JP2001332457A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JP2001332457A
JP2001332457A JP2000151865A JP2000151865A JP2001332457A JP 2001332457 A JP2001332457 A JP 2001332457A JP 2000151865 A JP2000151865 A JP 2000151865A JP 2000151865 A JP2000151865 A JP 2000151865A JP 2001332457 A JP2001332457 A JP 2001332457A
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
solid electrolytic
thermal expansion
transition temperature
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000151865A
Other languages
Japanese (ja)
Inventor
Junichi Murakami
村上  順一
Kazunobu Shigehira
和信 重平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP2000151865A priority Critical patent/JP2001332457A/en
Publication of JP2001332457A publication Critical patent/JP2001332457A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor having superior leakage current characteristic, low ESR and high reliability. SOLUTION: The solid electrolytic capacitor, composed of a capacitor element having a solid electrolyte layer, outer electrodes and an exterior covering resin with the exterior covering resin having a modulus of bending elasticity of 1,200-1,400 kg/mm2 and a thermal expansion coefficient of 0.8-1.7×10-5/ deg.C at glass transition temperature or lower.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体電解コンデン
サの外装樹脂に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exterior resin for a solid electrolytic capacitor.

【0002】[0002]

【従来の技術】固体電解コンデンサは、熱膨張係数の異
なる材質を積み重ねた多層構造になっており、使用環境
の温度やコンデンサ自体に印加される電力が頻繁に変化
するような条件下では、各材料の熱膨張率の差によって
材料間に応力が発生する。この応力により、各材料間の
接合面のはがれや誘電体酸化皮膜の損傷が発生し、等価
直列抵抗(ESR)や漏れ電流といったコンデンサ特性
に悪影響を及ぼす。
2. Description of the Related Art Solid electrolytic capacitors have a multilayer structure in which materials having different coefficients of thermal expansion are stacked. Stress is generated between the materials due to the difference in the coefficient of thermal expansion of the materials. This stress causes peeling of the bonding surface between the materials and damage of the dielectric oxide film, which adversely affects capacitor characteristics such as equivalent series resistance (ESR) and leakage current.

【0003】以上のことから、固体電解コンデンサの封
止材となる外装樹脂には低応力性が求められるが、成形
性、耐湿性等の特性向上と矛盾することが多い。
[0003] For the above reasons, the exterior resin used as the sealing material of the solid electrolytic capacitor is required to have a low stress, but often contradicts the improvement of properties such as moldability and moisture resistance.

【0004】たとえば、応力を小さくするには、熱膨張
係数を小さくする、ガラス転移温度を高くする、弾性率
を小さくするという3つの方法が挙げられる。しかし、
熱膨張係数を小さくするため、シリカに代表される無機
充填材の含有率を上げると、溶融状態での粘度が高くな
り成形性が劣化する。また、弾性率が高くなりクラック
が発生しやすくなる。ガラス転移温度の上昇には、樹脂
の架橋密度を高くするために活性の強い触媒を使う方法
や、多官能樹脂を使うなどの方法があるが、このような
方法では弾性率が高くなる傾向がある。弾性率を低減さ
せるには、樹脂の組成を変更するか、構成材料自体を低
弾性化する2つの方法があるが、成形性、吸湿性等の低
下をもたらすという問題があった。
[0004] For example, to reduce stress, there are three methods of reducing the coefficient of thermal expansion, increasing the glass transition temperature, and decreasing the elastic modulus. But,
When the content of an inorganic filler typified by silica is increased in order to reduce the coefficient of thermal expansion, the viscosity in a molten state is increased and the moldability is deteriorated. In addition, the modulus of elasticity increases, and cracks easily occur. To increase the glass transition temperature, there are methods such as using a highly active catalyst to increase the crosslink density of the resin and using a polyfunctional resin.However, such a method tends to increase the elastic modulus. is there. To reduce the elastic modulus, there are two methods of changing the composition of the resin or reducing the elasticity of the constituent material itself. However, there is a problem that the moldability and the hygroscopicity are reduced.

