JP2001330582A - Cell respiratory activity evaluation method and its device - Google Patents

Cell respiratory activity evaluation method and its device

Info

Publication number
JP2001330582A
JP2001330582A JP2000153013A JP2000153013A JP2001330582A JP 2001330582 A JP2001330582 A JP 2001330582A JP 2000153013 A JP2000153013 A JP 2000153013A JP 2000153013 A JP2000153013 A JP 2000153013A JP 2001330582 A JP2001330582 A JP 2001330582A
Authority
JP
Japan
Prior art keywords
electrode
capillary tube
sample
oxygen
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000153013A
Other languages
Japanese (ja)
Inventor
Hitoshi Shuku
仁 珠玖
Takuo Shiraishi
卓夫 白石
Hiroaki Oya
博昭 大矢
Tomokazu Suenaga
智一 末永
Hiroyuki Abe
宏之 阿部
Hiroyoshi Hoshi
宏良 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000153013A priority Critical patent/JP2001330582A/en
Publication of JP2001330582A publication Critical patent/JP2001330582A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a cell respiratory activity evaluation method and its device capable of evaluating metabolic activities such as respiratory activity or photosynthetic activity in a sample solution including a biosample such as a cell, by measuring a local oxygen concentration change near the sample solution. SOLUTION: The sample solution A is set in a capillary tube 1, and an oxygen permeable film 2 is arranged on an capillary tube opening, and the tube is dipped in a measuring solution B. A micro-electrode 6 is installed near the capillary tube opening, and a reference electrode 7 and a counter electrode 8 corresponding to the micro-electrode 6 are arranged. The micro-electrode 6 is used as a working electrode, and potential control and current detection are executed between the reference electrode 7 and the counter electrode 8. The micro-volume sample solution A is prepared, and three-dimensional position control of the capillary tube 1 is executed, and the oxygen concentration in the sample is selectively evaluated by a reduction current.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、試料溶液近傍の局
所酸素濃度変化を計測する細胞呼吸活性評価方法及びそ
の装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for evaluating cell respiratory activity for measuring changes in local oxygen concentration near a sample solution.

【0002】[0002]

【従来の技術】近年ライフサイエンス技術の進歩に伴
い、動植物細胞の細胞分裂及び細胞分化機構が分子・細
胞レベルで解明できるようになった。しかし、多くの場
合、従来の測定技術では、多数の細胞を必要とするか、
測定前の処理や操作により細胞を変性ないしは死滅させ
ることが避けられなかった。
2. Description of the Related Art Recent advances in life science technology have made it possible to elucidate the cell division and cell differentiation mechanisms of animal and plant cells at the molecular and cellular levels. However, in many cases, conventional measurement techniques require a large number of cells,
It is inevitable that the cells are denatured or killed by the treatment or operation before measurement.

【0003】従って、単一細胞レベルで、しかも、細胞
を生存させたまま細胞生存能や細胞分化能を測定するこ
とが可能な技術の開発が求められている。
[0003] Therefore, there is a need for the development of a technique capable of measuring cell viability and cell differentiation ability at the single cell level while keeping the cells alive.

【0004】具体的には、細胞の代謝活性を正確に測定
することにより、受精卵(胚)、プロトプラストを含め
た動植物細胞の(1)生存性及び品質評価法としての応
用、(2)分化機能や生理活性物質産生の測定技術とし
ての活用、(3)遺伝子導入細胞の選択技術としての応
用などが考えられる。
Specifically, by accurately measuring the metabolic activity of cells, animal and plant cells including fertilized eggs (embryos) and protoplasts can be (1) applied as a method for evaluating viability and quality, and (2) differentiated. It can be used as a technique for measuring the function and production of a physiologically active substance, and (3) applied as a technique for selecting a gene-introduced cell.

【0005】細胞などの生体試料の代謝活性、特に呼吸
活性に由来する酸素濃度変化の計測は、生体試料の機能
を評価する上で最も基本的、かつ、簡便な指標の1つで
ある。酸素濃度計測においては、既にクラーク型酸素電
極が従来技術として存在し、酸素還元電流による酸素濃
度評価が行われている。クラーク型酸素電極は、酸素透
過性膜、電解液及び電極で構成され、細胞懸濁液に限ら
ず酸素濃度変化の期待される試料溶液に広く適用可能で
ある。クラーク型電極を生体試料溶液の酸素濃度計測に
適用する場合の大きな利点は、酸素の選択的透過と、酸
素以外の電極活性物質・電極汚染物質の浸入防止という
2つに集約され、信頼性の高い良質の分析手法としての
地位を確立してきた。
[0005] Measurement of a change in oxygen concentration due to metabolic activity of a biological sample such as a cell, particularly respiratory activity, is one of the most basic and simple indicators for evaluating the function of a biological sample. In oxygen concentration measurement, a Clark-type oxygen electrode already exists as a conventional technique, and oxygen concentration evaluation using an oxygen reduction current has been performed. The Clark-type oxygen electrode is composed of an oxygen-permeable membrane, an electrolytic solution, and an electrode, and is widely applicable to not only a cell suspension but also a sample solution in which a change in oxygen concentration is expected. The major advantages of applying the Clark-type electrode to the measurement of the oxygen concentration of a biological sample solution can be summarized in two ways: selective permeation of oxygen and prevention of penetration of electrode active substances and electrode contaminants other than oxygen. It has established itself as a high-quality analytical method.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、空間分
解能を有さず1本の電極で一度に複数サンプルを評価す
ることは不可能である。また、微細加工技術を駆使した
電極の微小化ではめざましい成果が挙がっているにもか
かわらず、計測するサンプルの体積を微小化する工夫は
十分であるとは言い難い。従って、試料として通常10
5 〜107 個という大量の細胞を必要とする。
However, it is impossible to evaluate a plurality of samples at a time with one electrode without having a spatial resolution. Although remarkable results have been achieved in miniaturization of electrodes by making full use of microfabrication technology, it is hard to say that a device for minimizing the volume of a sample to be measured is sufficient. Therefore, usually 10
Require a large amount of cells that 5 -10 7.

