JP2001330388A - Heat exchanger unit - Google Patents
Heat exchanger unitInfo
- Publication number
- JP2001330388A JP2001330388A JP2000147711A JP2000147711A JP2001330388A JP 2001330388 A JP2001330388 A JP 2001330388A JP 2000147711 A JP2000147711 A JP 2000147711A JP 2000147711 A JP2000147711 A JP 2000147711A JP 2001330388 A JP2001330388 A JP 2001330388A
- Authority
- JP
- Japan
- Prior art keywords
- heat transfer
- heat exchanger
- heat
- exchanger unit
- transfer tubes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/24—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
- F28F1/32—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D2001/0253—Particular components
- F28D2001/026—Cores
- F28D2001/0273—Cores having special shape, e.g. curved, annular
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、主として空気調和
機などに使用される熱交換器ユニットに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger unit mainly used for an air conditioner or the like.
【0002】[0002]
【従来の技術】第1従来例である特開昭61−1140
92号公報の代表図面を図9に示す。図9は熱交換器ユ
ニットの断面図である。熱交換器ユニットは、フィン1
01と、これに直交し貫通する伝熱管102a、102
b、102c、102dとからなる。2. Description of the Related Art A first conventional example of Japanese Patent Application Laid-Open No.
FIG. 9 shows a representative drawing of the '92 publication. FIG. 9 is a sectional view of the heat exchanger unit. The heat exchanger unit is fin 1
01 and the heat transfer tubes 102a,
b, 102c, and 102d.
【0003】凝縮時、管内を冷媒が矢印103方向に流
動し、管外のフィン101間を流動する空気と熱交換が
行われる。単相域である冷媒蒸気及び液冷媒が流動する
伝熱管102a及び102dは、管内壁面が平滑な平滑
管である。また、冷媒が蒸気と液が混合して流れる二相
の冷媒が流動する伝熱管102b、102cは、管内壁
面の断面が台形状の螺旋溝を有する伝熱管であり、それ
ぞれの伝熱管内の溝底幅は、高乾き度域の伝熱管102
bの溝底幅W1より低乾き度域の伝熱管102bの溝底
幅W2が大きい溝形状で構成する。At the time of condensation, the refrigerant flows in the pipe in the direction of arrow 103, and exchanges heat with the air flowing between the fins 101 outside the pipe. The heat transfer tubes 102a and 102d in which the refrigerant vapor and the liquid refrigerant in the single-phase region flow are smooth tubes having smooth inner wall surfaces. The heat transfer tubes 102b and 102c through which the two-phase refrigerant flows in which the refrigerant flows as a mixture of vapor and liquid are heat transfer tubes having a spiral groove having a trapezoidal cross section on the inner wall surface of the tube. The bottom width is the heat transfer tube 102 in the high dryness area.
The groove bottom width W2 of the heat transfer tube 102b in the low-dryness region is larger than the groove bottom width W1 of b.
【0004】このような構成により、次のような効果を
生じる。単相の冷媒蒸気及び液冷媒が流動する領域に、
溝付き管ととほとんど伝熱性能が等しい平滑管を用いる
ことで、熱交換能力を低下させることなく、また、加工
費の安価な伝熱管により、安価な熱交換器ユニットとす
ることができる。さらに、溝底幅の小さい伝熱管を高乾
き度域に、溝底幅の大きい伝熱管を低乾き度域に用いる
ことで高性能化が図れるというものである。[0004] Such a configuration produces the following effects. In the region where single-phase refrigerant vapor and liquid refrigerant flow,
By using a smooth tube having almost the same heat transfer performance as the grooved tube, an inexpensive heat exchanger unit can be obtained without lowering the heat exchange capacity and using a heat transfer tube with low processing cost. Further, by using a heat transfer tube having a small groove bottom width in a high dryness region and using a heat transfer tube having a large groove bottom width in a low dryness region, higher performance can be achieved.
