JP2001334255A - Method for controlling concentration of chemical for water treatment - Google Patents

Method for controlling concentration of chemical for water treatment

Info

Publication number
JP2001334255A
JP2001334255A JP2000158918A JP2000158918A JP2001334255A JP 2001334255 A JP2001334255 A JP 2001334255A JP 2000158918 A JP2000158918 A JP 2000158918A JP 2000158918 A JP2000158918 A JP 2000158918A JP 2001334255 A JP2001334255 A JP 2001334255A
Authority
JP
Japan
Prior art keywords
water
concentration
dye
chemical
water treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000158918A
Other languages
Japanese (ja)
Inventor
Seiki Yamaura
清貴 山浦
Toshiharu Wake
敏治 和気
Makoto Horiike
誠 堀池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2000158918A priority Critical patent/JP2001334255A/en
Publication of JP2001334255A publication Critical patent/JP2001334255A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling the concentration of a chemical for water treatment which measures the concentration of the chemical added into water easily, promptly, and accurately. SOLUTION: A known amount of coloring matter which is water soluble, light resistant, and oxidation resistant is dispersed as a tracer by a dispersant with a known amount of the chemical for water treatment in water such as cooling water in an open system. The concentration of the coloring matter in the water is detected optically by measuring the absorption of the coloring matter preferably at two or more wavelengths including at least one wavelength of absorption, preferably by absorptiometry. By determining the concentration of the chemical in the water from the detected concentration of the coloring matter proportional to the known amount of the chemical, the concentration of the chemical added into the water is controlled properly. As the coloring matter as a tracer, WA Color Blue A-01 (using C. I Pigment Blue 15, dispersed by a water soluble resin) (R) of Dainichi Seika Ind. Company can be used especially preferably.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷却水系等の循環
水系の水中の水処理用薬品(水処理薬剤、水系添加薬
剤)の濃度管理方法に関するものであり、詳しくは、水
処理用薬品と共にトレーサーとして色素を添加し、該色
素を望ましくは吸光光度分析により検出、定量する方法
によって、安定的かつ効率的な水処理用薬品の濃度管理
を行う方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling the concentration of water treatment chemicals (water treatment chemicals, water-based chemicals) in circulating water such as a cooling water system. The present invention relates to a method for stably and efficiently controlling the concentration of a chemical for water treatment by adding a dye as a tracer, and desirably detecting and quantifying the dye by spectrophotometry.

【0002】[0002]

【従来の技術】多用される循環水系にはボイラー水系や
開放系や閉鎖系の冷却水系などがある。これらの循環水
系の水処理には、腐食、スケール、スライム等の水に起
因する障害を防ぐために種々の水処理用薬品(薬剤)が
使用されている。一般に、冷却水系等の循環水系で使用
される水処理薬剤には、防食剤、分散剤、スケール防止
剤、殺菌剤、スライム防除剤(バイオファウリング抑制
剤)などがある。
2. Description of the Related Art Circulating water systems that are frequently used include boiler water systems and open and closed cooling water systems. Various water treatment chemicals (chemicals) are used in the water treatment of these circulating water systems in order to prevent water, such as corrosion, scale, and slime. Generally, water treatment chemicals used in circulating water systems such as cooling water systems include anticorrosives, dispersants, scale inhibitors, bactericides, slime control agents (biofouling inhibitors), and the like.

【0003】これらの各種の薬剤の効果による適切な水
処理を行い、且つ、これらの薬剤の有する効果を持続さ
せるためには、任意の位置、時間等におけるこれらの薬
剤濃度を正確に把握し、適切な濃度管理を行うことが必
要である。
In order to carry out appropriate water treatment based on the effects of these various chemicals and to maintain the effects of these chemicals, the concentration of these chemicals at any position, time, etc. must be accurately grasped. It is necessary to perform appropriate concentration management.

【0004】ところが、薬剤の種類によっては、水中の
濃度の測定が不可能もしくは困難なものがある。また、
比色法や比濁法やその他の定量法で水中の薬剤濃度の測
定ができたとしても、その操作が煩雑であったり、操作
に長時間を要するため、プラントの運転管理上実用的で
無い場合がある。そのため、水処理用薬品としてそれ自
身の濃度の測定が不可能あるいは困難な薬剤を用いる場
合の濃度管理方法として、簡単に濃度測定できる物質を
トレーサーとして用いることが行われている。このトレ
ーサーを用いる方法によれば、それ自身の濃度の測定が
不可能な薬剤、あるいは困難な薬剤であっても、その水
中における濃度を迅速に測定することが可能となる。こ
れまで、水処理用薬品の濃度をトレーサーを用いて測定
する従来方法には、臭素トレーサー法、リチウムトレー
サー法、蛍光トレーサー法、色素トレーサー法などがあ
る。このうち、色素トレーサー法としては、色素トレー
サーとして水溶性で光分解性のある染料であるフルオレ
セインなどを用いる特公平8−14536号公報に開示
される方法や、色素トレーサーとして水溶性で耐光性の
ある染料であるブリリアントブルーFCF(C.I. Acid
Blue 9)などを用いる特開2000−61448号
公報に開示される方法がある。
However, it is impossible or difficult to measure the concentration of water in some types of drugs. Also,
Even if the concentration of the drug in water can be measured by colorimetry, turbidimetry, or other quantitative methods, the operation is complicated or takes a long time, which is not practical for plant operation management. There are cases. Therefore, as a concentration control method in the case of using a chemical whose concentration cannot be measured or used as a water treatment chemical, a substance whose concentration can be easily measured is used as a tracer. According to the method using the tracer, it is possible to quickly measure the concentration of a drug whose concentration itself cannot be measured or a drug that is difficult to measure in water. Heretofore, conventional methods for measuring the concentration of a chemical for water treatment using a tracer include a bromine tracer method, a lithium tracer method, a fluorescent tracer method, and a dye tracer method. Among them, the dye tracer method includes a method disclosed in JP-B-8-14536 using a water-soluble and photodegradable dye such as fluorescein as the dye tracer, and a water-soluble and light-fast dye tracer. A certain dye, brilliant blue FCF (CI Acid
Blue 9) and the like, which are disclosed in JP-A-2000-61448.

【0005】トレーサーとして用いられるこれらの物質
は、一般に、次に挙げるような多くの条件を満足するこ
とが望まれる。(1)工業用水等の中に存在しないか、
あるいはその存在量が無視できるほど極微量であるこ
と、(2)化学的に安定であること、(3)微生物の作
用で容易に分解しないこと、(4)公害防止上の観点か
ら実質的に無害であること、(5)対象の工業用水等の
用水中の溶存塩類と反応して、不溶性物質やスケールを
生じないこと、(6)水系の配管材料等の金属材料に対
する腐食性がないこと、(7)溶存塩類による妨害を受
けること無く定量分析が可能なこと、(8)分析が正確
にかつ迅速に行なえることなどである。
[0005] It is generally desired that these substances used as tracers satisfy a number of conditions as described below. (1) Does it exist in industrial water, etc.
Alternatively, its abundance is negligibly small, (2) it is chemically stable, (3) it is not easily decomposed by the action of microorganisms, and (4) it is substantially from the viewpoint of preventing pollution. Harmless, (5) reacting with dissolved salts in service water such as target industrial water, do not produce insoluble substances or scale, and (6) have no corrosiveness to metallic materials such as water-based piping materials. (7) Quantitative analysis can be performed without being disturbed by dissolved salts, and (8) Analysis can be performed accurately and quickly.

