JP2001335326A - Method for manufacturing basic nickel carbonates - Google Patents
Method for manufacturing basic nickel carbonatesInfo
- Publication number
- JP2001335326A JP2001335326A JP2000157974A JP2000157974A JP2001335326A JP 2001335326 A JP2001335326 A JP 2001335326A JP 2000157974 A JP2000157974 A JP 2000157974A JP 2000157974 A JP2000157974 A JP 2000157974A JP 2001335326 A JP2001335326 A JP 2001335326A
- Authority
- JP
- Japan
- Prior art keywords
- carbonate
- nickel
- basic nickel
- solution
- bulk density
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、塩基性炭酸ニッケ
ルの製造方法に関し、特に嵩密度の高い塩基性炭酸ニッ
ケルの製造方法に関する。The present invention relates to a method for producing basic nickel carbonate, and more particularly to a method for producing basic nickel carbonate having a high bulk density.
【0002】[0002]
【従来の技術】従来、ニッケルメッキ浴中のニッケルの
補充用として塩基性炭酸ニッケルが使用されてきた。そ
の塩基性炭酸ニッケルを製造するには、通常、反応槽中
で硫酸ニッケル溶液を炭酸ナトリウム等の炭酸アルカリ
で中和し、塩基性炭酸ニッケルを製造する方法がとられ
ていた。2. Description of the Related Art Basic nickel carbonate has been used for replenishing nickel in a nickel plating bath. In order to produce the basic nickel carbonate, a method has generally been employed in which a nickel sulfate solution is neutralized with an alkali carbonate such as sodium carbonate in a reaction vessel to produce a basic nickel carbonate.
【0003】しかし、この製造方法の場合、非常に保水
量の多い嵩高い塩基性炭酸ニッケルが生成し、洗浄での
不純物、副産物の除去が困難であり、また、乾燥後は発
塵しやすい粉末であるという問題があった。However, in the case of this production method, a bulky basic nickel carbonate having a very large water retention capacity is generated, it is difficult to remove impurities and by-products by washing, and powder which tends to generate dust after drying is obtained. There was a problem that is.
【0004】[0004]
【発明が解決しようとする課題】上記課題を解決するた
め、本発明は、ニッケルメッキを行う際のニッケル浴へ
のニッケル補充用としての用途に適した、嵩密度の高い
塩基性炭酸ニッケルの粉末を経済的に製造する方法を提
供することを課題とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a powder of basic nickel carbonate having a high bulk density, which is suitable for use as a replenisher for nickel in a nickel bath when performing nickel plating. It is an object of the present invention to provide a method for economically producing the same.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するた
め、本発明は、ニッケル塩溶液と、中和剤としての炭酸
アルカリ溶液と、炭酸ガスとを同時にかつ定量的に反応
槽内に供給し、生成する塩基性炭酸ニッケルを連続的に
取り出すことを特徴とするタッピング嵩密度が0.5g
/ミリリットルから1.5g/ミリリットルである塩基
性炭酸ニッケルの製造方法である。In order to solve the above problems, the present invention provides a method for simultaneously and quantitatively supplying a nickel salt solution, an alkali carbonate solution as a neutralizing agent, and carbon dioxide gas into a reaction tank. The tapping bulk density is 0.5 g, characterized by continuously taking out the generated basic nickel carbonate.
This is a method for producing basic nickel carbonate at a concentration of 1.5 g / ml to 1.5 g / ml.
【0006】前記方法において、ニッケル塩溶液は、硫
酸ニッケル、硝酸ニッケル、塩化ニッケルの内の少なく
とも1種の溶液であることが好ましく、中和剤として使
用する炭酸アルカリ溶液は、炭酸ナトリウム、炭酸アン
モニウム、炭酸カリウム、炭酸リチウムから選ばれる少
なくとも1種の水溶液であることが好ましい。In the above method, the nickel salt solution is preferably at least one of nickel sulfate, nickel nitrate and nickel chloride, and the alkali carbonate solution used as a neutralizing agent is sodium carbonate, ammonium carbonate. , Potassium carbonate, and lithium carbonate.
【0007】また、前記中和剤として使用する炭酸アル
カリの供給量は、供給する塩化ニッケルの中和等量の1.
05倍から1.2倍とし、炭酸ガスの吹き込み量は、余剰に
供給した炭酸アルカリの炭酸量のモル比で3倍から8倍
が好ましい。The supply amount of the alkali carbonate used as the neutralizing agent is 1.
The blowing amount of carbon dioxide gas is preferably 3 to 8 times the molar ratio of the carbonic acid amount of the excess alkali carbonate supplied.
