ ions) doped spinel MgFe2O4 ferrite nanocomposites
Yang et al. Influence of Nd-NbZn co-substitution on structural, spectral and magnetic properties of M-type calcium-strontium hexaferrites Ca0. 4Sr0. 6-xNdxFe12. 0-x (Nb0. 5Zn0. 5) xO19
Chawla et al. Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe (12− 2x) O19
Hwang et al. Development of a novel combustion synthesis method for synthesizing of ceramic oxide powders
Singhal et al. Room temperature ferromagnetism in Mn-doped dilute ZnO semiconductor: An electronic structure study using X-ray photoemission
Sam et al. Preparation of MnFe2O4 nanoceramic particles by soft chemical routes
Hong et al. Synthesis of nanocrystalline Ba (MnTi) xFe12− 2xO19 powders by the sol–gel combustion method in citrate acid–metal nitrates system (x= 0, 0.5, 1.0, 1.5, 2.0)
Wu et al. Synthesis, characterization and microwave dielectric properties of Zn2GeO4 ceramics
JP2008100871A (en) METHOD OF PRODUCING epsi-IRON OXIDE
Nguyen et al. Crystal structure and magnetic properties of LaFe1-xNixO3 nanomaterials prepared via a simple co-precipitation method
Farzin et al. Synthesis behavior and magnetic properties of Mg-Ni co-doped Y-type hexaferrite prepared by sol-gel auto-combustion method
Choura-Maatar et al. Role of lanthanum vacancy on the structural, magnetic and magnetocaloric properties in the lacunar perovskite manganites La 0.8− x□ x Na 0.2 MnO 3 (0≤ x≤ 0.15)
El-Hilo et al. Magnetic interactions in Co2+ doped ZnO synthesised by co-precipitation method: efficient effect of hydrogenation on the long-range ferromagnetic order
Lisjak et al. The mechanism of the low-temperature formation of barium hexaferrite
Tholkappiyan et al. Factors controlling phase formation of novel Sr-based Y-type hexagonal ferrite nanoparticles
Rai et al. Tunability of dielectric, optical and magnetic property by simultaneous co-substitution in LaFeO3
WO2002052585A1 (en) Permanent magnet and method for preparation thereof
Wang et al. Preparation and characterizations of ultrafine hexaganoal ferrite Co2Z powders
Jing et al. Study on structure and magnetic properties of rare earth doped cobalt ferrite: The influence mechanism of different substitution positions
TW202017858A (en) Method of manufacturing lithium cobalt pyrophosphate and method of manufacturing lithium cobalt pyrophosphate carbon composite
US4473542A (en) Production of microcrystalline ferrimagnetic spinels
Wu et al. Enhanced near-and mid-infrared radiation property of MgCr2O4 by doping with Cu ions
JP2001335361A (en) Ferrite material powder and method for manufacturing ferrite magnet
Lamastra et al. High density Gd-substituted yttrium iron garnets by coprecipitation