【0006】[0006]

【発明が解決しようとする課題】水処理用薬品の濃度を
測定する従来のトレーサー法のうち、臭素トレーサー
法、リチウムトレーサー法、蛍光トレーサー法等は、現
場での測定が困難であったり、測定時間が長かったり、
測定に大掛かりな装置が必要であったりなどの理由で、
試料水をサンプリングしてから測定結果を得るまでに長
時間を要するという欠点がある。
Among the conventional tracer methods for measuring the concentration of water treatment chemicals, the bromine tracer method, lithium tracer method, fluorescent tracer method and the like are difficult to measure on site, Time is long,
Because a large-scale device is required for measurement,
There is a disadvantage that it takes a long time from the sampling of the sample water until the measurement result is obtained.

【0007】一方、色素トレーサー法は、現場で即時的
且つ簡易に測定できるといった利点を持つ濃度測定法な
ので、この方法を用いれば水処理用薬品の濃度管理を容
易に行うことができる。
[0007] On the other hand, the dye tracer method is a concentration measuring method having an advantage that it can be measured immediately and easily on site, so that the concentration of a water treatment chemical can be easily controlled by using this method.

【0008】しかしながら、ボイラー水や冷却水等の循
環水(特に開放系の冷却水)中において、色素は、光、
熱、pHなどの影響下で変色したり、褪色するものが多
いという欠点がある。例えば、上記特公平8−1453
6号公報の従来の色素トレーサー法における色素トレー
サーとして提案されているフルオレセインは、例えば、
開放系冷却水系においては光等の影響により容易に褪色
するので、経時的な測定において、トレーサー濃度が、
水処理用薬品濃度に関係無く減少してしまい、水処理用
薬品濃度に換算できなくなるという欠点がある。
However, in circulating water such as boiler water and cooling water (especially in open-system cooling water), the dyes emit light,
Discoloration and discoloration under the influence of heat, pH, and the like often occur. For example, the above-mentioned Tokuhei 8-1453
No. 6, fluorescein proposed as a dye tracer in the conventional dye tracer method is, for example,
In an open cooling water system, it is easily discolored by the influence of light, etc.
There is a disadvantage that the concentration is reduced irrespective of the concentration of the chemical for water treatment and cannot be converted to the concentration of the chemical for water treatment.

【0009】また、色素は酸化剤の存在下で変色した
り、褪色するものが多いという欠点もある。ボイラー水
系や冷却水系等の循環水系の用水、特に補給水として、
現場によっては、工業用水や井水に殺菌剤やスライム防
除剤として次亜塩素酸ナトリウム等の酸化剤を添加して
使用したり、次亜塩素酸ナトリウムを含む水道水を使用
している。そのため、この場合は、特開2000−61
448号公報に開示されるブリリアントブルーFCFな
どは、次亜塩素酸ナトリウム等の酸化剤で容易に褪色す
るので、上述と同様に、経時的な測定において、トレー
サー濃度が、水処理用薬品濃度に関係無く減少してしま
い、水処理用薬品濃度に換算できなくなるという欠点が
ある。
Further, there is also a disadvantage that many of the pigments discolor or fade in the presence of an oxidizing agent. As water for circulating water systems such as boiler water systems and cooling water systems, especially as makeup water,
Depending on the site, an oxidizing agent such as sodium hypochlorite is added to industrial water or well water as a disinfectant or a slime controlling agent, or tap water containing sodium hypochlorite is used. Therefore, in this case, Japanese Patent Application Laid-Open No. 2000-61
The brilliant blue FCF disclosed in Japanese Patent No. 448 is easily discolored by an oxidizing agent such as sodium hypochlorite. Irrespective of this, there is a disadvantage that the concentration cannot be converted to the concentration of the chemical for water treatment.

【0010】本発明は、上記従来技術の問題点を解決
し、従来の色素トレーサー法では正確な濃度測定が不可
能ないし困難な水処理用薬品を、色素トレーサー法によ
り容易且つ迅速に、より精度良く測定することができる
水処理用薬品の濃度管理方法を提供することを目的とす
る。
[0010] The present invention solves the above-mentioned problems of the prior art, and makes it possible to easily and quickly and more accurately dispose of water treatment chemicals, for which it is impossible or difficult to accurately measure the concentration by the conventional dye tracer method, by the dye tracer method. An object of the present invention is to provide a method for controlling the concentration of a chemical for water treatment that can be measured well.

【0011】[0011]

【課題を解決するための手段】上記目的達成のために成
された本発明の水処理用薬品の濃度管理方法は、トレー
サーとして耐光性と耐酸化性のある色素を分散剤で水中
に分散させて用いることを特徴とするものである。本発
明で言う「色素」とは顔料を指称するが、適当な顔料用
の分散剤を用いて水中に分散させれば、色素トレーサー
として用いることができるという発見に基づいて本発明
を完成させたものである。即ち、本発明は、水処理用薬
品と共にトレーサーとして耐光性と耐酸化性のある色素
を水中に分散剤で分散させて、水中の前記色素の濃度を
光学的に検出することにより、水中に添加した前記水処
理用薬品の濃度管理を行うことを特徴とする水処理用薬
品の濃度管理方法を提供するものである。
According to the method for controlling the concentration of a chemical for water treatment of the present invention which has been made to achieve the above object, a dye having light fastness and oxidation fastness as a tracer is dispersed in water with a dispersant. It is characterized by being used. The term "dye" as used in the present invention refers to a pigment, and the present invention has been completed based on the discovery that, if it is dispersed in water using an appropriate pigment dispersant, it can be used as a dye tracer. Things. That is, the present invention disperses a light-resistant and oxidation-resistant dye as a tracer together with a water treatment chemical in water with a dispersant, and optically detects the concentration of the dye in water to be added to water. It is another object of the present invention to provide a method for controlling the concentration of a water treatment chemical, wherein the concentration of the water treatment chemical is controlled.

【0012】以下に本発明を詳細に説明する。本発明に
よれば、水処理用薬品の既知量と共に耐光性と耐酸化性
のある色素の既知量を冷却水系等の循環水系中の水に分
散剤で分散させておき、該循環水系中の該色素の濃度を
光学的に検出し、該水処理用薬品の既知量に実質的に比
例する色素の検出濃度から上記水中に存在する水処理用
薬品の濃度を定量・検出することができ、水処理用薬品
の濃度管理を行うことができる。
Hereinafter, the present invention will be described in detail. According to the present invention, a known amount of a dye having light resistance and oxidation resistance together with a known amount of a water treatment chemical is dispersed in a water in a circulating water system such as a cooling water system with a dispersant, and the By optically detecting the concentration of the dye, the concentration of the water treatment chemical present in the water can be quantified and detected from the detection concentration of the dye substantially proportional to the known amount of the water treatment chemical, The concentration of the water treatment chemical can be controlled.

