JP2001330565A - Surface inspection device - Google Patents

Surface inspection device

Info

Publication number
JP2001330565A
JP2001330565A JP2000153461A JP2000153461A JP2001330565A JP 2001330565 A JP2001330565 A JP 2001330565A JP 2000153461 A JP2000153461 A JP 2000153461A JP 2000153461 A JP2000153461 A JP 2000153461A JP 2001330565 A JP2001330565 A JP 2001330565A
Authority
JP
Japan
Prior art keywords
light
optical system
illumination
test object
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000153461A
Other languages
Japanese (ja)
Inventor
Koichiro Komatsu
宏一郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000153461A priority Critical patent/JP2001330565A/en
Priority to TW090109223A priority patent/TW571089B/en
Priority to US09/836,185 priority patent/US6563577B2/en
Priority to KR10-2001-0021503A priority patent/KR100403188B1/en
Publication of JP2001330565A publication Critical patent/JP2001330565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface inspection device capable of preventing entering of unnecessary diffracted light from an inspection object into a light-receiving optical system by a simple formation, and detecting foreign matter or the like quickly, accurately and highly precisely. SOLUTION: This inspection device has an illumination optical system 3, 4, 5, 6 for illuminating the nearly whole surface of the inspection object 7 at a prescribed angle with the inspection object 7, and the light-receiving optical system 8, 9, 10, 11 for receiving scattered light from the foreign matter adhering on the surface of the inspection object 7. The illumination optical system 3, 4, 5, 6 comprises three or more groups of optical elements 3, 4, 5 having refracting power at least in a first plane including an optical axis of the illumination optical system, and an optical element 6 having refracting power in a second plane intersecting orthogonally at least with the first plane and including the optical axis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、表面に微細なパタ
ーンが形成された被検査物体の表面に付着した異物を検
出する表面検査装置、特に半導体ウエハや液晶基板など
の表面の検査に好適な表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for detecting foreign matter adhering to the surface of an object to be inspected having a fine pattern formed on the surface, and more particularly to a surface inspection apparatus suitable for inspecting the surface of a semiconductor wafer or a liquid crystal substrate. The present invention relates to a surface inspection device.

【0002】[0002]

【従来の技術】半導体ウエハや液晶表示基板の製造工程
において、ごみ等の異物の付着はエッチングやCVD
(Chemical Vapor Deposition)などの正しい回路パター
ンを形成する処理を行う上で障害となる。そこで、露光
機などでパターンをレジストに焼き付けて現像した段階
で、焼き付けられたパターンに異常又は異物の付着の有
無を検査することが一般に行われている。従来この種の
検査は、例えば特開平5−232032号公報に開示さ
れているように、照明光学系からの光束を被検物体に照
射し検査員が目視により観察して行っていた。ここで、
異物の検査時に微細な回路パターンに光を照射すると回
折光が発生してしまう。このため、異物からの散乱光と
回路パターンからの回折光との区別が困難であった。ま
た、回折光を利用してパターンの異常を検査するため、
検査員の熟練度や疲労度の影響を受けやすく検査の基準
が不安定であった。そこで、特開平7−27709号公
報においては、異物の検出時とパターン異常の検出時と
で照明を最適化し、画像処理の技術を応用することで検
査員の個人差に依存しない検査を可能にする方法が開示
されている。ここでは、被検物体表面上の異物の検出に
は光源からの照明光をライトガイドファイバーに導入し
線状の二次光源を形成している。そして、線状の二次光
源からの光を集光レンズを透過させて、照明光の入射す
る面方向の光束をほぼ平行な光束とする。その後、ほぼ
90度に近い入射角度でウエハ全面に照射する。ウエハ
上の異物からの散乱光は、ウエハ上方に設けられている
受光光学系で受光されて、異物が検出される。
2. Description of the Related Art In a manufacturing process of a semiconductor wafer or a liquid crystal display substrate, foreign matter such as dust is attached by etching or CVD.
(Chemical Vapor Deposition) is an obstacle to performing a process of forming a correct circuit pattern. Therefore, at the stage where the pattern is printed on the resist by an exposure device or the like and developed, it is general practice to inspect the printed pattern for abnormalities or foreign matter. Conventionally, this type of inspection has been performed by irradiating a light beam from an illumination optical system onto an object to be inspected and visually observing it by an inspector, as disclosed in, for example, Japanese Patent Application Laid-Open No. H5-232032. here,
Irradiation of light to a fine circuit pattern at the time of inspection of foreign matter generates diffracted light. For this reason, it has been difficult to distinguish scattered light from a foreign substance from diffracted light from a circuit pattern. In addition, to inspect pattern abnormalities using diffracted light,
Inspection standards were unstable due to the influence of inspector skill and fatigue. Japanese Patent Application Laid-Open No. Hei 7-27709 proposes that the illumination can be optimized between the time of detecting a foreign substance and the time of detecting a pattern abnormality, and that an inspection independent of individual differences among inspectors can be performed by applying image processing technology. A method for doing so is disclosed. Here, for detecting foreign matter on the surface of the test object, illumination light from a light source is introduced into a light guide fiber to form a linear secondary light source. Then, the light from the linear secondary light source is transmitted through the condenser lens, and the light flux in the plane direction where the illumination light is incident is made substantially parallel light flux. Thereafter, the entire surface of the wafer is irradiated at an incident angle close to 90 degrees. The scattered light from the foreign matter on the wafer is received by a light receiving optical system provided above the wafer, and the foreign matter is detected.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術の装置構
成では、被検物体の面に入り込む光を極力少なくして異
物からの散乱光をできるだけ高いコントラストで検出す
るために、照明光がほぼ90度の入射角度で被検物体を
照射している。このため、照明光の波長と被検物体のパ
ターンピッチとがほぼ等しい場合、回折光が被検物体面
に対してほぼ垂直方向に進み、受光光学系に入射してし
まう。回路パターンからの回折光は異物からの散乱光に
比較してはるかに光量が多い。このため、表面検査装置
の受光光学系に当該回折光が混入すると異物の検出がで
きなくなくなるという問題がある。特に、特開平7−2
7709号公報で開示しているように被検物体の全周方
向から照明光が照射されるような場合には、回折光が受
光光学系に必ず入射するようになってしまうため異物検
査ができなくなってしまう。
In the above-described prior art apparatus configuration, the illumination light is reduced to approximately 90 in order to minimize the light entering the surface of the test object and to detect the scattered light from the foreign substance with the highest possible contrast. The object is illuminated at an incident angle of degrees. Therefore, when the wavelength of the illumination light is substantially equal to the pattern pitch of the test object, the diffracted light travels in a direction substantially perpendicular to the surface of the test object and enters the light receiving optical system. The amount of diffracted light from the circuit pattern is much larger than the amount of scattered light from foreign matter. For this reason, there is a problem that if the diffracted light enters the light receiving optical system of the surface inspection device, the foreign substance cannot be detected. In particular, JP-A-7-2
As disclosed in Japanese Patent No. 7709, when illumination light is irradiated from all around the object to be inspected, diffracted light is always incident on the light receiving optical system. Will be gone.

