JP2001333789A - Method for hydrolysis with lipase - Google Patents

Method for hydrolysis with lipase

Info

Publication number
JP2001333789A
JP2001333789A JP2000152569A JP2000152569A JP2001333789A JP 2001333789 A JP2001333789 A JP 2001333789A JP 2000152569 A JP2000152569 A JP 2000152569A JP 2000152569 A JP2000152569 A JP 2000152569A JP 2001333789 A JP2001333789 A JP 2001333789A
Authority
JP
Japan
Prior art keywords
lipase
reaction
substrate
hydrolysis
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000152569A
Other languages
Japanese (ja)
Other versions
JP3650813B2 (en
Inventor
Yoshiaki Kitamura
義明 北村
Wakako Tsuzuki
和香子 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP2000152569A priority Critical patent/JP3650813B2/en
Publication of JP2001333789A publication Critical patent/JP2001333789A/en
Application granted granted Critical
Publication of JP3650813B2 publication Critical patent/JP3650813B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To examine the effect of the addition of an organic solvent on the hydrolysis with a lipase in an aqueous solution in order to enlarge the use of the lipase as a catalyst. SOLUTION: This method is a method for the hydrolysis with the lipase, in which the hydrolysis is performed in an aqueous solution by making the lipase derived from a microorganism act as a substrate, wherein one organic solvent or more selected from the group consisting of dimethylformamide, dimethyl sulfoxide, 1,4-dioxane, and dimethoxyethane is/are added to the reaction system.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リパーゼによる加
水分解方法に関し、詳しくは水系で基質に微生物由来の
リパーゼを作用させて加水分解反応を行うにあたり、反
応系に特定の有機溶媒を添加することによって、酵素の
基質特異性を変化させ、効率よく加水分解反応を行う方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lipase hydrolysis method, and more particularly, to a method in which a specific organic solvent is added to a reaction system when a hydrolysis reaction is carried out by allowing a microorganism-derived lipase to act on a substrate in an aqueous system. Thereby changing the substrate specificity of the enzyme and efficiently performing the hydrolysis reaction.

【0002】[0002]

【従来の技術】脂質分解酵素リパーゼは、生体内におい
て脂肪の分解や貯蔵に関与している酵素であり、生物界
に広く分布している。通常、生体内ではリパーゼは、脂
肪を分解したり合成したりする反応を触媒している。リ
パーゼには、グリセリンに結合している3個の脂肪酸の
すべてを切断する位置特異性の低いものや、グリセリン
の1位と3位の部分の脂肪酸だけを切断する等位置特異
性の高いリパーゼがあることも知られ、酵素反応の条件
を整えることにより、脂肪の分解だけではなく、グリセ
リンと脂肪酸から脂肪を合成する反応を触媒する作用も
ある。その他、リパーゼはエステル交換作用を有してお
り、この反応は食品産業等の様々な工業分野で利用され
ている。
2. Description of the Related Art A lipolytic enzyme lipase is an enzyme involved in fat decomposition and storage in a living body, and is widely distributed in the living world. Usually, in vivo, lipase catalyzes a reaction for decomposing and synthesizing fat. Lipases include those with low regiospecificity that cleave all three fatty acids bound to glycerin and those with high regiospecificity that cleave only the fatty acids at positions 1 and 3 of glycerin. It is also known that by adjusting the conditions of the enzymatic reaction, not only the decomposition of fat but also the action of catalyzing the reaction of synthesizing fat from glycerin and fatty acids is achieved. In addition, lipase has a transesterification effect, and this reaction is used in various industrial fields such as the food industry.

【0003】このようなリパーゼの酵素的な特徴は、基
質特異性が緩く、本来の基質である脂肪だけでなく、他
の多くの化合物に対して作用することである。このた
め、リパーゼは様々な有用物質を合成するための触媒と
しても利用されており、それに関する多数の報告がなさ
れている。また、有機溶媒に対する耐性が高いこともリ
パーゼの特性の一つとして挙げられる。そのため、有機
溶媒を含む系で酵素反応を行うことも検討されている。
この方法は、リパーゼが有機溶媒中で失活しない上に、
リパーゼの作用する基質は一般に水に不溶又は難溶性の
ものが多いため、反応系に有機溶媒を添加して基質を可
溶化することにより、リパーゼが基質に作用し易くする
ことができるという利点がある。また、エステル交換反
応や縮合反応では、水の存在しない有機溶媒下の方が酵
素反応が進み易く、しかも加水分解反応が起こらないた
め、これらの反応の生成物の収量が高くなる。
[0003] The enzymatic feature of such lipase is that it has a low substrate specificity and acts on many other compounds in addition to the original substrate, fat. For this reason, lipase is also used as a catalyst for synthesizing various useful substances, and many reports on it have been made. One of the characteristics of lipase is that it has high resistance to organic solvents. Therefore, conducting an enzyme reaction in a system containing an organic solvent is also being studied.
This method not only inactivates lipase in organic solvents, but also
Since many substrates on which lipase acts are generally insoluble or poorly soluble in water, the advantage is that lipase can easily act on the substrate by adding an organic solvent to the reaction system to solubilize the substrate. is there. In addition, in the transesterification reaction or the condensation reaction, the enzymatic reaction proceeds more easily in an organic solvent free of water, and the hydrolysis reaction does not occur, so that the yield of products of these reactions increases.

【0004】実際に、リパーゼの反応系を水の全く存在
しない100%有機溶媒で調製し、これにジメチルスル
ホキシド(以下、DMSOと略記することがある。)等
を添加すると、該反応が促進されるという報告がある
(Biotechnology and Bioengineering, Vol. 49, p.87-
92 (1996))。しかし、この方法は、上記の如く、反応系
が有機溶媒に特定の有機溶媒を添加した系であり、しか
もエステル交換反応のみが対象とされ、加水分解反応に
ついては全く言及していない。
[0004] Actually, when a lipase reaction system is prepared in a 100% organic solvent containing no water, and dimethyl sulfoxide (hereinafter sometimes abbreviated as DMSO) or the like is added thereto, the reaction is accelerated. (Biotechnology and Bioengineering, Vol. 49, p. 87-
92 (1996)). However, in this method, as described above, the reaction system is a system in which a specific organic solvent is added to an organic solvent, and furthermore, only the transesterification reaction is targeted, and there is no mention of the hydrolysis reaction.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、リパ
ーゼの加水分解反応系において、基質特異性を変化させ
ることによって、酵素活性を高めて効率的な酵素反応を
行う方法を提供することである。本発明者らは上記課題
を解決すべく検討を重ね、その過程で水系において基質
にリパーゼを作用させて加水分解反応を行うにあたり、
各種の有機溶媒を添加して、種々の基質に対するリパー
ゼの反応特性(基質特異性)の解析を行った。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for increasing the enzymatic activity and performing an efficient enzymatic reaction by changing the substrate specificity in a lipase hydrolysis reaction system. is there. The present inventors have been studying to solve the above problems, in the course of performing a hydrolysis reaction by allowing a lipase to act on a substrate in an aqueous system,
The reaction characteristics (substrate specificity) of lipase to various substrates were analyzed by adding various organic solvents.