【0013】即ち、本発明に使用する色素は、工業用水
等の用水中に通常存在せず、また、化学的安定性の指標
ともなり得る耐光性と耐酸化性があることから、容易に
褪色せず、化学的に安定であり、微生物の影響も受け
ず、その使用濃度において実質的に無害であり、その有
する化学的な性質からスケール障害の原因とはならな
い。
That is, since the dyes used in the present invention are not usually present in service waters such as industrial waters and have light fastness and oxidation fastness which can serve as indicators of chemical stability, they are easily discolored. It is chemically stable, is not affected by microorganisms, is substantially harmless at its use concentration, and does not cause scale hindrance due to its chemical properties.

【0014】循環水系の水中の色素濃度の光学的検出
は、色素の吸収のある1波長における測定によって行う
こともできるが、トレーサー以外の水処理用薬品を含む
ボイラー水や冷却水等の循環水自体が、スラッジ等の汚
れによる影響により、程度の差こそあれ着色しているの
で、その妨害を考慮に入れた測定を行わなければならな
い。特開2000−61448号公報に記載されている
様に、上記循環水系の水中におけるスラッジ等の汚れ或
いは粒子による妨害は、特定の波長を吸収するものでは
なく、光の散乱に起因するものであるので、色素の吸収
のある少なくとも1波長を含む2以上の波長における測
定によって行うのが好ましい。2以上の波長における測
定によって、簡易且つ効率的な色素濃度検出が可能とな
る。また、色素濃度の光学的検出は、吸光光度法により
行うのが操作の簡便性の点から好ましい。2以上の波長
における吸光度測定を伴う吸光光度法を効率的な吸光光
度測定法として用いれば、水処理用薬品の濃度管理に効
果的に利用することができるのも本発明の一つの特徴で
ある。
Optically detecting the dye concentration in the water of the circulating water system can be carried out by measuring at one wavelength where the dye is absorbed. However, the circulating water such as boiler water or cooling water containing a water treatment chemical other than the tracer can be used. Since the substance itself is colored to a greater or lesser degree due to the influence of dirt such as sludge, the measurement must be performed in consideration of the interference. As described in JP-A-2000-61448, the interference by dirt or particles such as sludge in the water of the circulating water system is not caused by absorption of a specific wavelength, but is caused by light scattering. Therefore, it is preferable to perform the measurement at two or more wavelengths including at least one wavelength at which the dye absorbs. The measurement at two or more wavelengths enables simple and efficient dye concentration detection. The optical detection of the dye concentration is preferably performed by an absorption spectrophotometric method from the viewpoint of easy operation. One of the features of the present invention is that if an absorption spectrophotometry method involving the measurement of absorbance at two or more wavelengths is used as an efficient absorption photometry method, it can be effectively used for controlling the concentration of a water treatment chemical. .

【0015】一般に、色素の分散した溶液の濃度測定に
おいては、吸光度の大きな特定の吸収波長(望ましくは
色素の最大吸収波長近辺)における吸光度を測定するこ
とで色素濃度を測定する。しかし、吸光度は様々な要因
で変動する。例えば、色素のみ入っていない溶液(以
下、「ブランク溶液」と略す)による吸収、浮遊物質等
による溶液の懸濁に伴う光散乱、吸光度測定セルの汚れ
等によって見掛けの吸光度は増大する。これらを補正す
る目的で、色素の分散した溶液と同時にブランク溶液を
測定すること、清浄な吸光度測定セルを用いることなど
が求められる。
Generally, in measuring the concentration of a solution in which a dye is dispersed, the dye concentration is measured by measuring the absorbance at a specific absorption wavelength having a large absorbance (preferably near the maximum absorption wavelength of the dye). However, the absorbance varies due to various factors. For example, the apparent absorbance increases due to absorption by a solution not containing only the dye (hereinafter, abbreviated as “blank solution”), light scattering due to suspension of the solution due to suspended substances, contamination of the absorbance measurement cell, and the like. For the purpose of correcting these, it is required to measure a blank solution at the same time as the solution in which the dye is dispersed, to use a clean absorbance measurement cell, and the like.

【0016】ところで、本発明の方法においては、ブラ
ンク溶液による吸収が無視できるような波長に吸収を有
する色素を用いることから、浮遊物質等による溶液の懸
濁に伴う光散乱の効果及び吸光度測定セルの汚れのみを
考慮すれば良い。更に、上記循環水系の水中におけるス
ラッジ等の汚れや粒子による妨害は、特定の波長の吸収
としてではなく、本発明において大きな波長依存性の無
い見掛けの吸光度の増大として検出される。従って、色
素の吸収波長(以下、「測定波長」と略す)における吸
光度を測定すると共に、色素による吸収が相対的に少な
いか、殆ど無いか或いは実質的に無い波長(以下、「参
照波長」と略す)における吸光度も測定し、色素の測定
波長における吸光度から差し引くことで、光散乱による
見掛けの吸光度の変動を相殺・補正できる。また、吸光
度測定セルの汚れ等による変動も同様に相殺・補正でき
る。更に、必要に応じて測定波長及び/又は参照波長を
複数とすることで、より正確な測定を行うことができ
る。
In the method of the present invention, since a dye having an absorption at a wavelength at which the absorption by the blank solution is negligible is used, the light scattering effect due to the suspension of the solution due to suspended substances and the like and the cell for measuring the absorbance are used. It is only necessary to consider only the dirt. Furthermore, the interference by dirt or particles such as sludge in the water of the circulating water system is not detected as absorption at a specific wavelength, but is detected as an increase in apparent absorbance without large wavelength dependence in the present invention. Therefore, the absorbance at the absorption wavelength of the dye (hereinafter, abbreviated as “measurement wavelength”) is measured, and the wavelength at which the absorption by the dye is relatively small, almost absent, or substantially absent (hereinafter, “reference wavelength”) Abbreviation) is also measured and subtracted from the absorbance at the measurement wavelength of the dye, whereby the change in apparent absorbance due to light scattering can be canceled out and corrected. In addition, fluctuations due to contamination of the absorbance measurement cell and the like can be similarly canceled out and corrected. Further, more accurate measurement can be performed by setting a plurality of measurement wavelengths and / or reference wavelengths as necessary.

【0017】つまり、本発明の方法を2以上の波長にお
ける吸光度測定を伴う吸光光度法によって行えば、ブラ
ンク測定を行う必要が無く、更に参照波長における吸光
度を監視することで、吸光度測定セルの汚れ度合いを監
視することもできるので、光学的検出の実施がより簡便
で、しかもより正確となる。
That is, if the method of the present invention is carried out by an absorptiometric method involving absorbance measurements at two or more wavelengths, there is no need to perform a blank measurement, and by monitoring the absorbance at the reference wavelength, the contamination of the absorbance measurement cell can be improved. Since the degree can also be monitored, the implementation of optical detection is simpler and more accurate.