【0004】本発明は上記問題に鑑みてなされたもので
あり、簡便な構成で被検物体からの不要な回折光が受光
光学系に入射することを防止でき、異物等を迅速かつ正
確、高精度に検出できる表面検査装置を提供することを
目的とする。
The present invention has been made in view of the above problems, and can prevent unnecessary diffracted light from a test object from being incident on a light receiving optical system with a simple configuration. It is an object of the present invention to provide a surface inspection device capable of detecting with high accuracy.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、被検物のほぼ全面を前記被検物に対して
所定角度で照明する照明光学系と、前記被検物の表面に
付着した異物からの散乱光を受光する受光光学系とを有
し、前記照明光学系は、前記照明光学系の光軸を含む少
なくとも第1の面内に屈折力を有する3群以上の光学素
子と、少なくとも前記第1の面に直交し前記光軸を含む
第2の面内に屈折力を有する光学素子とからなることを
特徴とする表面検査装置を提供する。ここで、「屈折
力」とはレンズや屈折面等の透過(屈折)系の焦点距離
の逆数に加えて、反射系の焦点距離の逆数を含んだもの
をいう。また、「光学素子」も透過(屈折)光学素子や
反射型光学素子を含むものをいう。
In order to solve the above problems, the present invention provides an illumination optical system for illuminating substantially the entire surface of a test object at a predetermined angle with respect to the test object; A light receiving optical system for receiving scattered light from a foreign substance attached to the surface, wherein the illumination optical system has three or more groups having a refractive power in at least a first plane including an optical axis of the illumination optical system. There is provided a surface inspection apparatus comprising: an optical element; and an optical element having a refractive power in a second plane orthogonal to the first plane and including the optical axis. Here, the “refractive power” refers to a value including the reciprocal of the focal length of the reflection system in addition to the reciprocal of the focal length of the transmission (refraction) system such as a lens or a refracting surface. Further, the “optical element” also includes a transmission (refraction) optical element and a reflection type optical element.

【0006】実際の回路素子や液晶表示素子では製造さ
れる素子は整然と並んでいるので、回折光の発生する方
位は限定される。つまり、被検物体を水平面内で回転さ
せれば、回折光の方向が変化するので受光光学系に回折
光が入射しない条件を選択できる。本発明の上記構成に
よれば、被検物体を照明する光束の入射角度範囲を狭く
限定できるので、被検物体の表面を照明する光束の入射
方位と被検物体上に形成されているパターンの繰り返し
の方位とを相対的に一致させない条件、つまり回折光が
受光光学系に入射しない方位角条件を容易に見つけるこ
とができる。
In actual circuit elements and liquid crystal display elements, the elements to be manufactured are arranged in an orderly manner, so that the direction in which diffracted light is generated is limited. That is, when the test object is rotated in the horizontal plane, the direction of the diffracted light changes, so that a condition under which the diffracted light does not enter the light receiving optical system can be selected. According to the above configuration of the present invention, since the incident angle range of the light beam illuminating the test object can be limited to a narrow range, the incident azimuth of the light beam illuminating the surface of the test object and the pattern of the pattern formed on the test object are determined. It is possible to easily find a condition in which the repeated azimuth is not relatively matched, that is, an azimuth condition in which the diffracted light does not enter the light receiving optical system.

【0007】また、被検物体表面からの散乱光による画
像を一括して撮像素子で画像信号に変換するため、被検
物体全面において前述のように被検物体表面からの回折
光が入らないような条件を満足することが必要がある。
そのため、本発明では、上記構成により被検物体上の各
点を照明する光束をほぼ平行になるように、いわゆるテ
レセントリックな照明法とすることで、一様な照明条件
で被検物体上の各点を照明している。
[0007] Further, since the image due to the scattered light from the surface of the test object is collectively converted into an image signal by the image sensor, diffracted light from the surface of the test object is prevented from entering the entire test object as described above. It is necessary to satisfy various conditions.
Therefore, in the present invention, the so-called telecentric illumination method is used so that the light flux illuminating each point on the test object is substantially parallel with the above-described configuration. Illuminating the point.

【0008】また、好ましい態様では、前記受光光学系
は撮像素子部を有し、特定の波長の光を選択する波長選
択素子を前記撮像素子部よりも前記照明光学系側に有し
ていることが望ましい。
In a preferred aspect, the light receiving optical system has an image pickup device, and a wavelength selection element for selecting light having a specific wavelength is provided on the illumination optical system side of the image pickup device. Is desirable.

【0009】照明光の波長が異なればパターンからの回
折角が異なるので、照明光の波長を選択又は制限するこ
とで回折光が受光光学系の撮像素子部に混入することを
防止することができる。換言すると、ある波長Anmで
回折光が受光光学系に混入するときでも、別な波長Bn
mでは受光光学系の撮像素子部に回折光が混入しないよ
うにすることができる。本発明では、波長選択素子を設
けることで、上記回折光が受光光学系の撮像素子部に入
射することを防止できる。照明光を供給する光源部から
撮像素子の間にフィルターなどの受光光の波長を選択す
る部材を設けることが望ましい。
If the wavelength of the illumination light is different, the diffraction angle from the pattern is different. Therefore, by selecting or limiting the wavelength of the illumination light, it is possible to prevent the diffracted light from being mixed into the image pickup device of the light receiving optical system. . In other words, even when diffracted light at a certain wavelength Anm enters the light receiving optical system, another wavelength Bn
In the case of m, it is possible to prevent diffracted light from entering the image pickup device of the light receiving optical system. According to the present invention, by providing the wavelength selection element, it is possible to prevent the diffracted light from entering the image pickup element of the light receiving optical system. It is desirable to provide a member for selecting the wavelength of the received light, such as a filter, between the light source unit that supplies the illumination light and the image sensor.

【0010】また、本発明では、被検物のほぼ全面を前
記被検物に対して所定角度で照明する照明光学系と、前
記被検物の表面に付着した異物からの散乱光を受光する
受光光学系とを有し、前記受光光学系は受光素子部をさ
らに有し、特定の波長の光を選択する波長選択素子を前
記撮像素子部よりも前記照明光学系側に有していること
を特徴とする表面検査装置を提供する。
In the present invention, an illumination optical system for illuminating substantially the entire surface of the test object at a predetermined angle with respect to the test object, and receiving scattered light from a foreign substance attached to the surface of the test object. A light receiving optical system, the light receiving optical system further includes a light receiving element unit, and a wavelength selection element for selecting light of a specific wavelength is provided closer to the illumination optical system than the image pickup element unit. And a surface inspection apparatus characterized by the following.