【0006】その結果、リパーゼの加水分解の反応特性
が、ジメチルホルムアミド(以下、DMFと略記するこ
とがある。)、DMSO、1,4 −ジオキサンやジメトキ
シエタン(以下、DMEと略記することがある。)の添
加によって影響を受け、疎水性の強い基質に対しては反
応速度が速くなるのに対して、疎水性の弱い基質に対し
ては反応速度が遅くなるという知見を得た。すなわち、
リパーゼの加水分解活性は向上する場合と低下する場合
があり、これは基質の溶解性の変化によるものではな
く、酵素の立体構造変化に依存するものであることが明
らかとなった。さらに、多種の生物由来のリパーゼを用
いた場合においても、上記のようなDMFやDMSO等
による基質特異性の変化(加水分解の反応特性の変化)
が認められること、基質についても脂肪だけでなく、脂
肪酸エステル化合物や蛍光基質に対しても適用できるこ
とが明らかとなった。本発明は、かかる知見に基づいて
完成されたものである。
As a result, the reaction characteristics of lipase hydrolysis are as follows: dimethylformamide (hereinafter sometimes abbreviated as DMF), DMSO, 1,4-dioxane and dimethoxyethane (hereinafter sometimes abbreviated as DME). ), The reaction rate was increased for substrates with high hydrophobicity, while the reaction rate was decreased for substrates with low hydrophobicity. That is,
In some cases, the lipase hydrolysis activity was improved or reduced, and this was not due to a change in the solubility of the substrate but to a change in the steric structure of the enzyme. Furthermore, even when lipases derived from various organisms are used, changes in substrate specificity due to DMF or DMSO as described above (changes in hydrolysis reaction characteristics).
It was clarified that the present invention can be applied not only to fats but also to fatty acid ester compounds and fluorescent substrates. The present invention has been completed based on such findings.

【0007】[0007]

【課題を解決するための手段】請求項1記載の本発明
は、水系で基質に微生物由来のリパーゼを作用させて加
水分解反応を行うにあたり、反応系にジメチルホルムア
ミド、ジメチルスルホキシド、1,4 −ジオキサンおよび
ジメトキシエタンの中から選ばれた少なくとも1種の有
機溶媒を添加することを特徴とするリパーゼによる加水
分解方法である。請求項2記載の本発明は、基質が、蛍
光基質、脂肪もしくは脂肪酸エステル化合物である請求
項1記載の方法である。
According to the first aspect of the present invention, when a hydrolysis reaction is carried out by allowing a microorganism-derived lipase to act on a substrate in an aqueous system, dimethylformamide, dimethylsulfoxide, 1,4- A hydrolysis method using a lipase, comprising adding at least one organic solvent selected from dioxane and dimethoxyethane. The present invention according to claim 2 is the method according to claim 1, wherein the substrate is a fluorescent substrate, a fat or a fatty acid ester compound.

【0008】[0008]

【発明の実施の形態】本発明では、水系で基質に微生物
由来のリパーゼを作用させて加水分解反応を行うにあた
り、反応系にDMF、DMSO、1,4 −ジオキサンおよ
びDMEの中から選ばれた少なくとも1種の有機溶媒を
添加する。なお、本発明者らは、上記の有機溶媒の代わ
りに水溶性の有機溶媒であるテトラヒドロフラン(以
下、THFと略記することがある。)、アセトニトリ
ル、アセトン等を用いた場合は、リパーゼの基質特異性
の変化が認められないことを知見している。また、DM
FとDMSOを比較した場合、DMSOの方が基質特異
性に与える影響が大きい。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, when a hydrolysis reaction is carried out by allowing a microorganism-derived lipase to act on a substrate in an aqueous system, the reaction system is selected from DMF, DMSO, 1,4-dioxane and DME. At least one organic solvent is added. Note that the present inventors have found that when a water-soluble organic solvent such as tetrahydrofuran (hereinafter sometimes abbreviated as THF), acetonitrile, acetone or the like is used instead of the above-mentioned organic solvent, the substrate specificity of lipase is reduced. No change in gender was observed. Also, DM
When F and DMSO are compared, DMSO has a greater effect on substrate specificity.

【0009】リパーゼによる加水分解反応は水系で行わ
れるが、使用する基質はリパーゼの基質となり得るもの
であればよく、例えば蛍光基質、脂肪、脂肪酸エステル
化合物等が挙げられ、具体的にはアシル−4メチルウン
ベリフェロン類、モノグリセリド類、トリグリセリド
類、糖の脂肪酸エステル化合物等がある。これらの具体
例としては、4メチルウンベリフェリルオレイト(以
下、4MUOと略記することがある。)、4メチルウン
ベリフェリルパルミテイト(以下、4MUPと略記する
ことがある。)、4メチルウンベリフェリルナノエイト
(以下、4MUNと略記することがある。)、4メチル
ウンベリフェリルヘプタノイエイト(以下、4MUHと
略記することがある。)、1モノカプリン、1モノカプ
リリン、1モノラウリン、モノオレイン、トリグリセリ
ド、ショ糖ラウリン酸エステル等がある。
The hydrolysis reaction with lipase is carried out in an aqueous system, and the substrate to be used may be any one which can be a substrate for lipase, and examples thereof include fluorescent substrates, fats, fatty acid ester compounds and the like. Examples include 4-methylumbelliferones, monoglycerides, triglycerides, and fatty acid ester compounds of sugar. Specific examples thereof include 4-methylumbelliferyl oleate (hereinafter, may be abbreviated as 4MUO), 4-methylumbelliferyl palmitate (hereinafter, may be abbreviated as 4MUP), and 4-methylumbelliferyl palmitate. Veriferyl nanoate (hereinafter sometimes abbreviated as 4MUN), 4-methylumbelliferyl heptanoate (hereinafter sometimes abbreviated as 4MUH), 1 monocaprin, 1 monocaprylin, 1 monolaurin, monoolein , Triglycerides, sucrose laurate and the like.

