JP2001334264A - Water treatment apparatus - Google Patents

Water treatment apparatus

Info

Publication number
JP2001334264A
JP2001334264A JP2000163137A JP2000163137A JP2001334264A JP 2001334264 A JP2001334264 A JP 2001334264A JP 2000163137 A JP2000163137 A JP 2000163137A JP 2000163137 A JP2000163137 A JP 2000163137A JP 2001334264 A JP2001334264 A JP 2001334264A
Authority
JP
Japan
Prior art keywords
cylinder
water
lid
water treatment
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000163137A
Other languages
Japanese (ja)
Other versions
JP3812286B2 (en
Inventor
Kunio Hashiba
邦夫 橋場
Kenichi Kawabata
健一 川畑
Yutaka Masuzawa
裕 鱒沢
Shinichiro Umemura
晋一郎 梅村
Masahiro Kurihara
昌宏 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000163137A priority Critical patent/JP3812286B2/en
Publication of JP2001334264A publication Critical patent/JP2001334264A/en
Application granted granted Critical
Publication of JP3812286B2 publication Critical patent/JP3812286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a water flow type water treatment apparatus using a squeeze film effect. SOLUTION: An ultrasonic vibration body including a vibration transmitting element 22 connected to an ultrasonic vibrator 21 and a column 23 which is connected in the axial direction of the element and vibrated by vibration from the element in a similar maximum displacement amplitude in the axial direction and the diameter direction, a cylinder 24 having a central shaft with the column and enclosing the column, the first lid 25 which is connected to one end of the cylinder, supports the vibration body, and is connected with a plurality of first pipes, and the second lid 31 which is connected to the other end of the cylinder and connected with the second pipe 26 are provided, a reactor is formed by the first lid, the cylinder, and the second lid. The distance between the surface of the first lid and the opposite surface of the column, the distance between the inside circumferential surface and the outside circumferential surface of the column, and the distance between the surface of the second lid and the opposite surface of the column are respectively 1/4 of the wavelengths of sound waves in water or below. Water is introduced from the first pipes and discharged from the second pipe, so that cavitation is generated for water treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【発明の属する技術分野】本発明は,膜状に流れる水に
超音波によりキャビテーションを発生させ,キャビテー
ションの作用によって水中の微生物等の殺菌又は不活性
化を行なう水処理装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water treatment apparatus in which cavitation is generated by ultrasonic waves in water flowing in a film form, and the action of cavitation sterilizes or inactivates microorganisms in the water.

【従来の技術】現在,浄水場等では塩素による殺菌処理
が一般に行なわれている。しかし,塩素処理はクリプト
スポリジウム等の耐塩素性に優れた病原性微生物の殺菌
にはあまり有効ではない。キャビテーション効果により
水中の微生物等の殺菌又は不活性化が可能であることは
知られている(「超音波技術便覧(新訂版)」,実吉
他,日刊工業新聞社,p.844−p.858(199
1))。キャビテーションは,超音波の照射に伴い液体
が減圧されることにより液体中に気泡が発生する現象で
あり,この気泡が圧縮及び膨脹したり圧壊したりする際
に生じる熱作用,化学作用,機械的破壊作用等により微
生物等が殺菌又は不活性化されると考えられる。15〜
150kHzの超音波に伴うキャビテーションを利用す
る水処理装置が知られている(USP4,961,86
0)。20kHz以上の超音波によるキャビテーション
を利用した病原性微生物の殺菌が可能な水処理方法が知
られている(例えば,ヨーロッパ公開特許567225
号公報)。従来,超音波によりキャビテーションを発生
させる場合,主に定在波音場が利用されていたが,この
場合,キャビテーションの発生する領域にいわゆる斑が
生じてしまう。水処理方法に定在波による超音波キャビ
テーションを利用すると,処理効果が場所により異なっ
て全体の処理効率が低下する。また,流体で隔てられた
小さい間隔のもつ2面の一方が高速振動することによっ
てもキャビテーションが発生することが知られている
(「トライボロジ(基礎と応用)I」,トライボロジ研
究会編,幸書房,p.57−p.59(1976))。
このキャビテーションの発生原因は,2面間に挟まれた
流体膜に生じる圧力であるが,この圧力が生じる現象は
「スクイーズ膜効果」又は「絞り膜効果」と呼ばれてい
る(「トライボロジ(基礎と応用I)」,トライボロジ
研究会編,幸書房,p.70(1976))
2. Description of the Related Art At present, sterilization treatment with chlorine is generally performed in water purification plants and the like. However, chlorination is not very effective in killing pathogenic microorganisms such as Cryptosporidium which have excellent chlorine resistance. It is known that microorganisms and the like in water can be sterilized or inactivated by the cavitation effect ("Ultrasonic Technology Handbook (New Edition)", Shinkichi et al., Nikkan Kogyo Shimbun, p. 844-p. 858 (199
1)). Cavitation is a phenomenon in which bubbles are generated in a liquid when the liquid is decompressed by the irradiation of ultrasonic waves, and the thermal, chemical, and mechanical actions that occur when the bubbles are compressed, expanded, and crushed. It is considered that microorganisms and the like are sterilized or inactivated by destruction or the like. 15 ~
A water treatment apparatus utilizing cavitation caused by 150 kHz ultrasonic waves is known (US Pat. No. 4,961,86).
0). A water treatment method capable of sterilizing pathogenic microorganisms using cavitation by ultrasonic waves of 20 kHz or more is known (for example, EP-A-567225).
No.). Conventionally, when cavitation is generated by ultrasonic waves, a standing wave sound field is mainly used. In this case, a so-called spot is generated in a region where cavitation occurs. When ultrasonic cavitation using standing waves is used as a water treatment method, the treatment effect varies depending on the location and the overall treatment efficiency is reduced. It is also known that cavitation is generated when one of two surfaces having a small gap separated by a fluid vibrates at high speed ("Tribology (Basic and applied) I", edited by Tribology Study Group, Koshobo) , P.57-p.59 (1976)).
The cause of this cavitation is the pressure generated in the fluid film sandwiched between the two surfaces, and the phenomenon of this pressure is called the “squeeze film effect” or the “throttling film effect” (see “Tribology (basic And Application I) ", edited by Tribology Research Group, Koshobo, p.70 (1976))

【発明が解決しようとする課題】本明細書で使用する
「水処理のための作用」は,スクイーズ膜効果により生
じるキャビテーションによる気泡が圧縮及び膨脹したり
圧壊したりする際に生じる熱作用,化学作用,機械的破
壊作用等を意味し,「水処理」は,「水処理のための作
用」により微生物等を殺菌又は不活性化させ,水の消毒
を水を流しながら実行することを意味し,「水処理領
域」は,「水処理」が実行される領域を意味し,「水処
理効率」は,「水処理」の効率,即ち,水中の微生物等
が殺菌又は不活性化される,速度,スループット等を意
味する。また,本明細書で例示する装置の各部の寸法
は,装置が動作していない状態での寸法例である。本発
明者による出願(特願平11−182903号)では,
超音波キャビテーションによる殺菌効果に注目し,効率
良く微生物を殺菌するためにスクイーズ膜効果を利用し
た水処理方法が提案されている。この水処理方法では,
(1)薬剤を使用しない方法であること,(2)装置が
小型で取扱いが容易であこと,(3)保守管理が容易で
あるという特徴がある。特願平11−182903号に
は,キャビテーションの作用を高い確率で水中の微生物
に与え水処理効率を向上させるために,膜状に流れる水
にキャビテーションを発生させる水処理方法及びその装
置が示されている。また,超音波振動子に連結され,軸
方向と径方向にほぼ同勢力で振動する円柱と,この円柱
を内包する円筒状容器を有し,円柱の側面と円筒状容器
の内面との間のリング状の間隔が超音波振動子の駆動周
波数に於ける水中での音波の波長の(1/4)以下であ
り,このリング状の間隔の領域で膜状に流れる水にキャ
ビテーションを発生させる水処理装置が示されている。
上記の水処理装置では,リング状の間隔の領域で膜状に
流れる水に超音波振動源によりキャビテーションを発生
させた領域を水処理領域として,この水処理領域の水中
の微生物にキャビテーションの作用を高い確率で付与す
るようにしている。しかし,薄い厚さの水処理領域で水
にキャビテーションを発生させさせるために,水処理領
域の大きさが比較的小さくなる。従って,水を流しなが
ら確実に水処理を行ない,更に,エネルギ効率良く水処
理を行ない,水処理のスループット向上を実現するに
は,1つの超音波振動源によりできるだけ広い面積にキ
ャビテーションを発生させる必要がある。広い水処理領
域にキャビテーションを一様に発生させるためには水処
理領域で水が流れながら水が接する面全体を超音波振動
させる必要がある。また,キャビテーションの発生に伴
う音場の乱れ等によってキャビテーションの発生分布に
偏りが生じたり,水処理領域で膜状に水が通過する経路
に差異があると,水中の微生物に水処理のための作用を
一様に付与することができず,安定した水処理ができな
くなってしまう。本発明の第1の目的は,1つの超音波
振動源により広い面積にキャビテーションを発生させ,
水処理領域の面積を広くして,水処理領域のほぼ全域を
水が膜状に流れるようにして,水処理のための作用を流
れる水に十分に効率良く付与できる,スクイーズ膜効果
を用いた流水式の水処理装置を提供することにある。本
発明の第2の目的は,キャビテーションの発生に偏りが
ある場合にも,水中の微生物に水処理のための作用を安
定して一様に付与し,スクイーズ膜効果を用いた流水式
の水処理装置を提供することにある。
As used herein, the term "action for water treatment" refers to the thermal action or chemical action that occurs when bubbles due to cavitation caused by the squeeze film effect are compressed and expanded or collapsed. "Water treatment" means disinfecting or inactivating microorganisms and disinfecting water while flowing water. , “Water treatment area” means the area where “Water treatment” is performed, and “Water treatment efficiency” means the efficiency of “Water treatment”, ie, microorganisms and the like in water are disinfected or inactivated. Speed, throughput, etc. The dimensions of each part of the apparatus exemplified in this specification are examples of dimensions when the apparatus is not operating. In the application by the present inventor (Japanese Patent Application No. 11-182903),
Paying attention to the sterilization effect of ultrasonic cavitation, a water treatment method using a squeeze membrane effect has been proposed to efficiently sterilize microorganisms. In this water treatment method,
(1) The method does not use a medicine, (2) the device is small and easy to handle, and (3) the maintenance and management are easy. Japanese Patent Application No. 11-182903 discloses a water treatment method and apparatus for generating cavitation in water flowing in a film form in order to impart cavitation action to microorganisms in water with a high probability and improve water treatment efficiency. ing. It also has a cylinder connected to the ultrasonic vibrator and vibrating with substantially the same force in the axial direction and the radial direction, and a cylindrical container enclosing the cylinder, and a gap between the side surface of the cylinder and the inner surface of the cylindrical container. The ring-shaped space is equal to or less than (1/4) of the wavelength of the sound wave in water at the driving frequency of the ultrasonic vibrator, and the water that flows in a film form in the region of the ring-shaped space generates cavitation. A processing unit is shown.
In the above-mentioned water treatment device, the region where cavitation is generated by the ultrasonic vibration source in the water flowing in the form of a film in the ring-shaped space is defined as the water treatment region, and the action of cavitation is performed on the microorganisms in the water in the water treatment region. They are given with a high probability. However, the size of the water treatment area is relatively small because cavitation is generated in the water in the water treatment area having a small thickness. Therefore, cavitation must be generated over as large an area as possible with a single ultrasonic vibration source in order to perform water treatment reliably while flowing water, and to perform water treatment with high energy efficiency and to improve water treatment throughput. There is. In order to uniformly generate cavitation in a wide water treatment area, it is necessary to ultrasonically vibrate the entire surface in contact with water while flowing water in the water treatment area. In addition, if the distribution of cavitation is biased due to the disturbance of the sound field due to the cavitation, or if there is a difference in the path of water passing in the form of a film in the water treatment area, microorganisms in the water will not be treated for water treatment. The effect cannot be given uniformly, and stable water treatment cannot be performed. A first object of the present invention is to generate cavitation in a large area by one ultrasonic vibration source,
The squeeze membrane effect is used to increase the area of the water treatment area so that water flows in a film-like shape over almost the entire area of the water treatment area, and that the action for water treatment can be given to the flowing water efficiently enough. It is to provide a flowing water treatment device. A second object of the present invention is to provide a method of flowing water using a squeeze membrane effect by stably and uniformly imparting an action for water treatment to microorganisms in water even when the occurrence of cavitation is uneven. An object of the present invention is to provide a processing device.