【0011】[0011]

【発明の実施の形態】本発明においては、円筒レンズな
どの光軸に対して回転対象でない光学素子を用いること
により、被検物体を照明する照明光束の長手方向と短手
方向の光学系の構成を変えるようにしている。照明光束
の長手方向を照明するには、光源または二次光源からの
光束がほぼ照明光束の長手方向の長さにする必要がある
ので、いわゆるコンデンサレンズまたはコンデンサミラ
ーには比較的長い焦点距離を必要とする。これに対し、
照明光束の短手方向ではコンデンサレンズまたはコンデ
ンサミラーには長い焦点距離は必要がなく、むしろ光源
からの光束を有効に被検物体に照射するためには焦点距
離が短いほうがよい。そこで、照明の長手方向に屈折力
を持たない円筒レンズまたは円筒ミラーなどで短手方向
のリレー光学系を構成している。そして、照明光束の長
手方向でも短手方向でも光源または二次光源が照明光学
系の瞳面または瞳共役面近傍になるように配置する。こ
の構成により、ウエハ等の被検物体面上のどの点でも照
明する光束の中心が一定の入射角度であり、かつ照明光
束の入射してくる角度範囲が一定の角度範囲に収まるよ
うにできる。また、光の波長を切り替える機構は、照明
光学系または受光光学系に色ガラスフィルターや干渉フ
ィルターなどを挿脱可能な構成とする。この構成によ
り、受光する波長を制限するか、又は光源部に回折格子
などの分散のある素子を入れて特定の波長で照明するよ
うにしてもよい。以下、添付図面に基づいて本発明の実
施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, by using an optical element such as a cylindrical lens which is not rotated with respect to the optical axis, an optical system for illuminating an object to be inspected in a longitudinal direction and a lateral direction of an illuminating light beam is used. The structure is changed. In order to illuminate the longitudinal direction of the illumination light beam, the light beam from the light source or the secondary light source needs to be approximately the length of the illumination light beam in the longitudinal direction. I need. In contrast,
In the short direction of the illumination light beam, the condenser lens or the condenser mirror does not need to have a long focal length. Rather, it is better to have a short focal length in order to effectively irradiate the light from the light source to the test object. Therefore, a short-side relay optical system is constituted by a cylindrical lens or a cylindrical mirror having no refractive power in the longitudinal direction of the illumination. Then, the light source or the secondary light source is arranged so as to be near the pupil plane or the pupil conjugate plane of the illumination optical system in both the longitudinal direction and the lateral direction of the illumination light beam. With this configuration, the center of the light beam to be illuminated at any point on the surface of the test object such as a wafer has a constant incident angle, and the angle range in which the illumination light beam enters can fall within the constant angle range. The mechanism for switching the wavelength of light has a configuration in which a color glass filter, an interference filter, or the like can be inserted into or removed from the illumination optical system or the light receiving optical system. With this configuration, the wavelength to be received may be limited, or a light source unit may include a dispersive element such as a diffraction grating to illuminate at a specific wavelength. Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

【0012】(第一実施形態)図1は第一実施形態にか
かる表面検査装置の構成を示す図である。ハロゲンラン
プなどの白熱電球、または水銀ランプやメタルハライド
ランプなどの放電光源1からの光を集光して、ライトガ
イドファイバー2に導入する。このライトガイドファイ
バー2は、光ファイバーの繊維がランダムに束になった
ものであり、出射端は比較的均一な光度の二次光源とな
る。前記ファイバー2の出射端から出射した照明光は、
第一の円筒レンズ3、第二の円筒レンズ4、第三の円筒
レンズ5および前記第一から第三の円筒レンズ3,4,
5と直交する方向に屈折力を持つ第四の円筒レンズ6を
介してウエハや液晶基板などの被検物体7を所定の角度
で照明する。このとき第一から第三の円筒レンズ3〜5
は、照明光束が斜入射する面内に屈折力を持つように配
置されている。これに対して、第四の円筒レンズ6は照
明光束の斜入射する面に垂直な面内に屈折力を持ち、被
検物体7の全面を照明するように配置されている。図2
(a)はこの照明光学系の上面図、図2(b)は側面図
である。図1に戻り、被検物体7は表面の法線を軸AX
に回転可能なホルダー13に取り付けられている。そし
て、被検物体7の表面に付着した異物または傷は照明光
を散乱する。その散乱光のうち一部は、被検物体7のほ
ぼ鉛直上方に設けられた受光光学系8で集光され、開口
絞り9および結像光学系10を介して撮像素子11上に
被検物体7の散乱光による像を結像させる。撮像素子1
1は、前記散乱光を光電変換し異物信号を得る。信号処
理系12は、被検物体7上に異物があるかどうかを判断
する。
(First Embodiment) FIG. 1 is a diagram showing a configuration of a surface inspection apparatus according to a first embodiment. Light from an incandescent light bulb such as a halogen lamp, or a discharge light source 1 such as a mercury lamp or a metal halide lamp is collected and introduced into the light guide fiber 2. The light guide fiber 2 is a bundle of optical fibers randomly bundled, and the output end serves as a secondary light source having a relatively uniform luminous intensity. The illumination light emitted from the emission end of the fiber 2 is
A first cylindrical lens 3, a second cylindrical lens 4, a third cylindrical lens 5, and the first to third cylindrical lenses 3, 4,
A test object 7 such as a wafer or a liquid crystal substrate is illuminated at a predetermined angle via a fourth cylindrical lens 6 having a refractive power in a direction orthogonal to 5. At this time, the first to third cylindrical lenses 3 to 5
Are arranged so as to have a refracting power in a plane where the illumination light beam is obliquely incident. On the other hand, the fourth cylindrical lens 6 has a refractive power in a plane perpendicular to the plane on which the illumination light beam obliquely enters, and is arranged so as to illuminate the entire surface of the test object 7. FIG.
2A is a top view of the illumination optical system, and FIG. 2B is a side view. Returning to FIG. 1, the object to be inspected 7 has its surface normal set to the axis AX.
The holder 13 is rotatable. Then, foreign substances or scratches attached to the surface of the test object 7 scatter the illumination light. A part of the scattered light is condensed by a light receiving optical system 8 provided substantially vertically above the object 7 to be inspected, and is passed through an aperture stop 9 and an imaging optical system 10 onto an image sensor 11. 7 is formed by the scattered light. Image sensor 1
1 photoelectrically converts the scattered light to obtain a foreign substance signal. The signal processing system 12 determines whether there is a foreign substance on the test object 7.