【0005】次に、第2従来例である実開昭62−29
555号公報の代表図面を図10に示す。図10は熱交
換器ユニットの要部断面図である。熱交換器ユニット
は、フィン111と、これに直交し貫通する伝熱管11
2a、112b、112cとからなる。Next, a second prior art example of Japanese Utility Model Laid-Open No. 62-29 is shown.
FIG. 10 shows a representative drawing of the '555 publication. FIG. 10 is a cross-sectional view of a main part of the heat exchanger unit. The heat exchanger unit includes a fin 111 and a heat transfer tube 11 penetrating at right angles thereto.
2a, 112b, and 112c.
【0006】気流は、矢印Wの方向に流動し、熱交換器
ユニットは、風上側から風下側に複数列で構成されてい
る。また、伝熱管112aは管内壁面が平滑な平滑管、
伝熱管112bは螺旋角θ1の螺旋溝を内壁面に加工し
た溝付管、伝熱管112cは螺旋角θ2の螺旋溝を内壁
面に加工した溝付管が用いられ、それぞれの伝熱管の伝
熱性能は、伝熱管112a、112b、112cの順
に、高い伝熱性能を示す。これらの伝熱管を、風上側か
ら風下側に方向に、伝熱管112a、112b、112
cで構成されている。[0006] The air flow flows in the direction of arrow W, and the heat exchanger units are composed of a plurality of rows from the windward side to the leeward side. The heat transfer tube 112a is a smooth tube having a smooth inner wall surface,
The heat transfer tube 112b is a grooved tube with a spiral groove having a spiral angle θ1 formed on the inner wall surface, and the heat transfer tube 112c is a grooved tube with a spiral groove having a spiral angle θ2 formed on the inner wall surface. The performance shows high heat transfer performance in the order of the heat transfer tubes 112a, 112b, and 112c. These heat transfer tubes 112a, 112b, 112 are arranged in the direction from the windward side to the leeward side.
c.
【0007】このような構成により、次のような効果を
生じる。伝熱管112a、112b、112cの伝熱性
能が順次高くなっているため、それらの管外表面温度T
a、Tb、Tcが順次低くなり、その結果、空気温度と
フィン表面温度との温度差が、風上側と風下側とでほと
んど同じになる。したがって、フィン111への着霜の
進行が均一され、着霜による目詰り発生までの時間が長
くなる。つまり、着霜時の能力低下が少なくなるととも
に、除霜運転頻度も少なくなり、平均暖房能力が向上す
るとしている。[0007] With such a configuration, the following effects are produced. Since the heat transfer performance of the heat transfer tubes 112a, 112b, and 112c is sequentially increased, their outer surface temperatures T
The values of a, Tb, and Tc decrease sequentially, and as a result, the temperature difference between the air temperature and the fin surface temperature becomes almost the same on the windward side and the leeward side. Therefore, the progress of frosting on the fins 111 is uniform, and the time until the occurrence of clogging due to frosting becomes longer. In other words, the reduction in the capacity during frost formation is reduced, the frequency of the defrosting operation is reduced, and the average heating capacity is improved.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、第1及
び第2従来例の構成では、いずれもフィンが分割されて
いない一体のフィンを用いていることから、熱交換器ユ
ニットを組立てる際は、内面形状の異なる複数の伝熱管
が組立工程内に混在することになる。外見で区別できな
い伝熱管を、誤ることなく確実に所定の位置に配置する
ことは、非常に困難である。区別するために、装置を追
加することも考えられるが、その際は余分な投資が必要
となる。また、伝熱管を、誤った位置に配置した場合、
伝熱性能の低下が著しいことは容易に推定できる。この
ように、フィンが分割されていないことにより、熱交換
器ユニットの組立工程内に複数の種類の伝熱管が混在す
ることで、伝熱管を誤った位置に配置してしまい、熱交
換器ユニットの著しい性能低下を生じてしまうという課
題を有していた。However, in the first and second prior art arrangements, since the integrated fins are not divided into any fins, when the heat exchanger unit is assembled, an inner surface is not used. A plurality of heat transfer tubes having different shapes are mixed in the assembly process. It is very difficult to reliably arrange heat transfer tubes, which cannot be distinguished by their appearance, without error. It is conceivable to add a device to make a distinction, but this requires an extra investment. Also, if the heat transfer tube is placed in the wrong position,
It is easy to presume that the heat transfer performance is significantly reduced. As described above, since the fins are not divided, a plurality of types of heat transfer tubes are mixed in the assembly process of the heat exchanger unit. However, there is a problem that the performance is significantly reduced.