【0007】微小電極を探針とし、探針の位置を精密に
制御しながら試料表面に近接させ走査させることによ
り、特定化学種の分布を画像化する計測技術として電気
化学顕微鏡(SECM)がある〔A.J.Bard e
t al.Anal.Chem.61,132−138
(1989);R.C.Engstrom et a
l.Anal.Chem.58,844−848(19
86)〕。
An electrochemical microscope (SECM) is a measurement technique for imaging a distribution of a specific chemical species by scanning a microelectrode as a probe and moving the probe close to the sample surface while precisely controlling the position of the probe. [A. J. Bard e
t al. Anal. Chem. 61, 132-138
(1989); C. Engstrom et a
l. Anal. Chem. 58, 844-848 (19
86)].

【0008】本来電極表面の特性評価用に開発された技
術であるが、既に生体試料の機能評価、酸素濃度の計測
にも応用されている。本発明も計測原理は電気化学顕微
鏡に類似のものであると言える。しかしながら、酸素選
択性を高める特別な工夫を施した研究例は報告されてい
ない。即ち、今まで報告のある電気化学顕微鏡による酸
素濃度計測においては、測定溶液中において、酸素還元
の起こる電位領域で電極反応する物質が予め除外されて
いる。同時に、測定溶液中において、探針電極の表面を
汚染するタンパク質等の物質は予め除外されている。つ
まり現状では、試料の細胞や生体組織は、それらが生育
する上で理想的な環境というべき培養溶液とは異なる組
成の測定溶液中においてのみ酸素濃度計測が可能であ
る。
Although the technique was originally developed for evaluating the characteristics of the electrode surface, it has already been applied to the evaluation of the function of a biological sample and the measurement of oxygen concentration. In the present invention, the measurement principle can be said to be similar to the electrochemical microscope. However, there has been no report of a study in which special measures were taken to enhance oxygen selectivity. That is, in the oxygen concentration measurement using an electrochemical microscope, which has been reported so far, substances that undergo an electrode reaction in a potential region where oxygen reduction occurs in a measurement solution are excluded in advance. At the same time, in the measurement solution, substances such as proteins that contaminate the surface of the probe electrode are excluded in advance. That is, at present, the oxygen concentration can be measured only in a measurement solution having a composition different from that of a culture solution, which is an ideal environment for growing cells and biological tissues of a sample.

【0009】また、電気化学顕微鏡の探針である微小電
極による酸素濃度計測の研究例においては、電気化学顕
微鏡の項目で挙げたような未修飾の電極をそのまま用い
た研究例の他に、電極を修飾し機能を加えることによ
り、酸素選択性及び電極表面汚染防止能の向上を意図し
た研究例もある〔Y.Y.Lau et al.Ana
l.Chem.64,1702−1705(199
2);R.T.Kennedy et al.Ana
l.Chem.71,3642−3649(199
9)〕。しかし、微小電極表面の修飾は極めて高等な手
技を要する上に再現性にも問題がある。
Further, in the research example of oxygen concentration measurement using a microelectrode which is a probe of an electrochemical microscope, in addition to the research example using an unmodified electrode as it is as described in the item of the electrochemical microscope, an electrode There are also research examples intended to improve oxygen selectivity and electrode surface contamination prevention ability by modifying and adding functions [Y. Y. Lau et al. Ana
l. Chem. 64, 1702-1705 (199
2); T. Kennedy et al. Ana
l. Chem. 71, 3642-3649 (199
9)]. However, modification of the surface of the microelectrode requires an extremely advanced technique and has a problem in reproducibility.

【0010】本発明は、かかる状況に鑑みて、以下のよ
うな細胞呼吸活性評価方法及びその装置を提供すること
を目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method and apparatus for evaluating cell respiratory activity as described below.

【0011】(1)微小電極により、細胞が放出/吸収
する物質を計測する際には、電極を細胞に最近接させ
る。しかし、この測定原理では、微小電極で検出できる
物質の量は、実際に細胞が放出/吸収した物質の総量と
比較してごく僅かである。つまり、検出感度/効率の観
点から、従来の微小電極法を単一細胞由来の代謝関連物
質の計測に適用可能な場合は非常に限られている。これ
に対し、本発明は、計測対象物質の希釈/拡散を防ぎ、
物質を効率良く検出するために、試料溶液の微小体積化
を実現する方法を提供するものである。試料体積の微小
化は、試料溶液中に含まれる細胞数を大幅に減ずる役割
も果たし、1個の細胞を試料容器の中に閉じこめること
も可能にする。
(1) When measuring a substance released / absorbed by a cell using a microelectrode, the electrode is brought into closest contact with the cell. However, according to this measurement principle, the amount of the substance that can be detected by the microelectrode is very small compared to the total amount of the substance actually released / absorbed by the cells. That is, from the viewpoint of detection sensitivity / efficiency, the case where the conventional microelectrode method can be applied to the measurement of a metabolic substance derived from a single cell is very limited. In contrast, the present invention prevents dilution / diffusion of a substance to be measured,
An object of the present invention is to provide a method for realizing a small volume of a sample solution in order to detect a substance efficiently. The miniaturization of the sample volume also plays a role in greatly reducing the number of cells contained in the sample solution, and enables one cell to be confined in the sample container.