【0018】また、色素の濃度の光学的検出における測
定波長は、好ましくは400nm〜800nm、より好
ましくは550nm〜800nmである。即ち、特開2
000−61448号公報に記載されている様に、一般
的な冷却水系等の循環水系の水(防食剤、分散剤、スケ
ール防止剤、殺菌剤、スライム防除剤等の各種の水処理
薬剤を含んでいるのが通常である)について広範な調査
を実施した結果、これらの水、望ましくはその濾過後の
試料水が400nm〜800nmの可視光に関しては吸
光度が小さく、特に550nm〜800nmの波長にお
いては殆ど吸収が無いか、有ったとしても経時変動が殆
ど無いことが分かっている。更に、上記循環水系の水中
におけるスラッジ等の汚れ或いは粒子による妨害は、上
述の様に、特定の波長を吸収するものではなく、光の散
乱に起因するものであり、上記の波長領域において大き
な波長依存性が無いことも分かっている。従って、上記
の波長の範囲内に吸収波長(好ましくは最大吸収波長近
辺)を有する色素をトレーサーとして用いれば、冷却水
等の循環水の汚れ等による着色の妨害を殆ど受けずに、
色素濃度を吸光光度法にて簡便に測定することができる
ので好都合である。
The measurement wavelength in the optical detection of the dye concentration is preferably 400 nm to 800 nm, more preferably 550 nm to 800 nm. That is, JP 2
As described in JP-A-000-61448, water of a circulating water system such as a general cooling water system (including various water treatment agents such as an anticorrosive, a dispersant, a scale inhibitor, a bactericide, and a slime-controlling agent). As a result of conducting extensive research on these waters, preferably, the sample water after filtration has a low absorbance with respect to visible light of 400 nm to 800 nm, especially at a wavelength of 550 nm to 800 nm. It is known that there is hardly any absorption, or even if there is, little fluctuation with time. Further, the interference by dirt or particles such as sludge in the water of the circulating water system does not absorb a specific wavelength as described above, but is caused by light scattering, and a large wavelength in the above wavelength region. We also know that there are no dependencies. Therefore, if a dye having an absorption wavelength within the above wavelength range (preferably near the maximum absorption wavelength) is used as a tracer, there is almost no interference with coloring due to contamination of circulating water such as cooling water, etc.
This is convenient because the dye concentration can be easily measured by an absorption photometric method.

【0019】また、多数の色素のうち、冷却水系等の各
種循環水系の環境下において、光、熱、pH、酸化剤な
どの影響を可及的に受けないものが色素トレーサーとし
て望ましく、特に開放冷却水系等の開放循環水系におい
ては、光の影響を可及的に受けないもの、また、特に次
亜塩素酸ナトリウム等の酸化剤が導入される循環水系で
は酸化剤の影響を可及的に受けないものを色素トレーサ
ーとしなければならない。これらの点にも鑑み、本発明
では耐光性と耐酸化性のある色素として顔料を用いる。
本発明に用いる色素である顔料は、微粒子状で水中に分
散して存在するので、光や酸化剤の影響を微粒子の表面
から受けてゆくため、分子状で水中に存在する染料より
も耐光性や耐酸化性が優れるのが一般的であると期待さ
れる。色素の耐光性及び耐酸化性としては、色素と共に
各種水処理用薬品を含んだ実際の循環水の循環水系にお
ける滞留時間(例えば、冷却水系では通常は1〜3日)
等を最大限考慮して1週間循環水系に循環させたとし
て、色素の光学的検出濃度の低下が約30%以下である
のが好ましく、約10%以下であるのがより好ましい。
但し、この耐光性及び耐酸化性の基準は、循環水に含ま
れている水処理用薬品の種類や循環水系の各種条件によ
り大きく異なってくるので、使用できる色素の種類もこ
れらに或る程度は左右される。
Among many dyes, those which are not affected as much as possible by light, heat, pH, oxidizing agent and the like in various circulating water systems such as a cooling water system are preferable as dye tracers, In open circulating water systems such as cooling water systems, those that are not affected by light as much as possible, and especially in circulating water systems where oxidizing agents such as sodium hypochlorite are introduced, Those that do not have to be dye tracers. In view of these points, in the present invention, a pigment is used as a dye having light resistance and oxidation resistance.
The pigment used in the present invention, which is dispersed in water in the form of fine particles, is affected by light or an oxidizing agent from the surface of the fine particles. It is generally expected that the composition will have excellent oxidation resistance. Regarding the light resistance and oxidation resistance of the dye, the residence time in a circulating water system of actual circulating water containing various water treatment chemicals together with the dye (for example, usually 1 to 3 days in a cooling water system)
When the dye is circulated in the circulating water system for one week in consideration of the above, the decrease in the optically detected density of the dye is preferably about 30% or less, more preferably about 10% or less.
However, the standards of light resistance and oxidation resistance vary greatly depending on the type of water treatment chemicals contained in the circulating water and various conditions of the circulating water system. Depends.

【0020】加えて、色素の官能基ができるだけ簡素で
あることが望ましい。つまり、色素が分散剤で水中に分
散する限り、その官能基は少ない方が、それだけ循環水
系で起こり得る色素の配管等への吸着反応や化学反応を
抑制することができる。また、色素は、使用後に環境に
放出された後、環境に害を可及的に及ぼさないことが望
まれるが、これは使用濃度等と関連する。
In addition, it is desirable that the functional group of the dye be as simple as possible. In other words, as long as the pigment is dispersed in water with the dispersant, the smaller the number of functional groups, the more the adsorption reaction or chemical reaction of the pigment to a pipe or the like that can occur in the circulating water system can be suppressed. In addition, it is desired that the dye does not harm the environment as much as possible after being released into the environment after use. This is related to the concentration used and the like.