【課題を解決するための手段】本発明の水処理装置で
は,超音波振動子と該超音波振動子に結合される振動伝
送要素と該振動伝送要素の軸方向に結合され振動伝送要
素からの振動によって軸方向と径方向の最大変位振幅が
同程度で振動する円柱とを含んで超音波振動体が構成さ
れる。中心軸を円柱と共有して円柱を内包する円筒の一
端に結合され,超音波振動体を支持し複数の第1の管が
接続される第1の蓋と,円筒の他端に結合され,第2の
管が接続される第2の蓋と,円筒により1つの反応容器
が構成される。第1の蓋の面とこれに対向する円柱の面
との第1の間隔,円筒の内周面と円柱の外周面との第2
の間隔,及び第2の蓋の面とこれに対向する円柱の面と
の第3の間隔がそれぞれ,水中での音波の波長の(1/
4)以下に設定されている。第1の管から水処理すべき
水を反応容器に流入させ第2の管から水処理された水を
流出させ,又は,第2の管から水処理すべき水を反応容
器に流入させ第1の管から水処理された水を流出させ
て,水処理すべき水の流入と水処理された水の流出の間
に,第1から第3の間隔の領域にキャビテーションを発
生させて水処理を行なう。本発明の他の水処理装置で
は,第1の超音波振動子と該第1の超音波振動子に結合
される第1の振動伝送要素と該第1の振動伝送要素の軸
方向に結合され第1の振動伝送要素からの振動によって
軸方向と径方向の最大変位振幅が同程度で振動する第1
の円柱とを含んで第1の超音波振動体が構成され,第2
の超音波振動子と該第2の超音波振動子に結合される第
2の振動伝送要素と該第2の振動伝送要素の軸方向に結
合され第2の振動伝送要素からの振動によって軸方向と
径方向の最大変位振幅が同程度で振動する第2の円柱と
を含んで第2の超音波振動体が構成される。中心軸を第
1の円柱及び第2の円柱と共有して第1の円柱及び第2
の円柱を内包する円筒の一端に結合され,第1の超音波
振動体を支持し複数の第1の管が接続される第1の蓋
と,円筒の他端に結合され,第2の超音波振動体を支持
し複数の第2の管が接続される第2の蓋と,前記円筒に
より1つの反応容器が構成される。第1の蓋の面とこれ
に対向する第1の円柱の面との第1の間隔,円筒の内周
面と第1の円柱の外周面との第2の間隔,第1の円柱と
第2の円柱の対向する面の第3の間隔,円筒の内周面と
第2の円柱の外周面との第4の間隔,及び第2の蓋の面
とこれに対向する第2の円柱の面との第5の間隔がそれ
ぞれ,水中での音波の波長の(1/4)以下に設定され
ている。第1の管から水処理すべき水を反応容器に流入
させ第2の管から水処理された水を流出させ,又は,第
2の管から水処理すべき水を反応容器に流入させ第1の
管から水処理された水を流出させて,水処理すべき水の
流入と水処理された水の流出の間に前記第1から第5の
間隔の領域にキャビテーションを発生させて水処理を行
なう。なお,複数の第1の管は,円筒の中心軸に対応す
る位置を中心とする円周上の対称な位置で第1の蓋に接
続され,複数の第2の管は,円筒の中心軸に対応する位
置を中心とする円周上の対称な位置で第2の蓋に接続さ
れる。本発明の他の水処理装置では,第1の超音波振動
子と該第1の超音波振動子に結合される第1の振動伝送
要素と該第1の振動伝送要素の軸方向に結合され第1の
振動伝送要素からの振動によって軸方向と径方向の最大
変位振幅が同程度で振動する第1の円柱とを含んで第1
の超音波振動体が構成され,第2の超音波振動子と該第
2の超音波振動子に結合される第2の振動伝送要素と該
第2の振動伝送要素の軸方向に結合され第2の振動伝送
要素からの振動によって軸方向と径方向の最大変位振幅
が同程度で振動する第2の円柱とを含んで第2の超音波
振動体が構成される。中心軸を第1の円柱と共有して第
1の円柱を内包する第1の円筒と,中心軸を第2の円柱
と共有して第2の円柱を内包する第2の円筒と,第1の
円筒の一端に結合され,第1の超音波振動体を支持し複
数の第1の管が接続される第1の蓋と,第2の円筒の一
端に結合され,第2の超音波振動体を支持し複数の第2
の管が接続される第2の蓋と,中心部に貫通孔をもち,
第1の円筒の他端と第2のの円筒の他端とを対向させて
結合する仕切り板とを具備している。第1の蓋,第1の
円筒,仕切り板により第1の反応容器が構成され,第2
の蓋,第2の円筒,仕切り板により第2の反応容器が構
成される。第1の蓋の面とこれに対向する第1の円柱の
面との第1の間隔,第1の円筒の内周面と第1の円柱の
外周面との第2の間隔,仕切り板の面とこれに対向する
第1の円柱の面との第3の間隔,仕切り板の面とこれに
対向する第2の円柱の面との第4の間隔,第2の円筒の
内周面と第2の円柱の外周面との第5の間隔,及び第2
の蓋の面とこれにに対向する第2の円柱の面との第6の
間隔がそれぞれ,水中での音波の波長の(1/4)以下
に設定されている。第1の管から水処理すべき水を第1
の反応容器に流入させ貫通孔から第2の反応容器に水を
流し第2の管から水処理された水を流出させ,又は,第
2の管から水処理すべき水を第2の反応容器に流入させ
貫通孔から第1の反応容器に水を流し第1の管から水処
理された水を流出させて,水処理すべき水の流入と水処
理された水の流出の間に第1から第6の領域にキャビテ
ーションを発生させて水処理を行なう。なお,複数の第
1の管は,第1の円筒の中心軸に対応する位置を中心と
する円周上の対称な位置で第1の蓋に接続され,複数の
第2の管は,第2の円筒の中心軸に対応する位置を中心
とする円周上の対称な位置で第2の蓋に接続される。本
発明では,1つの超音波振動源により広い面積にキャビ
テーションを発生させ,水処理領域の面積を広くして水
処理領域のほぼ全域を膜状に水が通過するようにして,
水処理のための作用を十分に効率良く流れる水に付与
し,スクイーズ膜効果を用いた水処理装置を提供でき,
キャビテーションの発生に偏りがある場合にも,流れる
水中の微生物に水処理のための作用を安定して一様に付
与し,安定した効果が得られるスクイーズ膜効果を用い
た水処理装置を提供できる。
According to the water treatment apparatus of the present invention, an ultrasonic oscillator, a vibration transmission element coupled to the ultrasonic oscillator, and an axially coupled vibration transmission element are provided. An ultrasonic vibrator is configured to include a cylinder that vibrates with the same maximum displacement amplitude in the axial direction and the radial direction due to vibration. A first lid connected to one end of a cylinder enclosing the cylinder sharing the central axis with the cylinder, supporting the ultrasonic vibrator and connected to a plurality of first tubes, and coupled to the other end of the cylinder; One reaction vessel is constituted by the second lid to which the second tube is connected and the cylinder. A first distance between the surface of the first lid and the surface of the cylinder facing the second lid, and a second distance between the inner peripheral surface of the cylinder and the outer peripheral surface of the cylinder.
And the third distance between the surface of the second lid and the surface of the cylinder opposite thereto are respectively (1/1 / the wavelength of the sound wave in water).
4) It is set as follows. Water to be subjected to water treatment flows into the reaction vessel from the first pipe, and water subjected to water treatment flows out from the second pipe. Alternatively, water to be subjected to water treatment flows into the reaction vessel from the second pipe to form the first water. The effluent is discharged from the pipes of the pipes, and cavitation is generated in the first to third intervals between the inflow of the water to be treated and the outflow of the treated water. Do. In another water treatment apparatus of the present invention, a first ultrasonic transducer, a first vibration transmission element coupled to the first ultrasonic transducer, and an axial coupling of the first vibration transmission element are provided. A first vibration that vibrates with the same maximum displacement amplitude in the axial direction and the radial direction by vibration from the first vibration transmission element;
The first ultrasonic vibrating body is constituted by including the
Ultrasonic transducer, a second vibration transmission element coupled to the second ultrasonic transducer, and an axial direction coupled to the second vibration transmission element in an axial direction by the vibration from the second vibration transmission element. A second ultrasonic vibrating body is configured to include the second column vibrating at the same magnitude as the maximum displacement amplitude in the radial direction. The central axis is shared with the first cylinder and the second cylinder, and the first cylinder and the second cylinder are shared.
A first lid connected to one end of a cylinder enclosing the column and supporting a first ultrasonic vibrator and connected to a plurality of first tubes; and a second lid connected to the other end of the cylinder. One reaction vessel is constituted by the second lid, which supports the sonic vibrator and to which a plurality of second pipes are connected, and the cylinder. A first distance between the surface of the first lid and the surface of the first cylinder facing the first lid, a second distance between the inner peripheral surface of the cylinder and the outer peripheral surface of the first cylinder, and the first cylinder and the first cylinder. A third interval between the opposing surfaces of the two cylinders, a fourth interval between the inner peripheral surface of the cylinder and the outer peripheral surface of the second cylinder, and a surface of the second lid and the second cylinder facing the second lid. Each of the fifth distances from the surface is set to (() or less of the wavelength of the sound wave in water. Water to be subjected to water treatment flows into the reaction vessel from the first pipe, and water subjected to water treatment flows out from the second pipe. Alternatively, water to be subjected to water treatment flows into the reaction vessel from the second pipe to form the first water. The water treated water is caused to flow out from the pipe of the above, and cavitation is generated in the first to fifth intervals between the inflow of the water to be treated and the outflow of the treated water, thereby performing the water treatment. Do. The plurality of first tubes are connected to the first lid at symmetrical positions on the circumference centered on a position corresponding to the center axis of the cylinder, and the plurality of second tubes are connected to the center axis of the cylinder. Are connected to the second lid at symmetrical positions on the circumference centered on the position corresponding to. In another water treatment apparatus of the present invention, a first ultrasonic transducer, a first vibration transmission element coupled to the first ultrasonic transducer, and an axial coupling of the first vibration transmission element are provided. A first column vibrating at the same maximum axial and radial displacement amplitude by vibration from the first vibration transmission element;
Of the second ultrasonic transducer, a second vibration transmission element coupled to the second ultrasonic transducer, and a second vibration transmission element coupled in the axial direction of the second vibration transmission element. The second ultrasonic vibrating body includes the second cylinder vibrating with the same maximum displacement amplitude in the axial direction and the radial direction by the vibration from the second vibration transmitting element. A first cylinder sharing a central axis with the first cylinder and including the first cylinder; a second cylinder sharing a central axis with the second cylinder and including the second cylinder; A first lid connected to one end of the second cylinder and supporting the first ultrasonic vibrator and connected to the plurality of first tubes; and a second ultrasonic vibration connected to one end of the second cylinder. Supporting the body with multiple second
Has a second lid to which the tube is connected, and a through hole in the center,
A partition plate that couples the other end of the first cylinder and the other end of the second cylinder so as to face each other. The first reaction vessel is constituted by the first lid, the first cylinder, and the partition plate,
, A second cylinder, and a partition plate constitute a second reaction vessel. A first distance between the surface of the first lid and a surface of the first column facing the first lid, a second distance between the inner peripheral surface of the first cylinder and the outer peripheral surface of the first cylinder, The third distance between the surface and the surface of the first cylinder opposed thereto, the fourth distance between the surface of the partition plate and the surface of the second cylinder opposed thereto, and the inner peripheral surface of the second cylinder. A fifth distance from the outer peripheral surface of the second cylinder;
The sixth distance between the surface of the lid and the surface of the second cylinder opposed thereto is set to be (() or less the wavelength of the sound wave in water. Water to be treated from the first pipe to the first
Into the second reaction vessel through the through-hole and the water subjected to water treatment through the second pipe, or the water to be treated through the second pipe into the second reaction vessel. Into the first reaction vessel through the through-hole and the water that has been subjected to water treatment to flow out from the first tube, so that the first water flows between the water to be treated and the water that has been treated. And cavitation is generated in the sixth region to perform water treatment. The plurality of first tubes are connected to the first lid at symmetrical positions on the circumference around a position corresponding to the center axis of the first cylinder, and the plurality of second tubes are connected to the first tube. The second lid is connected to the second lid at a symmetrical position on the circumference around a position corresponding to the central axis of the second cylinder. In the present invention, cavitation is generated in a large area by one ultrasonic vibration source, the area of the water treatment area is widened, and water passes through almost the entire area of the water treatment area in a film form.
The action for water treatment can be given to the flowing water sufficiently efficiently to provide a water treatment device using the squeeze film effect.
Even if the occurrence of cavitation is uneven, it is possible to provide a water treatment apparatus using a squeeze membrane effect that stably and uniformly imparts an action for water treatment to microorganisms in flowing water and obtains a stable effect. .