【0012】(2)次に、本発明は、試料溶液と測定溶
液を分離し、両溶液間で移動可能な物質を計測対象物質
に限定する方法を提供する。本発明により、試料溶液側
に含まれ、電気化学検出に悪影響を及ぼすタンパク質や
電気化学的活性種が測定溶液側へ浸入することを防止
し、同時に、測定溶液側に含まれる細胞毒性を有する物
質が試料溶液側へ浸入することを回避することができ
る。本発明を適用することにより、微小電極自体は機能
化する必要がなく、未修飾の微小電極をそのまま使用す
ることができる。
(2) Next, the present invention provides a method of separating a sample solution and a measurement solution, and limiting a substance which can move between the two solutions to a substance to be measured. According to the present invention, a protein or an electrochemically active species which is contained in the sample solution side and adversely affects electrochemical detection is prevented from entering the measurement solution side, and at the same time, a cytotoxic substance contained in the measurement solution side Can be prevented from entering the sample solution side. By applying the present invention, the microelectrode itself does not need to be functionalized, and an unmodified microelectrode can be used as it is.

【0013】本発明は、上記(1)、(2)を踏まえ
て、試料溶液近傍の局所酸素濃度変化を計測することに
より、細胞など生体試料の含まれる試料溶液内の代謝活
性つまり呼吸活性や光合成活性を評価することができる
細胞呼吸活性評価方法及びその装置を提供する電極を直
接試料溶液内に挿入することなしに試料溶液の計測対象
物質濃度を評価する方法を提供することを目的とする。
The present invention measures the local oxygen concentration change in the vicinity of the sample solution based on the above (1) and (2), thereby obtaining the metabolic activity, that is, the respiratory activity in the sample solution containing the biological sample such as cells. An object of the present invention is to provide a method for evaluating a cell respiratory activity capable of evaluating a photosynthetic activity and a method for evaluating the concentration of a substance to be measured in a sample solution without directly inserting an electrode that provides the device. .

【0014】[0014]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕細胞呼吸活性評価方法において、試料溶液をキャ
ピラリ管にセットし、このキャピラリ管口には酸素透過
性膜を配置し、測定溶液に浸すとともに、前記キャピラ
リ管口の近傍に微小電極を設け、この微小電極に対応す
る参照極及び対極を配置し、前記微小電極を作用極と
し、前記参照極及び対極間で電位制御及び電流検出を行
い、微小体積の試料溶液を調製するととともに、前記キ
ャピラリ管の3次元位置制御を行い、試料の酸素濃度を
選択的に還元電流により評価することを特徴とする。
In order to achieve the above object, the present invention provides: [1] In a method for evaluating cell respiratory activity, a sample solution is set in a capillary tube, and an oxygen-permeable membrane is provided in the capillary tube opening. And immersed in the measurement solution, provided a microelectrode near the capillary port, arranged a reference electrode and a counter electrode corresponding to the microelectrode, the microelectrode as a working electrode, between the reference electrode and the counter electrode Control the electric potential and detect the current to prepare a sample solution having a very small volume, control the three-dimensional position of the capillary tube, and selectively evaluate the oxygen concentration of the sample by the reduction current.

【0015】〔2〕上記〔1〕記載の細胞呼吸活性評価
方法において、前記還元電流の空間的分布を記録し画像
として出力することを特徴とする。
[2] The method for evaluating cell respiratory activity according to [1], wherein a spatial distribution of the reduction current is recorded and output as an image.

【0016】〔3〕細胞呼吸活性評価装置において、試
料溶液がセットされるキャピラリ管と、このキャピラリ
管口に配置される酸素透過性膜と、測定溶液に浸される
とともに、前記キャピラリ管口の近傍に設けられる微小
電極と、この微小電極に対応する参照極及び対極を備
え、前記微小電極を作用極とし、前記参照極、対極との
間で電位制御及び電流検出を行うポテンショスタット
と、前記キャピラリ管の3次元位置制御を行う精密位置
決め装置とを具備することを特徴とする。
[3] In the cell respiratory activity evaluation device, a capillary tube in which a sample solution is set, an oxygen-permeable membrane disposed in the capillary tube opening, and a filter tube which is immersed in a measuring solution and which is connected to the capillary tube opening. A microelectrode provided in the vicinity, a reference electrode and a counter electrode corresponding to the microelectrode, the microelectrode as a working electrode, the reference electrode, a potentiostat for performing potential control and current detection between the counterelectrode, A precision positioning device for controlling the three-dimensional position of the capillary tube.

【0017】[0017]

【発明の実施の形態】以下、本発明の実施例を図面を参
照しながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0018】図1に本発明の実施例を示す測定対象物の
電気化学的検出装置の構成図である。
FIG. 1 is a configuration diagram of an apparatus for electrochemically detecting an object to be measured according to an embodiment of the present invention.

【0019】この図に示すように、試料には細胞懸濁液
が培養溶液ベースのまま使用され、内径0.55mmの
ガラスキャピラリ管1の中に充填されている。キャピラ
リ管1内の試料溶液高さが40mmの場合、試料体積は
10μLと見積もられる。キャピラリ管1の口の片側は
酸素透過性膜2で覆われており、試料溶液A側と測定溶
液B側を往来し得る物質を、計測対象物である酸素のみ
に限定する役割を果たしている。
As shown in this figure, a cell suspension is used as a sample in a culture solution base, and is filled in a glass capillary tube 1 having an inner diameter of 0.55 mm. When the sample solution height in the capillary tube 1 is 40 mm, the sample volume is estimated to be 10 μL. One side of the mouth of the capillary tube 1 is covered with an oxygen-permeable membrane 2 and plays a role of restricting a substance that can flow between the sample solution A side and the measurement solution B side to only the oxygen to be measured.