【0005】上記の理由から外装樹脂の特性改善による
固体電解コンデンサの特性劣化防止を図ることは困難で
あった。
For the above reasons, it has been difficult to prevent the deterioration of the characteristics of the solid electrolytic capacitor by improving the characteristics of the exterior resin.

【0006】[0006]

【発明が解決しようとする課題】上記のような問題があ
ったため、成形性、耐湿性等の諸特性を損なうことなく
応力を低減することができる樹脂を封止材に用いた固体
電解コンデンサが要求されていた。
Because of the above-mentioned problems, a solid electrolytic capacitor using a resin as a sealing material, which can reduce stress without deteriorating various properties such as moldability and moisture resistance, has been developed. Had been requested.

【0007】[0007]

【課題を解決するための手段】本発明は、曲げ弾性率が
1200〜1400kg/mmで、かつガラス転移温
度以下での熱膨張係数が0.8〜1.7×10−5/℃
の樹脂を外装材料に用いることにより組立時や実装時の
応力の低減を図り、漏れ電流特性に優れ、低ESR、高
信頼性の固体電解コンデンサを提供することができるも
のである。すなわち、固体電解質層を形成したコンデン
サ素子と外部電極および外装樹脂からなる固体電解コン
デンサにおいて、上記外装樹脂の曲げ弾性率が1200
〜1400kg/mmであり、かつガラス転移温度以
下での熱膨張係数が0.8〜1.7×10−5/℃であ
ることを特徴とする固体電解コンデンサである。
According to the present invention, a flexural modulus is from 1200 to 1400 kg / mm 2 and a coefficient of thermal expansion below the glass transition temperature is from 0.8 to 1.7 × 10 −5 / ° C.
By using this resin as an exterior material, stress during assembly and mounting can be reduced, and a solid electrolytic capacitor having excellent leakage current characteristics, low ESR and high reliability can be provided. That is, in a solid electrolytic capacitor including a capacitor element having a solid electrolyte layer formed thereon, an external electrode, and an exterior resin, the flexural modulus of the exterior resin is 1200.
A ~1400kg / mm 2, and the thermal expansion coefficient of less than a glass transition temperature of the solid electrolytic capacitor, which is a 0.8~1.7 × 10 -5 / ℃.

【0008】また、上記固体電解質層が機能性高分子で
あることを特徴とする固体電解コンデンサである。
[0008] The solid electrolytic capacitor is characterized in that the solid electrolyte layer is a functional polymer.

【0009】上記機能性高分子の材料として、アニリ
ン、チオフェン、ピロールまたはそれらの誘導体を挙げ
ることができる。
As the material of the above functional polymer, aniline, thiophene, pyrrole or derivatives thereof can be mentioned.

【0010】なお、上記記載のアニリン誘導体として、
アニリン骨格を有しアルキル基、フェニル基、アルコキ
シ基、エステル基、チオエーテル基のうち少なくとも1
種を置換基として有するアニリン誘導体を挙げることが
できる。
[0010] As the aniline derivative described above,
Having an aniline skeleton, at least one of an alkyl group, a phenyl group, an alkoxy group, an ester group, and a thioether group;
An aniline derivative having a species as a substituent can be given.

【0011】そして、上記記載のチオフェンの誘導体
が、チオフェン骨格の3位、3位と4位またはS位に、
水酸基、アセチル基、カルボキシル基、アルキル基、ア
ルコキシ基のうち少なくとも1種を置換基として有する
チオフェン誘導体、または3,4−アルキレンジオキシ
チオフェンを挙げることができる。
Then, the above-mentioned thiophene derivative is added at the 3-, 3- and 4-positions or S-position of the thiophene skeleton.
Examples include a thiophene derivative having at least one of a hydroxyl group, an acetyl group, a carboxyl group, an alkyl group, and an alkoxy group as a substituent, or 3,4-alkylenedioxythiophene.

【0012】さらに、上記記載のピロール誘導体が、ピ
ロール骨格の3位、3位と4位またはN位に、水酸基、
アセチル基、カルボキシル基、アルキル基、アルコキシ
基のうち少なくとも1種を置換基として有するピロール
誘導体を挙げることができる。
Further, the above-mentioned pyrrole derivative has a hydroxyl group at the 3-, 3- and 4-positions or the N-position of the pyrrole skeleton.
Examples include pyrrole derivatives having at least one of an acetyl group, a carboxyl group, an alkyl group, and an alkoxy group as a substituent.