【0010】水系に対する上記有機溶媒の添加量につい
ては、特に制限はないが、通常はDMFの場合、10〜
30%、好ましくは15〜25%であり、DMSOの場
合、20〜45%、好ましくは30〜40%であり、1,
4 −ジオキサンの場合、10〜30%、好ましくは15
〜25%であり、DMEの場合、7.5〜25%、好ま
しくは10〜20%である。
[0010] The amount of the organic solvent to be added to the aqueous system is not particularly limited.
30%, preferably 15 to 25%, and in the case of DMSO, 20 to 45%, preferably 30 to 40%;
In the case of 4-dioxane, 10 to 30%, preferably 15 to 30%
In the case of DME, it is 7.5 to 25%, preferably 10 to 20%.

【0011】また、リパーゼとしては、微生物起源の酵
素が用いられ、例えばムコール・ミーヘイ(Mucor mieh
ei) 、キャンディダ・ルゴサ(Candida rugosa) 、シュ
ードモナス・フルオレッセンス(Pseudomonas fluoresc
ence) 、アスペルギルス・オリゼ(Aspergillus oryza
e) 、リゾープス・ニベウス(Rhizopus niveus)、リゾ
ープス・デレマー(Rhizopus delemar)等に由来するも
のが好適である。
As the lipase, an enzyme of microbial origin is used, for example, Mucor mieh (Mucor mieh)
ei), Candida rugosa, Pseudomonas fluoresc
ence), Aspergillus oryza
e), those derived from Rhizopus niveus, Rhizopus delemar and the like are preferred.

【0012】本発明の方法により水系にDMF、DMS
O、1,4 −ジオキサンやDMEを添加したときの基質に
対するリパーゼの反応特性は、例えば酵素として微生物
ムコール・ミーヘイ由来リパーゼ、基質としてアシル−
4メチルウンベリフェロン類を用いた場合、4MUOや
4MUPのように疎水性の強い基質に対しては、酵素の
加水分解活性が上昇する。しかし、4MUNや4MUH
などの疎水性の弱い基質に対しては、加水分解活性が著
しく阻害される。つまり、反応系にDMF等の有機溶媒
を添加すると、基質の性質によってリパーゼの基質特異
性が変化する。このようなリパーゼの基質特異性の変
化、すなわち加水分解の反応特性の変化は、ムコール・
ミーヘイ由来のリパーゼの他に、上記した各種微生物に
由来する酵素を用いた場合にも同様に認められ、その変
化の程度は酵素の種類に依存する傾向を示した。また、
基質特異性と同時に、酵素化学的な解析から、上記の有
機溶媒を含む系においては、基質に対するリパーゼの最
大速度(Vmax)も変化することが示された。しか
し、微生物由来の酵素の代わりに、ブタ膵臓リパーゼを
使用しても、有機溶媒の添加による加水分解活性の促進
は認められなかった。
According to the method of the present invention, DMF, DMS
The reaction characteristics of the lipase with respect to the substrate when O, 1,4-dioxane or DME is added include, for example, a lipase derived from microorganism Mucor mihei as an enzyme, and an acyl-
When 4 methyl umbelliferones are used, the hydrolysis activity of the enzyme is increased for strongly hydrophobic substrates such as 4 MUO and 4 MUP. However, 4MUN and 4MUH
For a substrate having a low hydrophobicity such as, for example, the hydrolysis activity is significantly inhibited. That is, when an organic solvent such as DMF is added to the reaction system, the substrate specificity of the lipase changes depending on the nature of the substrate. Such a change in the substrate specificity of lipase, that is, a change in the reaction characteristics of hydrolysis, is caused by Mucor
Similarly, when enzymes derived from the various microorganisms described above were used in addition to lipase derived from mihei, the degree of the change tended to depend on the type of enzyme. Also,
At the same time as the substrate specificity, the enzymatic analysis showed that, in the system containing the above organic solvent, the maximum rate (Vmax) of lipase to the substrate also changed. However, even when porcine pancreatic lipase was used instead of the microorganism-derived enzyme, the promotion of the hydrolysis activity by the addition of the organic solvent was not recognized.

【0013】リパーゼの加水分解活性に影響を与える因
子は、基質の性質、酵素の起源、有機溶媒の添加濃度だ
けではなく、有機溶媒の種類によってもリパーゼの加水
分解活性が変化することが明らかとなった。例えば、基
質として4MUOを用いた場合、リパーゼの加水分解活
性は、100%緩衝液中での反応に比べて、20%DM
F、30% DMSO中では約2倍に、15% 1,4 −
ジオキサン中では約1.8倍に、20% DME中では
約1.4倍に促進される。
It is evident that factors that influence the lipase hydrolysis activity vary not only with the nature of the substrate, the origin of the enzyme and the concentration of the organic solvent added, but also with the type of organic solvent. became. For example, when 4 MUO is used as a substrate, the hydrolysis activity of lipase is 20% higher than that in a 100% buffer solution.
F, approximately doubled in 30% DMSO to 15% 1,4-
It is promoted about 1.8-fold in dioxane and about 1.4-fold in 20% DME.

【0014】このような有機溶媒を含む系でのリパーゼ
の基質特異性の変化は、基質として4MUOような蛍光
基質を用いた場合だけでなく、各種のモノグリセリド
(1モノカプリン、1モノカプリリン、1モノラウリ
ン、モノオレイン等)、トリグリセリドやショ糖脂ラウ
リン酸エステルを基質としたときにも同様の結果が得ら
れる。
The change in the substrate specificity of lipase in a system containing such an organic solvent is caused not only when a fluorescent substrate such as 4MUO is used as the substrate, but also when various monoglycerides (one monocaprin, one monocaprylin, one monolaurin) are used. , Monoolein, etc.), triglycerides and sucrose laurate as substrates.

【0015】[0015]

【実施例】次に、本発明を実施例により詳しく説明す
る。 実施例1 リパーゼとしてムコール・ミーヘイ由来のリパーゼ(フ
ルカ社製)を用い、基質として蛍光を有する4メチルウ
ンベリフェリルオレイト(4MUO)を用いて各種の有
機溶媒(DMF、DMSO、1,4 −ジオキサン、DM
E)を添加した反応系におけるリパーゼの反応特性の変
化について検討した。
Next, the present invention will be described in detail with reference to examples. Example 1 Various organic solvents (DMF, DMSO, 1,4-) were used as a lipase by using lipase derived from Mucor Mihei (Fluka) and using 4-methylumbelliferyl oleate (4MUO) having fluorescence as a substrate. Dioxane, DM
The change in the reaction characteristics of lipase in the reaction system to which E) was added was examined.