【0009】本発明はこのような従来の課題を解決する
ものであり、フィンを分割し、複数のフィン付き熱交換
器を組み合せて熱交換器ユニットを構成することで、数
種類の管内面形状を有する伝熱管を間違えることなく、
所定の配置で組立が可能で、高性能な熱交換器ユニット
を提供することを目的とする。The present invention solves such a conventional problem. By dividing a fin and combining a plurality of finned heat exchangers to constitute a heat exchanger unit, several types of tube inner surface shapes can be formed. Without mistaking the heat transfer tubes
An object is to provide a high-performance heat exchanger unit that can be assembled in a predetermined arrangement.
【0010】[0010]
【課題を解決するための手段】上記課題を解決するため
に本発明は、所定間隔で平行に並設し、その間を気体が
流動するフィン群と、このフィン群を略直角に貫通して
列を形成し、内部を流体が流動する伝熱管群とを備え、
前記フィン群が複数に分割され、少なくとも1つ以上の
フィン付き熱交換器を構成する伝熱管内の内面形状が、
他のフィン付き熱交換器を構成する伝熱管内の内面形状
と異なる伝熱管で構成し、それぞれのフィン付き熱交換
器を独立した構成をとる。これにより、フィン付き熱交
換器毎に長さ違いの構成も可能となり、伝熱管も長さ違
いにより、容易に外見で区別できる。また、フィン付き
熱交換器毎に組立工程を独立させることも可能で、溝形
状のことなる伝熱管の混在も回避でき、数種類の管内面
形状を有する伝熱管を間違えることなく、所定の配置に
組立が可能で、安定して高性能な熱交換器ユニットが得
られる。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a group of fins arranged in parallel at a predetermined interval, through which a gas flows, and a row of fins penetrating the fins at substantially right angles. And a heat transfer tube group through which the fluid flows,
The fin group is divided into a plurality, and the inner surface shape in the heat transfer tube constituting at least one or more finned heat exchangers,
Other heat exchangers with fins are constituted by heat transfer tubes different from the inner surface shape inside the heat exchanger tubes, and each heat exchanger with fins has an independent configuration. Thus, a configuration having a different length for each finned heat exchanger is possible, and the heat transfer tubes can be easily distinguished by their different lengths. In addition, it is possible to make the assembly process independent for each heat exchanger with fins, avoid mixing heat transfer tubes having different groove shapes, and arrange heat transfer tubes having several types of tube inner surface shapes in a predetermined arrangement without mistake. Assembling is possible and a stable and high-performance heat exchanger unit can be obtained.