【0013】上記固体電解質層の構造として、化学重合
による機能性高分子によるもの、化学重合後電解重合に
よる機能性高分子によるもの、化学重合、電解重合、化
学重合の順で形成した機能性高分子によるものを挙げる
ことができる。また、機能性高分子は同一でも異なる材
料でもよい。
The structure of the solid electrolyte layer may be a functional polymer formed by chemical polymerization, a functional polymer formed by chemical polymerization followed by electrolytic polymerization, or a functional polymer formed by chemical polymerization, electrolytic polymerization and chemical polymerization in this order. Molecules may be mentioned. The functional polymers may be the same or different materials.

【0014】[0014]

【発明の実施の形態】外装樹脂の曲げ弾性率を1200
〜1400kg/mmとし、かつガラス転移温度以下
での熱膨張係数を0.8〜1.7×10−5/℃とする
ことで、組立時や実装時の応力の低減が図れ、漏れ電流
特性に優れ、低ESR、高信頼性の固体電解コンデンサ
を提供することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The flexural modulus of the exterior resin is 1200
11400 kg / mm 2 and a coefficient of thermal expansion below the glass transition temperature of 0.8 to 1.7 × 10 −5 / ° C. to reduce stress during assembly and mounting, and to reduce leakage current. A solid electrolytic capacitor having excellent characteristics, low ESR and high reliability can be provided.

【0015】[0015]

【実施例】タンタルワイヤーを直立させた陽極体の表面
に五酸化タンタルからなる誘電体酸化皮膜を形成した
後、固体電解質層となる導電性高分子層として化学重合
によるポリピロール層を形成した。次いでカーボンペー
スト層、銀ペースト層を形成してコンデンサ素子を形成
した。さらに陽極となるタンタルワイヤーをリードフレ
ームに溶接し、陰極となる固体電解質を導電性銀ペース
トによりリードフレームに接着した。上記状態のコンデ
ンサ素子とリードフレームをトランスファーモールド法
により、/表1の樹脂特性に基づきエポキシ樹脂で外装
後、リードを樹脂側面に沿って折り曲げ、6.3V/1
50μFの固体電解コンデンサを各100個作製した。
EXAMPLE After a dielectric oxide film made of tantalum pentoxide was formed on the surface of an anode body having a tantalum wire standing upright, a polypyrrole layer was formed by chemical polymerization as a conductive polymer layer to be a solid electrolyte layer. Next, a carbon paste layer and a silver paste layer were formed to form a capacitor element. Further, a tantalum wire serving as an anode was welded to a lead frame, and a solid electrolyte serving as a cathode was bonded to the lead frame with a conductive silver paste. After the capacitor element and the lead frame in the above state are covered with an epoxy resin based on the resin characteristics shown in Table 1 by the transfer molding method, the lead is bent along the side surface of the resin to obtain 6.3 V / 1.
100 solid electrolytic capacitors of 50 μF each were produced.

【0016】実施例1〜3と比較例1〜3について10
0kHzにおけるESRおよび定格電圧印加1分後の漏
れ電流を各々測定し、さらに240℃で10秒間キープ
できる温度プロファイルのリフロー炉に3回通す耐熱試
験を行った後に同様の測定を行い、その結果を表1に示
した。
Examples 1 to 3 and Comparative Examples 1 to 3
The ESR at 0 kHz and the leakage current one minute after the application of the rated voltage were measured, and a heat resistance test was performed three times through a reflow furnace having a temperature profile capable of keeping at 240 ° C. for 10 seconds, and the same measurement was performed. The results are shown in Table 1.