【0021】以上のことを考慮に入れると、本発明にお
いて、例えば、銅フタロシアニン顔料(C.I. Pigment B
lue 15)や、モノクロル銅フタロシアニン顔料(C.I. P
igment Blue 15:1)及びポリクロル銅フタロシアニン顔
料類等の塩素化銅フタロシアニン顔料類などの各種色素
を好適に用いることができ、これらは単独でも組み合わ
せても用いることができる。ポリクロル銅フタロシアニ
ン顔料類は、耐酸化性の点では特に優れている。分散剤
としては、本発明に用いることができる色素を対象の水
系の水中に安定に分散させることができる限り、如何な
る分散剤でも良く、例えば、ノニオン系分散剤や水溶性
アクリル樹脂等の水溶性樹脂系分散剤等を用いることが
できるが、これらに限定されない。上記の様な顔料と分
散剤を含む分散配合品が市販されており、このような分
散配合品を本発明で用いるのが好ましい。かかる市販分
散配合品としては、例えば、いずれも大日精化工業株式
会社製の水性の加工顔料の商品名で、WA Color Blue A-
01(C.I. Pigment Blue 15:1使用で、水溶性樹脂で分
散)等の水性加工顔料、EP 520 Blue 2B(C.I. Pigment
Blue 15使用で、ノニオン界面活性剤で分散)、EP 510
Green B(C.I. Pigment Green 7使用で、ノニオン界面
活性剤で分散)等の水性塗料用加工顔料、AF Blue E-2B
(C.I. Pigment Blue 15使用で、水溶性アクリル樹脂で
分散)、AF Green E-1(C.I. Pigment Green 7使用で、
水溶性アクリル樹脂で分散)等の水性塗料用加工顔料を
好適に用いることができ、これらは単独でも組み合わせ
ても用いることができるが、単独で用いるのが簡便性の
上では好ましい。これらの水性の加工顔料の中で、循環
水系の水中での褪色が少なく且つ極めて低濃度で光学的
検出が可能な点でWA Color Blue A-01が特に好ましい。
なお、本明細書では、説明の簡略化の為に、以下、これ
らの「水性の加工顔料」をも単に「色素」と称すること
として扱う。
Taking the above into consideration, in the present invention, for example, a copper phthalocyanine pigment (CI Pigment B)
lue 15) and monochloro copper phthalocyanine pigments (CI P
igment Blue 15: 1) and various dyes such as chlorinated copper phthalocyanine pigments such as polychloro copper phthalocyanine pigments, and these can be used alone or in combination. Polychloro copper phthalocyanine pigments are particularly excellent in terms of oxidation resistance. As the dispersant, any dispersant may be used as long as the dye that can be used in the present invention can be stably dispersed in the aqueous water of the object.For example, a water-soluble dispersant such as a nonionic dispersant or a water-soluble acrylic resin may be used. A resin-based dispersant or the like can be used, but is not limited thereto. A dispersion compound containing the pigment and the dispersant as described above is commercially available, and such a dispersion compound is preferably used in the present invention. Examples of such commercially available dispersion compounds include, for example, WA Color Blue A-
Water-based pigments such as 01 (using CI Pigment Blue 15: 1 and dispersed in a water-soluble resin), EP 520 Blue 2B (CI Pigment Blue
Blue 15 used, dispersed with nonionic surfactant), EP 510
Processed pigments for water-based paints such as Green B (using CI Pigment Green 7 and dispersed with a nonionic surfactant), AF Blue E-2B
(Using CI Pigment Blue 15 and dispersed in water-soluble acrylic resin), AF Green E-1 (using CI Pigment Green 7
Processed pigments for aqueous paints such as water-soluble acrylic resin) can be suitably used, and these can be used alone or in combination. However, it is preferable to use them alone in terms of simplicity. Among these aqueous processed pigments, WA Color Blue A-01 is particularly preferable because it has little discoloration in circulating water and can be optically detected at an extremely low concentration.
In the present specification, for the sake of simplicity of description, these "aqueous processed pigments" are also referred to as "dyes" hereinafter.

【0022】本発明に用いる色素は、特に耐酸化性に優
れているため、酸化剤が導入される循環水系中の色素ト
レーサーとして有利に用いることができる。例えば、次
亜塩素酸ナトリウムが通常含まれている水道水を用いる
循環水系や、次亜塩素酸ナトリウム、次亜臭素酸ナトリ
ウム、過酸化水素、オゾン等の酸化剤を添加した工業用
水や井水を用いる循環水系などの水中の色素トレーサー
として上記の様な色素を特に有利に使用することができ
る。なお、上記の様な酸化剤は、配管系における殺菌剤
やスライム防除剤として、冷却水系等の循環水系の補給
水などに添加して用いられることが多い。
The dye used in the present invention is particularly excellent in oxidation resistance, so that it can be advantageously used as a dye tracer in a circulating water system into which an oxidizing agent is introduced. For example, a circulating water system using tap water that normally contains sodium hypochlorite, industrial water or well water to which an oxidizing agent such as sodium hypochlorite, sodium hypobromite, hydrogen peroxide, or ozone is added. The dyes described above can be used particularly advantageously as dye tracers in water such as circulating water systems using The oxidizing agent as described above is often used as a disinfectant or a slime controlling agent in a piping system by being added to makeup water in a circulating water system such as a cooling water system.

【0023】[0023]

【発明の実施の形態】WA Color Blue A-01は、最大吸収
波長610nmの色素であり、これは耐光性、耐熱性、
耐還元性、耐酸化性、耐酸性、耐アルカリ性に優れた安
定な色素であるので、色素トレーサーとして特に好まし
い。これを例として本発明をより詳しく説明するが、本
発明がこれに限定されないのは言うまでもない。
BEST MODE FOR CARRYING OUT THE INVENTION WA Color Blue A-01 is a dye having a maximum absorption wavelength of 610 nm, which has light resistance, heat resistance,
Since it is a stable dye excellent in reduction resistance, oxidation resistance, acid resistance and alkali resistance, it is particularly preferable as a dye tracer. The present invention will be described in more detail by taking this as an example, but it goes without saying that the present invention is not limited to this.

【0024】WA Color Blue A-01を色素トレーサーとし
て水処理用薬品の添加量に比例して添加する。添加方法
としては、色素トレーサーと水処理用薬品を別々に一定
の割合で水に添加する方法と、色素トレーサーを予め一
定割合で水処理用薬品に配合しておき、水処理用薬品と
色素トレーサーを同時に水に添加する方法がある。
WA Color Blue A-01 is added as a dye tracer in proportion to the amount of water treatment chemical added. As the addition method, a dye tracer and a water treatment chemical are separately added to water at a fixed ratio, or a dye tracer is previously blended into a water treatment chemical at a fixed ratio, and the water treatment chemical and the dye tracer are added. Is simultaneously added to water.

【0025】WA Color Blue A-01は冷却水中等の循環水
中の濃度は、1〜10mg/L(リットル、以下同様)
程度の微量で色素トレーサーとして十分機能する。しか
も、このような濃度範囲において、色素濃度に対する吸
光度の検量線は直線性を示す。
The concentration of WA Color Blue A-01 in circulating water such as cooling water is 1 to 10 mg / L (liter, the same applies hereinafter).
It works well as a dye tracer with a trace amount. Moreover, in such a concentration range, the calibration curve of the absorbance with respect to the dye concentration shows linearity.

【0026】水処理用薬品濃度の算出法としては、前も
って水系に対しての水処理用薬品の添加量と色素トレー
サーの添加量との比率を既知の係数(色素による薬品濃
度換算係数)として把握しておけば、例えば、適当な採
取位置、時間で、吸光光度計等を使用して水中の色素ト
レーサーの濃度を光学的に検出して、その値に係数を乗
じることにより、水処理用薬品濃度を算出することがで
きる。この算出値に応じて、必要になった水処理用薬品
と色素トレーサーの水への添加量を算出することができ
る。
As a method of calculating the concentration of the chemical for water treatment, the ratio between the amount of the chemical for water treatment and the amount of the dye tracer added to the water system is grasped in advance as a known coefficient (chemical concentration conversion coefficient by the dye). If this is done, for example, the concentration of the dye tracer in the water is optically detected using an absorptiometer or the like at an appropriate collection position and time, and the value is multiplied by a coefficient to obtain a chemical for water treatment. The concentration can be calculated. According to the calculated value, the necessary amount of the water treatment chemical and the dye tracer added to the water can be calculated.