【0011】[0011]
【発明の実施の形態】請求項1に記載の発明は、所定間
隔で平行に並設し、その間を気体が流動するフィン群
と、このフィン群を略直角に貫通して列を成し、内部を
流体が流動する伝熱管群とを備え、前記フィン群が複数
に分割され、同一管径の伝熱管で構成された熱交換器ユ
ニットにおいて、少なくとも1つ以上の独立したフィン
付き熱交換器を構成する伝熱管内の内面形状が他のフィ
ン付き熱交換器を構成する伝熱管内の内面形状と異なる
伝熱管で構成したものである。そしてこの構成によれ
ば、フィン付き熱交換器毎に組立工程を独立させること
が可能で、溝形状のことなる伝熱管の混在も回避でき、
数種類の管内面形状を有する伝熱管を間違えることな
く、所定の配置に組立が可能で、安定して高性能な熱交
換器ユニットが得られる。According to the first aspect of the present invention, a plurality of fins are arranged in parallel at a predetermined interval, and a gas flows between the fins, and the fins penetrate through the fins at substantially right angles to form a row. A heat exchanger unit comprising a heat transfer tube group through which a fluid flows, wherein the fin group is divided into a plurality of heat transfer tubes each having a heat transfer tube of the same diameter. Is formed of a heat transfer tube having an inner surface shape different from the inner surface shape of the heat transfer tube forming another heat exchanger with fins. According to this configuration, it is possible to make the assembling process independent for each finned heat exchanger, and it is also possible to avoid mixing of heat transfer tubes having different groove shapes,
It is possible to assemble the heat transfer tubes having several types of tube inner surface shapes in a predetermined arrangement without mistake, and to obtain a stable and high-performance heat exchanger unit.
【0012】請求項2に記載の発明は、所定間隔で平行
に並設し、その間を気体が流動するフィン群と、このフ
ィン群を略直角に貫通して列を成し、内部を流体が流動
する伝熱管群とを備え、前記フィン群が複数に分割され
た熱交換器ユニットにおいて、少なくとも1つ以上の独
立したフィン付き熱交換器内の伝熱管の内面形状が平滑
管で構成したもので、平滑管を使用することにより、軽
量で、溝加工が必要でないことから加工コストも大幅に
低減できる。According to a second aspect of the present invention, a plurality of fins are arranged in parallel at a predetermined interval, and a gas flows between the fins, and the fins penetrate through the fins at a substantially right angle to form a line. A heat exchanger unit comprising a flowing heat transfer tube group, wherein the fin group is divided into a plurality of heat exchanger units, wherein at least one or more independent heat transfer tubes in the heat exchanger with fins have smooth inner surfaces. By using a smooth tube, the processing cost can be significantly reduced because the pipe is lightweight and does not require groove processing.
【0013】請求項3に記載の発明は、少なくとも1つ
以上の独立したフィン付き熱交換器の長手方向の長さが
他のフィン付き熱交換器の長さと異なるもので、伝熱管
の長さが異なることで、溝形状の違いを容易に区別で
き、数種類の管内面形状を有する伝熱管を間違えること
なく、所定の配置に組立が可能で、安定して高性能な熱
交換器ユニットを得ることができる。According to a third aspect of the present invention, at least one or more independent finned heat exchangers have a longitudinal length different from the lengths of the other finned heat exchangers, and Are different, the difference in groove shape can be easily distinguished, and a heat transfer tube having several types of tube inner surface shapes can be assembled in a predetermined arrangement without mistake, thereby obtaining a stable and high-performance heat exchanger unit. be able to.
【0014】請求項4に記載の発明は、少なくとも1つ
以上の独立したフィン付き熱交換器の管径が他のフィン
付き熱交換器で用いられている管径より小さく、しかも
平滑管を用いることで、さらに軽量化が図れ、大幅なコ
スト削減を図ることができる。According to a fourth aspect of the invention, at least one or more independent finned heat exchangers have a smaller tube diameter than those used in other finned heat exchangers, and use a smooth tube. Thus, the weight can be further reduced, and the cost can be significantly reduced.
【0015】請求項5に記載の発明は、平滑管を用いた
フィン付き熱交換器を、凝縮時に、管内を流れる冷媒の
流出側に配置することで、凝縮時の冷媒出口付近では平
滑管と溝付管の伝熱性能の差が比較的小さいため大幅な
性能低下を抑制でき、低コスト化が図れるものである。According to a fifth aspect of the present invention, a finned heat exchanger using a smooth tube is disposed on the outflow side of the refrigerant flowing through the tube during condensation, so that the smooth tube is formed near the refrigerant outlet during condensation. Since the difference in the heat transfer performance of the grooved tubes is relatively small, a significant decrease in performance can be suppressed, and cost reduction can be achieved.