【0008】上記塩基性炭酸ニッケルの製造方法におい
ては、反応系内の滞留時間を2時間以上、10時間以下と
することによって、高嵩密度の塩基性炭酸ニッケルが経
済的に製造できる。In the above method for producing basic nickel carbonate, by setting the residence time in the reaction system to 2 hours or more and 10 hours or less, high-density basic nickel carbonate can be economically produced.
【0009】[0009]
【発明の実施の形態】本発明は、上記の課題を解決する
ために連続的に嵩密度の高い塩基性炭酸ニッケルを製造
することとした。これによりニッケルメッキに適した塩
基性炭酸ニッケル粉末を得るものである。以下に本発明
について詳細に説明する。DETAILED DESCRIPTION OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to continuously produce basic nickel carbonate having a high bulk density. Thus, a basic nickel carbonate powder suitable for nickel plating is obtained. Hereinafter, the present invention will be described in detail.
【0010】上記のように、従来使用されている塩基性
炭酸ニッケルは、微粉状で嵩高い上、発塵性が高く、取
り扱い時の問題が多いものであった。これら従来の塩基
性炭酸ニッケルのタッピング嵩密度は、通常0.5g/
ミリリットル以下であり、このタッピング嵩密度が0.
5g/ミリリットル以上、好ましくは0.8g/ミリリ
ットル以上あれば上記の問題を解決でき、製品としての
梱包時にも有利なものとなる。また、本発明の方法で得
られる塩基性炭酸ニッケルのタッピング密度の上限は、
1.5g/ミリリットル程度であった。As described above, conventionally used basic nickel carbonate has a fine powdery and bulky shape, has a high dusting property, and has many problems in handling. The tapping bulk density of these conventional basic nickel carbonates is usually 0.5 g /
Milliliters or less and the tapping bulk density is
If it is 5 g / ml or more, preferably 0.8 g / ml or more, the above problem can be solved, and it is advantageous when packing as a product. Further, the upper limit of the tapping density of the basic nickel carbonate obtained by the method of the present invention,
It was about 1.5 g / milliliter.
【0011】本発明に用いる中和剤としては炭酸アルカ
リである。炭酸アルカリの反応槽への供給は、供給した
ニッケルの中和等量の1.05倍から1.2倍量を連続
的に供給することが望ましい。The neutralizing agent used in the present invention is an alkali carbonate. As for the supply of the alkali carbonate to the reaction tank, it is desirable to continuously supply 1.05 to 1.2 times the neutralization equivalent of the supplied nickel.
【0012】炭酸アルカリの供給を1.05倍以下とす
ると液中の炭酸イオンが減少し、液中に中和できないニ
ッケルが存在することとなり、未反応のニッケルが系外
に排出されることとなり収量が減少するほか、粒成長せ
ず嵩密度の低い塩基性炭酸ニッケルが生成する。また、
1.2倍以上とすると、反応に寄与しない過剰の炭酸ア
ルカリが、損失することとなるだけである。If the supply of alkali carbonate is set to 1.05 times or less, carbonate ions in the liquid will decrease, and nickel which cannot be neutralized will be present in the liquid, and unreacted nickel will be discharged out of the system. In addition to reducing the yield, basic nickel carbonate having a low bulk density without grain growth is produced. Also,
If the ratio is 1.2 times or more, excess alkali carbonate not contributing to the reaction will only be lost.
【0013】本発明では、反応槽中に炭酸ガスを吹き込
むことを特徴とする。炭酸ガスの吹き込み量は、ニッケ
ル塩の中和当量より余剰に添加した炭酸アルカリの炭酸
量のモル比で3倍から8倍とすることが望ましい。The present invention is characterized in that carbon dioxide gas is blown into the reaction tank. The amount of carbon dioxide gas blown is desirably 3 to 8 times the molar ratio of the amount of carbonic acid of the alkali carbonate added in excess of the neutralization equivalent of the nickel salt.
【0014】炭酸ガスの吹き込み量が不足すると、微細
な塩基性炭酸ニッケルが生成し、嵩密度が低くなり、次
工程での洗浄濾過が困難となる。また、炭酸ガス量が多
すぎると炭酸ガスの損失量が増大し、嵩密度の高い塩基
性炭酸ニッケルは生成するものの、液中へのニッケルの
溶出量も多くなり、ニッケルの損失が無視できなくな
る。また、同時に排水処理にも影響が出ることになりコ
ストがかさむので工業的には不利である。If the amount of carbon dioxide gas blown is insufficient, fine basic nickel carbonate is generated, the bulk density becomes low, and washing and filtering in the next step become difficult. Also, if the amount of carbon dioxide is too large, the loss of carbon dioxide increases, and although basic nickel carbonate having a high bulk density is generated, the amount of nickel eluted into the liquid also increases, and the loss of nickel cannot be ignored. . At the same time, wastewater treatment is affected and the cost increases, which is industrially disadvantageous.