【0013】被検物体7が半導体ウエハのように半径R
の円形の場合には、照明光の入射角がθであるとき、照
明光束は長手方向に2R、短手方向に2Rcosθの径
となる楕円形になる。例えば、200mmφの半導体ウ
エハを入射角85°で照明する場合には、長手方向は2
00mm、短手方向は約17.4mmの楕円形の光束と
なる。このように入射角が大きい場合には必要な光束は
非常に扁平な楕円形となってしまう。このような偏平な
楕円形の領域のどの点においても照明光束の入射する角
度が所定の範囲になるように照明するには、光源または
二次光源をコンデンサレンズの前側焦点位置近傍に配置
する必要がある。ところが、通常の回転対称に作られた
コンデンサレンズでは、上記のような扁平の照明領域を
照明する場合には、光が照明領域外へも照射されてしま
い有効に照明されない。
The test object 7 has a radius R like a semiconductor wafer.
When the incident angle of the illumination light is θ, the illumination light flux has an elliptical shape having a diameter of 2R in the longitudinal direction and 2Rcos θ in the lateral direction. For example, when illuminating a 200 mmφ semiconductor wafer at an incident angle of 85 °, the longitudinal direction is 2 mm.
It becomes an elliptical light beam of about 17.4 mm in the short direction of 00 mm. When the incident angle is large as described above, a necessary light beam becomes a very flat ellipse. In order to illuminate so that the incident angle of the illumination light beam is within a predetermined range at any point in such a flat elliptical region, it is necessary to arrange a light source or a secondary light source near the front focal position of the condenser lens. There is. However, in the case of a condenser lens that is made to have a normal rotational symmetry, when illuminating the flat illumination area as described above, light is also emitted to the outside of the illumination area, and the illumination is not effectively performed.

【0014】そこで、短手方向の光束は円筒レンズ3〜
5を用いてリレーすることにより、二次光源としてのフ
ァイバー2からの出射端がリレー光学系の合成の前側焦
点位置に一致するように構成している。このとき、円筒
レンズ3〜5の焦点距離をそれぞれf1,f2,f3、光
源と円筒レンズ3の主平面との間隔をe0、円筒レンズ
3と4の主平面間隔をe1、円筒レンズ4と5の主平面
間隔をe2、円筒レンズ5の主平面と被検物体7の中心
との距離をe3、円筒レンズ3〜5の合成焦点距離をF
とすると、次の式を満たす必要がある。
Therefore, the light beam in the short side direction is transmitted through the cylindrical lenses 3 to 3.
By using the relay 5, the emission end from the fiber 2 as the secondary light source is configured to coincide with the front focal position of the combined optical system. At this time, the focal lengths of the cylindrical lenses 3 to 5 are f 1 , f 2 , and f 3 , respectively, the distance between the light source and the principal plane of the cylindrical lens 3 is e 0 , the distance between the principal planes of the cylindrical lenses 3 and 4 is e 1 , The distance between the principal planes of the cylindrical lenses 4 and 5 is e 2 , the distance between the principal plane of the cylindrical lens 5 and the center of the test object 7 is e 3 , and the composite focal length of the cylindrical lenses 3 to 5 is F.
Then, the following equation must be satisfied.

【0015】[0015]

【数1】 (Equation 1)

【0016】さらに、第四の円筒レンズ6は照明光束の
長手方向に屈折力を持つので比較的長い焦点距離を必要
としその焦点距離がf0とすると、ファイバー2の出射
端と第四の円筒レンズの主平面の間隔はf0に等しく、
また第四の円筒レンズ6の主平面と被検物体7の中心と
の距離もf0に等しいことが望ましい。このため、ファ
イバー2に出射端と被検物体7との距離はほぼ2f0
なる。つまり、短手方向の光学系3〜5ではさらに次の
式を満たす必要がある。 2f0=e1+e2+e3
Further, since the fourth cylindrical lens 6 has a refracting power in the longitudinal direction of the illumination light beam, a relatively long focal length is required. If the focal length is f 0 , the exit end of the fiber 2 and the fourth cylindrical lens 6 The distance between the principal planes of the lens is equal to f 0 ,
It is also desirable that the distance between the main plane of the fourth cylindrical lens 6 and the center of the test object 7 is equal to f 0 . Therefore, the distance between the emission end of the fiber 2 and the test object 7 is approximately 2f 0 . That is, in the short-side optical systems 3 to 5, it is necessary to further satisfy the following expression. 2f 0 = e 1 + e 2 + e 3

【0017】また、被検物体7を斜めに照明するので被
検物体7の中心と光学系3〜6との作動距離は十分な大
きさがある必要がある。これらの数値の一例を表1に掲
げる。ただし、合成焦点距離Fは一回結像して光源像が
反転してから集光されるので、符号が反転して負の値を
とる。
Since the object 7 is illuminated obliquely, the working distance between the center of the object 7 and the optical systems 3 to 6 needs to be large enough. Table 1 shows examples of these numerical values. However, since the combined focal length F is converged after the image is formed once and the light source image is inverted, the sign is inverted and takes a negative value.

【0018】[0018]

【表1】 e0 18mm f1 18mm e1 3.6mm f2 72mm e2 192mm f3 120mm e3 360mm F −30mm 合計長さ 573.6mm f0 286.8mmTable 1 e 0 18 mm f 1 18 mm e 1 3.6 mm f 2 72 mm e 2 192 mm f 3 120 mm e 3 360 mm F- 30 mm Total length 573.6 mm f 0 286.8 mm

【0019】次に、第一の実施形態の変形例として、第
三の円筒レンズと第四の円筒レンズをまとめて一つの球
面レンズ20で置き換えた例を示す。図3は本変形例の
斜視図である。また、図4(a)は本変形例の照明光学
系の上面図、図4(b)は側面図である。本変形例の場
合、第三の円筒レンズの焦点距離f3と第四の円筒レン
ズの焦点距離f0とが等しく、球面レンズ20の主平面
と被検物体7との距離e3も第四の円筒レンズの焦点距
離f0に等しくなる。このため、以下の条件が加わる。 f0=f3=e3 本変形例の数値例を表2に掲げる。
Next, as a modification of the first embodiment, an example in which the third cylindrical lens and the fourth cylindrical lens are collectively replaced by one spherical lens 20 will be described. FIG. 3 is a perspective view of this modification. FIG. 4A is a top view of the illumination optical system of the present modified example, and FIG. 4B is a side view. In the case of this modification, the focal length f 3 of the third cylindrical lens is equal to the focal length f 0 of the fourth cylindrical lens, and the distance e 3 between the principal plane of the spherical lens 20 and the test object 7 is also the fourth. Is equal to the focal length f 0 of the cylindrical lens of For this reason, the following conditions are added. f 0 = f 3 = e 3 Table 2 shows a numerical example of this modification.