【0017】[0017]

【表1】 [Table 1]

【0018】比較例1のように、曲げ弾性率が1400
kg/mmを超え、熱膨張係数も1.7×10−5
℃を超えると素子に大きな応力がかかり、特に漏れ電流
値が悪化する。次に比較例2のように、応力を小さくす
るために曲げ弾性率を1200kg/mm未満にする
と成形性が悪化し、外観不良率の増加、特性の悪化が見
られる。また比較例3のようにガラス転移温度以下の熱
膨張係数が0.8×10−5/℃未満でも成形性が悪化
し、外観不良率の増加、特性の悪化が見られる。これら
比較例と比べ、本発明の実施例1〜3は、外観不良率が
低く、初期、耐熱試験後いずれにおいても漏れ電流値、
ESRが小さくコンデンサとして優れた特性を持つこと
が分かる。
As in Comparative Example 1, the flexural modulus was 1400
kg / mm 2 and the coefficient of thermal expansion is 1.7 × 10 −5 /
If the temperature exceeds ℃, a large stress is applied to the element, and the leakage current value is particularly deteriorated. Next, as in Comparative Example 2, when the flexural modulus is set to less than 1200 kg / mm 2 in order to reduce the stress, the formability deteriorates, the appearance defect rate increases, and the characteristics deteriorate. Also, as in Comparative Example 3, when the coefficient of thermal expansion below the glass transition temperature is less than 0.8 × 10 −5 / ° C., the moldability deteriorates, the appearance defect rate increases, and the characteristics deteriorate. As compared with these comparative examples, Examples 1 to 3 of the present invention have a low appearance defect rate, and the leakage current value at the initial stage, after any heat resistance test,
It can be seen that the ESR is small and the capacitor has excellent characteristics.

【0019】外装樹脂のガラス転移温度以下の熱膨張係
数を1.7×10−5/℃としたときの曲げ弾性率と外
観不良率および漏れ電流との特性図を図1に示す。図1
より曲げ弾性率は、1200〜1400kg/mm
最適であることが分かる。
FIG. 1 shows a characteristic diagram of the flexural modulus, the appearance defect rate, and the leakage current when the coefficient of thermal expansion at the glass transition temperature or lower of the exterior resin is 1.7 × 10 −5 / ° C. FIG.
It can be seen from the above that the flexural modulus is optimally 1200 to 1400 kg / mm 2 .

【0020】また、外装樹脂の曲げ弾性率を1300k
g/mmとしたときのガラス転移温度以下の熱膨張係
数と外観不良および漏れ電流との特性図を図2に示す。
図2より熱膨張係数は、0.8〜1.7×10−5/℃
が最適であることが分かる。
The flexural modulus of the exterior resin is 1300 k.
FIG. 2 shows a characteristic diagram of a coefficient of thermal expansion equal to or lower than the glass transition temperature when g / mm 2 , poor appearance, and leakage current.
From FIG. 2, the coefficient of thermal expansion is 0.8 to 1.7 × 10 −5 / ° C.
Is found to be optimal.

【0021】本実施例では固体電解質に応力に弱い機能
性高分子を使用したが、二酸化マンガンを固体電解質と
しても、また機能性高分子材料として実施例のピロール
に限らず、アニリン、チオフェンまたはそれらの誘導体
を用いた場合も、実施例と同等の結果が得られた。
In this embodiment, a functional polymer which is weak against stress is used as the solid electrolyte. However, manganese dioxide is not limited to the pyrrole of the embodiment as the solid electrolyte and the functional polymer material. When the derivative of was used, a result equivalent to that of the example was obtained.

【0022】[0022]

【発明の効果】本発明の固体電解コンデンサは、曲げ弾
性率が1200〜1400kg/mm で、かつガラス
転移温度以下での熱膨張係数が0.8〜1.7×10
−5/℃の樹脂を外装材料に用いることにより、優れた
漏れ電流特性、低ESR、高信頼性を得ることができ、
工業上有益なものである。
The solid electrolytic capacitor of the present invention has a bending elasticity.
The power factor is 1200 to 1400 kg / mm 2And glass
The coefficient of thermal expansion below the transition temperature is 0.8 to 1.7 × 10
-5/ C resin is used for the exterior material,
Leakage current characteristics, low ESR and high reliability can be obtained.
It is industrially useful.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年6月12日(2000.6.1
2)
[Submission date] June 12, 2000 (2006.1.
2)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】曲げ弾性率と外観不良率および漏れ電流との特
性図。
FIG. 1 is a characteristic diagram of a flexural modulus, a defective appearance rate, and a leakage current.