【発明の実施の形態】以下,本発明の実施例を図を用い
て詳細に説明する。本発明では,円柱の軸方向及び径方
向の結合振動を利用した円柱表面の振動変位を利用し
て,円柱の側面(外周面)と両端面と反応セルの内壁と
の間の領域でスクイーズ膜効果が生起するようにし,広
い水処理領域をもち軸対称性をもつ反応容器を使用す
る。 (実施例1)図1は本発明の実施例1の流水式の水処理
装置の構成例を示す断面図であり,水処理用の1つの反
応容器を備える最も基本的な構造をもつ水処理装置の断
面図である。駆動電源1によって発生された電気的振動
は,超音波振動子21によって機械的振動に変換され
る。超音波振動子21は電歪型,磁歪型の何れの超音波
振動子でも良いが,駆動時の電気音響変換効率がより良
い,例えば,ボルト締めランジュバン型超音波振動子等
が望ましい。超音波振動子21で発生した機械的振動
は,超音波振動子21の出力端に結合された振動伝送要
素22を介して円柱23に伝達される。振動伝送要素2
2は複数段に構成されても良く,また,固体ホーン等の
形状の振動伝送要素を用いても良い。円柱23は円筒2
4の内側に,円柱23の中心軸と円筒24の中心軸とが
一致するように配置される。超音波振動子21,振動伝
送要素22,円柱23からなる超音波振動体は,円筒2
4の一端に結合され円筒24の一端を密閉する第1の蓋
25によって支持されている。円筒24の他端を密閉す
る第2の蓋31,円筒24,及び第1の蓋25により反
応容器20が構成される。反応容器20に水を流入させ
る第1の管26が複数(少なくとも2つ以上)第1の蓋
25に接続され,各第1の管26は円筒24の中心軸に
対応する位置を中心とする円周上の対称な位置に接続さ
れ,各第1の管26はリング状の配管41に接続されて
いる。リング状の配管41から配管42が分岐してお
り,図示しない水処理すべき水を供給する系を含む外部
の系に接続されている。また,反応容器20から水処理
された水が流出する第2の管43が第2の蓋31の中心
部に設けられている。円柱23の側面と円筒24の内周
面との間隔,円柱23の上面と第1の蓋25の内面との
間隔,円柱23の下面と第2の蓋31の内面との間隔は
何れも,超音波振動子の駆動周波数に於ける水中での音
波の波長の(1/4)以下とする。各第1の管26から
反応容器20に流入した水は,円柱23のほぼ全表面
(外周面,両端面)上で膜状に流れ,第2の管43から
排水される。第2の管43は図示しない水処理された水
を貯蔵する系を含む外部の系に接続されている。円柱2
3は,超音波振動する際,破線23’で示すように,円
柱23の軸方向と径方向の勢力がほぼ等しい振動姿態を
もち,いわゆる結合振動するように構成されており,水
中での音波の波長の(1/4)以下である領域には安定
してキャビテーションが発生し,円柱23のほぼ全表面
で膜状に流れる水にキャビテーションが発生される。複
数の第1の管26から反応容器に流入した水はよどむこ
となく均一に,キャビテーションが発生する水処理領域
に供給される。円柱23のほぼ全表面で膜状に流れる水
にキャビテーションが発生し,広い水処理領域が確保さ
れているので,安定した水処理の効果が得られる。な
お,円柱23からの超音波の放射能力を良くするために
は,円柱23の振動による媒質排除量を大きくすれば良
いと考えられるので,円柱23の軸方向と径方向に於け
る結合振動の振動モードとしては,破線23’のような
基本結合振動モードを利用するのが望ましい。なお,以
上の説明に於いて,水を第2の管43から流入させ各第
1の管26から流出させる構成として,水の流れる方向
は逆方向としても良く,同様の効果が得られる。 (実施例2)端面が対向するように2つの円柱を配置し
て,2つの円柱の端面の間の領域でもスクイーズ膜効果
が生起するようにし,広い水処理領域をもち,軸対称性
及び円柱の軸に直交する面に対して対称な構造をもつ反
応容器を使用する。図2は本発明の実施例2の流水式の
水処理装置の構成例を示す断面図である。図2に示す水
処理装置は,図1に示す水処理装置の第2の蓋31を除
いた構成を2つ結合した構成を有し,対向する第1の円
柱23aの面と第2の円柱23bの面の間隔が,超音波
振動子の駆動周波数に於ける水中での音波の波長の(1
/4)以下に保持された状態で,第1の円筒24aと第
2の円筒24bとが結合されている。第1の円柱23a
は第1の円筒24aの内側に,第1の円柱23aの中心
軸と第1の円筒24aの中心軸とが一致するように配置
される。第1の超音波振動子21a,第1の振動伝送要
素22a,第1の円柱23aからなる第1の超音波振動
体は,第1の円筒24aの一端に結合され第1の円筒2
4aの一端を密閉する第1の蓋25aによって支持され
ている。第2の円柱23bは第2の円筒24bの内側
に,第2の円柱23bの中心軸と第2の円筒24bの中
心軸とが一致するように配置される。第2の超音波振動
子21b,第2の振動伝送要素22b,第2の円柱23
bからなる第2の超音波振動体は,第2の円筒24bの
一端に結合され第2の円筒24bの一端を密閉する第2
の蓋25bによって支持されている。第1の円筒24a
と第2の円筒24bとを1つの円筒で構成して,円筒の
一端に第1の蓋25a,他端に第2の蓋25bをする構
成としても良い。第1の円筒24a,第2の円筒24b
(又は,円筒24aと円筒24bを構成する1つの円
筒),第1の蓋25a,及び第1の蓋25bにより反応
容器20が構成される。反応容器20に水を流入させる
第1の管26aが複数(少なくとも2つ以上)第1の蓋
25aに接続され,各第1の管26aは第1の円筒24
a(又は,第1の円筒24aと第2の円筒24bを構成
する1つの円筒)の中心軸に対応する位置を中心とする
円周上の対称な位置に接続され,各第1の管26aは第
1のリング状の配管41aに接続されている。第1のリ
ング状の配管41aから第1の配管42aが分岐してお
り,図示しない水処理すべき水を供給する系を含む外部
の系に接続されている。反応容器20から水処理された
水が流出する第2の管26bが複数(少なくとも2つ以
上)第2の蓋25bに接続され,各第2の管26bは第
2の円筒24b(又は,第1の円筒24aと第2の円筒
24bを構成する1つの円筒)の中心軸に対応する位置
を中心とする円周上の対称な位置に接続され,各第2の
管26bは第2のリング状の配管41bに接続されてい
る。第2のリング状の配管41bから第2の配管42b
が分岐しており,第2の配管42bは図示しない水処理
された水を貯蔵する系を含む外部の系に接続されてい
る。第1の円柱23aの側面と第1の円筒24a(又
は,第1の円筒24aと第2の円筒24bを構成する1
つの円筒)の内周面との間隔(D1),第1の円柱23
aの面と第1の蓋25aの内面との間隔(D2),第1
の円柱23aと第2の円筒23bの対向する面との間隔
(D3),第2の円柱23bの側面と第2の円筒24b
(又は,第1の円筒24aと第2の円筒24bを構成す
る1つの円筒)の内周面との間隔(D4),第2の円柱
23bの面と第2の蓋25bの内面との間隔(D5)は
何れも,超音波振動子の駆動周波数に於ける水中での音
波の波長の(1/4)以下である。各第1の管26aか
ら反応容器20に流入した水は,第1の円柱23a,第
2の円柱23bのほぼ全表面上で膜状に流れ各第2の管
26bから排水される。第1の超音波振動子21a,第
2の超音波振動子21bは図示されない駆動電源に接続
されている。第1の円柱23aと第2の円柱23bは同
位相で振動させるのが望ましい。実施例1と同様に,間
隔が水中での音波の波長の(1/4)以下である領域に
は,水中での音波の波長の(1/4)以下である領域に
は安定してキャビテーションが発生し,第1の円柱23
a,第2の円柱23bのほぼ全表面で膜状に流れる水に
キャビテーションが発生される。なお,以上の説明に於
いて,水を各第2の管26bから流入させ各第1の管2
6aから流出させる構成として,水の流れる方向は逆方
向としても良く,同様の効果が得られる。振動伝送要素
(22a,22b),結合振動する円柱(23a,23
b)が駆動周波数28kHzで共振し目的とする振動モ
ードとなるように,負荷状態での振動状態の解析を有限
要素法を用いて行ない,反応容器20の各構成要素の寸
法を決定した。円柱(23a,23b)を,直径117
mm,長さ82mmのTi合金の円柱とし,第1の円筒
24aと第2の円筒24bをステンレスの1つの円筒
(内径123mm,外径163mm)で構成し,振動伝
送要素(22a,22b)を,直径40mm,長さ85
mmのAl合金の円柱棒とした。間隔D1,D2,D
3,D4,D5は何れも3mmとした。反応容器20の
容積は約800mLである。超音波振動子(21a,2
1b)としてボルト締めランジュバン型超音波振動子を
使用し,駆動周波数を約26kHzとし,第1の円柱2
3aと第2の円柱23bは同位相で振動させた。26k
Hzの音波の水中の(1/4)波長は間隔D1,D2,
D3,D4,D5(3mm)よりも十分大きいので,3
mmの方向には定在波は生じずこの3mmの方向の圧力
分布はほぼ一様と見なせ,3mmの間隔の空間に発生す
る圧力変動はスクイーズ膜効果によるものである。実施
例2の水処理装置の構造では,実施例1(図1)の水処
理装置よりも水処理領域が広くなると共に,第1の円柱
23a,第2の円柱23bの間で膜状に流れる水は,第
1の円柱23a,第2の円柱23bから振動を受けるの
で,キャビテーション強度が強くなり,従って,水の膜
に非常に強力な水処理のための作用が付与される。以
下,実施例2の水処理装置を用いて,大腸菌(E.Co
li)の殺菌評価実験を行ない得られた殺菌性能につい
て説明する。殺菌評価実験系は,試料タンクの試料(大
腸菌)を含む試料水をポンプで反応容器に送流し,反応
容器から流出する試料水を再度試料タンクに戻す循環系
により構成されている。試料タンクの試料水は撹拌器に
より常時撹拌されており,試料タンク内の試料の濃度を
一定に保持している。水処理の継続中に試料タンクから
試料水を採取して,吸光光度計により試料濃度を計測す
る。吸光度と実際の大腸菌の濃度との較正値として,大
腸菌の濃度5.8×108(cells/mL)に対す
る660nmの光での吸光度の値0.53を用いた。殺
菌評価実験に先立ち,超音波振動子を駆動させない状態
で試料水を循環させて,大腸菌の濃度が殆ど変化しない
ことを確認した。図3は実施例2による流水式の水処理
装置による殺菌評価実験の結果例を示す図であり,縦軸
は試料水中に生存する大腸菌の濃度(cells/m
L),横軸は水処理の継続時間(min)を示す。但
し,図3に示す結果は,図2に於いて,第1の管26a
を1つのステンレス円筒(第1の円筒24aと第2の円
筒24bを構成する)の25aの近傍の一箇所に結合
し,第2の管26bをこのステンレス円筒の25bの近
傍の一箇所に結合した流水式の水処理装置を使用した。
殺菌評価実験は,駆動周波数26.2kHz,消費電力
130W,大腸菌の初期濃度(定数)Q0=6.0×1
7(cells/mL),処理量2L(使用する試料
水の液量),試料水の流量ν=600(mL/min)
の各条件で行なった。図3に示す結果から,大腸菌の濃
度の水処理の継続時間に対する変化は,反応速度論的に
1次反応と同じ関係式で表現できると仮定できる。この
1次反応の反応速度定数を大腸菌の殺菌速度定数kE
定義すると,図3に示す直線の勾配から,kE=0.0
52(min-1)が得られる。ここで得られた殺菌速度
定数kEは,使用する循環系に於ける殺菌速度を示し,
処理量にも依存する。そこで,以下に説明する手順で,
反応容器そのものの殺菌速度を求めるため,反応容器を
1度だけ通過するときの殺菌速度定数kECを求める。い
ま,時刻tに於いて,試料タンク内での大腸菌の濃度を
m(t),反応容器の水の流入口での大腸菌の濃度を
in(t)(=Cm(t)),反応容器の水の流出口で
の大腸菌の濃度をCout(t),試料タンク内での試料
水の体積をVt,反応容器内での試料水の体積をVCとす
る。但し,試料タンクと反応容器を結ぶ配管等の体積は
無視する。反応容器内での殺菌反応も1次反応であると
仮定し,時刻tでの反応容器内での大腸菌の濃度をCC
(t)は(数1)で与えられる。
Embodiments of the present invention will be described below in detail with reference to the drawings. In the present invention, the squeeze film is formed in a region between the side surfaces (outer peripheral surface) and both end surfaces of the cylinder and the inner wall of the reaction cell by utilizing the vibration displacement of the cylinder surface using the coupled vibration in the axial direction and the radial direction of the cylinder. Use a reaction vessel with a large water treatment area and axial symmetry so that the effect takes place. (Embodiment 1) FIG. 1 is a sectional view showing a configuration example of a flowing water type water treatment apparatus according to Embodiment 1 of the present invention, and has the most basic structure having one reaction vessel for water treatment. It is sectional drawing of an apparatus. The electric vibration generated by the drive power supply 1 is converted into mechanical vibration by the ultrasonic vibrator 21. The ultrasonic vibrator 21 may be either an electrostrictive or magnetostrictive ultrasonic vibrator, but is preferably a bolted Langevin type ultrasonic vibrator having better electroacoustic conversion efficiency at the time of driving. The mechanical vibration generated by the ultrasonic vibrator 21 is transmitted to the cylinder 23 via the vibration transmitting element 22 coupled to the output end of the ultrasonic vibrator 21. Vibration transmission element 2
2 may be composed of a plurality of stages, or a vibration transmitting element having a shape such as a solid horn may be used. The cylinder 23 is a cylinder 2
4, the central axis of the cylinder 23 and the central axis of the cylinder 24 are arranged so as to coincide with each other. The ultrasonic vibrator composed of the ultrasonic vibrator 21, the vibration transmission element 22, and the column 23 is a cylindrical 2
4 and is supported by a first lid 25 that seals one end of the cylinder 24. The reaction container 20 is constituted by the second lid 31, the cylinder 24, and the first lid 25 that seal the other end of the cylinder 24. A plurality of (at least two or more) first tubes 26 for flowing water into the reaction vessel 20 are connected to the first lid 25, and each of the first tubes 26 is centered on a position corresponding to the central axis of the cylinder 24. Each first pipe 26 is connected to a symmetrical position on the circumference, and each first pipe 26 is connected to a ring-shaped pipe 41. A pipe 42 branches off from the ring-shaped pipe 41 and is connected to an external system including a system (not shown) for supplying water to be treated. In addition, a second pipe 43 through which water subjected to water treatment flows out of the reaction container 20 is provided at the center of the second lid 31. The distance between the side surface of the cylinder 23 and the inner peripheral surface of the cylinder 24, the distance between the upper surface of the cylinder 23 and the inner surface of the first lid 25, and the distance between the lower surface of the cylinder 23 and the inner surface of the second lid 31 are all as follows. The frequency is set to (1 /) or less of the wavelength of the sound wave in water at the driving frequency of the ultrasonic transducer. The water that has flowed into the reaction vessel 20 from each first pipe 26 flows in a film form on almost the entire surface (outer peripheral surface, both end surfaces) of the column 23, and is drained from the second pipe 43. The second pipe 43 is connected to an external system including a system (not shown) for storing water treated water. Column 2
Numeral 3 has a vibration mode in which the forces in the axial direction and the radial direction of the cylinder 23 are almost equal to each other when the ultrasonic vibration is performed, as shown by a broken line 23 ', and is configured to perform a so-called combined vibration. Cavitation is generated stably in a region of (1 /) or less of the wavelength of, and cavitation is generated in water flowing in a film on almost the entire surface of the cylinder 23. The water flowing into the reaction vessel from the plurality of first pipes 26 is uniformly supplied to the water treatment area where cavitation occurs without stagnation. Cavitation occurs in the water flowing in the form of a film on almost the entire surface of the column 23, and a wide water treatment area is secured, so that a stable water treatment effect can be obtained. In order to improve the radiation capability of ultrasonic waves from the cylinder 23, it is considered that it is necessary to increase the amount of medium removed by the vibration of the cylinder 23. Therefore, the coupling vibration in the axial direction and the radial direction of the cylinder 23 can be reduced. As the vibration mode, it is desirable to use a fundamental coupling vibration mode as shown by a broken line 23 '. In the above description, as the configuration in which water flows in from the second pipes 43 and flows out from each of the first pipes 26, the flow direction of the water may be reversed, and the same effect is obtained. (Embodiment 2) Two cylinders are arranged so that the end faces are opposed to each other, so that the squeeze film effect occurs even in a region between the end faces of the two cylinders, and has a wide water treatment area, axial symmetry and cylinder. A reaction vessel having a structure symmetrical with respect to a plane perpendicular to the axis is used. FIG. 2 is a sectional view showing a configuration example of a flowing water type water treatment apparatus according to a second embodiment of the present invention. The water treatment device shown in FIG. 2 has a configuration in which two components of the water treatment device shown in FIG. 1 except for the second lid 31 are combined, and the surface of the opposing first cylinder 23a and the second cylinder The distance between the surfaces of 23b is (1) of the wavelength of the sound wave in water at the driving frequency of the ultrasonic transducer.
/ 4) The first cylinder 24a and the second cylinder 24b are connected while being held below. First cylinder 23a
Are arranged inside the first cylinder 24a such that the center axis of the first cylinder 23a and the center axis of the first cylinder 24a coincide with each other. A first ultrasonic vibrating body including a first ultrasonic vibrator 21a, a first vibration transmission element 22a, and a first cylinder 23a is connected to one end of a first cylinder 24a and is connected to a first cylinder 2a.
4a is supported by a first lid 25a that seals one end. The second cylinder 23b is arranged inside the second cylinder 24b such that the center axis of the second cylinder 23b and the center axis of the second cylinder 24b coincide. Second ultrasonic transducer 21b, second vibration transmission element 22b, second cylinder 23
b is connected to one end of the second cylinder 24b and seals the second end of the second cylinder 24b.
Is supported by the lid 25b. First cylinder 24a
The second cylinder 24b and the second cylinder 24b may be configured as a single cylinder, and the first lid 25a may be provided at one end of the cylinder and the second lid 25b may be provided at the other end. First cylinder 24a, second cylinder 24b
The reaction vessel 20 is constituted by (or one cylinder constituting the cylinder 24a and the cylinder 24b), the first lid 25a, and the first lid 25b. A plurality of (at least two or more) first pipes 26a through which water flows into the reaction vessel 20 are connected to the first lid 25a, and each first pipe 26a is connected to the first cylinder 24.
a (or one cylinder constituting the first cylinder 24a and the second cylinder 24b) are connected to symmetrical positions on the circumference centered on the position corresponding to the central axis, and each first pipe 26a Is connected to the first ring-shaped pipe 41a. A first pipe 42a branches from the first ring-shaped pipe 41a, and is connected to an external system including a system (not shown) for supplying water to be treated. A plurality of (at least two or more) second pipes 26b through which the water treated water flows out of the reaction vessel 20 are connected to the second lids 25b, and each of the second pipes 26b is connected to the second cylinder 24b (or the second cylinder 24b). (One cylinder constituting one cylinder 24a and the second cylinder 24b) are connected to symmetrical positions on the circumference around a position corresponding to the central axis, and each second tube 26b is connected to a second ring. It is connected to a pipe 41b in the shape of a letter. From the second ring-shaped pipe 41b to the second pipe 42b
Is branched, and the second pipe 42b is connected to an external system including a system (not shown) for storing water treated. The side surface of the first cylinder 23a and the first cylinder 24a (or the first cylinder 24a and the second cylinder 24b forming the second cylinder 24b)
(D1) between the inner surface of the first cylinder and the first cylinder 23
a (D2) between the surface of the first cover 25a and the inner surface of the first lid 25a;
(D3) between the opposite cylinder 23a and the opposing surface of the second cylinder 23b, the side surface of the second cylinder 23b and the second cylinder 24b.
(D4) between the inner peripheral surface of the first cylinder 24a and one cylinder constituting the second cylinder 24b (D4), and the interval between the surface of the second cylinder 23b and the inner surface of the second lid 25b. (D5) is equal to or less than (波長) the wavelength of the sound wave in water at the driving frequency of the ultrasonic transducer. The water that has flowed into the reaction vessel 20 from each first pipe 26a flows like a film over substantially the entire surface of the first cylinder 23a and the second cylinder 23b, and is drained from each second pipe 26b. The first ultrasonic transducer 21a and the second ultrasonic transducer 21b are connected to a drive power supply (not shown). It is desirable that the first cylinder 23a and the second cylinder 23b vibrate in the same phase. As in the first embodiment, cavitation is stably performed in a region where the interval is equal to or less than (1 /) the wavelength of the sound wave in water. Occurs and the first column 23
a, Cavitation is generated in the water flowing in a film shape on almost the entire surface of the second column 23b. In the above description, water is introduced from each second pipe 26b and the first pipe 2
As for the configuration for flowing out from 6a, the direction in which water flows may be reversed, and the same effect is obtained. Vibration transmitting elements (22a, 22b), coupled vibrating cylinders (23a, 23)
The vibration state under load was analyzed using the finite element method so that b) resonated at the drive frequency of 28 kHz to achieve the desired vibration mode, and the dimensions of each component of the reaction vessel 20 were determined. The cylinders (23a, 23b) have a diameter of 117
The first cylinder 24a and the second cylinder 24b are made of a single stainless steel cylinder (inner diameter 123 mm, outer diameter 163 mm), and the vibration transmission elements (22a, 22b) are made of a Ti alloy cylinder having a length of 82 mm and a length of 82 mm. , Diameter 40mm, length 85
mm Al alloy cylindrical rod. Interval D1, D2, D
3, D4 and D5 were all 3 mm. The volume of the reaction vessel 20 is about 800 mL. Ultrasonic transducers (21a, 2
As 1b), a bolted Langevin type ultrasonic transducer is used, the driving frequency is set to about 26 kHz, and the first column 2
3a and the second cylinder 23b were vibrated in phase. 26k
The ()) wavelength of sound waves in Hz in water is the distance D1, D2,
Since it is sufficiently larger than D3, D4, and D5 (3 mm), 3
No standing wave is generated in the direction of mm, and the pressure distribution in the direction of 3 mm can be regarded as substantially uniform. The pressure fluctuation generated in the space of 3 mm is due to the squeeze film effect. In the structure of the water treatment apparatus of the second embodiment, the water treatment area is larger than that of the water treatment apparatus of the first embodiment (FIG. 1), and the water flows in a film-like manner between the first column 23a and the second column 23b. Since the water is vibrated from the first cylinder 23a and the second cylinder 23b, the cavitation strength is increased, and therefore, a very strong action for water treatment is given to the water film. Hereinafter, Escherichia coli (E. Co.) was used using the water treatment apparatus of Example 2.
The sterilization performance obtained by performing the sterilization evaluation experiment of li) will be described. The sterilization evaluation experiment system includes a circulation system in which sample water containing a sample (Escherichia coli) in a sample tank is sent to a reaction container by a pump, and sample water flowing out of the reaction container is returned to the sample tank again. The sample water in the sample tank is constantly stirred by the stirrer, and the concentration of the sample in the sample tank is kept constant. Sample water is sampled from the sample tank during the continuation of the water treatment, and the sample concentration is measured using an absorptiometer. As a calibration value between the absorbance and the actual concentration of Escherichia coli, an absorbance value of 0.53 at 660 nm with respect to the concentration of Escherichia coli of 5.8 × 10 8 (cells / mL) was used. Prior to the sterilization evaluation experiment, the sample water was circulated without driving the ultrasonic vibrator, and it was confirmed that the concentration of E. coli hardly changed. FIG. 3 is a diagram showing an example of the results of a sterilization evaluation experiment using a flowing water type water treatment apparatus according to Example 2, wherein the vertical axis represents the concentration of Escherichia coli living in the sample water (cells / m 2).
L), the horizontal axis shows the duration (min) of the water treatment. However, the result shown in FIG. 3 is the same as FIG.
Is connected to one place near 25a of one stainless steel cylinder (constituting the first cylinder 24a and the second cylinder 24b), and the second pipe 26b is connected to one place near 25b of this stainless steel cylinder. A running water treatment device was used.
In the sterilization evaluation experiment, the driving frequency was 26.2 kHz, the power consumption was 130 W, and the initial concentration (constant) of E. coli Q 0 = 6.0 × 1.
0 7 (cells / mL), the processing amount 2L (liquid volume of sample water to be used), the flow rate [nu = 600 water sample (mL / min)
Under each condition. From the results shown in FIG. 3, it can be assumed that the change in the concentration of Escherichia coli with respect to the duration of the water treatment can be expressed kinetically by the same relational expression as the primary reaction. The reaction rate constant for the primary reaction is defined as sterilization rate constant k E of E. coli, from the slope of the straight line shown in FIG. 3, k E = 0.0
52 (min -1 ) are obtained. The sterilization rate constant k E obtained here indicates the sterilization rate in the circulating system used,
It also depends on the throughput. Therefore, in the procedure described below,
To determine the bactericidal rate of the reaction vessel itself, determine the bactericidal rate constant k EC as it passes through the reaction vessel only once. Now, at time t, the concentration of E. coli in the sample tank is C m (t), the concentration of E. coli at the water inlet of the reaction vessel is C in (t) (= C m (t)), Let C out (t) be the concentration of E. coli at the outlet of the water in the reaction vessel, V t be the volume of the sample water in the sample tank, and V C be the volume of the sample water in the reaction vessel. However, the volume of piping etc. connecting the sample tank and the reaction vessel is ignored. Assuming that the sterilization reaction in the reaction vessel is also a primary reaction, the concentration of E. coli in the reaction vessel at time t is calculated as C C
(T) is given by (Equation 1).