【0020】キャピラリ管1の位置をXYZステージ、
3軸ステッピングモーター及びステージコントローラー
からなる精密位置決め装置3で制御した。位置決め精度
は0.1μmである。液槽9内には測定溶液(リン酸バ
ッファー)Bが浸され、探針には白金微小電極(電極半
径2.0μm、ガラスシール部6Aを含めた全体半径1
5μm)6を用い、測定溶液B内に電極面が上向きにな
るよう固定してある。電気化学計測は、微小電極6を作
用極、銀塩化銀電極7を参照極、白金線を対極8とし、
電位制御及び電流検出はポテンショスタット5により行
った。
The position of the capillary tube 1 is defined as an XYZ stage,
Control was performed by a precision positioning device 3 including a three-axis stepping motor and a stage controller. The positioning accuracy is 0.1 μm. A measuring solution (phosphate buffer) B is immersed in the liquid tank 9, and a platinum microelectrode (electrode radius: 2.0 μm, a total radius of 1 including the glass seal portion 6A) is applied to the probe.
5 μm) 6 and fixed in the measurement solution B such that the electrode surface faces upward. In the electrochemical measurement, the microelectrode 6 was used as a working electrode, the silver-silver chloride electrode 7 was used as a reference electrode, and a platinum wire was used as a counter electrode 8,
The potential control and the current detection were performed by the potentiostat 5.

【0021】微小電極6は参照極7である銀塩化銀電極
に対し−0.6Vに電位を固定し、酸素の還元電流を計
測した。酸素透過性膜2を固定した側のキャピラリ管1
の口の位置を微小電極6の近傍100μmに近接させ水
平方向に走査させることにより、キャピラリ管1の口近
傍の酸素濃度分布を計測し試料溶液A内の酸素濃度を評
価できる。コンピューター(PC)4により、電気化学
計測系、キャピラリ駆動系を同時に制御するとともに計
測結果を記録した。
The potential of the microelectrode 6 was fixed at -0.6 V with respect to the silver-silver chloride electrode serving as the reference electrode 7, and the reduction current of oxygen was measured. Capillary tube 1 on which oxygen permeable membrane 2 is fixed
By scanning the horizontal direction with the position of the opening close to 100 μm near the microelectrode 6, the oxygen concentration distribution near the opening of the capillary tube 1 can be measured, and the oxygen concentration in the sample solution A can be evaluated. The computer (PC) 4 simultaneously controlled the electrochemical measurement system and the capillary drive system, and recorded the measurement results.

【0022】試料として動物細胞(HeLa−S3細
胞)を用いた。HeLa−S3細胞は、RITC80−
7(旭テクノグラス社製)培地に5%胎児牛血清(IC
N Bio medical社製)を添加して使用し、
T−25フラスコ(コーニング社製)で4〜5日間培養
し、ほぼ飽和状態とした。この細胞を0.05%トリプ
シン溶液(GIBCO−BRL社製)で細胞分散し、単
一細胞浮遊液とした。
Animal cells (HeLa-S3 cells) were used as samples. HeLa-S3 cells are RITC80-
7 (manufactured by Asahi Techno Glass Co.) in 5% fetal bovine serum (IC
N Biomedical).
The cells were cultured for 4 to 5 days in a T-25 flask (manufactured by Corning Incorporated) to make them almost saturated. The cells were dispersed with a 0.05% trypsin solution (GIBCO-BRL) to give a single cell suspension.

【0023】細胞数は血球計算盤で計測し、呼吸活性測
定直前にトリパンブルー染色により生存細胞数比率95
%以上の細胞懸濁液について実験を行った。細胞濃度
1.4×106 および2.0×105 cells/mL
の懸濁液をキャピラリ管1に充填した。
The number of cells was measured with a hemocytometer, and the viable cell ratio was measured by trypan blue staining immediately before the measurement of respiratory activity.
Experiments were performed on cell suspensions of ≧%. Cell concentration 1.4 × 10 6 and 2.0 × 10 5 cells / mL
Was filled into the capillary tube 1.

【0024】図2は本発明の実施例を示す試料近傍の酸
素還元電流の2次元分布を画像表示した図であり、白色
から黒色に移るに従い酸素濃度の低下を示している。
FIG. 2 is a diagram showing an image of the two-dimensional distribution of the oxygen reduction current in the vicinity of the sample according to the embodiment of the present invention, and shows a decrease in the oxygen concentration as the color shifts from white to black.

【0025】この図においては、試料に動物細胞(He
La−S3)懸濁液を用いた際のキャピラリ管口付近の
酸素還元電流分布(1020μm×1020μm)を示
し、酸素還元電流の増減はカラーバーで示す通り。懸濁
液の細胞濃度は14000cells/10μL〔(図
2(a)参照〕および2000cells/10μL
〔(図2(b)参照〕。図2(a)と図2(b)とも細
胞の呼吸に由来する酸素濃度の低下により、キャピラリ
管1内で酸素還元電流の減少領域が観測される。細胞数
が大きい方が呼吸による酸素消費量も多く、酸素還元電
流の減少量も多くなっている。
In this figure, animal cells (He
La-S3) Oxygen reduction current distribution (1020 μm × 1020 μm) near the capillary tube mouth when using the suspension, and increase and decrease of the oxygen reduction current are shown by color bars. The cell concentration of the suspension was 14000 cells / 10 μL [see FIG. 2 (a)] and 2000 cells / 10 μL.
[(Refer to FIG. 2 (b).] In both FIG. 2 (a) and FIG. 2 (b), a decrease region of the oxygen reduction current is observed in the capillary tube 1 due to a decrease in the oxygen concentration derived from cell respiration. The larger the number of cells, the greater the amount of oxygen consumed by respiration, and the greater the amount of decrease in oxygen reduction current.