【0020】[0020]

【表2】 e0 22mm f1 19.6mm e1 110mm f2 101.5385mm e2 240mm f3 360mm e3 360mm F −30mm 合計長さ 720mm f0 360mmTABLE 2 e 0 22mm f 1 19.6mm e 1 110mm f 2 101.5385mm e 2 240mm f 3 360mm e 3 360mm F -30mm total length 720 mm f 0 360 mm

【0021】さらに、第一の実施形態の他の変形例とし
て、第三の円筒レンズと第四の円筒レンズの代わりに反
射鏡30を用いた例を示す。図5(a)は側面から見た
概略図、図5(b)は反射鏡30を装置上方から見た図
である。反射鏡の場合には曲面を研削することにより比
較的自由に加工できる。このため、曲面の曲率を直交す
る方向で変えることが比較的容易にでき、反射鏡30の
主平面と被検物体7との距離e3を照明領域の長手方向
の焦点距離f0が等しいf0=e3という条件で設計でき
るので自由度が増す。
Further, as another modified example of the first embodiment, an example in which a reflecting mirror 30 is used instead of the third cylindrical lens and the fourth cylindrical lens will be described. FIG. 5A is a schematic diagram viewed from the side, and FIG. 5B is a diagram illustrating the reflecting mirror 30 viewed from above the apparatus. In the case of a reflecting mirror, it can be processed relatively freely by grinding a curved surface. For this reason, it is relatively easy to change the curvature of the curved surface in the orthogonal direction, and the distance e 3 between the main plane of the reflecting mirror 30 and the test object 7 is set equal to the focal length f 0 in the longitudinal direction of the illumination area. 0 = it is possible to design with the proviso that e 3 increases the degree of freedom.

【0022】[0022]

【表3】 e0 22.5mm f1 19.15385mm e1 207.5mm f2 276.6667mm e2 130mm f3 240mm e3 360mm F −30mm 合計長さ 720mm f0 360mmTABLE 3 e 0 22.5mm f 1 19.15385mm e 1 207.5mm f 2 276.6667mm e 2 130mm f 3 240mm e 3 360mm F -30mm total length 720 mm f 0 360 mm

【0023】球面凹面鏡の曲率半径は焦点距離の2倍で
あることから決定することができるので、照明光束の長
手方向の凹面鏡の曲率半径は720mm、照明光束の短
手方向の凹面鏡の曲率半径は360mmということにな
る。さらに、反射鏡の場合には凹面を球面でなく放物面
などにすることも可能なので、より最適化することが可
能である。特に長手方向については広い範囲を照明する
ことになるので、球面反射鏡では球面収差の影響を受け
て周辺の光束が光軸方向に過剰に曲げられてしまい、平
行光束を作ることが難しくなる。そこで反射面を放物面
にすることにより周辺でも光束が平行とすることができ
る。放物面の中心を原点として放物面の光軸方向にz軸
をとり、これに対して垂直な方向にx軸とy軸を直交す
るようにとると、回転放物面は、次式で示される。 z=a(x2+y2
Since the radius of curvature of the spherical concave mirror can be determined from being twice the focal length, the radius of curvature of the concave mirror in the longitudinal direction of the illumination light beam is 720 mm, and the radius of curvature of the concave mirror in the short direction of the illumination light beam is That is, 360 mm. Further, in the case of a reflecting mirror, the concave surface can be a parabolic surface instead of a spherical surface, so that it is possible to further optimize the concave surface. In particular, since a wide range is illuminated in the longitudinal direction, the peripheral light beam is excessively bent in the optical axis direction under the influence of the spherical aberration in the spherical reflecting mirror, and it is difficult to produce a parallel light beam. Therefore, by making the reflecting surface a parabolic surface, the luminous flux can be made parallel even in the periphery. Taking the z-axis in the optical axis direction of the paraboloid with the center of the paraboloid as the origin and taking the x-axis and the y-axis orthogonal to the direction perpendicular thereto, the rotating paraboloid is given by the following equation. Indicated by z = a (x 2 + y 2 )

【0024】この回転放物面の焦点距離は、1/(4
a)である。上記数値例(表2,表3)の場合では、照
明光束の長手方向の焦点距離は360mmなので、照明
光束の長手方向の反射面の係数aを1/1440(≒
0.00694)とする回転放物面を用いることにな
る。ただし、反射面を使うので光軸が直線で構成できな
いことや取り付け精度がレンズに比べて厳しくなること
もある。また、このような構成は反射鏡だけでなく光軸
に対して回転対象でない曲面を持つ、いわゆるトーリッ
ク面のレンズを用いてもよい。以上のような照明を用い
ることにより、被検物体上の各点をほぼ平行で入射角度
範囲を一定にした照明光で照明することができる。従っ
て、被検物体7上に回折光が受光光学系に入射するよう
なピッチのパターンがある場合でも、被検物体7を回転
させて回折光の進む方向を受光光学系の存在しない方向
に変えて、異物検査を行うことができる。このように傷
からの散乱光を受光することによって被検物体7に付着
した傷を容易に検出することができる。
The focal length of this paraboloid of revolution is 1 / (4
a). In the above numerical examples (Tables 2 and 3), since the focal length in the longitudinal direction of the illumination light beam is 360 mm, the coefficient a of the reflection surface in the longitudinal direction of the illumination light beam is 1/1440 (≒
0.00694). However, since a reflecting surface is used, the optical axis cannot be formed as a straight line, and the mounting accuracy may be stricter than that of a lens. Such a configuration may use not only a reflecting mirror but also a so-called toric lens having a curved surface that is not a rotation object with respect to the optical axis. By using the illumination as described above, each point on the test object can be illuminated with illumination light that is substantially parallel and has a constant incident angle range. Therefore, even when there is a pattern on the test object 7 with a pitch such that the diffracted light enters the light receiving optical system, the test object 7 is rotated to change the traveling direction of the diffracted light to a direction in which the light receiving optical system does not exist. Thus, a foreign substance inspection can be performed. Thus, by receiving the scattered light from the scratch, the scratch attached to the test object 7 can be easily detected.