【0015】つぎに、本発明では、塩基性炭酸ニッケル
を製造する際の水素イオン濃度の制御等は不要である。
その理由として、吹き込んだ炭酸ガスが液中に溶解する
際、液中に存在している炭酸塩との緩衝作用によって槽
内の水素イオン濃度は一定に保持されるからである。ま
た、同時にニッケルも過剰炭酸イオン液中への溶解度を
持ち、溶解析出を繰り返しながら晶析し塩基性炭酸ニッ
ケルの粒子を成長させることができる。Next, in the present invention, there is no need to control the concentration of hydrogen ions when producing basic nickel carbonate.
The reason is that when the injected carbon dioxide gas dissolves in the liquid, the hydrogen ion concentration in the tank is kept constant by the buffering action with the carbonate present in the liquid. At the same time, nickel also has solubility in the excess carbonate ion solution, and can crystallize while repeating dissolution and precipitation to grow particles of basic nickel carbonate.
【0016】本発明での反応系での塩基性炭酸ニッケル
の反応槽内の滞留時間は、製造する塩基性炭酸ニッケル
の粒径や嵩密度によって適宜選択すれば良いが、2時間
から10時間とすることが望ましい。The residence time of the basic nickel carbonate in the reaction tank in the reaction system of the present invention may be appropriately selected depending on the particle size and bulk density of the basic nickel carbonate to be produced. It is desirable to do.
【0017】反応系内の滞留時間を2時間以下とする
と、塩基性炭酸ニッケルの粒子が成長する段階で排出さ
れ、嵩密度の高い塩基性炭酸ニッケルが得られないだけ
でなく、ニッケルの収量も減少する。また、嵩密度が低
いと生成した塩基性炭酸ニッケルの洗浄、濾過、乾燥時
に、液中に微細に懸濁し損失となったり、梱包や取り扱
い時に空気中に舞って粉塵となり作業環境を悪くすると
いう問題もある。If the residence time in the reaction system is set to 2 hours or less, the particles of basic nickel carbonate are discharged at the stage of growth, and not only basic nickel carbonate having a high bulk density cannot be obtained, but also the yield of nickel is reduced. Decrease. In addition, if the bulk density is low, the generated basic nickel carbonate is finely suspended in the liquid during washing, filtration and drying, resulting in loss, or dusting in the air at the time of packing and handling, which worsens the working environment. There are also problems.
【0018】反対に10時間以上の滞留時間を確保して
も、粒子が成長する段階で崩壊するものが出ることや生
産性の低下等を考えると経済的な方法とは言えない。On the other hand, even if a residence time of 10 hours or more is secured, it cannot be said that this method is economical in view of the fact that some of the particles may collapse at the stage of growth or a decrease in productivity.
【0019】[0019]
【実施例】(実施例1)塩化ニッケル濃度:220g/
リットルの塩化ニッケル水溶液と、炭酸ナトリウム濃
度:200g/リットルの炭酸ナトリウム水溶液を調整
した。EXAMPLES (Example 1) Nickel chloride concentration: 220 g /
A liter of nickel chloride aqueous solution and a sodium carbonate concentration of 200 g / liter sodium carbonate aqueous solution were prepared.
【0020】次に、塩化ナトリウム水溶液を満たした内
容積11リットルの反応容器内を攪拌機で毎分200回
転で撹拌しながら、塩化ニッケル水溶液と炭酸ナトリウ
ム水溶液をそれぞれ、18.5ミリリットル/分(滞留
時間5時間)の流量で供給し、さらに、炭酸ガスを0.
5リットル/分の流量で吹き込み連続的に塩基性炭酸ニ
ッケルを生成させた。オーバーフローにより炭酸ニッケ
ル懸濁液を取り出し、ろ過後、さらに、純水で洗浄し、
塩基性炭酸ニッケルを得た。この時の炭酸アルカリの添
加量は、理論当量量の1.1倍、炭酸ガスの吹き込み量
は理論量の7.5倍であった。Next, the nickel chloride aqueous solution and the sodium carbonate aqueous solution were each mixed at 18.5 ml / min (retention time) while stirring the inside of the reaction vessel having an inner volume of 11 liter filled with the aqueous sodium chloride solution with a stirrer at 200 rpm. (Time 5 hours), and further, carbon dioxide gas was added at 0.1 times.