【数1】 CC(t)=Q0exp{−kECt} …(数1) t=t1の時,[Equation 1] C C (t) = Q 0 exp {−k EC t} (Equation 1) When t = t 1 ,

【数2】 CC(t1)=Cin(t1)=Cm(t1) …(数2) であり,t={t1+(VC/ν)}の時,(2) C C (t 1 ) = C in (t 1 ) = C m (t 1 ) (Equation 2), and when t = {t 1 + (V C / ν)},

【数3】 CC{t1+(VC/ν)}=Cout{t1+(VC/ν)} …(数3) であるから,(数4)の関係が得られる。## EQU3 ## Since C C {t 1 + (V C / ν)} = C out {t 1 + (V C / ν)} (Equation 3), the relationship of (Equation 4) is obtained.

【数4】 Cout{t1+(VC/ν)}=Cm(t1)exp{−kECC/ν} …(数4) 一方,循環系に於ける大腸菌の濃度の変化は,(数5)
で示される(limはΔtの0への極値を示す)。
C out {t 1 + (V C / v)} = C m (t 1 ) exp {−k EC V C / v} (Equation 4) On the other hand, the concentration of Escherichia coli in the circulatory system The change is (Equation 5)
(Lim indicates the extreme value of Δt to 0).

【数5】 dCm(t1)/dt=lim{(Cm(t1+Δt)−Cm(t1))/Δt} =−kEm(t1) …(数5) 更に,時刻(t1+Δt)に於ける試料タンク内での大
腸菌の濃度は(数6)で与えられる。
DC m (t 1 ) / dt = lim {(C m (t 1 + Δt) −C m (t 1 )) / Δt} = − k E C m (t 1 ) (Equation 5) , The concentration of E. coli in the sample tank at time (t 1 + Δt) is given by (Equation 6).

【数6】 Cm(t1+Δt)= {(Vt−νΔt)Cm(t1)+νΔtCout(t1+(VC/ν))}/Vt …(数6) (数5),(数6)から(数7)が得られる。C m (t 1 + Δt) = {(V t −νΔt) C m (t 1 ) + νΔt C out (t 1 + (V C / ν))} / V t (Equation 6) (Equation 5) ) And (Equation 6) yield (Equation 7).

【数7】 −kEm(t1)=(ν/Vt){Cout(t1+(VC/ν))−Cm(t1)} …(数7) (数7)に(数4)を代入して整理すると,kE(循環
系の殺菌速度定数)とkEC(反応容器を1度だけ通過す
るときの殺菌速度定数)との関係を示す式(数8)が求
められる。従って,(数8)から,kEC=0.082
(min-1)が得られる。
-K E C m (t 1 ) = (ν / V t ) {C out (t 1 + (V C / ν)) − C m (t 1 )} (Equation 7) (Equation 7) Substituting (Equation 4) into (Equation 4), the equation (Equation 8) shows the relationship between k E (sterilization rate constant of the circulation system) and k EC (sterilization rate constant when passing through the reaction vessel only once). ) Is required. Therefore, from (Equation 8), k EC = 0.082
(Min -1 ) is obtained.

【数8】 kEC=(−ν/VC)ln{1−(kEt/ν)} …(数8) 更に,大腸菌の生存率を10-mのように表すと,(数
4)から(数9)が得られる。m=1,2,3の時,殺
菌率はそれぞれ,90%,99%,99.9%である。
K EC = (− ν / V C ) ln {1− (k E V t / ν)} (Equation 8) Further, when the survival rate of E. coli is expressed as 10 −m , (Equation 9) is obtained from 4). When m = 1, 2, 3, the sterilization rates are 90%, 99%, and 99.9%, respectively.