【0016】[0016]
【実施例】以下本発明の実施例について図面を参照して
説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0017】(実施例1)図1は実施例1の発明である
熱交換器ユニットの基本構成を示す斜視図、図2はその
側面図、図3はその要部断面図である。図1、図2にお
いて、この熱交換器ユニット10は、矢印Wで示す気流
の気体流入側W1に位置するフィン付き熱交換器10a
と、気体流出側W2に位置するフィン付き熱交換器10
bからなる。フィン付き熱交換器10aは、所定間隔で
並設した多数のフィン群11aと、このフィン群11a
を略直角に貫通して蛇行状に配列した伝熱管群12aと
からなる。また、フィン付き熱交換器10bは、所定間
隔で並設した多数のフィン群11bと、このフィン群1
1bを略直角に貫通して蛇行状に配列した伝熱管群12
bとからなる。フィン付き熱交換器10aとフィン付き
熱交換器10bとは、互いに切り離されており、伝熱管
群12aと伝熱管群12bとは分岐部13aで結合され
ている。次に、図3に従い説明する。図3において、伝
熱管群12a内の内壁面16aには、長手方向に連続し
た螺旋状の凸部14a及び溝部15aとが形成され、伝
熱管群12b内の内壁面16bには、長手方向に連続し
た螺旋状の凸部14b及び溝部15bとが形成されてい
る。伝熱管群12aの凸部14aの数は、伝熱管群12
bの凸部14bの数より少なく形成されている。なお、
気流Wはフィン群11aとフィン群11bを矢印方向に
流動し、伝熱管群12aと伝熱管群12bの内部を流動
する流体と熱交換する。(Embodiment 1) FIG. 1 is a perspective view showing a basic structure of a heat exchanger unit according to the invention of Embodiment 1, FIG. 2 is a side view thereof, and FIG. 1 and 2, the heat exchanger unit 10 includes a finned heat exchanger 10a located on a gas inflow side W1 of an airflow indicated by an arrow W.
And the finned heat exchanger 10 located on the gas outflow side W2.
b. The finned heat exchanger 10a includes a plurality of fin groups 11a arranged side by side at predetermined intervals, and the fin groups 11a.
And a heat transfer tube group 12a which penetrates at substantially right angles and is arranged in a meandering manner. Further, the finned heat exchanger 10b includes a plurality of fin groups 11b arranged side by side at predetermined intervals, and the fin groups 1b.
Tube group 12 which is arranged in a meandering shape by penetrating through at approximately right angles 1b
b. The finned heat exchanger 10a and the finned heat exchanger 10b are separated from each other, and the heat transfer tube group 12a and the heat transfer tube group 12b are connected at a branch portion 13a. Next, description will be made with reference to FIG. In FIG. 3, a helical convex portion 14a and a groove 15a continuous in the longitudinal direction are formed on the inner wall surface 16a in the heat transfer tube group 12a, and the inner wall surface 16b in the heat transfer tube group 12b is formed in the longitudinal direction. A continuous spiral projection 14b and a groove 15b are formed. The number of the convex portions 14a of the heat transfer tube group 12a
The number of protrusions 14b is smaller than the number of protrusions 14b. In addition,
The airflow W flows through the fin groups 11a and 11b in the direction of the arrow, and exchanges heat with the fluid flowing inside the heat transfer tube groups 12a and 12b.
【0018】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流れる流
体は、気相状態でA1側から流入し、分岐部13bによ
り伝熱管群12bの上下に分流し、気流Wとの熱交換に
より気液二相状態を経て液状態となり、分岐部13aで
再び合流し、伝熱管群12aの伝熱管に流入し、A2側
へ流出する。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes flows in a gaseous state from the A1 side, and flows through the branch portion 13b above and below the heat transfer tube group 12b. The heat is exchanged with the airflow W to be in a liquid state through a gas-liquid two-phase state, and merge again at the branch portion 13a, flow into the heat transfer tubes of the heat transfer tube group 12a, and flow out to the A2 side.