【0026】すなわち、キャピラリ内の動物細胞の呼吸
に由来する、酸素還元電流値の顕著な減少が認められ
た。電流減少の程度は明らかに試料懸濁液の細胞濃度の
違いを反映しており、試料の酸素消費量を定量的に比較
することも可能である。試料体積は10μLと極めて微
小であるため、細胞濃度1.4×106 および2.0×
105 cells/mLの場合、総細胞数は各々140
00および2000個であり、非常に少ない数の細胞の
代謝に由来する酸素濃度計測が可能であった。
That is, a remarkable decrease in the oxygen reduction current value due to the respiration of the animal cells in the capillary was observed. The magnitude of the current decrease clearly reflects the difference in the cell concentration of the sample suspension, and it is also possible to quantitatively compare the oxygen consumption of the sample. Since the sample volume is extremely small as 10 μL, the cell concentrations are 1.4 × 10 6 and 2.0 ×
At 10 5 cells / mL, the total number of cells was 140
Oxygen concentration derived from metabolism of a very small number of cells was 00 and 2000.

【0027】このようにトータルの細胞数が少ない系で
微小な酸素濃度変化を計測できる理由は、本発明におい
て、試料体積が微小で、かつ、酸素濃度変化が1箇所
(キャピラリの片端)に集約されていることに起因して
いる。先端を細く引いたキャピラリを試料溶液の容器と
して用いてさらなる試料体積の微小化を図ることによ
り、その効果はさらに顕著に現れることが期待できる。
The reason why a minute change in oxygen concentration can be measured in a system having a small total number of cells is that, in the present invention, the sample volume is small and the change in oxygen concentration is concentrated at one location (one end of the capillary). It is due to being. By using a capillary with a thinned tip as a container for the sample solution to further reduce the sample volume, the effect can be expected to appear more remarkably.

【0028】試料内の総細胞数は懸濁液の濃度により制
御可能で、単一細胞由来の酸素濃度変化を計測すること
も可能である。試料としてハネモ(Bryopsis
plumosa)のプロトプラストを用いた。ハネモは
1972年7月に宮城県桃生郡鳴瀬町宮戸島室浜で採集
され、1.3klx白色蛍光灯連続照射下で継代培養を
行っている。ハネモを先端部から1cm切断し、小片か
ら細胞質を絞り出した。海水中に20〜30分放置する
と、細胞質は球状に集合しプロトプラストを形成する。
キャピラリ内に充填されたプロトプラストの大きさ、数
は光学顕微鏡で直接観測した。
The total number of cells in the sample can be controlled by the concentration of the suspension, and a change in oxygen concentration derived from a single cell can be measured. Hanemo (Bryopsis) as a sample
plumosa) protoplasts were used. Janemo was collected in July 1972 at Murotohama, Miyadojima, Naruse-cho, Momou-gun, Miyagi Prefecture, and has been subcultured under continuous irradiation of 1.3 klx white fluorescent light. The honey was cut 1 cm from the tip and the cytoplasm was squeezed out of the small pieces. When left in seawater for 20 to 30 minutes, the cytoplasm aggregates spherically to form protoplasts.
The size and number of protoplasts filled in the capillary were directly observed with an optical microscope.

【0029】図3は本発明の実施例を示す試料として直
径200μmのハネモのプロトプラスト1個を用い、本
発明の計測方法により試料近傍の酸素濃度分布を画像化
した結果である。つまり、試料に植物細胞ハネモのプロ
トプラスト1個を用いた際のキャピラリ管1の口付近の
酸素還元電流分布(1020μm×510μm)を示す
図であり、図3(a)は光照射下、図3(b)は非照射
下を示している。
FIG. 3 shows the results of imaging the oxygen concentration distribution in the vicinity of the sample by using the measuring method of the present invention using one protoplast of 200 μm in diameter as a sample showing an example of the present invention. That is, FIG. 3A is a diagram showing an oxygen reduction current distribution (1020 μm × 510 μm) near the mouth of the capillary tube 1 when one protoplast of plant cell Hanemo is used as a sample. (B) shows a state without irradiation.

【0030】図3(a)に示すように、非照射下では、
植物細胞は光合成により酸素を発生するため、キャピラ
リ内で酸素濃度が上昇し酸素還元電流の増大領域が観測
されるのに対し、図3(b)に示すように、非照射下で
は、呼吸に由来する酸素消費により酸素還元電流の減少
領域が観測される。
As shown in FIG. 3A, under non-irradiation,
Since plant cells generate oxygen by photosynthesis, the oxygen concentration increases in the capillary and an area where the oxygen reduction current increases is observed, whereas, as shown in FIG. A reduced region of the oxygen reduction current is observed due to the resulting oxygen consumption.

【0031】これにより光照射下では光合成による酸素
濃度の増加、光非照射下では呼吸による酸素濃度の減少
が画像化できた。
As a result, an increase in oxygen concentration due to photosynthesis under light irradiation and a decrease in oxygen concentration due to respiration under no light irradiation could be imaged.