【0016】酵素反応液の組成は、リパーゼ(10-5
10-1mg/mL)を含む緩衝液(0.04M Britto
n-Robinson緩衝液、pH7.0)50μLと基質溶液
(4MUO、基質濃度10-4〜10-2mM)50μLか
らなる溶液に、各種の有機溶媒を所定の濃度となるよう
に添加した緩衝液900μLを加えたものである。例え
ば酵素溶液(ムコール・ミーヘイ由来のリパーゼ、0.
1mg/mL)50μL、基質溶液(4MUO,10-4
mM)50μL、0.04M Britton-Robinson緩衝液
(pH7.0)700μLおよび有機溶媒(DMF)2
00μLからなる。また、対照として有機溶媒を添加し
ない反応液を調製したが、その組成は酵素溶液(ムコー
ル・ミーヘイ由来のリパーゼ 0.1mg/mL)50
μL、基質溶液(4MUO,10-4mM)50μL、
0.04M Britton-Robinson緩衝液(pH7.0)9
00μLである。
The composition of the enzyme reaction solution is lipase (10 -5 to
Buffer containing 10 -1 mg / mL (0.04 M Britto)
n-Robinson buffer (pH 7.0) 50 μL and a substrate solution ( 4 MUO, substrate concentration 10 −4 to 10 −2 mM) 50 μL, and a buffer obtained by adding various organic solvents to a predetermined concentration. 900 μL was added. For example, an enzyme solution (lipase derived from Mucor miehei, 0.
1 μg / mL), 50 μL, substrate solution ( 4 MUO, 10 −4)
mM), 700 μL of 0.04 M Britton-Robinson buffer (pH 7.0) and organic solvent (DMF) 2
Consists of 00 μL. As a control, a reaction solution to which no organic solvent was added was prepared.
μL, substrate solution ( 4 MUO, 10 −4 mM) 50 μL,
0.04M Britton-Robinson buffer (pH 7.0) 9
00 μL.

【0017】上記の酵素反応液を、水浴中にて37℃で
20分間インキュベートし、リパーゼによる蛍光基質の
加水分解反応を行った。続いて、酵素反応停止のために
0.1N HClを1mL添加した後、反応液のpHを
元に戻すために0.1M クエン酸ナトリウムを2mL
添加した。上記の酵素反応により、基質である4MUO
はオレイン酸と4メチルウンベリフェロンに分解され、
このうち遊離した4メチルウンベリフェロンの蛍光強度
を、蛍光分光光度計(JASCO FP-770、日本分光社製)を
用いて測定した。なお、励起波長は320nm、観測波
長は450nmに設定した。一方、あらかじめ既知濃度
の4メチルウンベリフェロンの蛍光強度を同様にして測
定し、検量線を作成しておいた。この検量線を用いてリ
パーゼの加水分解反応によって遊離された4メチルウン
ベリフェロンの量を推定し、これより酵素活性を算出し
た。なお、酵素活性は対照を100としたときの相対リ
パーゼ加水分解活性として求めた。結果を図1(a)〜
(c)に示す。
The above enzyme reaction solution was incubated at 37 ° C. for 20 minutes in a water bath, and a lipase was used to hydrolyze the fluorescent substrate. Subsequently, 1 mL of 0.1 N HCl was added to stop the enzyme reaction, and then 2 mL of 0.1 M sodium citrate was added to restore the pH of the reaction solution.
Was added. By the above enzymatic reaction, the substrate 4MUO
Is broken down into oleic acid and 4-methylumbelliferone,
The fluorescence intensity of the released 4-methylumbelliferone was measured using a fluorescence spectrophotometer (JASCO FP-770, manufactured by JASCO Corporation). The excitation wavelength was set at 320 nm, and the observation wavelength was set at 450 nm. On the other hand, the fluorescence intensity of a known concentration of 4-methylumbelliferone was previously measured in the same manner, and a calibration curve was prepared. Using this calibration curve, the amount of 4-methylumbelliferone released by the lipase hydrolysis reaction was estimated, and the enzyme activity was calculated from this. The enzyme activity was determined as a relative lipase hydrolysis activity when the control was taken as 100. The results are shown in FIGS.
It is shown in (c).

【0018】比較例1 有機溶媒としてTHF、1,3 −ジオキサン、ジメトキシ
メタン、ジメトキシプロパン、アニソール、メタノー
ル、エタノール、プロパノール又はブタノールを用いた
こと以外は、すべて実施例1と同様に行った。結果を図
1(b)〜(d)に示す。
Comparative Example 1 The procedure of Example 1 was repeated except that THF, 1,3-dioxane, dimethoxymethane, dimethoxypropane, anisole, methanol, ethanol, propanol or butanol were used as the organic solvent. The results are shown in FIGS.

【0019】図1(a)〜(d)から明らかなように、
ムコール・ミーヘイ由来のリパーゼは、有機溶媒として
DMF、DMSO、1,4 −ジオキサン、DMEを添加し
た場合に加水分解活性が上昇した。しかし、THF,1,
3 −ジオキサン,ジメトキシメタン、ジメトキシプロパ
ン、アニソール,メタノール,エタノール,プロパノー
ルやブタノールを用いた場合は、加水分解活性の向上は
認められず、対照よりも劣っていた。一方、リパーゼの
種類による影響を調べたところ、ムコール・ミーヘイ由
来のリパーゼ以外の他の微生物由来のリパーゼについて
も同様の結果が得られたが、ブタ膵臓リパーゼは、いず
れの有機溶媒でも効果が認められなかった。
As apparent from FIGS. 1 (a) to 1 (d),
The lipase derived from Mucor mihei had an increased hydrolysis activity when DMF, DMSO, 1,4-dioxane, and DME were added as organic solvents. However, THF, 1,
When 3-dioxane, dimethoxymethane, dimethoxypropane, anisole, methanol, ethanol, propanol and butanol were used, no improvement in the hydrolysis activity was observed, and the results were inferior to the control. On the other hand, when examining the effect of the type of lipase, similar results were obtained for lipases derived from other microorganisms other than the lipase derived from Mucor mihei, but porcine pancreatic lipase was effective in any organic solvent. I couldn't.

【0020】以上のことから、微生物由来のリパーゼの
加水分解活性を増大させるためには、水溶性の有機溶媒
の中でも特にDMF、DMSO、1,4 −ジオキサン、D
MEを用いることが好ましいことが明らかとなった。さ
らに、その添加量によってリパーゼの加水分解反応が促
進又は阻害の方向に変化することも明らかとなった。ま
た、酵素量や基質濃度を変化させても、上記と同様の傾
向を示した。
From the above, in order to increase the hydrolysis activity of lipase derived from microorganisms, among water-soluble organic solvents, DMF, DMSO, 1,4-dioxane, D
It became clear that it was preferable to use ME. Furthermore, it was also revealed that the amount of the lipase hydrolyzes the lipase in the direction of promotion or inhibition. In addition, even when the amount of the enzyme or the substrate concentration was changed, the same tendency as described above was shown.