Basic nickel carbonate was continuously produced by blowing at a flow rate of 5 liter / min. Take out the nickel carbonate suspension by overflow, after filtration, further washed with pure water,
Basic nickel carbonate was obtained. At this time, the added amount of the alkali carbonate was 1.1 times the theoretical equivalent, and the blowing amount of the carbon dioxide gas was 7.5 times the theoretical amount.
【0021】生成した炭酸ニッケル10gを20ミリリ
ットルのメスシリンダーに入れ500回シリンダーをタ
ッピングすると11.1ミリリットルとなった。このこ
とからタッピング嵩密度は0.9g/ミリリットルであ
った。得られた粉末は流動性があり、取り扱いやすいも
のであった。また、得られた塩基性炭酸ニッケルを塩化
物系電解メッキ液に添加すると容易に溶解した。10 g of the produced nickel carbonate was placed in a 20 ml measuring cylinder, and the cylinder was tapped 500 times to obtain 11.1 ml. From this, the tapping bulk density was 0.9 g / ml. The obtained powder had fluidity and was easy to handle. Further, when the obtained basic nickel carbonate was added to the chloride-based electrolytic plating solution, it was easily dissolved.
【0022】生成した塩基性炭酸ニッケルを分析したと
ころ、硫黄は検出されず、また、塩素は、0.01%以
下であった。When the basic nickel carbonate formed was analyzed, no sulfur was detected and the content of chlorine was 0.01% or less.
【0023】(実施例2)反応容器の容積を1.6リッ
トル、それぞれの液供給量を3ミリリットル/分、炭酸
ガス吹き込み量は80ミリリットル/分とした以外は、
実施例1と同様な方法で炭酸ニッケルを製造した。この
時の炭酸アルカリの添加量は、理論当量量の1.1倍、
炭酸ガスの吹き込み量は理論量の7.5倍であった。(Example 2) [0023] Except that the volume of the reaction vessel was 1.6 liters, the supply amount of each liquid was 3 ml / min, and the blowing amount of carbon dioxide gas was 80 ml / min.
Nickel carbonate was produced in the same manner as in Example 1. At this time, the addition amount of the alkali carbonate is 1.1 times the theoretical equivalent,
The blowing amount of carbon dioxide gas was 7.5 times the theoretical amount.
【0024】生成した塩基性炭酸ニッケルを実施例1と
同様にタッピングしたところ、10.5ミリリットルと
なった。このことからタッピング嵩密度は0.95g/
ミリリットルであった。得られた粉末は流動性があり、
取り扱いやすいものであった。また、塩化物系電解メッ
キ液に添加すると容易に溶解した。The produced basic nickel carbonate was tapped in the same manner as in Example 1 to obtain 10.5 ml. From this, the tapping bulk density was 0.95 g /
Milliliters. The resulting powder is fluid,
It was easy to handle. Also, when added to the chloride-based electrolytic plating solution, it was easily dissolved.
【0025】生成した塩基性炭酸ニッケルを分析したと
ころ、硫黄は、検出されず、また、塩素は、0.01%
以下であった。When the basic nickel carbonate formed was analyzed, no sulfur was detected and chlorine was 0.01%.
It was below.
【0026】(実施例3)ニッケル塩溶液として、硫酸
ニッケル濃度:260g/リットルの硫酸ニッケル水溶
液とした以外は、実施例1と同様な条件で炭酸ニッケル
を製造した。Example 3 Nickel carbonate was produced under the same conditions as in Example 1 except that the nickel salt solution was an aqueous solution of nickel sulfate having a nickel sulfate concentration of 260 g / liter.
【0027】生成した塩基性炭酸ニッケルを実施例1と
同様にタッピングしたところ、11.6ミリリットルと
なった。このことからタッピング嵩密度は0.86g/
ミリリットルであった。粉末は流動性があり、取り扱い
やすいものであった。塩化物系電解メッキ液に添加する
と容易に溶解した。生成した塩基性炭酸ニッケルを分析
したところ、硫黄分が0.2%検出された。The resulting basic nickel carbonate was tapped in the same manner as in Example 1 to obtain 11.6 ml. From this, the tapping bulk density was 0.86 g /
Milliliters. The powder was fluid and easy to handle. When added to the chloride-based electrolytic plating solution, it dissolved easily. When the generated basic nickel carbonate was analyzed, a sulfur content of 0.2% was detected.