【数9】 m=0.036(min-1)VC(mL)/ν(mL/min) …(数9) (数9)によれば,反応容器を1度だけ通過させて,例
えば,99%以上(m=2以上)の殺菌率を得るには,
試料水の流量νを約14(mL/min)以下に設定す
れば良いことがわかる。キャビテーションを発生させる
ために従来多用されていた定在波音場を用いる大腸菌の
殺菌評価実験を行なった結果を,比較のために以下に示
す。定在波音場を用いる殺菌評価実験は,バッチの容器
に先の殺菌評価実験に使用した試料水の約100mLを
入れて,同相縦振動する直径30mmの円形振動面から
周波数27.3kHzの超音波を照射した。この時,平
均消費電力は約50Wであった。図4は,本発明の実施
例2による流水式の水処理装置による殺菌評価実験の結
果例(図3)と,定在波音場を用いる殺菌評価実験の結
果例を比較する図である。図4に於いて,縦軸は単位電
力当りに殺菌された大腸菌の数(cells/W)を示
し,横軸は水処理の継続時間(min)を示す。図4に
示す結果から明らかなように,流水式の水処理装置では
試料水を流しながら水処理しているのにも係わらず,単
位電力当りに殺菌される大腸菌の数は,定在波音場を用
いる場合の約2倍に向上している。大腸菌の濃度の変化
を反応速度定数kの1次反応と仮定すると,図4に於け
る変化曲線(円で示す点を結ぶ)の傾向は{1−exp
(−kt)}で表されるが,定在波音場を用いる場合
(四角の点を結ぶ曲線)には,この傾向があまり見られ
ず,安定した殺菌効果が得られないようである。この原
因は,定在波音場を用いる場合,キャビテーションや液
面の上下動等により振動子に対する水の負荷変動が大き
く変化して,安定してキャビテーションが発生しないた
めと考えられる。逆に,スクイーズ膜効果を利用してキ
ャビテーションを発生させる本発明の場合には,安定し
てキャビテーションを発生させることができ,この結
果,安定した大腸菌の殺菌効果が得られていると考えら
れる。 (実施例3)中心に貫通孔をもつ仕切り板を介して,端
面が対向するように2つの円柱を配置して,2つの円柱
の各端面と仕切り板の面との間の領域でもスクイーズ膜
効果が生起するようにし,広い水処理領域をもち,軸対
称性及び仕切り板に対して対称な構造をもつ反応容器を
使用する。図5は本発明の実施例3の流水式の水処理装
置の構成例を示す断面図であり,水処理用の2つの反応
容器を備えた構造をもつ水処理装置の断面図である。実
施例3の水処理装置では実施例2(図2)の水処理装置
よりも更に広い面積の水処理領域を形成できる。図5に
示す水処理装置は,図1に示す水処理装置の第2の蓋3
1を除いた構成を2つ結合した構成を有し,仕切り板3
2の面と対向する第1の円柱23aの面との間隔,仕切
り板32の面と対向する第2の円柱23bの面との間隔
がそれぞれ,超音波振動子の駆動周波数に於ける水中で
の音波の波長の(1/4)以下に保持された状態で,第
1の円筒24aと第2の円筒24bとが,中心に水の流
路をもつ仕切り板32を挟んで結合されている。第1の
円柱23aは第1の円筒24aの内側に,第1の円柱2
3aの中心軸と第1の円筒24aの中心軸とが一致する
ように配置される。第1の超音波振動子21a,第1の
振動伝送要素22a,第1の円柱23aからなる第1の
超音波振動体は,第1の円筒24aの一端に結合され第
1の円筒24aの一端を密閉する第1の蓋25aによっ
て支持されている。第2の円柱23bは第2の円筒24
bの内側に,第2の円柱23bの中心軸と第2の円筒2
4bの中心軸とが一致するように配置される。第2の超
音波振動子21b,第2の振動伝送要素22b,第2の
円柱23bからなる第2の超音波振動体は,第2の円筒
24bの一端に結合され第2の円筒24bの一端を密閉
する第2の蓋25bによって支持されている。第1の円
筒24aと第2の円筒24bは,中心部に水の流路をも
つ仕切り板32の面と対向する第1の円柱23aの面と
の間隔,仕切り板32の面と対向する第2の円柱23b
の面との間隔がそれぞれ,超音波振動子の駆動周波数に
於ける水中での音波の波長の(1/4)以下に保持され
た状態で,仕切り板32を挟んで結合されている。第1
の円筒24a,第1の蓋25a,及び仕切り板32によ
り第1の容器が構成され,第2の円筒24b,第2の蓋
25b,及び仕切り板32により第2の容器が構成され
る。第1の反応容器20aに水を流入させる第1の管2
6aが複数(少なくとも2つ以上)第1の蓋25aに接
続され,各第1の管26aは第1の円筒24aの中心軸
に対応する位置を中心とする円周上の対称な位置に接続
され,各第1の管26aは第1のリング状の配管41a
に接続されている。第1のリング状の配管41aから第
1の配管42aが分岐しており,図示しない水処理すべ
き水を供給する系を含む外部の系に接続されている。第
1の反応容器20aを通過し水処理された水は,仕切り
板32の中心部の貫通孔33を通り第2の反応容器20
bに流入する。第2の反応容器20から水処理された水
が流出する第2の管26bが複数(少なくとも2つ以
上)第2の蓋25bに接続され,各第2の管26bは第
2の円筒24bの中心軸に対応する位置を中心とする円
周上の対称な位置に接続され,各第2の管26bは第2
のリング状の配管41bに接続されている。第2のリン
グ状の配管41bから第2の配管42bが分岐してお
り,第2の配管42bは図示しない水処理された水を貯
蔵する系を含む外部の系に接続されている。第1の円柱
23aの側面と第1の円筒24aの内周面との間隔(d
1),第1の円柱23aの面と第1の蓋25aの内面と
の間隔(d2),仕切り板32の面と対向する第1の円
柱23aの面との間隔(d3),仕切り板32の面と対
向する第2の円柱23bの面との間隔(d4),第2の
円柱23bの側面と第2の円筒24bの内周面との間隔
(d5),第2の円柱23bの面と第2の蓋25bの内
面との間隔(d6)は何れも,超音波振動子の駆動周波
数に於ける水中での音波の波長の(1/4)以下に保持
されている。各第1の管26aから第1の反応容器20
aに流入した水は,第1の反応容器の内部で第1の円柱
23aのほぼ全表面(外周面,両端面)上で膜状に流
れ,その後,仕切り板32の中心部の貫通孔33を通り
第2の反応容器20bに流入し,第2の反応容器の内部
で第2の円柱23bのほぼ全表面(外周面,両端面)上
で膜状に流れ各第2の管26bから排水される。なお,
第1の円筒24a,第2の円筒24b,及び仕切り板3
2を1つの円柱から機械化工により製作して一体として
も良い。第1の超音波振動子21a,第2の超音波振動
子21bは図示されない駆動電源に接続されている。第
1の円柱23aと第2の円柱23bは同位相で振動させ
るのが望ましい。実施例1,実施例2と同様に,間隔が
水中での音波の波長の(1/4)以下である領域には,
水中での音波の波長の(1/4)以下である領域には安
定してキャビテーションが発生し,第1の円柱23a,
第2の円柱23bのほぼ全表面で流れる膜状の水にキャ
ビテーションが発生される。実施例3の水処理装置の構
造は実施例1(図1)の水処理装置を2個直列に連結し
た構成と等しいが,よりコンパクトな構成となってお
り,省スペース化できる。なお,以上の説明に於いて,
水を各第2の管26bから流入させ各第1の管26aか
ら流出させる構成として,水の流れる方向は逆方向とし
ても良く,同様の効果が得られる。実施例2と同様にし
て,振動伝送要素(22a,22b),結合振動する円
柱(23a,23b)が駆動周波数28kHzで共振し
目的とする振動モードとなるように,負荷状態での振動
状態の解析を有限要素法を用いて行ない,反応容器20
の各構成要素の寸法を決定した。円柱(23a,23
b)を,直径117mm,長さ82mmのAl合金の円
柱とし,円筒(24a,24b)をAl合金の円筒(内
径123mm,外径163mm)で構成し,振動伝送要
素(22a,22b)を,直径40mm,長さ85mm
のAl合金の円柱棒とした。間隔d1,d2,d3,d
4,d5,d6は何れも3mmとした。仕切り板32は
厚さ20mmのAl合金であり,中心の貫通孔33の直
径は10mmである。実施例3の反応容器の電気的な性
質は,実施例2の殺菌評価実験に使用した反応容器の電
気的な性質とほぼ同じく,駆動周波数は約26kHz,
消費電力は約150Wであり,反応容器(20a,20
b)の容積は約250mLである。実施例2と同様に,
超音波振動子(21a,21b)としてボルト締めラン
ジュバン型超音波振動子を使用し,駆動周波数を約26
kHzとし,第1の円柱23aと第2の円柱23bは同
位相で振動させた。26kHzの音波の水中の(1/
4)波長は間隔d1,d2,d3,d4,d5,d5
(3mm)よりも十分大きいので,3mmの方向には定
在波は生じずこの3mmの方向の圧力分布はほぼ一様と
見なせ,3mmの間隔の空間に発生する圧力変動はスク
イーズ膜効果によるものである。以下,実施例2と同様
にして,実施例3の水処理装置を用いて循環系を用い大
腸菌(E.Coli)の殺菌評価実験を行ない得られた
殺菌性能について説明する。図6は実施例3による流水
式の水処理装置による大腸菌の殺菌評価実験の結果例を
示す図であり,縦軸は試料水中に生存する大腸菌の濃度
(cells/mL),横軸は水処理の継続時間(mi
n)を示す。図6示す勾配から,kE(循環系の殺菌速
度定数)=0.045(min-1)が得られる。実施例
2と同様の手順により,得られたkE,Q0=8.5×1
7(cells/mL),Vt=1750(mL),V
C=250(mL),ν=600(mL/min)の各
値を用いると,kEC(反応容器を1度だけ通過するとき
の殺菌速度定数)=0.34(min-1)が得られる。
このkECの値は,実施例2の殺菌評価実験により得られ
たkEC=0.082(min-1)の4倍である。大腸菌
の生存率を10-mとした時の関係式は(数10)とな
る。例えば,99%以上(m=2以上)の殺菌率を得る
には,流量νを約18(mL/min)以下に設定すれ
ば良い。
M = 0.036 (min −1 ) V C (mL) / ν (mL / min) (Equation 9) According to (Equation 9), the reaction vessel is passed only once, and for example, , 99% or more (m = 2 or more)
It can be seen that the flow rate ν of the sample water should be set to about 14 (mL / min) or less. The results of an experiment on the evaluation of sterilization of Escherichia coli using a standing wave sound field, which has been widely used to generate cavitation, are shown below for comparison. In the sterilization evaluation experiment using the standing wave sound field, about 100 mL of the sample water used in the previous sterilization evaluation experiment is put into a batch container, and ultrasonic waves having a frequency of 27.3 kHz are applied from a circular vibration surface having a diameter of 30 mm and in-phase longitudinal vibration. Was irradiated. At this time, the average power consumption was about 50W. FIG. 4 is a diagram comparing a result example of the sterilization evaluation experiment (FIG. 3) using the flowing water type water treatment apparatus according to the second embodiment of the present invention and a result example of the sterilization evaluation experiment using the standing wave sound field. In FIG. 4, the vertical axis indicates the number of cells killed per unit electric power (cells / W), and the horizontal axis indicates the duration of water treatment (min). As is clear from the results shown in FIG. 4, the number of Escherichia coli to be killed per unit of electric power in the flowing water type water treatment apparatus is not affected by the water treatment while flowing the sample water. Is about twice as large as that in the case of using. Assuming that the change in the concentration of Escherichia coli is a first-order reaction of the reaction rate constant k, the tendency of the change curve (connecting the points indicated by circles) in FIG.
(−kt)}, but when a standing wave sound field is used (curve connecting square points), this tendency is hardly seen, and it seems that a stable sterilizing effect cannot be obtained. This is considered to be due to the fact that when a standing wave sound field is used, fluctuations in the water load on the vibrator greatly change due to cavitation, vertical movement of the liquid level, etc., and cavitation does not stably occur. Conversely, in the case of the present invention in which cavitation is generated using the squeeze film effect, cavitation can be generated stably, and as a result, it is considered that a stable sterilization effect of Escherichia coli is obtained. (Embodiment 3) Two cylinders are arranged via a partition plate having a through hole at the center so that the end faces are opposed to each other, and the squeeze film is formed even in the region between each end face of the two cylinders and the surface of the partition plate. Use a reaction vessel that is effective, has a large water treatment area, has axial symmetry and a structure symmetrical with respect to the partition plate. FIG. 5 is a cross-sectional view illustrating a configuration example of a flowing water type water treatment apparatus according to a third embodiment of the present invention, and is a cross-sectional view of a water treatment apparatus having a structure including two reaction vessels for water treatment. The water treatment apparatus according to the third embodiment can form a water treatment region having a larger area than the water treatment apparatus according to the second embodiment (FIG. 2). The water treatment device shown in FIG. 5 is the same as the water treatment device shown in FIG.
1 has a configuration in which two configurations are combined except for the partition plate 3
The distance between the surface of the first column 23a facing the second surface and the surface of the second column 23b facing the partition plate 32 is different from the surface of the second column 23b in the water at the driving frequency of the ultrasonic vibrator. The first cylinder 24a and the second cylinder 24b are connected to each other with the partition plate 32 having a water flow path at the center interposed therebetween while being kept at (() or less the wavelength of the sound wave. . The first cylinder 23a is provided inside the first cylinder 24a with the first cylinder 2a.
The first cylinder 24a is arranged so that the center axis of the first cylinder 24a coincides with the center axis of the first cylinder 24a. A first ultrasonic vibrating body composed of the first ultrasonic vibrator 21a, the first vibration transmitting element 22a, and the first cylinder 23a is connected to one end of the first cylinder 24a and is connected to one end of the first cylinder 24a. Is supported by a first lid 25a that seals the air. The second cylinder 23b is a second cylinder 24
b, the central axis of the second cylinder 23b and the second cylinder 2
4b are arranged so as to coincide with the central axis. A second ultrasonic vibrating body including the second ultrasonic vibrator 21b, the second vibration transmitting element 22b, and the second cylinder 23b is connected to one end of the second cylinder 24b and is connected to one end of the second cylinder 24b. Is supported by a second lid 25b that seals the air. The first cylinder 24a and the second cylinder 24b are spaced apart from the surface of the first cylindrical column 23a facing the surface of the partition plate 32 having a water flow path at the center, and the second cylinder 24b is located opposite the surface of the partition plate 32. 2 cylinder 23b
Are connected to each other with the partition plate 32 interposed therebetween in such a manner that the distance from the surface is kept at (以下) or less of the wavelength of the sound wave in water at the driving frequency of the ultrasonic transducer. First
The first cylinder is constituted by the cylinder 24a, the first lid 25a, and the partition plate 32, and the second container is constituted by the second cylinder 24b, the second lid 25b, and the partition plate 32. First pipe 2 for flowing water into first reaction vessel 20a
6a are connected to a plurality (at least two or more) of the first lids 25a, and each of the first tubes 26a is connected to a symmetrical position on a circumference centered on a position corresponding to the central axis of the first cylinder 24a. Each first pipe 26a is connected to a first ring-shaped pipe 41a.
It is connected to the. A first pipe 42a branches from the first ring-shaped pipe 41a, and is connected to an external system including a system (not shown) for supplying water to be treated. The water that has passed through the first reaction vessel 20a and has been subjected to water treatment passes through the through hole 33 at the center of the partition plate 32, and the second reaction vessel 20a
b. A plurality of (at least two or more) second pipes 26b from which the water-treated water flows out of the second reaction vessel 20 are connected to the second lids 25b, and each of the second pipes 26b is connected to the second cylinder 24b. Each second tube 26b is connected to a symmetrical position on a circumference centered on a position corresponding to the central axis, and
Is connected to the ring-shaped pipe 41b. A second pipe 42b is branched from the second ring-shaped pipe 41b, and the second pipe 42b is connected to an external system including a system (not shown) for storing treated water. The distance (d) between the side surface of the first cylinder 23a and the inner peripheral surface of the first cylinder 24a
1), the distance (d2) between the surface of the first cylinder 23a and the inner surface of the first lid 25a, the distance (d3) between the surface of the first cylinder 23a facing the surface of the partition plate 32, and the partition plate 32 (D4), the distance between the side surface of the second cylinder 23b and the inner peripheral surface of the second cylinder 24b (d5), the surface of the second cylinder 23b. Both the distance (d6) between the inner surface of the second lid 25b and the inner surface of the second lid 25b are maintained at (1 /) or less of the wavelength of sound waves in water at the driving frequency of the ultrasonic vibrator. From each first tube 26a to the first reaction vessel 20
a flows into a film on almost the entire surface (outer peripheral surface, both end surfaces) of the first column 23a inside the first reaction vessel, and then passes through the through hole 33 at the center of the partition plate 32. , Flows into the second reaction vessel 20b, flows in the form of a film on almost the entire surface (outer peripheral face, both end faces) of the second column 23b inside the second reaction vessel, and drains from each second pipe 26b. Is done. In addition,
First cylinder 24a, second cylinder 24b, and partition plate 3
2 may be manufactured from one cylinder by mechanization and integrated. The first ultrasonic transducer 21a and the second ultrasonic transducer 21b are connected to a drive power supply (not shown). It is desirable that the first cylinder 23a and the second cylinder 23b vibrate in the same phase. As in the case of the first and second embodiments, the region whose interval is equal to or less than (1 /) the wavelength of the sound wave in water is
Cavitation occurs stably in a region that is (() or less of the wavelength of the sound wave in water, and the first column 23a,
Cavitation is generated in the film-like water flowing on almost the entire surface of the second column 23b. The structure of the water treatment apparatus according to the third embodiment is the same as the structure in which the two water treatment apparatuses according to the first embodiment (FIG. 1) are connected in series, but has a more compact structure and can save space. In the above explanation,
As a configuration in which water flows in from each second pipe 26b and flows out from each first pipe 26a, the direction in which water flows may be reversed, and the same effect is obtained. In the same manner as in the second embodiment, the vibration transmission element (22a, 22b) and the coupled vibrating cylinder (23a, 23b) resonate at a drive frequency of 28 kHz to obtain a desired vibration mode. The analysis is performed using the finite element method, and the reaction vessel 20 is analyzed.
The dimensions of each component were determined. Columns (23a, 23
b) is a cylinder made of an Al alloy having a diameter of 117 mm and a length of 82 mm, the cylinder (24a, 24b) is made of an Al alloy cylinder (inner diameter 123 mm, outer diameter 163 mm), and the vibration transmission elements (22a, 22b) Diameter 40mm, length 85mm
Of aluminum alloy. Interval d1, d2, d3, d
4, d5 and d6 were all 3 mm. The partition plate 32 is an Al alloy having a thickness of 20 mm, and the diameter of the central through hole 33 is 10 mm. The electrical properties of the reaction vessel of Example 3 were almost the same as the electrical properties of the reaction vessel used in the sterilization evaluation experiment of Example 2, and the driving frequency was about 26 kHz.
The power consumption is about 150 W and the reaction vessels (20a, 20
The volume of b) is about 250 mL. As in Example 2,
A bolted Langevin type ultrasonic vibrator is used as the ultrasonic vibrators (21a, 21b), and the driving frequency is set to about 26.
kHz, the first column 23a and the second column 23b were vibrated in phase. 26 kHz sound wave in water
4) The wavelength is the interval d1, d2, d3, d4, d5, d5
(3 mm), the standing wave does not occur in the direction of 3 mm, and the pressure distribution in the direction of 3 mm can be regarded as substantially uniform. The pressure fluctuation generated in the space of 3 mm is due to the squeeze film effect. Things. Hereinafter, the sterilization performance obtained by performing a sterilization evaluation experiment on Escherichia coli (E. Coli) using the circulating system using the water treatment apparatus of the third embodiment in the same manner as in the second embodiment will be described. FIG. 6 is a diagram showing an example of the results of a sterilization evaluation experiment of Escherichia coli using a flowing water treatment apparatus according to Example 3, in which the vertical axis represents the concentration of Escherichia coli surviving in the sample water (cells / mL), and the horizontal axis represents water treatment. Duration (mi
n). From the gradient shown in FIG. 6, k E (sterilization rate constant of the circulation system) = 0.045 (min −1 ) is obtained. According to the same procedure as in Example 2, the obtained k E , Q 0 = 8.5 × 1
0 7 (cells / mL), V t = 1750 (mL), V
Using each value of C = 250 (mL) and ν = 600 (mL / min), k EC (sterilization rate constant when passing through the reaction vessel only once) = 0.34 (min −1 ) is obtained. Can be
This value of k EC is four times the value of k EC = 0.082 (min −1 ) obtained in the sterilization evaluation experiment of Example 2. The relational expression when the survival rate of E. coli is 10 −m is (Equation 10). For example, in order to obtain a sterilization rate of 99% or more (m = 2 or more), the flow rate ν may be set to about 18 (mL / min) or less.