【0021】なお、ムコール・ミーヘイ由来のリパーゼ
の活性を促進させる効果のある有機溶媒を反応系に添加
したときに、酵素活性が最大になるときの有機溶媒の濃
度や最大活性の大きさは、添加する有機溶媒の酒類に依
存していた。例えば、このリパーゼが最大活性を示すと
きの有機溶媒の添加濃度は、DMFが20%、DMSO
が35%、1,4 −ジオキサンが15%、DMEが20%
であった。また、緩衝液100%の中での加水分解活性
と比較すると、これらの有機溶媒存在下での活性は、そ
れぞれ2倍(20% DMF)、2倍(35% DMS
O)、1.8倍(15% 1,4 −ジオキサン)、1.4
倍(20% DME)となった。
When an organic solvent having an effect of promoting the activity of lipase derived from Mucor mihei is added to the reaction system, the concentration of the organic solvent and the size of the maximum activity when the enzyme activity is maximized are as follows: It depended on the alcohol of the organic solvent to be added. For example, when the lipase exhibits the maximum activity, the concentration of the organic solvent added is 20% for DMF, DMSO
35%, 1,4-dioxane 15%, DME 20%
Met. In addition, when compared with the hydrolysis activity in 100% buffer, the activities in the presence of these organic solvents are twice (20% DMF) and twice (35% DMS), respectively.
O) 1.8 times (15% 1,4-dioxane), 1.4
(20% DME).

【0022】実施例2 リパーゼの加水分解反応の基質として、蛍光を有し、ア
シル側鎖の長さの異なる4種類のアシル4メチルウンベ
リフェロン(4MUO,4MUP, 4MUN,4MU
H)を用い、該基質の濃度を0〜20μMの範囲で変化
させた場合に、有機溶媒の添加によるリパーゼの加水分
解活性への影響について検討した。反応系に添加する有
機溶媒としてDMFを用いたこと以外は、すべて実施例
1と同様の条件で実施した。なお、DMFの添加濃度は
20%とし、DMF無添加のものを対照として同様に試
験を行った。図2(a)〜(d)は、20%DMFを含
む反応液又は含まない反応液中で、リパーゼと基質を反
応させたときの蛍光強度の変化を表したものである。図
中、(a) は基質として4MUOを用いた場合、(b)
は4MUPを用いた場合、(c)は4MUNを用いた場
合、(d) は4MUHを用いた場合をそれぞれ表してい
る。
Example 2 Four types of acyl 4-methylumbelliferones having fluorescence and different acyl side chains (4MUO, 4MUP, 4MUN, 4MU) were used as substrates for the lipase hydrolysis reaction.
Using H), the effect of the addition of an organic solvent on the lipase hydrolysis activity was examined when the concentration of the substrate was changed in the range of 0 to 20 μM. Except that DMF was used as the organic solvent to be added to the reaction system, all the procedures were performed under the same conditions as in Example 1. The concentration of DMF was set to 20%, and a test without DMF was performed as a control. FIGS. 2A to 2D show changes in fluorescence intensity when a lipase and a substrate are reacted in a reaction solution containing or not containing 20% DMF. In the figure, (a) shows the case where 4MUO was used as the substrate, (b)
Shows the case where 4MUP is used, (c) shows the case where 4MUN is used, and (d) shows the case where 4MUH is used.

【0023】図2から明らかなように、疎水性の高い基
質である4MUOや4MUPを用いた場合は、20%D
MFを含む反応系で蛍光強度は増大し、加水分解活性が
約2倍促進されるが、疎水性の低い基質である4MUN
や4MUHを用いた場合は、20%DMFを含む反応系
では蛍光強度が対照よりも著しく低下しており、酵素の
加水分解活性が阻害されることがわかった。特に、基質
として4MUHを用いた場合には、その蛍光強度は0に
近く、加水分解が起こり難いことが明らかとなった。以
上のことから、同じ有機溶媒を使用しても、用いる基質
の性質によって、リパーゼの加水分解活性を促進した
り、阻害したりすることが明らかとなった。有機溶媒と
して、DMFの代わりにDMSO、DME、1,4 −ジオ
キサンを使用した場合も、同様の結果が得られた。
As is clear from FIG. 2, when 4 MUO or 4MUP which is a highly hydrophobic substrate is used, 20% D
In the reaction system containing MF, the fluorescence intensity is increased and the hydrolysis activity is promoted by about twice, but 4MUN which is a substrate having low hydrophobicity
When 4 MUH or 4 MUH was used, the fluorescence intensity of the reaction system containing 20% DMF was significantly lower than that of the control, indicating that the hydrolysis activity of the enzyme was inhibited. In particular, when 4 MUH was used as the substrate, its fluorescence intensity was close to 0, and it was revealed that hydrolysis hardly occurred. From the above, it has been clarified that, even when the same organic solvent is used, the hydrolysis activity of lipase is promoted or inhibited depending on the properties of the substrate used. Similar results were obtained when DMSO, DME, and 1,4-dioxane were used instead of DMF as the organic solvent.

【0024】次に、有機溶媒としてDMF、DMSO、
DME及び1,4 −ジオキサンの各所定量を反応液に加え
たときの各種基質に対する酵素の加水分解の最大速度の
変化を第1表に示す。
Next, DMF, DMSO,
Table 1 shows changes in the maximum rate of hydrolysis of the enzyme with respect to various substrates when a predetermined amount of each of DME and 1,4-dioxane was added to the reaction solution.

【0025】[0025]

【表1】第 1 表 [Table 1] Table 1

【0026】表から明らかなように、ムコール・ミーヘ
イ由来のリパーゼの場合、4種類の有機溶媒を添加した
ときの酵素の加水分解の最大速度は、疎水性の強い基質
では上昇し、約1.4〜2.1倍となった。一方、疎水
性の弱い基質では逆に加水分解の最大速度は低下する。
As is clear from the table, in the case of the lipase derived from Mucor miehei, the maximum rate of hydrolysis of the enzyme when four kinds of organic solvents are added increases in the case of a strongly hydrophobic substrate. 4 to 2.1 times. On the other hand, the maximum rate of hydrolysis decreases when the substrate is weakly hydrophobic.