【0028】(比較例1)炭酸ガスを吹き込まなかった
以外は、実施例1と同様な条件で炭酸ニッケルを製造し
た。生成した炭酸ニッケルは非常に嵩高く、洗浄、濾過
時に多量の水分を保持し、濾液が中性となるまでに多量
の水と時間がかかった。この炭酸ニッケル5gを20ミ
リリットルのメスシリンダーに入れこぼれないように蓋
をした後500回シリンダーをタッピングすると11.
4ミリリットルとなった。このことからタッピング嵩密
度は0.44g/ミリリットルであった。Comparative Example 1 Nickel carbonate was produced under the same conditions as in Example 1 except that no carbon dioxide gas was blown. The produced nickel carbonate was very bulky, retained a large amount of water during washing and filtration, and required a large amount of water and time until the filtrate became neutral. When 5 g of this nickel carbonate was put into a 20 ml graduated cylinder and covered so as not to be spilled, the cylinder was tapped 500 times.
It became 4 ml. From this, the tapping bulk density was 0.44 g / ml.
【0029】粉末は非常に多くの粉塵を発生し、取り扱
い難いものであった。また、塩化物系電解メッキ液に添
加すると容易に溶解した。The powder generated a great deal of dust and was difficult to handle. Also, when added to the chloride-based electrolytic plating solution, it was easily dissolved.
【0030】生成した塩基性炭酸ニッケルを分析したと
ころ、硫黄は検出されなかった。また、塩素は、0.1
5%であった。When the formed basic nickel carbonate was analyzed, no sulfur was detected. In addition, chlorine is 0.1
5%.
【0031】(比較例2)炭酸ガスを吹き込む代わり
に、pHを制御し、pH値が、7.89を目標とし、誤差範
囲0.02の範囲で中和する他は、実施例3と同様な条
件で炭酸ニッケルの製造を試みたところ、製造は困難を
極めた。この製造方法においては、pHの制御値が振
れ、誤差範囲が中性側に振れると微粉末が生成した。ま
たpHが、アルカリ性になると粒径は大きくなるものの
嵩密度の低いものが生成した。槽内のpH値、撹拌等を
最適化することによって、目的とする特性の粉末を得た
が、製造は非常に困難であった。(Comparative Example 2) The same as Example 3 except that instead of blowing in carbon dioxide gas, the pH was controlled, the pH value was targeted at 7.89, and neutralization was performed within an error range of 0.02. The production of nickel carbonate was attempted under difficult conditions, but the production was extremely difficult. In this production method, when the control value of the pH fluctuated and the error range fluctuated toward the neutral side, fine powder was generated. When the pH became alkaline, particles having a large bulk but a low bulk density were formed. By optimizing the pH value, stirring, and the like in the tank, a powder having desired characteristics was obtained, but the production was very difficult.
【0032】生成した塩基性炭酸ニッケル10gを20
ミリリットルのメスシリンダーに入れ500回シリンダ
ーをタッピングすると11.6ミリリットルとなった。
このことからタッピング嵩密度は0.93g/ミリリッ
トルであった。粉末は流動性があり、取り扱いやすいも
のであった。塩化物系電解メッキ液に添加すると容易に
溶解した。得られた塩基性炭酸ニッケルを分析してみた
ところ、硫黄分が0.3%検出された。10 g of the produced basic nickel carbonate was added to 20
Tapping the cylinder 500 times in a milliliter graduated cylinder yielded 11.6 milliliters.
From this, the tapping bulk density was 0.93 g / ml. The powder was fluid and easy to handle. When added to the chloride-based electrolytic plating solution, it dissolved easily. When the obtained basic nickel carbonate was analyzed, 0.3% of sulfur was detected.
【0033】また、反応が不安定な時に生成した塩基性
炭酸ニッケルについては中性側で生成した塩基性炭酸ニ
ッケルは、比較例1のものと類似した微粉状で嵩高く、
タップ密度の低い粉末であった。また、アルカリ性で生
成した粉末は非常に嵩密度が低く、発塵し易い粉末であ
った。As to the basic nickel carbonate produced when the reaction was unstable, the basic nickel carbonate produced on the neutral side was fine and bulky similar to that of Comparative Example 1,
The powder had a low tap density. In addition, the powder produced under alkaline conditions had a very low bulk density and was a powder that easily generated dust.
【0034】[0034]
【発明の効果】本発明の方法により、ニッケルメッキを
行う際のニッケル浴へのニッケル補充用としての用途に
適した、嵩密度の高い塩基性炭酸ニッケルの粉末を経済
的に製造できる。According to the method of the present invention, a powder of basic nickel carbonate having a high bulk density and suitable for use as a replenisher for nickel in a nickel bath at the time of nickel plating can be economically produced.