【0032】上記したように、本発明は、細胞などの生
体試料の代謝に伴う酸素濃度変化を微小試料体積でかつ
高選択的に計測することができる。そして、 (1)微小体積の試料を取り扱うためにキャピラリ管を
使用する。本発明により10μL程度の試料溶液を、蒸
発など殆ど無視できる信頼性でハンドリングできる。
As described above, according to the present invention, a change in oxygen concentration accompanying the metabolism of a biological sample such as a cell can be measured with a small sample volume and with high selectivity. (1) Use a capillary tube to handle a small volume sample. According to the present invention, a sample solution of about 10 μL can be handled with almost negligible reliability such as evaporation.

【0033】(2)キャピラリ管の片端に酸素透過性膜
を固定する。これにより、試料溶液と測定溶液を隔離
し、試料溶液−測定溶液間を往来し得る物質を酸素のみ
に限定することができる。
(2) An oxygen permeable membrane is fixed to one end of the capillary tube. As a result, the sample solution and the measurement solution can be separated from each other, and substances that can be transferred between the sample solution and the measurement solution can be limited to only oxygen.

【0034】(3)微小電極を、測定溶液と試料溶液の
境界にある酸素透過性膜に向かって、測定溶液側から近
接させ、酸素透過性膜に平行に走査させることにより両
溶液の境界における酸素の濃度分布を計測する。試料溶
液−測定溶液間を移動する酸素の収支を、微小電極で酸
素還元電流を計測することにより評価する。探針−試料
間の空間的配置は精密位置決め装置により制御する。
(3) The microelectrode is moved from the measurement solution side toward the oxygen-permeable membrane at the boundary between the measurement solution and the sample solution, and is scanned in parallel with the oxygen-permeable membrane. Measure the concentration distribution of oxygen. The balance of oxygen moving between the sample solution and the measurement solution is evaluated by measuring the oxygen reduction current with a microelectrode. The spatial arrangement between the probe and the sample is controlled by a precision positioning device.

【0035】なお、本発明では探針側を固定し試料側を
走査しているけれども、逆(試料固定/探針走査)でも
同様に探針−試料間の空間的配置を制御し得る。本発明
は、空間分解能を有するため複数試料の評価が可能であ
る。
Although the probe side is fixed and the sample side is scanned in the present invention, the spatial arrangement between the probe and the sample can be similarly controlled in the opposite manner (fixing the sample / scanning the probe). Since the present invention has a spatial resolution, it is possible to evaluate a plurality of samples.

【0036】なお、本発明は、原理上計測対象は生体試
料に限らず、酸素濃度変化の期待される溶液試料の評価
に広く適用可能である。酸素透過性膜の代わりに、特定
分子種を選択的に透過する膜を用いることにより、酸素
以外の計測も可能である。
The present invention is not limited to a biological sample in principle and can be widely applied to evaluation of a solution sample in which a change in oxygen concentration is expected. By using a membrane that selectively transmits a specific molecular species instead of the oxygen-permeable membrane, measurement other than oxygen is also possible.

【0037】また、細胞レベルの代謝活性を指標とした
薬物診断のような技術は、現行の動物実験に代わるスク
リーニング法として注目されており、本発明のように微
小なサンプル量で多数の検体を効率よく簡便に計測可能
なシステムは、新たな細胞の機能評価法、診断法の開発
を望む生化学、臨床医学などの分野の進歩に貢献できる
ものと期待される。
Techniques such as drug diagnosis using metabolic activity at the cell level as an index have attracted attention as a screening method that can replace current animal experiments. A system that can measure efficiently and easily is expected to contribute to the advancement of fields such as biochemistry and clinical medicine where new methods for evaluating cell functions and diagnostic methods are desired to be developed.

【0038】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から除外するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0039】[0039]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、以下のような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0040】(A)試料溶液近傍の局所酸素濃度変化を
計測することにより、細胞など生体試料の含まれる試料
溶液内の代謝活性つまり呼吸活性や光合成活性を評価す
ることを可能とする。試料として微小体積の溶液による
計測・少数の細胞或いは細胞1個に起因する酸素濃度変
化の計測が望まれる分野としては、動植物の中で組織標
本として大量に得ることのできない部位の細胞、例えば
生殖細胞の活性評価への応用が期待される。
(A) By measuring the change in local oxygen concentration near the sample solution, it is possible to evaluate the metabolic activity, that is, the respiratory activity and photosynthetic activity in the sample solution containing the biological sample such as cells. Fields in which measurement with a small volume of solution as a sample and measurement of changes in oxygen concentration caused by a small number of cells or a single cell are desired include cells in parts of animals and plants that cannot be obtained in large quantities as tissue specimens, such as reproduction. It is expected to be applied to cell activity evaluation.

【0041】(B)さらに、本発明は、従来の微小電極
法では計測が困難であった運動性の高い細胞・微生物の
呼吸活性を評価する場合にも適用可能である。限定され
た体積内における全体の酸素濃度変化を評価できるた
め、試料が動き回っても計測に支障をきたさない。
(B) Further, the present invention can be applied to the case of evaluating the respiratory activity of cells and microorganisms having high mobility, which was difficult to measure by the conventional microelectrode method. Since the change in the entire oxygen concentration within a limited volume can be evaluated, even if the sample moves around, there is no problem in the measurement.