【0027】実施例3 本実施例では、脂肪酸エステル化合物を基質として用
い、有機溶媒としてDMSOを反応液に添加した場合に
おけるリパーゼ(ムコール・ミーヘイ由来、フルカ社
製)の加水分解活性に対する影響について検討した。酵
素反応液の組成は、リパーゼ(10-5〜10-1mg/m
L)を含む緩衝液(0.04M Britton-Robinson緩衝
液、pH7.0)5μLと基質溶液(ショ糖ラウリン酸
エステル、基質濃度10-3〜10-1mM)5μLからな
る溶液に、緩衝液90μLを加えたもの(対照)又は当
該溶液に既知濃度のDMSOを含んだ緩衝液90μLを
加えたものである。リパーゼによる加水分解反応は、3
7℃で30分間実施した。
Example 3 In this example, the effect of a fatty acid ester compound as a substrate on the hydrolysis activity of lipase (derived from Mucor Mihei, manufactured by Fluka) when DMSO was added to the reaction solution as an organic solvent was examined. did. The composition of the enzyme reaction solution was lipase (10 -5 to 10 -1 mg / m 2).
L) containing 5 μL of a buffer solution (0.04 M Britton-Robinson buffer, pH 7.0) and 5 μL of a substrate solution (sucrose laurate ester, substrate concentration of 10 −3 to 10 −1 mM). 90 μL of a buffer containing 90 μL of a known concentration of DMSO was added to the solution (control) or 90 μL of the solution. The hydrolysis reaction by lipase is 3
Performed at 7 ° C. for 30 minutes.

【0028】酵素反応終了後、9ブロモメチルアクリジ
ンのDMSO溶液(5mM)を200μL添加して酵素
反応で遊離したラウリン酸のカルボキシル基の9ブロモ
メチルアクリジンによる蛍光標識反応を開始した。蛍光
標識反応は、室温で20分間行い、高速液体クロマトグ
ラフィー法により、蛍光標識されたラウリン酸を蛍光波
長(425nm)で検出した。なお、励起波長は365
nmに設定した。酵素反応終了後の反応溶液中に存在す
るラウリン酸の9ブロモメチルアクリジンによる蛍光標
識物(溶出時間6.3分のピーク)の高速液体クロマト
グラムを図3A、Bに示す。図3Aは、100%緩衝液
での加水分解反応の結果を、図3Bは、30%DMSO
溶液での加水分解反応の結果を、それぞれ示す。反応溶
液と同じ組成の溶液中に、既知濃度のラウリン酸を溶か
して、同一条件下で蛍光検出を行った試料を検量線とし
て用い、酵素反応によって生じたラウリン酸の定量を行
うことによって、酵素活性に換算した。
After completion of the enzymatic reaction, 200 μL of a DMSO solution (5 mM) of 9-bromomethylacridine was added, and a fluorescent labeling reaction of the carboxyl group of lauric acid released by the enzymatic reaction with 9-bromomethylacridine was started. The fluorescent labeling reaction was performed at room temperature for 20 minutes, and the fluorescently labeled lauric acid was detected at a fluorescent wavelength (425 nm) by high performance liquid chromatography. The excitation wavelength is 365
nm. FIGS. 3A and 3B show high-performance liquid chromatograms of a fluorescently labeled product of lauric acid with 9-bromomethylacridine (elution time: 6.3 min peak) present in the reaction solution after completion of the enzyme reaction. FIG. 3A shows the results of the hydrolysis reaction in 100% buffer, and FIG. 3B shows the results of 30% DMSO.
The results of the hydrolysis reaction in the solution are shown respectively. By dissolving a known concentration of lauric acid in a solution having the same composition as the reaction solution and performing fluorescence detection under the same conditions as a calibration curve, quantification of lauric acid generated by the enzyme reaction is performed. It was converted to activity.

【0029】実施例4 脂質の1種であるモノオレイン(モノグリセリド)を基
質としたときのリパーゼの加水分解活性に対する有機溶
媒の影響について調べた。基質としてモノオレイン(濃
度10-4〜10-1mM)を用いたこと以外は、すべて実
施例3と同様の条件で実施した。酵素反応終了後、9ブ
ロモメチルアクリジンのDMSO溶液(5mM)を20
0μL添加して酵素反応で遊離したオレイン酸のカルボ
キシル基を蛍光標識し、高速液体クロマトグラフィー法
により、蛍光標識物(溶出時間11.6分のピーク)の
定量を行って酵素活性に換算した。結果を図4A,Bに
示す。図4Aは、100%緩衝液での加水分解反応の結
果を、図4Bは、30%DMSO溶液での加水分解反応
の結果を、それぞれ示す。一方、脂肪酸側鎖の長さが異
なるモノカプリンを基質とした場合は、30%DMSO
存在下では、リパーゼの加水分解活性は抑制されてい
た。このことは、基質が脂質や糖脂肪酸エステルの場合
においても、反応溶液中に存在する有機溶媒は、リパー
ゼの基質特異性に影響を与えることを示唆している。
Example 4 The effect of an organic solvent on the hydrolysis activity of lipase when monoolein (monoglyceride), a kind of lipid, was used as a substrate was examined. Except that monoolein (concentration: 10 -4 to 10 -1 mM) was used as a substrate, all the procedures were performed under the same conditions as in Example 3. After completion of the enzyme reaction, a solution of 9 bromomethylacridine in DMSO (5 mM) was added to 20
The carboxyl group of oleic acid released by the enzyme reaction was fluorescently labeled by adding 0 μL, and the fluorescently labeled product (peak at an elution time of 11.6 minutes) was quantified by high performance liquid chromatography to convert to enzyme activity. The results are shown in FIGS. 4A and 4B. FIG. 4A shows the result of the hydrolysis reaction in a 100% buffer, and FIG. 4B shows the result of the hydrolysis reaction in a 30% DMSO solution. On the other hand, when monocaprin having a different fatty acid side chain length was used as a substrate, 30% DMSO was used.
In the presence, the lipase hydrolysis activity was suppressed. This suggests that even when the substrate is a lipid or sugar fatty acid ester, the organic solvent present in the reaction solution affects the substrate specificity of lipase.

【0030】実施例5 各種生物由来のリパーゼを用い、反応溶液に有機溶媒と
してDMSOを添加したときの加水分解活性に対する影
響について調べた。すなわち、基質として4MUOを用
い、有機溶媒の濃度を変化させたときの各種酵素の加水
分解活性に対する影響を調べた。結果を図5(a)〜
(g)に示す。
Example 5 Using lipases derived from various organisms, the influence on the hydrolysis activity when DMSO was added as an organic solvent to the reaction solution was examined. That is, the effect on the hydrolysis activity of various enzymes when 4 MUO was used as the substrate and the concentration of the organic solvent was changed was examined. The results are shown in FIGS.
(G).