【数10】 m=0.147(min-1)VC(mL)/ν(mL/min) …(数10) (実施例4)実施例1,実施例2,及び実施例3の水処
理装置は,反応容器に流入した水は必ず薄い厚さをもつ
軸対称性をもつ水処理領域を流れるので,反応容器に流
入した水が最短の経路で反応容器から流出する場合で
も,理論的にはキャビテーションの作用を与えることが
できる。キャビテーションが発生し,発生したキャビテ
ィによって音場が乱されたりすると,キャビテーション
の発生領域にも偏りが生じることも考えられる。この場
合,水処理領域を通過する水の経路を制御して,水処理
領域の全体を水が通過するようにできると都合が良い。
図7は本発明の実施例4の流水式の水処理装置の構成例
を示す断面図である。以下,円柱の側面,端面で水の流
れる経路を制御する水処理装置の構成例について説明す
る。図7は,実施例1(図1)の水処理装置の構成に於
いて,円柱23の側面で水の流れる経路を制御する構成
例を示す図である。図7に於いて,円柱23の側面と円
筒24の内面との間に,水の流れ仕切ることが可能で細
長く軟らかい弾性体5を螺旋状に円柱23の外周に巻き
付けるようにして挿入する。弾性体5は軟らかいので円
柱23の振動を拘束せず,水の流れだけを制御する。こ
の構成により各第1の管26から流入した水は常に円柱
23の側面を螺旋状に流れ,キャビテーションの発生に
位置的な偏りがある場合にも,水が各第1の管26から
流入して第2の管43から流出する間に,反応容器20
を流れる水に水処理のための作用を一様に付与できる。
図8は,実施例1(図1)の流水式の水処理装置の構成
に於いて,円柱23の第2の蓋31に対向する端面で水
の流れる経路を制御する構成例を示す図である。円柱2
3の端面に,別の弾性体5’を,例えば,図8に示すよ
うに渦巻き状に配置して水の仕切りを作り,水の流れを
仕切る。円柱23の側面を通過してきた水は,円柱23
の第2の蓋31に対向する端面では,円柱23の外周部
から端面の中心部へ渦巻き状に流れていき,第2の蓋3
1の中心部に設けられた第2の管43から排水される。
弾性体5,5’としては,例えば,スポンジを細長く成
形して表面をシリコン等でコーティングしたものを用い
れば良い。以上説明した構成を実施例2,実施例3に適
用して,同様の構成により,実施例2(図2)の水処理
装置の構成に於いて,第1の円柱23a,第2の円柱2
3bの側面に弾性体5を配置して側面を水の流れる経路
を制御し,第2の円柱23bの第2の蓋25bに対向す
る端面に弾性体5’を配置して端面で水の流れる経路を
制御できる。実施例3(図5)の水処理装置の構成に於
いて,第1の円柱23a,第2の円柱23bの側面に弾
性体5を配置して側面を水の流れる経路を制御し,第2
の円柱23aの仕切り板32に対向する端面に弾性体
5’を配置して端面で水の流れる経路を制御し,第2の
円柱23bの第2の蓋25bに対向する端面に弾性体
5’を配置して端面で水の流れる経路を制御できる。こ
のようにして,キャビテーションの発生に位置的な偏り
がある場合にも,水が反応容器20,反応容器20a,
20bに流入してから流出する間に,反応容器20,反
応容器20a,20bを流れる水に水処理のための作用
を一様に付与できる。以上説明した各実施例では,円柱
の表面全体に水処理領域が形成されるように,水の流
入,流出のための管を蓋に結合し,水の流入,流出のた
めの管の蓋への結合位置を円柱の中心軸に対して対称な
位置とすることにより,広い水処理領域を形成して,水
処理される水が反応容器内を対称に流れ,水処理領域の
ほぼ全域を通過する。この結果,反応容器内での水の停
滞がなく,水処理のための作用を流れる水に安定して付
与でき安定な水処理ができる。一般的に比較的低い周波
数の方が少ないエネルギでキャビテーションが発生でき
る。また,図1の破線23’に示すような円柱23の振
動姿態は,円柱の材質,寸法,及び使用する超音波の周
波数により決定され,同じ材質であれば低い周波数ほど
寸法が大きくなる。これらから,薄い厚さの水処理領域
の面積を広くを確保し,効率良くキャビテーションの効
果を利用するには,比較的低い周波数域の超音波,望ま
しくは100kHz以下の超音波を用いるのが良い。更
に,各実施例に於いて,複数の水処理装置を直列又は並
列に連結すればより広い面積の水処理領域を確保するこ
とができる。また,図1,図2,図5,図7,図8に示
す構成では,円柱(23,23a,23b)と円筒(2
4,24a,24b)との間隔を3mmとしたが,この
間隔の値は,超音波振動子の駆動周波数に於ける水中の
音波の波長の(1/4)以下であれば良く,装置の組立
ての容易性,装置の安全な運転等の観点から最小値を5
00μm程度の値とするのが好ましい。
M = 0.147 (min −1 ) V C (mL) / ν (mL / min) (Equation 10) (Example 4) Water of Examples 1, 2 and 3 Since the water flowing into the reaction vessel always flows through the water treatment area with a small thickness and axial symmetry, even if the water flowing into the reaction vessel flows out of the reaction vessel via the shortest path, the theoretical Can have the effect of cavitation. If cavitation occurs and the sound field is disturbed by the generated cavities, it is conceivable that the cavitation generation region is also biased. In this case, it is convenient if the path of the water passing through the water treatment area can be controlled so that the water can pass through the entire water treatment area.
FIG. 7 is a cross-sectional view illustrating a configuration example of a flowing water type water treatment apparatus according to a fourth embodiment of the present invention. Hereinafter, a configuration example of a water treatment apparatus that controls a flow path of water on the side surface and the end surface of the cylinder will be described. FIG. 7 is a diagram showing a configuration example of controlling the flow path of water on the side surface of the column 23 in the configuration of the water treatment apparatus of the first embodiment (FIG. 1). In FIG. 7, between the side surface of the cylinder 23 and the inner surface of the cylinder 24, an elongated soft elastic body 5 capable of partitioning water is spirally wound around the outer periphery of the cylinder 23 and inserted. Since the elastic body 5 is soft, it does not restrict the vibration of the cylinder 23 and controls only the flow of water. With this configuration, the water flowing from each first pipe 26 always flows spirally on the side surface of the column 23, and even when the occurrence of cavitation has a positional deviation, the water flows from each first pipe 26. While flowing out of the second pipe 43,
The action for water treatment can be uniformly applied to the water flowing through.
FIG. 8 is a diagram showing an example of the configuration of controlling the flow path of water at the end face of the column 23 facing the second lid 31 in the configuration of the flowing water type water treatment apparatus of the first embodiment (FIG. 1). is there. Column 2
Another elastic body 5 'is spirally arranged on the end face 3 as shown in FIG. 8, for example, to form a water partition to partition the flow of water. Water passing through the side of the cylinder 23
On the end face facing the second lid 31, the spiral flow from the outer peripheral portion of the cylinder 23 to the center of the end face is performed.
The water is drained from a second pipe 43 provided at the center of the first pipe.
As the elastic bodies 5 and 5 ', for example, a sponge having a slender shape and a surface coated with silicon or the like may be used. The above-described configuration is applied to the second and third embodiments, and by the same configuration, in the configuration of the water treatment apparatus of the second embodiment (FIG. 2), the first column 23a and the second column 2
The elastic body 5 is arranged on the side face of 3b to control the flow path of water on the side face, and the elastic body 5 'is arranged on the end face of the second cylinder 23b facing the second lid 25b, and the water flows on the end face. You can control the route. In the configuration of the water treatment apparatus according to the third embodiment (FIG. 5), the elastic body 5 is arranged on the side surface of the first column 23a and the second column 23b to control the flow path of the water on the side surface.
The elastic body 5 'is disposed on the end face of the cylinder 23a facing the partition plate 32 to control the flow path of water at the end face, and the elastic body 5' is provided on the end face of the second cylinder 23b facing the second lid 25b. Can be arranged to control the flow path of water at the end face. In this way, even when the occurrence of cavitation has a positional deviation, water is supplied to the reaction vessel 20, the reaction vessel 20a,
While flowing into and out of the reactor 20b, the water flowing through the reactor 20 and the reactors 20a and 20b can be uniformly provided with an action for water treatment. In each of the embodiments described above, pipes for inflow and outflow of water are connected to the lid so that a water treatment area is formed over the entire surface of the cylinder, and the pipes for inflow and outflow of water are connected to the lids of the pipes. A wide water treatment area is formed by making the coupling position of the symmetrical position with respect to the center axis of the cylinder, and the water to be treated flows symmetrically in the reaction vessel and passes through almost the entire area of the water treatment area. I do. As a result, there is no stagnation of water in the reaction vessel, and the action for water treatment can be stably applied to the flowing water, so that stable water treatment can be performed. In general, cavitation can be generated with less energy at relatively low frequencies. Further, the vibration state of the cylinder 23 as shown by a broken line 23 'in FIG. 1 is determined by the material and dimensions of the cylinder and the frequency of the ultrasonic wave to be used. From these, in order to secure a large area of the water treatment region having a small thickness and efficiently use the cavitation effect, it is preferable to use ultrasonic waves in a relatively low frequency range, preferably 100 kHz or less. . Further, in each embodiment, a plurality of water treatment apparatuses are connected in series or in parallel, so that a larger area of the water treatment area can be secured. In the configurations shown in FIGS. 1, 2, 5, 7, and 8, the cylinder (23, 23a, 23b) and the cylinder (2
4, 24a, 24b) was set to 3 mm, but the value of this interval should be less than (1 /) of the wavelength of sound waves in water at the driving frequency of the ultrasonic transducer. The minimum value is set at 5 from the viewpoint of ease of assembly and safe operation of the equipment.
It is preferable to set the value to about 00 μm.