【0042】(C)複数のサンプルの酸素濃度を評価す
る際にも、本発明の適用により、微小電極に代表される
計測系はそのままでキャピラリ管と酸素透過性膜だけ交
換してやるだけで、手早くたくさんの試料を評価するこ
とが期待される。さらに、1本のキャピラリ中に2つの
溶液スペースがあるもの(シータ管)やマルチバレルの
キャピラリ管を用いることにより、1画像内で複数サン
プルの酸素濃度を評価することも期待できる。
(C) When the oxygen concentration of a plurality of samples is evaluated, the present invention is applied to the case in which the measurement system represented by the microelectrode is simply replaced with the capillary tube and the oxygen-permeable membrane, and the oxygen concentration of the sample is exchanged. It is expected that many samples will be evaluated. Furthermore, it is expected that the oxygen concentration of a plurality of samples can be evaluated in one image by using one having two solution spaces in one capillary (theta tube) or using a multi-barrel capillary tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す測定対象物の電気化学的
検出装置の構成図である。
FIG. 1 is a configuration diagram of an apparatus for electrochemically detecting an object to be measured according to an embodiment of the present invention.

【図2】本発明の実施例を示す試料近傍の酸素還元電流
の2次元分布を画像表示した図である。
FIG. 2 is a diagram showing an image of a two-dimensional distribution of an oxygen reduction current near a sample, showing an example of the present invention.

【図3】本発明の実施例を示す試料として直径200μ
mのハネモのプロトプラスト1個を用い、本発明の計測
方法により試料近傍の酸素濃度分布を画像化した結果を
示す図である。
FIG. 3 shows a sample of 200 μm in diameter according to an embodiment of the present invention.
FIG. 6 is a diagram showing the results of imaging the oxygen concentration distribution near the sample by using the measurement method of the present invention using one m-protoplasm of Hanemo.

【符号の説明】[Explanation of symbols]

1 キャピラリ管 2 酸素透過性膜 3 精密位置決め装置 4 コンピューター(PC) 5 ポテンショスタット 6 微小電極(白金微小電極) 6A ガラスシール部 7 参照極(銀塩化銀電極) 8 対極 9 液槽 溶液A 試料溶液(細胞懸濁液) 溶液B 測定溶液(リン酸バッファー) DESCRIPTION OF SYMBOLS 1 Capillary tube 2 Oxygen permeable membrane 3 Precision positioning device 4 Computer (PC) 5 Potentiometer 6 Microelectrode (Platinum microelectrode) 6A Glass seal part 7 Reference electrode (silver-silver chloride electrode) 8 Counter electrode 9 Liquid tank Solution A Sample solution (Cell suspension) Solution B Measurement solution (phosphate buffer)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 27/46 301M (72)発明者 阿部 宏之 山形県山形市篭田3−5−27 (72)発明者 星 宏良 山形県山形市城西町5−10−5−C102 Fターム(参考) 2G045 BB04 CB01 DB30 FA19 FB05 GC20 HA14 JA01 JA04 JA07 4B063 QA01 QQ20 QR72 QR73 QR77 QR78 QR82 QX05 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) G01N 27/46 301M (72) Inventor Hiroyuki Abe 3-5-27 Kagota, Yamagata City, Yamagata Prefecture (72) Inventor Hiroshi Hoshi 5-10-5-C102 F-term (reference) 2J045 BB04 CB01 DB30 FA19 FB05 GC20 HA14 JA01 JA04 JA07 4B063 QA01 QQ20 QR72 QR73 QR77 QR78 QR82 QX05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】(a)試料溶液をキャピラリ管にセット
し、(b)該キャピラリ管口には酸素透過性膜を配置
し、(c)測定溶液に浸すとともに、前記キャピラリ管
口の近傍に微小電極を設け、(d)該微小電極に対応す
る参照極及び対極を配置し、(e)前記微小電極を作用
極とし、前記参照極及び対極間で電位制御及び電流検出
を行い、(f)微小体積の試料溶液を調製するとととも
に、前記キャピラリ管の3次元位置制御を行い、試料の
酸素濃度を選択的に還元電流により評価することを特徴
とする細胞呼吸活性評価方法。
1. A sample solution is set in a capillary tube, (b) an oxygen permeable membrane is arranged in the capillary tube, and (c) a sample solution is immersed in the measurement solution, and the sample solution is placed near the capillary tube. (D) arranging a reference electrode and a counter electrode corresponding to the micro electrode, (e) using the micro electrode as a working electrode, performing potential control and current detection between the reference electrode and the counter electrode, and (f) 3.) A method for evaluating cell respiratory activity, comprising preparing a sample solution having a small volume, controlling the three-dimensional position of the capillary tube, and selectively evaluating the oxygen concentration of the sample by a reduction current.
【請求項2】 請求項1記載の細胞呼吸活性評価方法に
おいて、前記還元電流の空間的分布を記録し画像として
出力することを特徴とする細胞呼吸活性評価方法。
2. The method for evaluating cell respiratory activity according to claim 1, wherein the spatial distribution of the reduction current is recorded and output as an image.
【請求項3】(a)試料溶液がセットされるキャピラリ
管と、(b)該キャピラリ管口に配置される酸素透過性
膜と、(c)測定溶液に浸されるとともに、前記キャピ
ラリ管口の近傍に設けられる微小電極と、(d)該微小
電極に対応する参照極及び対極を備え、(e)前記微小
電極を作用極とし、前記参照極、対極との間で電位制御
及び電流検出を行うポテンショスタットと、(f)前記
キャピラリ管の3次元位置制御を行う精密位置決め装置
とを具備することを特徴とする細胞呼吸活性評価装置。
3. A capillary tube in which a sample solution is set, (b) an oxygen-permeable membrane disposed in the capillary tube, and (c) a capillary tube immersed in a measurement solution. (D) a reference electrode and a counter electrode corresponding to the micro electrode, and (e) a potential control and current detection between the reference electrode and the counter electrode with the micro electrode as a working electrode. And (f) a precision positioning device for controlling the three-dimensional position of the capillary tube.
JP2000153013A 2000-05-24 2000-05-24 Cell respiratory activity evaluation method and its device Withdrawn JP2001330582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000153013A JP2001330582A (en) 2000-05-24 2000-05-24 Cell respiratory activity evaluation method and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153013A JP2001330582A (en) 2000-05-24 2000-05-24 Cell respiratory activity evaluation method and its device