【0019】また、空気調和機の冷凍サイクルの蒸発器
として使用した場合、伝熱管内を流れる流体は、気液二
相状態でA2側から流入し、伝熱管群12aの伝熱管に
流入し、分岐部13aで伝熱管群12bの上下に分流
し、再び分岐部13bで合流し、気流Wとの熱交換しな
がら、A1側へ流出する。When used as an evaporator in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes flows from the A2 side in a gas-liquid two-phase state, flows into the heat transfer tubes of the heat transfer tube group 12a, At the branch portion 13a, the flow is divided into upper and lower portions of the heat transfer tube group 12b, merges again at the branch portion 13b, and flows out to the A1 side while exchanging heat with the airflow W.
【0020】この構成によれば、伝熱管群12aの凸部
の数が伝熱管群12bの凸部の数より少ないことによ
り、熱交換器ユニット10は、軽量化でき、価格の削減
が図れる。According to this configuration, since the number of convex portions of the heat transfer tube group 12a is smaller than the number of convex portions of the heat transfer tube group 12b, the heat exchanger unit 10 can be reduced in weight and cost.
【0021】また、熱交換器ユニット10は、伝熱管群
12aと伝熱管群12bが分岐部13aで結合されてい
るだけ、フィン付き熱交換器10aとフィン付き熱交換
器10bとは、互いに切り離されているため、フィン付
き熱交換器毎に組立工程を容易に独立させることがで
き、同じ組立工程内での溝形状の異なる伝熱管の混在を
回避でき、数種類の管内面形状を有する伝熱管を、確実
に所定の配置に組み立てることが可能で、安定して所定
の熱交換能力を有する熱交換器ユニットが得られる。In the heat exchanger unit 10, the finned heat exchanger 10a and the finned heat exchanger 10b are separated from each other only because the heat transfer tube group 12a and the heat transfer tube group 12b are connected at the branch portion 13a. As a result, the assembling process can be easily made independent for each heat exchanger with fins, the heat transfer tubes having different groove shapes in the same assembling process can be avoided, and the heat transfer tubes having several types of tube inner surface shapes can be avoided. Can be reliably assembled in a predetermined arrangement, and a heat exchanger unit having a predetermined heat exchange ability stably can be obtained.
【0022】なお、伝熱管内面形状の拡大図を図4に示
す。図4において、θは凸部14の山頂角、Gは凸部1
4の山頂幅、hは凸部14の高さ、Iは溝部15の溝底
幅である。伝熱管群14aと伝熱管群14bとの形状の
違いを、凸部の数と溝部の数で示したが、伝熱管の重量
は、高さhや溝底幅Iなどによっても軽量化できる。FIG. 4 is an enlarged view of the inner shape of the heat transfer tube. In FIG. 4, θ is the peak angle of the convex portion 14 and G is the convex portion 1.
4 is the crest width, h is the height of the protrusion 14, and I is the groove bottom width of the groove 15. Although the difference in shape between the heat transfer tube group 14a and the heat transfer tube group 14b is indicated by the number of protrusions and the number of grooves, the weight of the heat transfer tubes can be reduced by the height h, the groove bottom width I, and the like.
【0023】(実施例2)図5は、熱交換器ユニットの
基本構成の要部断面図である。この熱交換器ユニットは
複数のフィン付き熱交換器の一方を管内壁面が平滑な面
にしたことと伝熱管径が同一でなくてもよいという構成
が上記実施例1と異なるので、それ以外の同一構成及び
作用効果を奏する部分には符号を付して詳細な説明を省
略し、異なる部分を中心に説明する。(Embodiment 2) FIG. 5 is a sectional view of a main part of a basic structure of a heat exchanger unit. This heat exchanger unit differs from the first embodiment in that one of a plurality of finned heat exchangers has a smooth tube inner wall surface and the heat transfer tube diameter does not have to be the same. The portions having the same configuration and operation and effect are denoted by reference numerals, detailed description thereof will be omitted, and different portions will be mainly described.