【0027】本発明の方法において2波長以上測定の吸
光光度法を用い、且つ、吸光光度法のトレーサーとして
WA Color Blue A-01を用いる場合は、例えば、WA Color
Blue A-01の最大吸収波長である610nm前後の1波
長(測定波長)と、WA ColorBlue A-01の吸収が無く、
しかも水の汚れによる吸収の影響が実質的にない波長
(参照波長)として670nm前後の2波長で吸光度を
測定し、その差をトレーサーであるWA Color Blue A-01
による吸光度として色素濃度を求め、水処理用薬品の濃
度管理を行うことができる。
In the method of the present invention, an absorption spectrophotometer for measuring two or more wavelengths is used, and as a tracer for the absorption spectrophotometry.
When using WA Color Blue A-01, for example, WA Color
One wavelength (measurement wavelength) around 610 nm, which is the maximum absorption wavelength of Blue A-01, and no absorption of WA ColorBlue A-01,
Moreover, the absorbance is measured at two wavelengths around 670 nm as a wavelength (reference wavelength) substantially free from the influence of absorption due to water contamination, and the difference is measured by the WA Color Blue A-01 tracer.
The concentration of the dye for water treatment can be controlled by determining the dye concentration as the absorbance of the dye.

【0028】[0028]

【実施例】以下、実施例で本発明をより具体的に説明す
るが、本発明は、実施例に限定されるものではない。な
お、以下の実施例で、WA Color Blue A-01の濃度測定は
測定波長610nm、参照波長670nmの2波長測定
の吸光光度法で行い、ブリリアントブルーFCFの濃度
測定は測定波長628nm、参照波長730nmの2波
長測定の吸光光度法で行った。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples. In the following examples, the concentration measurement of WA Color Blue A-01 was performed by an absorption spectrophotometric method of measuring two wavelengths at a measurement wavelength of 610 nm and a reference wavelength of 670 nm, and the concentration measurement of brilliant blue FCF was performed at a measurement wavelength of 628 nm and a reference wavelength of 730 nm. The two-wavelength measurement was carried out by the absorption spectrophotometry.

【0029】実施例1 WA Color Blue A-01を色素として用い、この色素の安定
性を確認するために、WA Color Blue A-01の各水分散液
中における光、熱、pH、酸化剤「遊離塩素(次亜塩素
酸ナトリウム)」の影響をビーカーテストで調べた。
Example 1 WA Color Blue A-01 was used as a dye. In order to confirm the stability of the dye, light, heat, pH, and oxidizing agent were used in each aqueous dispersion of WA Color Blue A-01. The effect of "free chlorine (sodium hypochlorite)" was examined by a beaker test.

【0030】〔光の影響〕WA Color Blue A-01及び比較
用のフルオレセインの濃度がそれぞれ4mg/Lになる
ように純水で稀釈して調製した試料分散液と試料溶液を
日光の当たる場所に放置して光安定性を試験した。実験
方法は、それぞれの色素濃度を経時的に測定し、試料分
散液と試料溶液調製直後に測定した各色素の検出濃度を
それぞれ100%としたときの検出濃度百分率(%)を
比較して行った。実験期間は、冷却水系の滞留時間等を
考慮に入れて1週間とした。フルオレセインの濃度測定
は、吸光光度法で行い、その測定波長は490nmであ
った。
[Effect of Light] A sample dispersion and a sample solution prepared by diluting with a pure water such that the concentrations of WA Color Blue A-01 and fluorescein for comparison become 4 mg / L each were placed in a place exposed to sunlight. The photostability was tested on standing. The experimental method was carried out by measuring the concentration of each dye over time and comparing the detection concentration percentage (%) when the detection concentration of each dye measured immediately after preparation of the sample solution was 100%. Was. The experiment period was one week in consideration of the residence time of the cooling water system and the like. The concentration of fluorescein was measured by an absorption spectrophotometer, and the measurement wavelength was 490 nm.

【0031】試験の結果、表1に示すように、日光によ
って、フルオレセインが時間と共に急速に褪色していく
のに対し、WA Color Blue A-01は、殆ど褪色することな
く安定性が保たれていることが確認された。
As a result of the test, as shown in Table 1, the fluorescein fades rapidly with time due to sunlight, whereas the stability of WA Color Blue A-01 is maintained without fading. It was confirmed that.

【0032】[0032]

【表1】 [Table 1]

【0033】〔熱の影響〕WA Color Blue A-01の濃度が
4mg/Lになるように純水で稀釈して調製した試料分
散液を3分割し、水温0℃、25℃、50℃に維持して
試料分散液の熱安定性を試験した。実験方法は、色素濃
度を経時的に測定し、試料分散液調製直後に測定した検
出濃度を100%としたときの検出濃度百分率(%)を
比較して行った。実験期間は、冷却水系の滞留時間等を
考慮に入れて1週間とした。
[Effect of Heat] A sample dispersion prepared by diluting with pure water so that the concentration of WA Color Blue A-01 was 4 mg / L was divided into three parts, and the water temperature was reduced to 0 ° C., 25 ° C., and 50 ° C. The sample dispersion was maintained and tested for thermal stability. The experimental method was performed by measuring the dye concentration over time and comparing the detection concentration percentage (%) with the detection concentration measured immediately after preparation of the sample dispersion as 100%. The experiment period was one week in consideration of the residence time of the cooling water system and the like.

【0034】試験の結果、表2に示すように、WA Color
Blue A-01は0℃〜50℃の範囲において熱による影響
を殆ど受けないことが確認された。
As a result of the test, as shown in Table 2, WA Color
It was confirmed that Blue A-01 was hardly affected by heat in the range of 0 ° C to 50 ° C.

【0035】[0035]

【表2】 [Table 2]

【0036】〔pHの影響〕WA Color Blue A-01の濃度
が4mg/Lで且つpHが4、7、11になるように、
色素に純水と酸(塩酸)あるいは純水とアルカリ(水酸
化ナトリウム)を加えて調製した試料分散液の安定性を
試験した。実験方法は、色素濃度を経時的に測定し、試
料分散液調製直後に測定した検出濃度を100%とした
ときの検出濃度百分率(%)を比較して行った。実験期
間は、冷却水系の滞留時間を考慮に入れて1週間とし
た。
[Effect of pH] The concentration of WA Color Blue A-01 was 4 mg / L and the pH was 4, 7, and 11,
The stability of a sample dispersion prepared by adding pure water and an acid (hydrochloric acid) or pure water and an alkali (sodium hydroxide) to the dye was tested. The experimental method was performed by measuring the dye concentration over time and comparing the detection concentration percentage (%) with the detection concentration measured immediately after preparation of the sample dispersion as 100%. The experimental period was one week, taking into account the residence time of the cooling water system.

【0037】試験の結果、表3に示すように、WA Color
Blue A-01は上記のpHの範囲(pH4〜11)では殆
ど影響されないことが確認された。
As a result of the test, as shown in Table 3, WA Color
It was confirmed that Blue A-01 was hardly affected in the above pH range (pH 4 to 11).

【0038】[0038]

【表3】 [Table 3]

【0039】[遊離塩素の影響]WA Color Blue A-01の
濃度が4mg/Lで且つ遊離塩素濃度が0.1、0.
3、0.5mg/Lになるように純水と次亜塩素酸ナト
リウム(酸化剤)を加えて調製した試料分散液の安定性
を試験した。実験方法は、色素濃度を経時的に測定し、
試料分散液調製直後に測定した検出濃度を100%とし
たときの検出濃度百分率(%)を比較して行った。実験
期間は、冷却水系の滞留時間を考慮に入れて1週間とし
た。
[Effect of Free Chlorine] The concentration of WA Color Blue A-01 was 4 mg / L, and the concentration of free chlorine was 0.1 and 0.1.
3. The stability of a sample dispersion prepared by adding pure water and sodium hypochlorite (oxidizing agent) to a concentration of 0.5 mg / L was tested. The experimental method measures the dye concentration over time,
The detection concentration percentage (%) was compared with the detection concentration measured immediately after preparation of the sample dispersion as 100%. The experimental period was one week, taking into account the residence time of the cooling water system.