Claims (6)
酸ガスとを同時にかつ定量的に反応槽に供給し、生成す
る塩基性炭酸ニッケルを連続的に取り出すことを特徴と
するタッピング嵩密度が0.5g/ミリリットルから
1.5g/ミリリットルである塩基性炭酸ニッケルの製
造方法。1. A tapping bulk density of 0.1, characterized by simultaneously and quantitatively supplying a nickel salt solution, an alkali carbonate solution, and carbon dioxide gas to a reaction vessel and continuously taking out basic nickel carbonate produced. A method for producing basic nickel carbonate having a content of 5 g / milliliter to 1.5 g / milliliter.
ニッケル、塩化ニッケルの内の少なくとも1種の溶液で
ある請求項1に記載の塩基性炭酸ニッケルの製造方法。2. The method for producing basic nickel carbonate according to claim 1, wherein the nickel salt solution is at least one kind of solution among nickel sulfate, nickel nitrate and nickel chloride.
が、炭酸ナトリウム、炭酸アンモニウム、炭酸カリウ
ム、炭酸リチウムから選ばれる少なくとも1種の水溶液
であることを特徴とする請求項1または2に記載の塩基
性炭酸ニッケルの製造方法。3. The method according to claim 1, wherein the alkali carbonate solution used as the neutralizing agent is at least one aqueous solution selected from sodium carbonate, ammonium carbonate, potassium carbonate, and lithium carbonate. A method for producing basic nickel carbonate.
給量を供給するニッケル塩溶液の中和等量の1.05倍
から1.2倍とする請求項3記載の塩基性炭酸ニッケル
の製造方法。4. The production of basic nickel carbonate according to claim 3, wherein the supply amount of the alkali carbonate used as the neutralizing agent is 1.05 to 1.2 times the neutralization equivalent of the nickel salt solution supplied. Method.
炭酸アルカリの炭酸量のモル比で3倍から8倍とする請
求項1から4のいずれかに記載の塩基性炭酸ニッケルの
製造方法。5. The method for producing basic nickel carbonate according to claim 1, wherein the amount of carbon dioxide blown is 3 to 8 times the molar ratio of the amount of carbonic acid of the excess alkali carbonate supplied.
間以下とする請求項1から5のいずれかに記載の塩基性
炭酸ニッケルの製造方法。6. The method for producing basic nickel carbonate according to claim 1, wherein the residence time in the reaction vessel is 2 hours or more and 10 hours or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000157974A JP2001335326A (en) | 2000-05-24 | 2000-05-24 | Method for manufacturing basic nickel carbonates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000157974A JP2001335326A (en) | 2000-05-24 | 2000-05-24 | Method for manufacturing basic nickel carbonates |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001335326A true JP2001335326A (en) | 2001-12-04 |
Family
ID=18662514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000157974A Pending JP2001335326A (en) | 2000-05-24 | 2000-05-24 | Method for manufacturing basic nickel carbonates |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001335326A (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241529A (en) * | 2005-03-03 | 2006-09-14 | Taiheiyo Kinzoku Kk | Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel |
CN100484882C (en) * | 2006-12-29 | 2009-05-06 | 金川集团有限公司 | Method of preparing electronic grade nickel carbonate by sodium carbonate deposition |
CN101863520A (en) * | 2010-06-17 | 2010-10-20 | 吕文广 | Preparation method of microporous ultrafine high activity nickel carbonate |
KR101011473B1 (en) | 2010-11-05 | 2011-01-28 | 주식회사 유니테크 | Ni-flash plating composition for electrolytic galvanized iron plating process having improved ph buffer effects |
WO2011075496A1 (en) * | 2009-12-18 | 2011-06-23 | Invista Technologies S.A.R.L. | Nickel compositions for preparing nickel metal and nickel complexes |
CN102923794A (en) * | 2012-11-23 | 2013-02-13 | 长沙矿冶研究院有限责任公司 | Method for continuously compounding high-purity alkali nickel carbonate |
CN103080119A (en) * | 2010-09-07 | 2013-05-01 | 因温斯特技术公司 | Nickel compositions for preparing nickel metal and nickel complexes |
US8450450B2 (en) | 2009-08-24 | 2013-05-28 | Invista North America S.A R.L. | Polyether glycol manufacturing process |
US8969606B2 (en) | 2011-06-10 | 2015-03-03 | Invista North America S.A R.L. | Calcination and reduction process including a fluidizing bed reactor |