【図2】ガラス転移温度以下の熱膨張係数と外観不良率
および漏れ電流との特性図。
FIG. 2 is a characteristic diagram showing a coefficient of thermal expansion below a glass transition temperature, a defective appearance rate, and a leakage current.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 固体電解質層を形成したコンデンサ素子
と外部電極および外装樹脂からなる固体電解コンデンサ
において、 上記外装樹脂の曲げ弾性率が1200〜1400kg/
mmであり、かつガラス転移温度以下での熱膨張係数
が0.8〜1.7×10−5/℃であることを特徴とす
る固体電解コンデンサ。
1. A solid electrolytic capacitor comprising a capacitor element on which a solid electrolyte layer is formed, an external electrode and an exterior resin, wherein the exterior resin has a flexural modulus of 1200 to 1400 kg /
mm 2, and a solid electrolytic capacitor characterized in that the thermal expansion coefficient of less than a glass transition temperature of 0.8~1.7 × 10 -5 / ℃.
【請求項2】 請求項1記載の固体電解質層が機能性高
分子であることを特徴とする固体電解コンデンサ。
2. A solid electrolytic capacitor according to claim 1, wherein the solid electrolyte layer is a functional polymer.
JP2000151865A 2000-05-23 2000-05-23 Solid electrolytic capacitor Pending JP2001332457A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151865A JP2001332457A (en) 2000-05-23 2000-05-23 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151865A JP2001332457A (en) 2000-05-23 2000-05-23 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JP2001332457A true JP2001332457A (en) 2001-11-30

Family

ID=18657356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151865A Pending JP2001332457A (en) 2000-05-23 2000-05-23 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2001332457A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136194A (en) * 2018-06-21 2020-12-25 阿维科斯公司 Solid electrolyte capacitor having stable electrical properties at high temperatures
WO2024029284A1 (en) * 2022-08-04 2024-02-08 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112136194A (en) * 2018-06-21 2020-12-25 阿维科斯公司 Solid electrolyte capacitor having stable electrical properties at high temperatures
CN112136194B (en) * 2018-06-21 2022-05-31 京瓷Avx元器件公司 Solid electrolyte capacitor having stable electrical properties at high temperatures
WO2024029284A1 (en) * 2022-08-04 2024-02-08 パナソニックIpマネジメント株式会社 Solid electrolytic capacitor

Similar Documents

Publication Publication Date Title
US8480762B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US7400492B2 (en) Multi-layered solid electrolytic capacitor and method of manufacturing same
JP6110964B2 (en) Solid electrolytic capacitor with improved ESR stability
JP3080922B2 (en) Solid electrolytic capacitor and method of manufacturing the same
US20050141173A1 (en) Solid electrolytic capacitor, fabrication method thereof, and coupling agent utilized in the same
US7400491B2 (en) Aluminum electrolytic capacitor and method of producing the same
JP2000182907A (en) Solid electrolytic capacitor
JP2009182157A (en) Solid-state electrolytic capacitor
US6556427B2 (en) Solid electrolytic capacitor and method for producing the same
JP2001332457A (en) Solid electrolytic capacitor
JPS59202701A (en) Dielectric resonator
JP2009295660A (en) Solid-state electrolytic capacitor and method of manufacturing the same
JPH05234828A (en) Manufacture of solid electrolytic capacitor
JP2010165797A (en) Solid electrolytic capacitor and method of manufacturing the same
JP2874018B2 (en) Method for manufacturing solid electrolytic capacitor
JP2006294843A (en) Solid electrolytic capacitor and its manufacturing method
JP5020039B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2000323364A (en) Solid electrolytic capacitor
JP3544518B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04277609A (en) Method for manufacture of solid electrolytic capacitor
US20090190287A1 (en) Solid electrolytic capacitor and manufacturing method thereof
JP3363533B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2006339182A (en) Solid electrolytic capacitor
JPH06252014A (en) Solid electrolytic capacitor
JP3265796B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100201