【0040】その結果、表4に示すように、WA Color B
lue A-01は上記の遊離塩素濃度の範囲(0.1〜0.5
mg/L)では殆ど影響されないことが確認された。
As a result, as shown in Table 4, WA Color B
lue A-01 is in the above free chlorine concentration range (0.1-0.5
mg / L) was found to be hardly affected.

【0041】[0041]

【表4】 [Table 4]

【0042】実施例2 本発明に係る色素が色素トレーサーとして使用可能であ
ることを確認するために、開放循環冷却水系で試験を実
施した。
Example 2 In order to confirm that the dye according to the invention can be used as a dye tracer, a test was carried out in an open circulating cooling water system.

【0043】開放循環冷却水系の運転条件は次の通りで
ある。 水質:戸田工業用水 保有水量:2トン 循環水量:1トン/min 熱交換器の冷却水入口水温:15℃ 熱交換器の冷却水出口水温:25℃ なお、蒸発水量および飛散水相当分を戸田工業用水で補
給したが、補給水中に次亜塩素酸ナトリウムを遊離塩素
濃度として0.5mg/L添加し、色素を添加した水処
理用薬品を開放循環冷却水系に投入する前に、予め開放
循環冷却水系を24時間以上運転させておき、循環水系
を次亜塩素酸ナトリウムが混入した戸田工業用水で満た
すようにした。
The operating conditions of the open circulating cooling water system are as follows. Water quality: Toda industrial water Water holding volume: 2 tons Circulating water volume: 1 ton / min Cooling water inlet water temperature of heat exchanger: 15 ° C Cooling water outlet water temperature of heat exchanger: 25 ° C. Evaporated water amount and splash water equivalent to Toda It was replenished with industrial water, but sodium hypochlorite was added to the make-up water at a free chlorine concentration of 0.5 mg / L, and the water treatment chemical to which the dye was added was opened and circulated before being introduced into the open circulating cooling water system. The cooling water system was operated for 24 hours or more, and the circulating water system was filled with Toda industrial water mixed with sodium hypochlorite.

【0044】冷却水系に一定の量の臭化物イオンを配合
した水処理用薬品と共に、WA ColorBlue A-01とブリリ
アントブルーFCFの各色素をそれぞれの濃度が4mg
/L、0.05mg/Lになるように添加して、冷却水
を循環させた。そして、臭化物イオン濃度、色素濃度を
経時的に測定し、添加直後に測定した両者の検出濃度を
それぞれ100%としたときの検出濃度百分率(%)を
比較した。なお、臭化物イオン濃度はイオンクロマトグ
ラフ法により求めた。各水処理用薬品の配合表を表5と
表6に示す。表5と表6に於いて、ケーソンWTはロー
ム・アンド・ハース社製のイソチアゾロン系殺菌剤、ア
キュマー2000はローム・アンド・ハース社製のスル
ホン化アクリレート共重合物、ディクエスト2010は
日本モンサント(株)販売のヒドロキシエチレンジスル
ホン酸である。
A water treatment chemical prepared by mixing a certain amount of bromide ions in a cooling water system, and each pigment of WA ColorBlue A-01 and Brilliant Blue FCF having a concentration of 4 mg.
/ L, 0.05 mg / L, and circulated cooling water. Then, the bromide ion concentration and the dye concentration were measured with time, and the detection concentration percentages (%) when the detection concentrations of both were measured immediately after the addition were each 100%. The bromide ion concentration was determined by an ion chromatography method. Tables 5 and 6 show the composition of each water treatment chemical. In Tables 5 and 6, Caisson WT is an isothiazolone fungicide manufactured by Rohm and Haas, Accumer 2000 is a sulfonated acrylate copolymer manufactured by Rohm and Haas, and Diquest 2010 is Monsanto Japan ( Co., Ltd.).

【0045】[0045]

【表5】 [Table 5]

【0046】[0046]

【表6】 [Table 6]

【0047】その結果、表7に示すように、臭化物イオ
ン濃度とWA Color Blue A-01濃度の挙動と臭化物イオン
濃度とブリリアントブルーFCF濃度の挙動を比較する
と、次亜塩素酸ナトリウム等の酸化剤が開放循環冷却水
系に存在する場合では、WA Color Blue A-01を色素トレ
ーサー物質として用いた方が、良く一致することが明ら
かになった。この結果から、次亜塩素酸ナトリウム等の
酸化剤が開放循環冷却水系に存在する場合では、本発明
の方法に用いる色素の方が色素トレーサーとして、有効
であることが確認された。
As a result, as shown in Table 7, the behavior of the bromide ion concentration and the WA Color Blue A-01 concentration and the behavior of the bromide ion concentration and the brilliant blue FCF concentration were compared. It was found that the use of WA Color Blue A-01 as a dye tracer substance gave a better agreement when was present in an open circulating cooling water system. From these results, it was confirmed that when an oxidizing agent such as sodium hypochlorite is present in the open circulation cooling water system, the dye used in the method of the present invention is more effective as a dye tracer.

【0048】[0048]

【表7】 [Table 7]

【0049】[0049]

【発明の効果】本発明によれば、色素トレーサーを使用
する冷却水系等の循環水系における水処理用薬品濃度管
理方法において、従来の色素トレーサー法では正確な濃
度測定が困難であった次亜塩素酸ナトリウム等の酸化剤
等の影響の及ぶ水系においても、水系に添加した水処理
用薬品の濃度を容易且つ迅速にしかも精度良く測定する
ことができ、適正な水系添加水処理用薬品の濃度管理を
行うことが可能となる。なお、循環水系として、代表的
なものとして開放系の冷却水系(水冷却塔)を中心に説
明してきたが、本発明の方法は、閉鎖系の冷却水系、ボ
イラー、エバポレーティブコンデンサーなどにも利用す
ることができるのは勿論である。
According to the present invention, in a method for controlling the concentration of chemicals for water treatment in a circulating water system such as a cooling water system using a dye tracer, it is difficult to measure the concentration accurately by the conventional dye tracer method. Even in water systems affected by oxidizing agents such as sodium oxyacid, the concentration of water treatment chemicals added to water systems can be measured easily, quickly and accurately, and appropriate concentration management of water treatment chemicals added to water systems Can be performed. The circulating water system has been mainly described with reference to an open cooling water system (water cooling tower) as a typical example, but the method of the present invention is also applicable to a closed cooling water system, a boiler, an evaporative condenser, and the like. Of course, it can be used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀池 誠 東京都江東区新砂1丁目2番8号 オルガ ノ株式会社内 Fターム(参考) 2G020 AA03 AA04 BA02 BA14 CA02 CB07 CD05 CD13 CD38 2G059 AA01 BB04 BB20 CC20 DD03 DD05 DD20 EE01 EE12 FF13 HH02 HH06 PP10  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Makoto Horiike 1-2-8 Shinsuna, Koto-ku, Tokyo Organo Corporation F-term (reference) 2G020 AA03 AA04 BA02 BA14 CA02 CB07 CD05 CD13 CD38 2G059 AA01 BB04 BB20 CC20 DD03 DD05 DD20 EE01 EE12 FF13 HH02 HH06 PP10