US9050591B2 (en) | 2011-06-10 | 2015-06-09 | Invista North America S.A.R.L. | Nickel form for preparation of catalytic nickel-ligand complexes |
CN105645482A (en) * | 2016-02-26 | 2016-06-08 | 金川集团股份有限公司 | Synthesis method of nickel protoxide precursor nickel carbonate |
WO2019128142A1 (en) * | 2017-12-29 | 2019-07-04 | 荆门市格林美新材料有限公司 | Method for preparing high-density basic nickel carbonate |
CN109987652A (en) * | 2017-12-29 | 2019-07-09 | 荆门市格林美新材料有限公司 | A kind of small particle, the preparation method of near-spherical basic nickel carbonate |
CN109987654A (en) * | 2017-12-29 | 2019-07-09 | 荆门市格林美新材料有限公司 | A kind of preparation method of small particle basic nickel carbonate |
CN110759391A (en) * | 2018-07-25 | 2020-02-07 | 荆门市格林美新材料有限公司 | Preparation method of basic nickel carbonate with large specific surface area and large particle size |
CN111807426A (en) * | 2020-06-22 | 2020-10-23 | 荆门市格林美新材料有限公司 | Mass production method of large-particle-size basic nickel carbonate |
CN111874960A (en) * | 2020-06-22 | 2020-11-03 | 荆门市格林美新材料有限公司 | Preparation method of low-fluidity and high-solubility basic nickel carbonate |
CN113044895A (en) * | 2019-12-27 | 2021-06-29 | 荆门市格林美新材料有限公司 | Preparation method of low-impurity high-nickel basic nickel carbonate |
-
2000
- 2000-05-24 JP JP2000157974A patent/JP2001335326A/en active Pending
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006241529A (en) * | 2005-03-03 | 2006-09-14 | Taiheiyo Kinzoku Kk | Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel |
CN100484882C (en) * | 2006-12-29 | 2009-05-06 | 金川集团有限公司 | Method of preparing electronic grade nickel carbonate by sodium carbonate deposition |
US8450450B2 (en) | 2009-08-24 | 2013-05-28 | Invista North America S.A R.L. | Polyether glycol manufacturing process |
US8815186B2 (en) | 2009-12-18 | 2014-08-26 | Invista North America S.A.R.L. | Nickel compositions for preparing nickel metal and nickel complexes |
US9371343B2 (en) | 2009-12-18 | 2016-06-21 | Invista North America S.A. R.L. | Nickel metal compositions and nickel complexes derived from basic nickel carbonates |
WO2011075496A1 (en) * | 2009-12-18 | 2011-06-23 | Invista Technologies S.A.R.L. | Nickel compositions for preparing nickel metal and nickel complexes |
WO2011075494A1 (en) * | 2009-12-18 | 2011-06-23 | Invista Technologies S.A.R.L. | Nickel metal compositions and nickel complexes derived from basic nickel carbonates |
US20110311428A1 (en) * | 2009-12-18 | 2011-12-22 | Invista North America S.A R.L. | Nickel compositions for preparing nickel metal and nickel complexes |
EP2658651A4 (en) * | 2009-12-18 | 2015-11-11 | Invista Technologies Srl | Nickel compositions for preparing nickel metal and nickel complexes |
CN101863520A (en) * | 2010-06-17 | 2010-10-20 | 吕文广 | Preparation method of microporous ultrafine high activity nickel carbonate |
CN103080119A (en) * | 2010-09-07 | 2013-05-01 | 因温斯特技术公司 | Nickel compositions for preparing nickel metal and nickel complexes |
TWI468413B (en) * | 2010-09-07 | 2015-01-11 | Invista Tech Sarl | Preparing a nickel phosphorus ligand complex |
US9371346B2 (en) | 2010-09-07 | 2016-06-21 | Invista North America S.A.R.L. | Preparing a nickel phosphorus ligand complex |
CN103080119B (en) * | 2010-09-07 | 2015-04-08 | 因温斯特技术公司 | Nickel compositions for preparing nickel metal and nickel complexes |
US9024049B2 (en) | 2010-09-07 | 2015-05-05 | Invista North America S.A.R.L. | Nickel compositions for preparing nickel metal and nickel complexes |
KR101011473B1 (en) | 2010-11-05 | 2011-01-28 | 주식회사 유니테크 | Ni-flash plating composition for electrolytic galvanized iron plating process having improved ph buffer effects |
US9981257B2 (en) | 2011-06-10 | 2018-05-29 | Invista North America S.A.R.L. | Metal-ligand catalyst formation |
US9050591B2 (en) | 2011-06-10 | 2015-06-09 | Invista North America S.A.R.L. | Nickel form for preparation of catalytic nickel-ligand complexes |