【0024】20aはフィン付き熱交換器で、所定間隔
で並設した多数のフィン群21aと、このフィン群21
aを略直角に貫通して蛇行状に配列した伝熱管群22a
とからなり、伝熱管群22aの内壁面形状26aは平滑
な面で形成されている。また、20bはフィン付き熱交
換器で、所定間隔で並設した多数のフィン群21bと、
このフィン群21bを略直角に貫通して蛇行状に配列し
た伝熱管群22bとからなり、伝熱管群22bの内壁面
形状26bは連続した螺旋状の凸部24bと溝部25b
とで形成されている。Reference numeral 20a denotes a finned heat exchanger which includes a plurality of fin groups 21a arranged side by side at predetermined intervals,
tube group 22a which penetrates a at a substantially right angle and is arranged in a meandering manner
The inner wall surface shape 26a of the heat transfer tube group 22a is formed with a smooth surface. Reference numeral 20b denotes a finned heat exchanger, which includes a number of fin groups 21b arranged side by side at predetermined intervals.
The heat transfer tube group 22b penetrates the fin group 21b at a substantially right angle and is arranged in a meandering manner. The inner wall surface shape 26b of the heat transfer tube group 22b has a continuous spiral convex portion 24b and a groove portion 25b.
And formed.
【0025】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流れる流
体は、気相状態でフィン付き熱交換器20b内へ流入
し、伝熱管群22b内を流れた後、フィン付き熱交換器
20a内の伝熱管群22aの伝熱管に流入し、気流Wと
の熱交換により気液二相状態を経て液状態となり流出す
る。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes flows into the finned heat exchanger 20b in a gaseous state, and flows through the heat transfer tube group 22b. After flowing, it flows into the heat transfer tubes of the heat transfer tube group 22a in the finned heat exchanger 20a, and flows out of the liquid flow through a gas-liquid two-phase state by heat exchange with the airflow W.
【0026】また、空気調和機の冷凍サイクルの蒸発器
として使用した場合、伝熱管内を流れる流体は、二相状
態でフィン付き熱交換器20a内へ流入し、伝熱管群2
2a内を流れた後、フィン付き熱交換器20b内の伝熱
管群22bの伝熱管に流入し、気流Wとの熱交換し流出
する。When used as an evaporator in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes flows into the finned heat exchanger 20a in a two-phase state, and the heat transfer tube group 2
After flowing through 2a, it flows into the heat transfer tubes of the heat transfer tube group 22b in the finned heat exchanger 20b, exchanges heat with the airflow W, and flows out.
【0027】この構成によれば、フィン付き熱交換器2
0a内の伝熱管群22aの内壁面形状26aが平坦な面
である平滑管で構成したもので、これにより、より軽量
化が可能で、溝加工の工程がないことから加工コストも
大幅に低減できる。According to this configuration, the finned heat exchanger 2
The inner wall surface shape 26a of the heat transfer tube group 22a in Oa is constituted by a smooth tube whose surface is a flat surface, thereby making it possible to further reduce the weight and greatly reduce the processing cost because there is no groove processing step. it can.
【0028】また、熱交換器ユニットは、フィン付き熱
交換器20aとフィン付き熱交換器20bとは、互いに
切り離されているため、フィン付き熱交換器毎に組立工
程を容易に独立させることができ、同じ組立工程内での
溝形状の異なる伝熱管の混在を回避でき、数種類の管内
面形状を有する伝熱管を、確実に所定の配置に組み立て
ることが可能で、安定して所定の熱交換能力を有する熱
交換器ユニットが得られる。In the heat exchanger unit, since the finned heat exchanger 20a and the finned heat exchanger 20b are separated from each other, the assembly process can be easily made independent for each finned heat exchanger. It is possible to avoid mixing of heat transfer tubes having different groove shapes in the same assembling process, and to assemble heat transfer tubes having several kinds of tube inner surface shapes in a predetermined arrangement without fail, and to stably obtain a predetermined heat exchange. A capable heat exchanger unit is obtained.