【発明の効果】以上説明したように,本発明によれば,
1つの超音波振動源により広い面積にキャビテーション
を発生させ,水処理領域の面積を大きく確保でき,同じ
消費エネルギで水中の微生物に水処理のための作用を十
分に付与できる。また,本発明によれば,円柱の側面の
振動を利用して形成される水処理領域で水を膜状に流す
と共に,円柱の側面以外の面の振動を利用して形成され
る水処理領域でも水を膜状に流して,水を水処理領域の
ほぼ全域を通過させるので,水処理効率(速度,スルー
プット等)が向上する。また,本発明によれば,水処理
領域に水の流れを仕切る弾性体を配置するので,キャビ
テーションの発生分布に偏りが生じた場合にも水処理の
ための作用を流れる水に安定して付与でき,安定な水処
理ができる。更に,本発明によれば,反応容器の中心軸
に関して対称な複数の位置から水を流入させ,反応容器
の中心軸に関して対称な複数の位置から水を流出させる
ので,反応容器内で水がよどむことなく,水処理のため
の作用を流れる水に安定して付与でき,安定な水処理が
できる。
As described above, according to the present invention,
Cavitation is generated in a large area by one ultrasonic vibration source, a large area of the water treatment area can be secured, and the effect of water treatment can be sufficiently given to microorganisms in water with the same energy consumption. According to the present invention, water flows in a film form in a water treatment area formed by using vibration of the side surface of the cylinder, and a water treatment area formed by using vibration of a surface other than the side surface of the cylinder. However, since water flows in a film form and passes through almost the entire water treatment area, water treatment efficiency (speed, throughput, etc.) is improved. Further, according to the present invention, since the elastic body that partitions the flow of water is disposed in the water treatment area, even if the cavitation generation distribution is biased, the action for water treatment is stably applied to the flowing water. And stable water treatment. Furthermore, according to the present invention, water flows in from a plurality of positions symmetrical with respect to the central axis of the reaction vessel, and flows out from a plurality of positions symmetrical with respect to the central axis of the reaction vessel. Therefore, the action for water treatment can be stably applied to flowing water, and stable water treatment can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1の流水式の水処理装置の構成
例を示す断面図。
FIG. 1 is a cross-sectional view illustrating a configuration example of a flowing water type water treatment apparatus according to a first embodiment of the present invention.

【図2】本発明の実施例2の流水式の水処理装置の構成
例を示す断面図。
FIG. 2 is a sectional view showing a configuration example of a flowing water type water treatment apparatus according to a second embodiment of the present invention.

【図3】実施例2による流水式の水処理装置による殺菌
評価実験の結果例を示す図。
FIG. 3 is a diagram showing an example of a result of a sterilization evaluation experiment performed by a flowing water type water treatment apparatus according to a second embodiment.

【図4】本発明の実施例2による流水式の水処理装置に
よる殺菌評価実験の結果例(図3)と,定在波音場を用
いる殺菌評価実験の結果例を比較する図。
FIG. 4 is a diagram comparing a result example of a sterilization evaluation experiment (FIG. 3) with a flowing water type water treatment apparatus according to a second embodiment of the present invention (FIG. 3) and a result example of a sterilization evaluation experiment using a standing wave sound field.

【図5】本発明の実施例3の流水式の水処理装置の構成
例を示す断面図。
FIG. 5 is a sectional view showing a configuration example of a flowing water type water treatment apparatus according to a third embodiment of the present invention.

【図6】実施例3による流水式の水処理装置による殺菌
評価実験の結果例を示す図。
FIG. 6 is a diagram showing an example of a result of a sterilization evaluation experiment using a flowing water type water treatment apparatus according to a third embodiment.

【図7】本発明の実施例4の流水式の水処理装置の構成
例を示す断面図。
FIG. 7 is a sectional view showing a configuration example of a flowing water type water treatment apparatus according to a fourth embodiment of the present invention.

【図8】本発明の実施例4の流水式の水処理装置の構成
例を示す断面図。
FIG. 8 is a sectional view showing a configuration example of a flowing water type water treatment apparatus according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…駆動電源,5,5’…弾性体,20…反応容器,2
0a…第1の反応容器,20b…第2の反応容器,21
…超音波振動子,21a…第1の超音波振動子,21b
…第2の超音波振動子,22…振動伝送要素,22a…
第1の振動伝送要素,22b…第2の振動伝送要素,2
3…円柱,23a…第1の円柱,23b…第2の円柱,
23’…円柱の振動姿態,24…円筒,24a…第1の
円筒,24b…第2の円筒,25,25a…第1の蓋,
25b…第2の蓋,26,26a…第1の管,26b…
第2の管,31…第2の蓋,32…仕切り板,33…貫
通孔33,41…リング状の配管,41a…第1のリン
グ状の配管,41b…第2のリング状の配管,42…配
管,42a…第1の配管,42b,43…第2の配管。
DESCRIPTION OF SYMBOLS 1 ... Drive power supply, 5, 5 '... Elastic body, 20 ... Reaction vessel, 2
0a: first reaction vessel, 20b: second reaction vessel, 21
... Ultrasonic vibrator, 21a ... First ultrasonic vibrator, 21b
... second ultrasonic transducer, 22 ... vibration transmission element, 22a ...
First vibration transmission element, 22b... Second vibration transmission element, 2
3 ... cylinder, 23a ... first cylinder, 23b ... second cylinder,
23 ': Vibration form of cylinder, 24: Cylinder, 24a: First cylinder, 24b: Second cylinder, 25, 25a: First lid,
25b ... second lid, 26, 26a ... first tube, 26b ...
2nd pipe, 31 ... 2nd lid, 32 ... partition plate, 33 ... through-hole 33, 41 ... ring-shaped piping, 41a ... 1st ring-shaped piping, 41b ... 2nd ring-shaped piping, 42 ... pipe, 42a ... first pipe, 42b, 43 ... second pipe.

フロントページの続き (72)発明者 鱒沢 裕 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 梅村 晋一郎 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 栗原 昌宏 神奈川県横浜市戸塚区戸塚町216番地 株 式会社日立製作所通信事業部内 Fターム(参考) 4D037 AA02 AB03 BA26 5D019 AA21 FF02 FF06 Continuing on the front page (72) Inventor Hiroshi Masuzawa 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Shinichiro Umemura 1-280 Higashi Koikekubo, Kokubunji-shi, Tokyo Inside Hitachi, Ltd. Central Research Laboratory (72) Inventor Masahiro Kurihara 216 Totsuka-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture F-term in Hitachi, Ltd. Communications Division 4D037 AA02 AB03 BA26 5D019 AA21 FF02 FF06