【0025】ところが、照明する方位によって傷による
散乱光の強度は変化するので、被検物体7を載置するホ
ルダー13を回転させて、パターンからの回折光が受光
光学系8に入射しない、できるだけ多くの方位で受光し
て検査することが望ましい。また、これに限られず、被
検物体7を回転させる代わりに照明光学系3〜6を回転
させて照明方位を変えてもよい。さらに、上記実施例で
は受光光学系8にレンズ(屈折光学系)を用いた例を示
したが、反射鏡(反射光学系)を用いてもよいのは言う
までもない。
However, since the intensity of the scattered light due to the scratch varies depending on the illuminating direction, the holder 13 on which the test object 7 is mounted is rotated so that the diffracted light from the pattern does not enter the light receiving optical system 8 as much as possible. It is desirable to receive and inspect in many directions. The present invention is not limited to this, and instead of rotating the test object 7, the illumination optical systems 3 to 6 may be rotated to change the illumination direction. Further, in the above-described embodiment, an example in which a lens (refractive optical system) is used for the light receiving optical system 8 has been described, but it goes without saying that a reflecting mirror (reflective optical system) may be used.

【0026】(第二実施形態)次に本発明の第二の実施
形態について説明する。ピッチpのパターンを持つ被検
物体にθ1からθ2の入射角度範囲で照明光が照射さ
れ、異物からの散乱光の受光角がφ1からφ2の受光光
学系で受光する場合を考える。このとき、パターンから
の回折光が受光光学系に入射しないためには、以下の条
件式を満足する必要がある。
(Second Embodiment) Next, a second embodiment of the present invention will be described. It is assumed that the test object having the pattern of the pitch p is irradiated with the illumination light in the incident angle range of θ1 to θ2, and the light receiving optical system having the light receiving angle of the scattered light from the foreign matter of φ1 to φ2 is received. At this time, in order for the diffracted light from the pattern not to enter the light receiving optical system, the following conditional expression must be satisfied.

【0027】[0027]

【数2】 (Equation 2)

【0028】ここで、λは照明波長、nは整数である。
また、θ1<θ2とφ1<φ2の場合で、入射角および
受光角は被検物体面の法線方向を0度方向としてそれか
らのふれの角度で示すものとする。つまり、パターンの
ピッチpに応じて照明波長λを選択することにより、受
光光学系にパターンからの回折光が入らない条件を満足
させることができる。
Here, λ is the illumination wavelength, and n is an integer.
Further, in the case of θ1 <θ2 and φ1 <φ2, the incident angle and the light receiving angle are indicated by the angle of deflection from the normal direction of the surface of the test object as 0 degree. That is, by selecting the illumination wavelength λ in accordance with the pattern pitch p, it is possible to satisfy the condition that the light diffracted light from the pattern does not enter the light receiving optical system.

【0029】図6は、本実施形態にかかる表面検査装置
の光源部近傍の構成を示す図である。本実施形態では、
光源部に波長切り替え機構を設けている点が上記第一実
施形態と異なっている。その他の構成は上記第一実施形
態と同様であるので説明を省略する。ハロゲンランプな
どの光源1からの光束は、集光レンズ102、ターレッ
ト103上に取り付けられた波長制限フィルター10
4、インプットレンズ105を介してライトガイドファ
イバー2に導入される。そして、照明光は上述の照明光
学系3〜6を介して被検物体7に照射され、散乱光によ
る検査が上述した手順で行われる。ターレット103
は、制限波長が異なる複数のフィルターを備えている。
そして、不図示の制御系からの信号に従ってモーターM
が駆動され、ターレット103を回転させる。これによ
り、光源1からの光束の光路内に挿入する波長制限フィ
ルターを選択することができる。波長制限フィルター
は、干渉フィルタや色ガラスフィルターなどを使用する
ことができる。
FIG. 6 is a diagram showing a configuration near the light source unit of the surface inspection apparatus according to the present embodiment. In this embodiment,
The difference from the first embodiment is that a wavelength switching mechanism is provided in the light source unit. The other configuration is the same as that of the first embodiment, and the description is omitted. The luminous flux from the light source 1 such as a halogen lamp is applied to a converging lens 102 and a wavelength limiting filter 10 mounted on a turret 103.
4. The light is introduced into the light guide fiber 2 via the input lens 105. Then, the illumination light is applied to the test object 7 via the above-described illumination optical systems 3 to 6, and the inspection using the scattered light is performed in the above-described procedure. Turret 103
Has a plurality of filters having different limiting wavelengths.
Then, according to a signal from a control system (not shown), the motor M
Is driven to rotate the turret 103. Thereby, a wavelength limiting filter to be inserted into the optical path of the light beam from the light source 1 can be selected. As the wavelength limiting filter, an interference filter, a color glass filter, or the like can be used.

【0030】また、第二実施形態の変形例として、光源
部において波長を選択する構成であれば、図7に示すよ
うに回折格子やプリズムなどの分光素子106を用いて
波長を選択してもよい。
As a modification of the second embodiment, if the wavelength is selected in the light source section, the wavelength can be selected by using a spectral element 106 such as a diffraction grating or a prism as shown in FIG. Good.

【0031】次に第二実施形態の他の変形例を説明す
る。ピッチpのパターンを持つ被検物体7は回折格子と
みなすことができる。このため、照明光の波長λに応じ
てn次の回折光の回折角φnは、照明光の入射角をθと
して次式で表せる。 sinφn=sinθ−nλ/p 受光光学系8の受光角とパターンの回折角が一致すると
きには、図8に示すようにその波長の光を透過しないフ
ィルター107を光路内に挿入する。これにより、パタ
ーンからの回折光は撮像素子11には入射しない。これ
に対して、異物や傷などからの敬乱光はほぼ等方的に広
がるのでフィルターを透過する散乱光は受光光学系8に
入射し、撮像素子11にて検出される。フィルター10
7は図7に示したものと同様に回転可能なターレット1
08に取り付けられており、上述したのと同様に、必要
に応じて選択することができる構成である。
Next, another modified example of the second embodiment will be described. The test object 7 having the pattern of the pitch p can be regarded as a diffraction grating. For this reason, the diffraction angle φn of the n-th order diffracted light according to the wavelength λ of the illumination light can be expressed by the following equation, where θ is the incident angle of the illumination light. sinφn = sin θ−nλ / p When the light receiving angle of the light receiving optical system 8 matches the diffraction angle of the pattern, a filter 107 that does not transmit light of that wavelength is inserted into the optical path as shown in FIG. Thereby, the diffracted light from the pattern does not enter the image sensor 11. On the other hand, the scattered light transmitted through the filter enters the light receiving optical system 8 and is detected by the image pickup device 11 because the disturbing light from the foreign matter and the scratches spreads almost isotropically. Filter 10
7 is a turret 1 which can be rotated similarly to the one shown in FIG.
08, and can be selected as necessary, as described above.