Publications (1)

Publication Number Publication Date
JP2001330582A true JP2001330582A (en) 2001-11-30

Family

ID=18658349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153013A Withdrawn JP2001330582A (en) 2000-05-24 2000-05-24 Cell respiratory activity evaluation method and its device

Country Status (1)

Country Link
JP (1) JP2001330582A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512925A (en) * 2002-12-23 2006-04-20 ユニセンス・ファーティリテック・アンパルトセルスカブ Device and method for non-invasive measurement of individual metabolic rates of substantially spherical metabolizing particles
JP2010025716A (en) * 2008-07-18 2010-02-04 Sharp Corp Exhalation sensing device
US8265357B2 (en) 2005-10-14 2012-09-11 Unisense Fertilitech A/S Determination of a change in a cell population
US8633017B2 (en) 2007-06-29 2014-01-21 Unisense Fertilitech A/S Device, a system and a method for monitoring and/or cultivation of microscopic objects
CN107515234A (en) * 2017-08-31 2017-12-26 鲁东大学 A kind of apparatus and method for determining submerged plant intensity of photosynthesis

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006512925A (en) * 2002-12-23 2006-04-20 ユニセンス・ファーティリテック・アンパルトセルスカブ Device and method for non-invasive measurement of individual metabolic rates of substantially spherical metabolizing particles
JP4800032B2 (en) * 2002-12-23 2011-10-26 ユニセンス・レスピロメトリー・アクティーゼルスカブ Device and method for non-invasive measurement of individual metabolic rates of substantially spherical metabolizing particles
US8265357B2 (en) 2005-10-14 2012-09-11 Unisense Fertilitech A/S Determination of a change in a cell population
US8633017B2 (en) 2007-06-29 2014-01-21 Unisense Fertilitech A/S Device, a system and a method for monitoring and/or cultivation of microscopic objects
US9588104B2 (en) 2007-06-29 2017-03-07 Unisense Fertilitech A/S Device, a system and a method for monitoring and/or culturing of microscopic objects
JP2010025716A (en) * 2008-07-18 2010-02-04 Sharp Corp Exhalation sensing device
CN107515234A (en) * 2017-08-31 2017-12-26 鲁东大学 A kind of apparatus and method for determining submerged plant intensity of photosynthesis

Similar Documents

Publication Publication Date Title
Kieninger et al. Microsensor systems for cell metabolism–from 2D culture to organ-on-chip
Kilic et al. Organs-on-chip monitoring: Sensors and other strategies
O’Mara et al. Staying alive! Sensors used for monitoring cell health in bioreactors
Misun et al. Multi-analyte biosensor interface for real-time monitoring of 3D microtissue spheroids in hanging-drop networks
US9170253B2 (en) Method and device for measuring multiple physiological properties of cells
Oomen et al. Implementing oxygen control in chip-based cell and tissue culture systems
KR102410389B1 (en) Microfluidic Model of the Blood Brain Barrier
Porterfield Measuring metabolism and biophysical flux in the tissue, cellular and sub-cellular domains: recent developments in self-referencing amperometry for physiological sensing
JP5847733B2 (en) Hanging drop array plate
KR102278346B1 (en) Device and methods of using device for detection of hyperammonemia
Smith et al. Principles, development and applications of self-referencing electrochemical microelectrodes to the determination of fluxes at cell membranes
WO2010055942A1 (en) Device for measurement of fertile egg respiratory activity and method for measurement of fertile egg respiratory activity
Tanumihardja et al. Measuring both pH and O2 with a single on-chip sensor in cultures of human pluripotent stem cell-derived cardiomyocytes to track induced changes in cellular metabolism
CN104412109A (en) Cell culture and gradient migration assay methods and devices
Santos et al. Unveiling the contribution of the reproductive system of individual Caenorhabditis elegans on oxygen consumption by single-point scanning electrochemical microscopy measurements
Dornhof et al. Bioprinting-based automated deposition of single cancer cell spheroids into oxygen sensor microelectrode wells
JP2001330582A (en) Cell respiratory activity evaluation method and its device
Wilburn et al. Imaging of voltage-gated alamethicin pores in a reconstituted bilayer lipid membrane via scanning electrochemical microscopy
Brischwein et al. Microphysiometry
EP3988642A1 (en) System for monitoring three-dimensional cell cultures
Stumpp et al. Measurement of feeding rates, respiration, and pH regulatory processes in the light of ocean acidification research
Şen et al. A simple microfluidic redox cycling-based device for high-sensitive detection of dopamine released from PC12 cells
JP2004108863A (en) Specimen cell and electrochemical analysis device and its method
Wu et al. Dissolved oxygen-sensing chip integrating an open container connected with a position-raised channel for estimation of cellular mitochondrial activity
WO2003087293A1 (en) Apparatus and method for biochemical analysis

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807