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】超音波振動子と該超音波振動子に結合され
る振動伝送要素と該振動伝送要素の軸方向に結合され前
記振動伝送要素からの振動によって軸方向と径方向の最
大変位振幅が同程度で振動する円柱とを含む超音波振動
体と,中心軸を前記円柱と共有して前記円柱を内包する
円筒と,前記円筒の一端に結合され,前記超音波振動体
を支持し複数の第1の管が接続される第1の蓋と,前記
円筒の他端に結合され,第2の管が接続される第2の蓋
とを有し,前記第1の蓋,前記円筒,前記第2の蓋によ
り反応容器が構成され,前記第1の蓋の面とこれに対向
する前記円柱の面との第1の間隔,前記円筒の内周面と
前記円柱の外周面との第2の間隔,及び前記第2の蓋の
面とこれに対向する前記円柱の面との第3の間隔がそれ
ぞれ,水中での音波の波長の(1/4)以下であり,前
記第1の管から水を前記反応容器に流入させ前記第2の
管から水を流出させ,又は,前記第2の管から水を前記
反応容器に流入させ前記第1の管から水を流出させて,
前記流入と前記流出の間に前記第1から前記第3の間隔
の領域にキャビテーションを発生させて水処理を行なう
ことを特徴とする水処理装置。
An ultrasonic transducer, a vibration transmission element coupled to the ultrasonic transducer, and a maximum displacement amplitude in an axial direction and a radial direction due to vibration from the vibration transmission element coupled in an axial direction of the vibration transmission element. An ultrasonic vibrating body including a cylinder having the same degree of vibration, a cylinder sharing the center axis with the cylinder and enclosing the cylinder, and a plurality of cylinders coupled to one end of the cylinder and supporting the ultrasonic vibrating body. A first lid to which the first pipe is connected, and a second lid connected to the other end of the cylinder and to which a second pipe is connected, wherein the first lid, the cylinder, A reaction vessel is constituted by the second lid, a first gap between the surface of the first lid and the surface of the cylinder facing the first lid, and a first distance between an inner peripheral surface of the cylinder and an outer peripheral surface of the cylinder. 2 and the third space between the surface of the second lid and the surface of the cylinder facing the second cover, respectively. And the water is allowed to flow into the reaction vessel from the first tube and the water is allowed to flow out from the second tube, or water is allowed to flow from the second tube to the reaction vessel. And the water flows out of the first pipe,
A water treatment device, wherein cavitation is generated in the first to third intervals between the inflow and the outflow to perform water treatment.
【請求項2】請求項1に記載の水処理装置に於いて,前
記円柱の外周面に水を流れを仕切る弾性体を備えること
を特徴とする水処理装置。
2. The water treatment apparatus according to claim 1, further comprising an elastic body on an outer peripheral surface of said column for partitioning a flow of water.
【請求項3】請求項1に記載の水処理装置に於いて,前
記第2の蓋の面に対向する前記円柱の面に水の流れを仕
切る弾性体を備えることを特徴とする水処理装置。
3. The water treatment apparatus according to claim 1, further comprising: an elastic body for partitioning a flow of water on a surface of said cylinder facing said surface of said second lid. .
【請求項4】第1の超音波振動子と該第1の超音波振動
子に結合される第1の振動伝送要素と該第1の振動伝送
要素の軸方向に結合され前記第1の振動伝送要素からの
振動によって軸方向と径方向の最大変位振幅が同程度で
振動する第1の円柱とを含む第1の超音波振動体と,第
2の超音波振動子と該第2の超音波振動子に結合される
第2の振動伝送要素と該第2の振動伝送要素の軸方向に
結合され前記第2の振動伝送要素からの振動によって軸
方向と径方向の最大変位振幅が同程度で振動する第2の
円柱とを含む第2の超音波振動体と,中心軸を前記第1
の円柱及び前記第2の円柱と共有して前記第1の円柱及
び前記第2の円柱を内包する円筒と,前記円筒の一端に
結合され,前記第1の超音波振動体を支持し複数の第1
の管が接続される第1の蓋と,前記円筒の他端に結合さ
れ,前記第2の超音波振動体を支持し複数の第2の管が
接続される第2の蓋とを有し,前記第1の蓋,前記円
筒,前記第2の蓋により反応容器が構成され,前記第1
の蓋の面とこれに対向する前記第1の円柱の面との第1
の間隔,前記円筒の内周面と前記第1の円柱の外周面と
の前記第2の間隔,前記第1の円柱と前記第2の円柱の
対向する面の第3の間隔,前記円筒の内周面と前記第2
の円柱の外周面との前記第4の間隔,及び前記第2の蓋
の面とこれに対向する前記第2の円柱の面との第5の間
隔がそれぞれ,水中での音波の波長の(1/4)以下で
あり,前記第1の管から水を前記反応容器に流入させ前
記第2の管から水を流出させ,又は,前記第2の管から
水を前記反応容器に流入させ前記第1の管から水を流出
させて,前記流入と前記流出の間に前記第1から前記第
5の間隔の領域にキャビテーションを発生させて水処理
を行なうことを特徴とする水処理装置。
4. A first ultrasonic transducer, a first vibration transmitting element coupled to the first ultrasonic transducer, and the first vibration coupled axially to the first vibration transmitting element. A first ultrasonic vibrating body including a first cylinder vibrating at the same magnitude as the maximum displacement amplitude in the axial direction and the radial direction due to vibration from the transmission element, a second ultrasonic vibrator, and the second ultrasonic vibrator; A second vibration transmission element coupled to the acoustic transducer and an axially coupled radial vibration maximum displacement amplitude of the second vibration transmission element that is substantially the same as that of the second vibration transmission element due to vibration from the second vibration transmission element; A second ultrasonic vibrating body including a second cylinder vibrating at
A plurality of cylinders shared with the first and second cylinders and enclosing the first and second cylinders and coupled to one end of the cylinders to support the first ultrasonic vibrator and First
A first lid connected to the other end of the cylinder, and a second lid connected to the other end of the cylinder and supporting the second ultrasonic vibrator and connected to a plurality of second pipes. , The first lid, the cylinder, and the second lid constitute a reaction vessel.
Of the surface of the lid and the surface of the first cylinder opposite thereto
, The second distance between the inner peripheral surface of the cylinder and the outer peripheral surface of the first cylinder, the third distance between the opposing surfaces of the first cylinder and the second cylinder, The inner peripheral surface and the second
The fourth interval between the outer peripheral surface of the cylinder and the fifth interval between the surface of the second lid and the surface of the second cylinder opposed thereto are respectively the wavelength of the sound wave in water. 1 /) or less, wherein water flows into the reaction vessel from the first pipe and water flows out from the second pipe, or water flows from the second pipe into the reaction vessel and A water treatment apparatus, comprising: discharging water from a first pipe to generate cavitation in the first to fifth intervals between the inflow and the outflow to perform water treatment.
【請求項5】請求項4に記載の水処理装置に於いて,前
記第1の円柱及び前記第2の円柱の外周面に水を流れを
仕切る弾性体を備えることを特徴とする水処理装置。
5. The water treatment apparatus according to claim 4, further comprising an elastic body that partitions water flow on outer peripheral surfaces of said first cylinder and said second cylinder. .
【請求項6】請求項4に記載の水処理装置に於いて,前
記第2の蓋の面に対向する前記第2の円柱の面に水の流
れを仕切る弾性体を備えることを特徴とする水処理装
置。
6. The water treatment apparatus according to claim 4, further comprising an elastic body for partitioning a flow of water on a surface of said second cylinder facing said surface of said second lid. Water treatment equipment.
【請求項7】請求項4に記載の水処理装置に於いて,前
記複数の第1の管が,前記円筒の中心軸に対応する位置
を中心とする円周上の対称な位置で前記第1の蓋に接続
され,前記複数の第2の管が,前記円筒の中心軸に対応
する位置を中心とする円周上の対称な位置で前記第2の
蓋に接続されることを特徴とする水処理装置。
7. The water treatment apparatus according to claim 4, wherein the plurality of first pipes are arranged at symmetrical positions on a circumference centered on a position corresponding to a center axis of the cylinder. A plurality of second pipes connected to the first lid, the plurality of second tubes being connected to the second lid at symmetrical positions on a circumference centered on a position corresponding to a central axis of the cylinder. Water treatment equipment.
【請求項8】第1の超音波振動子と該第1の超音波振動
子に結合される第1の振動伝送要素と該第1の振動伝送
要素の軸方向に結合され前記第1の振動伝送要素からの
振動によって軸方向と径方向の最大変位振幅が同程度で
振動する第1の円柱とを含む第1の超音波振動体と,第
2の超音波振動子と該第2の超音波振動子に結合される
第2の振動伝送要素と該第2の振動伝送要素の軸方向に
結合され前記第2の振動伝送要素からの振動によって軸
方向と径方向の最大変位振幅が同程度で振動する第2の
円柱とを含む第2の超音波振動体と,中心軸を前記第1
の円柱と共有して前記第1の円柱を内包する第1の円筒
と,中心軸を前記第2の円柱と共有して前記第2の円柱
を内包する第2の円筒と,前記第1の円筒の一端に結合
され,前記第1の超音波振動体を支持し複数の第1の管
が接続される第1の蓋と,前記第2の円筒の一端に結合
され,前記第2の超音波振動体を支持し複数の第2の管
が接続される第2の蓋と,中心部に貫通孔をもち,前記
第1の円筒の他端と前記第2のの円筒の他端とを対向さ
せて結合する仕切り板とを有し,前記第1の蓋,前記第
1の円筒,前記仕切り板により第1の反応容器が構成さ
れ,前記第2の蓋,前記第2の円筒,前記仕切り板によ
り第2の反応容器が構成され,前記第1の蓋の面とこれ
に対向する前記第1の円柱の面との第1の間隔,前記第
1の円筒の内周面と前記第1の円柱の外周面との前記第
2の間隔,前記仕切り板の面とこれに対向する前記第1
の円柱の面との第3の間隔,前記仕切り板の面とこれに
対向する前記第2の円柱の面との第4の間隔,前記第2
の円筒の内周面と前記第2の円柱の外周面との第5の間
隔,及び前記第2の蓋の面とこれにに対向する前記第2
の円柱の面との第6の間隔がそれぞれ,水中での音波の
波長の(1/4)以下であり,前記第1の管から水を前
記第1の反応容器に流入させ前記貫通孔から前記第2の
反応容器に水を流し前記第2の管から水を流出させ,又
は,前記第2の管から水を前記第2の反応容器に流入さ
せ前記貫通孔から前記第1の反応容器に水を流し前記第
1の管から水を流出させて,前記流入と前記流出の間に
前記第1から前記第6の領域にキャビテーションを発生
させて水処理を行なうことを特徴とする水処理装置。
8. A first ultrasonic transducer, a first vibration transmission element coupled to the first ultrasonic transducer, and the first vibration coupled axially to the first vibration transmission element. A first ultrasonic vibrating body including a first cylinder vibrating at the same magnitude as the maximum displacement amplitude in the axial direction and the radial direction due to vibration from the transmission element, a second ultrasonic vibrator, and the second ultrasonic vibrator; A second vibration transmission element coupled to the acoustic transducer and an axially coupled radial vibration maximum displacement amplitude of the second vibration transmission element that is substantially the same as that of the second vibration transmission element due to vibration from the second vibration transmission element; A second ultrasonic vibrating body including a second cylinder vibrating at
A first cylinder sharing the first cylinder in common with the first cylinder, a second cylinder sharing the center axis with the second cylinder and including the second cylinder, A first lid coupled to one end of the cylinder and supporting the first ultrasonic vibrator and connected to a plurality of first tubes; and a second lid coupled to one end of the second cylinder and A second lid that supports the acoustic vibrator and to which a plurality of second pipes are connected, and has a through hole in the center, and connects the other end of the first cylinder to the other end of the second cylinder; A first reaction vessel is formed by the first lid, the first cylinder, and the partition plate, and the second lid, the second cylinder, A second reaction vessel is constituted by the partition plate, a first gap between the surface of the first lid and the surface of the first cylinder opposed thereto, and an inner peripheral surface of the first cylinder. Said first of said second gap between the outer peripheral surface of the cylinder, the first to surface opposite thereto of the partition plate
A third distance from the surface of the column, a fourth distance from the surface of the partition plate and the surface of the second column facing the same,
A fifth distance between the inner peripheral surface of the cylinder and the outer peripheral surface of the second cylinder, and the surface of the second lid and the second surface facing the second lid.
The sixth distance from the surface of the column is not more than (1 /) of the wavelength of the sound wave in water, and water flows from the first tube into the first reaction vessel and flows through the through-hole. Water is allowed to flow into the second reaction vessel to cause water to flow out of the second tube, or water is allowed to flow from the second tube to the second reaction vessel, and the first reaction vessel is allowed to pass through the through hole. Wherein water is discharged from the first pipe and water is discharged from the first pipe, and cavitation is generated in the first to sixth regions between the inflow and the outflow to perform water treatment. apparatus.
【請求項9】請求項8に記載の水処理装置に於いて,前
記第1の円柱及び前記第2の円柱の外周面に水を流れを
仕切る弾性体を備えることを特徴とする水処理装置。
9. The water treatment apparatus according to claim 8, further comprising an elastic body that partitions water flow on outer peripheral surfaces of said first cylinder and said second cylinder. .
【請求項10】請求項8に記載の水処理装置に於いて,
前記第2の蓋の面に対向する前記第2の円柱の面に水の
流れを仕切る弾性体を備えることを特徴とする水処理装
置。
10. The water treatment apparatus according to claim 8, wherein
A water treatment apparatus comprising: an elastic body that partitions a flow of water on a surface of the second cylinder facing a surface of the second lid.
【請求項11】請求項8に記載の水処理装置に於いて,
前記複数の第1の管が,前記第1の円筒の中心軸に対応
する位置を中心とする円周上の対称な位置で前記第1の
蓋に接続され,前記複数の第2の管が,前記第2の円筒
の中心軸に対応する位置を中心とする円周上の対称な位
置で前記第2の蓋に接続されることを特徴とする水処理
装置。
11. The water treatment apparatus according to claim 8, wherein
The plurality of first tubes are connected to the first lid at symmetrical positions on a circumference around a position corresponding to the central axis of the first cylinder, and the plurality of second tubes are connected to each other. A water treatment apparatus, wherein the water treatment apparatus is connected to the second lid at a symmetrical position on a circumference centered on a position corresponding to a center axis of the second cylinder.
JP2000163137A 2000-05-29 2000-05-29 Water treatment equipment Expired - Fee Related JP3812286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000163137A JP3812286B2 (en) 2000-05-29 2000-05-29 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000163137A JP3812286B2 (en) 2000-05-29 2000-05-29 Water treatment equipment

Publications (2)

Publication Number Publication Date
JP2001334264A true JP2001334264A (en) 2001-12-04
JP3812286B2 JP3812286B2 (en) 2006-08-23

Family

ID=18666942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000163137A Expired - Fee Related JP3812286B2 (en) 2000-05-29 2000-05-29 Water treatment equipment

Country Status (1)

Country Link
JP (1) JP3812286B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004275850A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Ultrasonic device
US7018546B2 (en) 2003-03-06 2006-03-28 Hitachi, Ltd. Water treatment method and water treatment device
JP2008036555A (en) * 2006-08-08 2008-02-21 Toshiba Plant Systems & Services Corp Cavitation sterilization device
JP2020524361A (en) * 2017-05-30 2020-08-13 タイタン・アドバンスト・エナジー・ソリューションズ・インコーポレイテッド Battery life assessment and capacity recovery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7018546B2 (en) 2003-03-06 2006-03-28 Hitachi, Ltd. Water treatment method and water treatment device
JP2004275850A (en) * 2003-03-14 2004-10-07 Hitachi Ltd Ultrasonic device
JP2008036555A (en) * 2006-08-08 2008-02-21 Toshiba Plant Systems & Services Corp Cavitation sterilization device
JP4658000B2 (en) * 2006-08-08 2011-03-23 東芝プラントシステム株式会社 Cavitation sterilizer
JP2020524361A (en) * 2017-05-30 2020-08-13 タイタン・アドバンスト・エナジー・ソリューションズ・インコーポレイテッド Battery life assessment and capacity recovery
JP7261179B2 (en) 2017-05-30 2023-04-19 タイタン・アドバンスト・エナジー・ソリューションズ・インコーポレイテッド Battery life assessment and capacity recovery
US11658354B2 (en) 2017-05-30 2023-05-23 Titan Advanced Energy Solutions, Inc. Battery life assessment and capacity restoration

Also Published As

Publication number Publication date
JP3812286B2 (en) 2006-08-23

Similar Documents

Publication Publication Date Title
US5026167A (en) Ultrasonic fluid processing system
US3672823A (en) Method of sterilizing liquids
US20080292510A1 (en) System and method for sterilization of a liquid
US5032027A (en) Ultrasonic fluid processing method
US5395592A (en) Acoustic liquid processing device
US7763177B2 (en) System and method for ultrasonic cleaning of ultraviolet disinfection system
WO1994006380A1 (en) Ultrasonic irradiation apparatus and processor using the same
JP3483928B2 (en) Processing container
Loranger et al. Comparative study of sonochemical effects in an ultrasonic bath and in a large-scale flow-through sonoreactor
RU2005139385A (en) ULTRASONIC HIGH POWER FOR APPLICATION IN CHEMICAL REACTIONS
US10201651B2 (en) Systems and methods for destroying cancer cells in blood
WO2012125911A9 (en) Acoustic treatment vessel and method for acoustic treatment
RU2325959C2 (en) Hydrodynamic generator of ultrasonic acoustic vibrations and method of its generating
WO2013015708A1 (en) Method for ultrasonic cavitation treatment of liquid media
JP3812286B2 (en) Water treatment equipment
WO2013147636A1 (en) Method for simultaneous cavitation treatment of liquid media varying in composition
JP3840843B2 (en) Water treatment method and apparatus
US6733727B1 (en) Condensation induced water hammer driven sterilization
JP2004275850A (en) Ultrasonic device
US20200122102A1 (en) Ultrasonic cavitation method and mixer for oil-based botanical extracts
RU2286205C1 (en) Cavitation reactor
KR100424351B1 (en) Ultrasonic cleaning apparatus
JP4658000B2 (en) Cavitation sterilizer
JP3855624B2 (en) Water treatment equipment
US20050058579A1 (en) Acoustic energy transducer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

LAPS Cancellation because of no payment of annual fees