【0032】また、本発明は、上記各実施形態の構成に
限られるものではない。ウエハ等の基板上に形成されて
いる実際の回路パターンは複雑な形状をしており、必ず
しも全面に一様なピッチで回路素子が構成されていると
は限らない。そこで、第一の実施形態で示したようなテ
レセントリックな偏平照明を行うことができる照明光学
系と、第二の実施形態で示した波長選択フィルターとを
組み合わせて用いることで、さらに効果的に不要な回折
光が撮像素子へ入射することを防止できる。また、上記
第一実施形態での被検物体の回転量や、上記第二実施形
態での照明波長帯域は、あらかじめ受光光学系に入射し
ないように設定して用いる例を示した。しかし、本発明
はこれに限られず、撮像素子により得られた被検物体の
散乱光像中に露光パターンの繰返し周期に一致する周期
的な信号が存在する場合に、不図示の制御系により上述
のように被検物体を回転し、照明波長帯域を狭くするこ
とにより、自動的にパターンからの回折光が受光光学系
に入らない条件を探し出すようにしてもよい。
The present invention is not limited to the configurations of the above embodiments. An actual circuit pattern formed on a substrate such as a wafer has a complicated shape, and circuit elements are not always formed at a uniform pitch over the entire surface. Therefore, by using the illumination optical system capable of performing telecentric flat illumination as shown in the first embodiment and the wavelength selection filter shown in the second embodiment in combination, it is possible to further effectively eliminate unnecessary illumination. It is possible to prevent the diffracted light from entering the image sensor. In addition, an example has been described in which the rotation amount of the test object in the first embodiment and the illumination wavelength band in the second embodiment are set and used in advance so as not to enter the light receiving optical system. However, the present invention is not limited to this. When a periodic signal corresponding to the repetition period of the exposure pattern exists in the scattered light image of the test object obtained by the imaging device, the control system (not shown) By rotating the test object and narrowing the illumination wavelength band as described above, a condition under which the diffracted light from the pattern does not enter the light receiving optical system may be automatically searched.

【0033】さらに、被検物体を回転させて受光光学系
にパターンからの回折光を受光光学系に入射させて、特
開平11−51874号公報において本願出願人が開示
しているように被検物体上のパターンの検査を行い、回
折光が受光光学系に入射しないように照明方位と被検物
体上のパターンの方位を変えて異物および傷の検査を行
うようにしてもよい。
Further, the object to be inspected is rotated so that the diffracted light from the pattern is made incident on the light receiving optical system to the light receiving optical system, and the object to be inspected is disclosed in Japanese Patent Application Laid-Open No. 11-51874. An inspection of a pattern on an object may be performed, and inspection of a foreign substance and a flaw may be performed by changing the illumination direction and the direction of the pattern on the test object so that diffracted light does not enter the light receiving optical system.

【0034】[0034]

【発明の効果】以上説明したように本発明によれば、被
検物体の各点を照明する照明光の角度範囲を狭く限定す
ることができ、かつほぼ平行であることから、被検物体
上のどの点においても照明条件を一様にすることができ
る。そして、被検物体と照明光とを相対的に回転させる
ことにより、散乱光を受光する際に有害(不要)な被検
物体上のパターンからの回折光が受光光学系に入射しな
いようにすることができる。これにより、被検物体上の
異物等を迅速かつ正確、高感度に検出できる。また、本
発明によれば、受光光学系にパターンからの回折光が入
射しない照明波長条件を選択することができる。これに
より、感度よく被検物体上の異物や傷からの散乱光を検
出することができる。
As described above, according to the present invention, the angle range of the illuminating light for illuminating each point of the object to be inspected can be limited narrowly and is almost parallel. The illumination conditions can be made uniform at any point of. Then, by rotating the test object and the illumination light relatively, when scattered light is received, harmful (unnecessary) diffracted light from the pattern on the test object is prevented from entering the light receiving optical system. be able to. This makes it possible to quickly, accurately and highly sensitively detect a foreign substance or the like on the test object. Further, according to the present invention, it is possible to select an illumination wavelength condition under which the diffracted light from the pattern does not enter the light receiving optical system. This makes it possible to detect scattered light from foreign substances and scratches on the test object with high sensitivity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第一実施形態にかかる表面検査装置の構成を示
す図である。
FIG. 1 is a diagram showing a configuration of a surface inspection apparatus according to a first embodiment.

【図2】(a),(b)は第一実施形態にかかる表面検
査装置の照明光学系のレンズ構成を示す図である。
FIGS. 2A and 2B are diagrams illustrating a lens configuration of an illumination optical system of the surface inspection apparatus according to the first embodiment.

【図3】第一実施形態の変形例にかかる表面検査装置の
構成を示す図である。
FIG. 3 is a diagram illustrating a configuration of a surface inspection apparatus according to a modification of the first embodiment.

【図4】(a),(b)は第一実施形態の変形例にかか
る表面検査装置の照明光学系のレンズ構成を示す図であ
る。
FIGS. 4A and 4B are diagrams showing a lens configuration of an illumination optical system of a surface inspection device according to a modification of the first embodiment.

【図5】(a),(b)は第一実施形態のさらに他の変
形例かかる表面検査装置の構成を示す図である。
FIGS. 5A and 5B are diagrams showing a configuration of a surface inspection apparatus according to still another modification of the first embodiment.

【図6】第二実施形態にかかる表面検査装置の光源部近
傍の構成を示す図である。
FIG. 6 is a diagram showing a configuration near a light source unit of a surface inspection apparatus according to a second embodiment.

【図7】第二実施形態の変形例にかかる表面検査装置の
光源部近傍の構成を示す図である。
FIG. 7 is a diagram showing a configuration near a light source unit of a surface inspection device according to a modification of the second embodiment.

【図8】第二実施形態のさらに他の変形例にかかる表面
検査装置の構成を示す図である。
FIG. 8 is a diagram illustrating a configuration of a surface inspection apparatus according to still another modified example of the second embodiment.