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水処理用薬品と共にトレーサーとして耐
光性と耐酸化性のある色素を水中に分散剤で分散させ
て、水中の前記色素の濃度を光学的に検出することによ
り、水中に添加した前記水処理用薬品の濃度管理を行う
ことを特徴とする水処理用薬品の濃度管理方法。
1. A light-fast and oxidation-resistant dye is dispersed in water with a dispersant as a tracer together with a water treatment chemical, and the dye is added to water by optically detecting the concentration of the dye in water. A method for controlling the concentration of a water treatment chemical, wherein the concentration of the water treatment chemical is controlled.
【請求項2】 前記色素の濃度の光学的検出を、前記色
素の吸収のある少なくとも1波長を含む2以上の波長に
おける測定によって行うことを特徴とする請求項1に記
載の水処理用薬品の濃度管理方法。
2. The water treatment chemical according to claim 1, wherein the optical detection of the concentration of the dye is performed by measurement at two or more wavelengths including at least one wavelength at which the dye absorbs. Concentration control method.
【請求項3】 前記色素の濃度の光学的検出を吸光光度
法により行うことを特徴とする請求項1又は2に記載の
水処理用薬品の濃度管理方法。
3. The method for controlling the concentration of a chemical for water treatment according to claim 1, wherein the optical detection of the concentration of the dye is performed by an absorptiometry.
【請求項4】 前記色素の濃度の光学的検出における測
定波長が400nm〜800nm、好ましくは550n
m〜800nmであることを特徴とする請求項1から3
のいずれかに記載の水処理用薬品の濃度管理方法。
4. The wavelength for measurement in the optical detection of the concentration of the dye is 400 nm to 800 nm, preferably 550 n.
4. The structure according to claim 1, wherein the wavelength is from m to 800 nm.
The method for controlling the concentration of a chemical for water treatment according to any one of the above.
【請求項5】 前記色素が、銅フタロシアニン顔料、モ
ノクロル銅フタロシアニン顔料及びポリクロル銅フタロ
シアニン顔料類からなる群から選ばれる少なくとも1種
の色素を含むことを特徴とする請求項1から4のいずれ
かに記載の水処理用薬品の濃度管理方法。
5. The pigment according to claim 1, wherein the pigment contains at least one pigment selected from the group consisting of copper phthalocyanine pigments, monochloro copper phthalocyanine pigments, and polychloro copper phthalocyanine pigments. The method for controlling the concentration of the chemical for water treatment described above.
JP2000158918A 2000-05-29 2000-05-29 Method for controlling concentration of chemical for water treatment Pending JP2001334255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000158918A JP2001334255A (en) 2000-05-29 2000-05-29 Method for controlling concentration of chemical for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000158918A JP2001334255A (en) 2000-05-29 2000-05-29 Method for controlling concentration of chemical for water treatment

Publications (1)

Publication Number Publication Date
JP2001334255A true JP2001334255A (en) 2001-12-04

Family

ID=18663318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000158918A Pending JP2001334255A (en) 2000-05-29 2000-05-29 Method for controlling concentration of chemical for water treatment

Country Status (1)

Country Link
JP (1) JP2001334255A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105095B2 (en) 2003-04-17 2006-09-12 Organo Corporation Method and apparatus for controlling concentration of water treatment chemicals
CN100501300C (en) * 2007-03-26 2009-06-17 任广兴 Open industrial circulating-cooling water concentrating ratio and drug concentration balance control method
JP2010091279A (en) * 2008-10-03 2010-04-22 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring gas
JP7454629B2 (en) 2021-12-22 2024-03-22 プレゲンツァー ルーカス Treatment unit including a measuring unit for measuring antibacterial active ingredients and method for measuring the content of antibacterial agents in treated water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061448A (en) * 1998-06-11 2000-02-29 Japan Organo Co Ltd Method for controlling concentration of chemicals for water treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000061448A (en) * 1998-06-11 2000-02-29 Japan Organo Co Ltd Method for controlling concentration of chemicals for water treatment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105095B2 (en) 2003-04-17 2006-09-12 Organo Corporation Method and apparatus for controlling concentration of water treatment chemicals
CN100501300C (en) * 2007-03-26 2009-06-17 任广兴 Open industrial circulating-cooling water concentrating ratio and drug concentration balance control method
JP2010091279A (en) * 2008-10-03 2010-04-22 Nippon Telegr & Teleph Corp <Ntt> Method and instrument for measuring gas
JP7454629B2 (en) 2021-12-22 2024-03-22 プレゲンツァー ルーカス Treatment unit including a measuring unit for measuring antibacterial active ingredients and method for measuring the content of antibacterial agents in treated water

Similar Documents

Publication Publication Date Title
CA2003681C (en) Transition metals as treatment chemical tracers
US5278074A (en) Method of monitoring and controlling corrosion inhibitor dosage in aqueous systems
US5435969A (en) Monitoring water treatment agent in-system concentration and regulating dosage
US5389548A (en) Monitoring and in-system concentration control of polyelectrolytes using fluorochromatic dyes
CA2688608C (en) Method for determination of polymer concentration in water systems
US9228986B2 (en) Simultaneous determination of multiple analytes in industrial water system
FR2655150A1 (en) METHOD FOR DETERMINING THE CONCENTRATION OF AN ACTIVE SUBSTANCE IN AQUEOUS MEDIUM.
CA1325583C (en) Visual analytical tracer and method for detection and quantitative analysis for water treatment chemicals
US7932091B2 (en) Colorant tracer for cooling water treatment formulations
Panadero et al. Stopped flow kinetic determination of nalidixic acid and norfloxacin based on lanthanide-sensitized fluorescence
JP2007093399A (en) Composition for measuring concentration of residual chlorine
AU2005204249B2 (en) Extended life mineral acid detection tape
JP4831371B2 (en) Determination of iron
JP2001334255A (en) Method for controlling concentration of chemical for water treatment
JPH06233996A (en) Method of monitoring boric acid compound as scale inhibitor
JP2000061448A (en) Method for controlling concentration of chemicals for water treatment
JP2001334254A (en) Method for controlling concentration of chemical for water treatment
KR20070096818A (en) Composition for measuring concentration of residual chlorine
CA1322941C (en) Test composition and device for determining cyanuric acid in water
JP2010060437A (en) Reagent for measuring peracetic acid concentration and method for measuring peracetic acid concentration
JP5013313B2 (en) Residual chlorine concentration measurement composition
US20080057591A1 (en) Metal Indicator
JPH09178662A (en) Concentration control method for water-based additive
Williams et al. Determination of HCIO plus by bromination of fluorescein
JP2000263033A (en) Method for controlling drug concentration in circulating water system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100318