US8969606B2 (en) | 2011-06-10 | 2015-03-03 | Invista North America S.A R.L. | Calcination and reduction process including a fluidizing bed reactor |
CN102923794B (en) * | 2012-11-23 | 2015-05-20 | 长沙矿冶研究院有限责任公司 | Method for continuously compounding high-purity alkali nickel carbonate |
CN102923794A (en) * | 2012-11-23 | 2013-02-13 | 长沙矿冶研究院有限责任公司 | Method for continuously compounding high-purity alkali nickel carbonate |
CN105645482A (en) * | 2016-02-26 | 2016-06-08 | 金川集团股份有限公司 | Synthesis method of nickel protoxide precursor nickel carbonate |
CN109987652A (en) * | 2017-12-29 | 2019-07-09 | 荆门市格林美新材料有限公司 | A kind of small particle, the preparation method of near-spherical basic nickel carbonate |
WO2019128142A1 (en) * | 2017-12-29 | 2019-07-04 | 荆门市格林美新材料有限公司 | Method for preparing high-density basic nickel carbonate |
CN109987651A (en) * | 2017-12-29 | 2019-07-09 | 荆门市格林美新材料有限公司 | A kind of preparation method of high density basic nickel carbonate |
CN109987654A (en) * | 2017-12-29 | 2019-07-09 | 荆门市格林美新材料有限公司 | A kind of preparation method of small particle basic nickel carbonate |
CN110759391A (en) * | 2018-07-25 | 2020-02-07 | 荆门市格林美新材料有限公司 | Preparation method of basic nickel carbonate with large specific surface area and large particle size |
CN113044895A (en) * | 2019-12-27 | 2021-06-29 | 荆门市格林美新材料有限公司 | Preparation method of low-impurity high-nickel basic nickel carbonate |
CN113044895B (en) * | 2019-12-27 | 2023-09-05 | 荆门市格林美新材料有限公司 | Preparation method of low-impurity high-nickel basic nickel carbonate |
CN111807426A (en) * | 2020-06-22 | 2020-10-23 | 荆门市格林美新材料有限公司 | Mass production method of large-particle-size basic nickel carbonate |
CN111874960A (en) * | 2020-06-22 | 2020-11-03 | 荆门市格林美新材料有限公司 | Preparation method of low-fluidity and high-solubility basic nickel carbonate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001335326A (en) | Method for manufacturing basic nickel carbonates | |
US4146571A (en) | Preparation of sodium percarbonate | |
US4405465A (en) | Process for the removal of chlorate and hypochlorite from spent alkali metal chloride brines | |
US4780303A (en) | Continuous process for the preparation of high strength sodium hypochlorite solutions | |
JP2003502253A (en) | Chemical compositions and methods | |
JPS589043B2 (en) | Electrolytically generated alkali metal chlorate - Removal of dichromate from chloride solution by ion exchange | |
CA1083780A (en) | Brine purification process | |
JP2002003222A (en) | Basic cobalt carbonate and method for manufacturing it | |
US6210589B1 (en) | Process for removing fluoride from wastewater | |
SE462651B (en) | CONTINUOUS PROCEDURE FOR PRODUCING CHLORO Dioxide | |
US4839003A (en) | Process for producing alkali hydroxide, chlorine and hydrogen by the electrolysis of an aqueous alkali chloride solution in a membrane cell | |
US3030177A (en) | Continuous multi-stage process for production of dibasic calcium hypochlorite | |
US3130016A (en) | Process for brine manufacture | |
JP2001335320A (en) | Basic copper carbonate and its preparing method | |
CA1106136A (en) | Process for producing sodium percarbonate from a soda solution of suspension | |
CA1105877A (en) | Process for producing chlorine dioxide | |
US20180050919A1 (en) | Process for manufacturing an aqueous sodium chloride solution | |
JPH0624739A (en) | Method of separating sulfate | |
US4376099A (en) | Process for recovering Cr(VI) ions from a chlorate cell liquor | |
KR100498836B1 (en) | Method for making anhydrous sodium perchlorate | |
US3049405A (en) | Process for the preparation of artificial cryolite | |
RU2154029C2 (en) | Method of preparing cobalt carbonate from chloride solution | |
CN110958990A (en) | Stable synthetic rhodochrosite and method for producing the same | |
US7250144B2 (en) | Perchlorate removal from sodium chlorate process | |
SE465569B (en) | PROCEDURE FOR PREPARATION OF CHLORIDE Dioxide |