【符号の説明】[Explanation of symbols]

1 光源 2 ライトガイドファイバー 3,4,5,6 円筒レンズ 7 被検物体 8 受光光学系 9 開口絞り 10 結像光学系 11 撮像素子 12 信号処理系 13 ホルダー 20 球面レンズ 30 反射鏡 102 集光レンズ 103,108 ターレット 104,107 フィルター 105 インプットレンズ 106 分光素子 DESCRIPTION OF SYMBOLS 1 Light source 2 Light guide fiber 3, 4, 5, 6 Cylindrical lens 7 Object to be inspected 8 Light receiving optical system 9 Aperture stop 10 Imaging optical system 11 Image sensor 12 Signal processing system 13 Holder 20 Spherical lens 30 Reflecting mirror 102 Condensing lens 103,108 Turret 104,107 Filter 105 Input lens 106 Spectral element

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G02F 1/1333 500 G02F 1/1333 500 H01L 21/66 H01L 21/66 J Fターム(参考) 2F065 AA49 BB02 CC19 CC21 DD04 DD06 FF41 FF48 GG02 GG03 GG23 HH03 HH12 JJ03 JJ26 LL02 LL08 LL19 LL22 MM04 NN06 PP13 UU01 2G051 AA51 AA90 AB01 AB07 BB07 BB09 BB11 BB17 BC07 CA03 CA04 CB01 CC07 DA08 2H088 FA12 FA30 HA01 MA20 2H090 JC18 4M106 AA01 BA04 CA41 DB04 DB11 DB12 DB15 DB16 DB19 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) G02F 1/1333 500 G02F 1/1333 500 H01L 21/66 H01L 21/66 J F-term (Reference) 2F065 AA49 BB02 CC19 CC21 DD04 DD06 FF41 FF48 GG02 GG03 GG23 HH03 HH12 JJ03 JJ26 LL02 LL08 LL19 LL22 MM04 NN06 PP13 UU01 2G051 AA51 AA90 AB01 AB07 BB07 BB09 BB11 BB17 BC07 CA03 CA04 CB01 CC01 DA08 DB15 DB16 DB19

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 被検物のほぼ全面を前記被検物に対して
所定角度で照明する照明光学系と、 前記被検物の表面に付着した異物からの散乱光を受光す
る受光光学系とを有し、 前記照明光学系は、前記照明光学系の光軸を含む少なく
とも第1の面内に屈折力を有する3群以上の光学素子
と、少なくとも前記第1の面に直交し前記光軸を含む第
2の面内に屈折力を有する光学素子とからなることを特
徴とする表面検査装置。
An illumination optical system for illuminating substantially the entire surface of the test object at a predetermined angle with respect to the test object; and a light receiving optical system for receiving scattered light from a foreign substance attached to the surface of the test object. The illumination optical system has three or more groups of optical elements having a refractive power in at least a first plane including an optical axis of the illumination optical system, and the optical axis orthogonal to at least the first plane. A surface inspection apparatus, comprising: an optical element having a refractive power in a second plane including:
【請求項2】 前記受光光学系は撮像素子部を有し、特
定の波長の光を選択する波長選択素子を前記撮像素子部
よりも前記照明光学系側に有していることを特徴とする
請求項1記載の表面検査装置。
2. The light receiving optical system has an image pickup device section, and a wavelength selection element for selecting light of a specific wavelength is provided on the illumination optical system side of the image pickup device section. The surface inspection apparatus according to claim 1.
【請求項3】 被検物のほぼ全面を前記被検物に対して
所定角度で照明する照明光学系と、 前記被検物の表面に付着した異物からの散乱光を受光す
る受光光学系とを有し、 前記受光光学系は受光素子部をさらに有し、特定の波長
の光を選択する波長選択素子を前記撮像素子部よりも前
記照明光学系側に有していることを特徴とする表面検査
装置。
3. An illumination optical system for illuminating substantially the entire surface of the test object at a predetermined angle to the test object, and a light receiving optical system for receiving scattered light from a foreign substance attached to the surface of the test object. Wherein the light receiving optical system further includes a light receiving element unit, and a wavelength selection element for selecting light of a specific wavelength is provided on the illumination optical system side with respect to the imaging element unit. Surface inspection equipment.
JP2000153461A 2000-04-21 2000-05-24 Surface inspection device Pending JP2001330565A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2000153461A JP2001330565A (en) 2000-05-24 2000-05-24 Surface inspection device
TW090109223A TW571089B (en) 2000-04-21 2001-04-17 Defect testing apparatus and defect testing method
US09/836,185 US6563577B2 (en) 2000-04-21 2001-04-18 Defect testing apparatus and defect testing method
KR10-2001-0021503A KR100403188B1 (en) 2000-04-21 2001-04-20 Defect testing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000153461A JP2001330565A (en) 2000-05-24 2000-05-24 Surface inspection device

Publications (1)

Publication Number Publication Date
JP2001330565A true JP2001330565A (en) 2001-11-30

Family

ID=18658712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000153461A Pending JP2001330565A (en) 2000-04-21 2000-05-24 Surface inspection device

Country Status (1)

Country Link
JP (1) JP2001330565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180116A (en) * 2010-02-08 2011-09-15 Hitachi High-Technologies Corp Light projector for trolley wire measuring, and trolley wire measuring device
WO2011136265A1 (en) * 2010-04-28 2011-11-03 ローム株式会社 Optical analyzer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294609A (en) * 1999-04-09 2000-10-20 Nikon Corp Inspection device and method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294609A (en) * 1999-04-09 2000-10-20 Nikon Corp Inspection device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180116A (en) * 2010-02-08 2011-09-15 Hitachi High-Technologies Corp Light projector for trolley wire measuring, and trolley wire measuring device
WO2011136265A1 (en) * 2010-04-28 2011-11-03 ローム株式会社 Optical analyzer

Similar Documents

Publication Publication Date Title
KR100403188B1 (en) Defect testing apparatus
US7345825B2 (en) Beam delivery system for laser dark-field illumination in a catadioptric optical system
JP4744215B2 (en) Dark field inspection lighting system
US8102521B2 (en) Optical inspection system and method
JP5249015B2 (en) Wideband reflective optical system for wafer inspection
JP6030616B2 (en) Objective optical system and sample inspection device
JP5172328B2 (en) Catadioptric imaging system for broadband microscopy using immersion liquid
US5497234A (en) Inspection apparatus
WO1999002977A1 (en) Device and method for inspecting surface
JP2008534963A5 (en)
CN111158158B (en) Spectrometer optical system and semiconductor inspection device
EP1776568A2 (en) Measuring head for planar measurement of a sample
JPH1151874A (en) Defect inspection system
JP2007163553A (en) Microscope, objective lens unit for microscope, and adaptor for objective lens
US20050134847A1 (en) Apparatus and method for optical characterization of a sample over a broadband of wavelengths with a small spot size
JP2001330565A (en) Surface inspection device
JP2001305071A (en) Defect inspecting device
JP3997761B2 (en) Illumination optical device and inspection device provided with the same
JP2003202302A (en) Surface defect-inspecting apparatus
JP2001289794A (en) Defect inspection device
JP3981895B2 (en) Automatic macro inspection device
JP2005233695A (en) Flaw inspection device for transparent panel
JP4380311B2 (en) Defect inspection equipment
CN117434085A (en) Optical equipment and working method thereof
JP2000294609A (en) Inspection device and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511