【0031】図5(a)〜(g)は、各種生物由来のリ
パーゼによる加水分解活性を、有機溶媒を含まない対照
を100とした相対加水分解活性で表したものである。
図中の記号(a)〜(g)は酵素の起源を示しており、
(a)はムコール・ミーヘイ由来(商品名:「リパー
ゼ」、フルカ社製)、(b)はキャンディダ・ルゴサ由
来(商品名:「リパーゼAY」天野製薬(株)製)、
(c)はシュードモナス・フルオレッセンス由来(商品
名:「リパーゼ」フルカ社製)、(d)はリゾープス・
デレマー由来(商品名:「リパーゼ」、生化学工業
(株)製)、(e)はアスペルギルス・オリゼ由来(商
品名:「リパーゼ」、フルカ社製)、(f)はリゾープ
ス・ニベウス由来(商品名:「リパーゼ」、ナガセ生化
学工業(株)製)、(g)はブタ膵臓由来(商品名:
「リパーゼタイプII」、シグマ社製)を表している。
FIGS. 5 (a) to 5 (g) show the hydrolysis activity of lipases derived from various organisms in terms of relative hydrolysis activity with respect to a control containing no organic solvent as 100.
The symbols (a) to (g) in the figure indicate the origin of the enzyme,
(A) is derived from Mucor Mihei (trade name: "Lipase", manufactured by Fluka), (b) is derived from Candida Lugosa (trade name: "Lipase AY" manufactured by Amano Pharmaceutical Co., Ltd.),
(C) is from Pseudomonas fluorescens (trade name: "Lipase" manufactured by Fluka), (d) is Risops.
Delemar-derived (trade name: "Lipase", manufactured by Seikagaku Corporation), (e) is derived from Aspergillus oryzae (trade name: "Lipase", manufactured by Fluka), (f) is derived from Rhizopus nibeus (product) Name: "Lipase", manufactured by Nagase Seikagaku Corporation), (g) is derived from pig pancreas (trade name:
"Lipase type II", manufactured by Sigma).

【0032】図から明らかなように、微生物由来の6種
のリパーゼは、反応液にDMSOを添加することによっ
て加水分解活性がいずれも増大し、一部の場合を除いて
添加濃度が約25〜50%前後のときに最大活性を示し
た。加水分解活性に対する影響の大きさは、リパーゼの
起源によって異なることも明らかとなった。一方、ブタ
膵臓リパーゼは、DMSOを添加することによって活性
が増大することはなく、その添加濃度に依存して活性が
阻害されることが示された。以上のことから、有機溶媒
を添加して加水分解活性が上昇するのは、微生物に由来
する酵素を用いた場合であることがわかった。
As is clear from the figure, the addition of DMSO to the reaction mixture increased the hydrolysis activity of the six types of lipases derived from microorganisms. The activity was maximized at around 50%. It was also revealed that the magnitude of the effect on the hydrolysis activity varies depending on the origin of the lipase. On the other hand, it was shown that the activity of pig pancreatic lipase was not increased by the addition of DMSO, and the activity was inhibited depending on the concentration of the addition. From the above, it was found that the hydrolysis activity was increased by adding an organic solvent when an enzyme derived from a microorganism was used.

【0033】実施例6 本実施例では、構造の異なる蛍光基質に対するリパーゼ
の加水分解活性について調べた。すなわち、20% D
MFを含む反応液と対照の緩衝液100%の反応液中に
おいて、4種類の蛍光基質(1)4MUO、(2)4M
UP、(3)4MUN、(4)4MUHに対する各種生
物由来のリパーゼの加水分解活性を比較した。結果を図
6(a)〜(g)に示す。なお、図中の記号(a)〜
(g)は酵素の起源を示しており、それぞれは実施例5
における記号と同じである。図から明らかなように、微
生物由来の6種の酵素については、DMFを添加するこ
とにより加水分解反応の基質特異性を変化させることが
できた。
Example 6 In this example, the lipase hydrolysis activity on fluorescent substrates having different structures was examined. That is, 20% D
Four kinds of fluorescent substrates (1) 4MUO, (2) 4M were used in a reaction solution containing MF and a 100% control buffer solution.
The hydrolytic activities of lipases derived from various organisms on UP, (3) 4MUN and (4) 4MUH were compared. The results are shown in FIGS. In addition, the symbols (a) to
(G) shows the origin of the enzyme, each of which is given in Example 5
Is the same as the symbol in. As is clear from the figure, with respect to the six enzymes derived from microorganisms, the substrate specificity of the hydrolysis reaction could be changed by adding DMF.

【0034】[0034]

【発明の効果】本発明の方法によれば、リパーゼの加水
分解反応系に有機溶媒を所定濃度添加することによっ
て、基質の性質や各種生物由来のリパーゼの種類に応じ
て該酵素の基質特異性を変化させ、加水分解反応を促進
又は阻害の方向に変化させることができる。
According to the method of the present invention, by adding an organic solvent to a lipase hydrolysis reaction system at a predetermined concentration, the substrate specificity of the enzyme can be adjusted according to the nature of the substrate and the type of lipase derived from various organisms. Can be changed to promote or inhibit the hydrolysis reaction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 (a)〜(d)は、リパーゼの加水分解活性
(相対活性)に及ぼす各種有機溶媒の影響を示すグラフ
である。
1 (a) to 1 (d) are graphs showing the effect of various organic solvents on the lipase hydrolysis activity (relative activity).

【図2】 (a)〜(d)は、20% DMFを含む反
応液と含まない反応液中で、4種類の基質の濃度を変え
てリパーゼと反応させたときの蛍光強度の変化を表すグ
ラフである。
FIGS. 2A to 2D show changes in fluorescence intensity when reacting with lipase in a reaction solution containing 20% DMF and a reaction solution not containing 20% DMF while changing the concentrations of four types of substrates. It is a graph.

【図3】 高速液体クロマトグラムを示し、Aは100
%緩衝液での加水分解反応の結果を、Bは30%DMS
O溶液での加水分解反応の結果を示す。
FIG. 3 shows a high performance liquid chromatogram, wherein A is 100
% Is the result of the hydrolysis reaction in the buffer, B is 30% DMS
The result of the hydrolysis reaction in the O solution is shown.

【図4】 高速液体クロマトグラムを示し、Aは100
%緩衝液での加水分解反応の結果を、Bは30%DMS
O溶液での加水分解反応の結果を示す。
FIG. 4 shows a high performance liquid chromatogram, wherein A is 100
% Is the result of the hydrolysis reaction in the buffer, B is 30% DMS
The result of the hydrolysis reaction in the O solution is shown.

【図5】 (a)〜(g)は、各種微生物及びブタ膵臓
由来のリパーゼを用いて、酵素反応溶液中のDMSOの
濃度を変化させたときの加水分解活性(相対活性)にを
示すグラフである。
FIGS. 5A to 5G are graphs showing hydrolytic activities (relative activities) when the concentration of DMSO in an enzyme reaction solution is changed using lipases derived from various microorganisms and porcine pancreas. It is.

【図6】 (a)〜(g)は、各種微生物及びブタ膵臓
由来のリパーゼを用いて、4種類の蛍光基質(1)4M
UO、(2)4MUP、(3)4MUN、(4)4MU
Hに対する加水分解活性を比較したグラフである。
FIGS. 6A to 6G show four types of fluorescent substrates (1) 4M using lipases derived from various microorganisms and pig pancreas.
UO, (2) 4MUP, (3) 4MUN, (4) 4MU
It is a graph which compared the hydrolysis activity with respect to H.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年9月18日(2000.9.1
8)
[Submission Date] September 18, 2000 (2009.1)
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Correction target item name] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0025】[0025]

【表1】第 1 表 [Table 1] Table 1

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水系で基質に微生物由来のリパーゼを作
用させて加水分解反応を行うにあたり、反応系にジメチ
ルホルムアミド、ジメチルスルホキシド、1,4 −ジオキ
サンおよびジメトキシエタンの中から選ばれた少なくと
も1種の有機溶媒を添加することを特徴とするリパーゼ
による加水分解方法。
Claims: 1. In carrying out a hydrolysis reaction by allowing a microorganism-derived lipase to act on a substrate in an aqueous system, at least one selected from dimethylformamide, dimethylsulfoxide, 1,4-dioxane and dimethoxyethane is used in the reaction system. A method for hydrolyzing with lipase, comprising adding an organic solvent as described above.
【請求項2】 基質が、蛍光基質、脂肪もしくは脂肪酸
エステル化合物である請求項1記載の方法。
2. The method according to claim 1, wherein the substrate is a fluorescent substrate, a fat or a fatty acid ester compound.
JP2000152569A 2000-05-24 2000-05-24 Hydrolysis method using lipase Expired - Lifetime JP3650813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000152569A JP3650813B2 (en) 2000-05-24 2000-05-24 Hydrolysis method using lipase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000152569A JP3650813B2 (en) 2000-05-24 2000-05-24 Hydrolysis method using lipase

Publications (2)

Publication Number Publication Date
JP2001333789A true JP2001333789A (en) 2001-12-04
JP3650813B2 JP3650813B2 (en) 2005-05-25

Family

ID=18657977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000152569A Expired - Lifetime JP3650813B2 (en) 2000-05-24 2000-05-24 Hydrolysis method using lipase

Country Status (1)

Country Link
JP (1) JP3650813B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054694A1 (en) * 2011-10-14 2013-04-18 日清オイリオグループ株式会社 Manufacturing method for sucrose fatty acid ester concentrate mixture and sucrose fatty acid ester concentrate mixture obtained thereby
WO2021050585A1 (en) * 2019-09-12 2021-03-18 Lonza Ltd Compositions, methods, and kits for detection of lipolytic activity

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013054694A1 (en) * 2011-10-14 2013-04-18 日清オイリオグループ株式会社 Manufacturing method for sucrose fatty acid ester concentrate mixture and sucrose fatty acid ester concentrate mixture obtained thereby
JP2013099315A (en) * 2011-10-14 2013-05-23 Nisshin Oillio Group Ltd Manufacturing method for sucrose fatty acid ester concentrate mixture and sucrose fatty acid ester concentrate mixture obtained thereby
WO2021050585A1 (en) * 2019-09-12 2021-03-18 Lonza Ltd Compositions, methods, and kits for detection of lipolytic activity

Also Published As

Publication number Publication date
JP3650813B2 (en) 2005-05-25

Similar Documents

Publication Publication Date Title
Bussamara et al. Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation
Li et al. Characterization of an organic solvent-tolerant lipase from Haloarcula sp. G41 and its application for biodiesel production
Diaz et al. Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures
Horchani et al. Staphylococcal lipases: biotechnological applications
Xu et al. Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase
Li et al. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil
Takó et al. Purification and properties of extracellular lipases with transesterification activity and 1, 3-regioselectivity from Rhizomucor miehei and Rhizopus oryzae
Kanchana et al. Alkaline lipase activity from the marine protists, thraustochytrids
Sun et al. Novel minor lipase from Rhizopus chinensis during solid-state fermentation: Biochemical characterization and its esterification potential for ester synthesis
NL8600148A (en) METHOD FOR PREPARING GLYCERIDES IN THE PRESENCE OF LIPASES
Patel et al. An extracellular solvent stable alkaline lipase from Pseudomonas sp. DMVR46: Partial purification, characterization and application in non-aqueous environment
Cao et al. Purification and characterization of an extracellular lipase from Trichosporon sp. and its application in enrichment of omega-3 polyunsaturated fatty acids
Kublicki et al. Wheat germ lipase: Isolation, purification and applications
Alabdalall et al. Application and characterization of crude fungal lipases used to degrade fat and oil wastes
Bermúdez-García et al. ANCUT2, a thermo-alkaline cutinase from Aspergillus nidulans and its potential applications
Dimitrijevic et al. Production of lipase from Pseudozyma aphidis and determination of the activity and stability of the crude lipase preparation in polar organic solvents
Zhang et al. Purification, identification and characterization of an esterase with high enantioselectivity to (S)-ethyl indoline-2-carboxylate
Speranza et al. Biochemical characterization of highly organic solvent-tolerant cutinase from Fusarium oxysporum
Staudt et al. Biocatalytic synthesis of monoterpene esters–A review study on the phylogenetic evolution of biocatalysts
Lai et al. Studies on synthesis of short chain alkyl esters catalyzed by goat pregastric lipase
Szczęsna-Antczak et al. Cold-active yeast lipases: recent issues and future prospects
Khan et al. Purification and characterization of lipase enzyme from endophytic Bacillus pumilus WSS5 for application in detergent industry
Majumder et al. Increasing the catalytic efficiency of Candida rugosa lipase for the synthesis of tert-alkyl butyrates in low-water media
JP2001333789A (en) Method for hydrolysis with lipase
JP6108399B2 (en) Enzyme reaction method to increase the reaction efficiency of hydrolase

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040707

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3650813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term