【0029】(実施例3)図6は、熱交換器ユニットの
基本構成の要部断面図である。この熱交換器ユニットは
複数のフィン付き熱交換器の一方を、伝熱管径を細く、
しかも管内壁面が平滑な面で構成することが上記実施例
1や2と異なるので、それ以外の同一構成及び作用効果
を奏する部分には符号を付して詳細な説明を省略し、異
なる部分を中心に説明する。(Embodiment 3) FIG. 6 is a sectional view of a main part of a basic structure of a heat exchanger unit. This heat exchanger unit has one of a plurality of finned heat exchangers with a thin heat transfer tube diameter,
In addition, since the inner wall surface of the pipe is different from the first and second embodiments in that the inner wall surface is formed with a smooth surface, the same reference numerals are given to other portions having the same configuration and operation and effect, and detailed description is omitted. I will explain mainly.
【0030】30aはフィン付き熱交換器で、所定間隔
で並設した多数のフィン群31aと、このフィン群31
aを略直角に貫通して蛇行状に配列した伝熱管群32a
とからなる。また、30bはフィン付き熱交換器で、所
定間隔で並設した多数のフィン群31bと、このフィン
群31bを略直角に貫通して蛇行状に配列した伝熱管群
32bとからなる。Reference numeral 30a denotes a finned heat exchanger, which includes a plurality of fin groups 31a arranged side by side at predetermined intervals, and a fin group 31a.
heat transfer tube group 32a which penetrates a at a substantially right angle and is arranged in a meandering manner
Consists of Reference numeral 30b denotes a finned heat exchanger which includes a large number of fin groups 31b arranged side by side at predetermined intervals and a group of heat transfer tubes 32b penetrating the fin groups 31b at substantially right angles and arranged in a meandering manner.
【0031】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流れる流
体は、気相状態でフィン付き熱交換器30b内へ流入
し、伝熱管群32b内を流れた後、フィン付き熱交換器
30a内の伝熱管群32aの伝熱管に流入し、気流Wと
の熱交換により気液二相状態を経て液状態となり流出す
る。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes flows into the finned heat exchanger 30b in a gaseous state, and flows through the heat transfer tube group 32b. After flowing, the gas flows into the heat transfer tubes of the heat transfer tube group 32a in the finned heat exchanger 30a, and flows into a liquid state through a gas-liquid two-phase state due to heat exchange with the airflow W and flows out.
【0032】また、空気調和機の冷凍サイクルの蒸発器
として使用した場合、伝熱管内を流れる流体は、二相状
態でフィン付き熱交換器30a内へ流入し、伝熱管群3
2a内を流れた後、フィン付き熱交換器30b内の伝熱
管群32bの伝熱管に流入し、気流Wとの熱交換し流出
する。When used as an evaporator in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes flows into the finned heat exchanger 30a in a two-phase state, and the heat transfer tube group 3
After flowing through 2a, it flows into the heat transfer tubes of the heat transfer tube group 32b in the finned heat exchanger 30b, exchanges heat with the airflow W, and flows out.
【0033】この構成によれば、フィン付き熱交換器3
0a内の伝熱管群32aの内面形状36aが平坦な面で
ある平滑管で構成したもので、伝熱管径の細い平滑管を
使用することにより、より軽量化が可能で、溝加工の工
程がないことから加工コストも大幅に低減できる。According to this configuration, the finned heat exchanger 3
The inner surface shape 36a of the heat transfer tube group 32a in 0a is formed of a smooth tube having a flat surface. By using a smooth tube having a small diameter of the heat transfer tube, the weight can be further reduced, and the groove forming process can be performed. Since there is no such material, the processing cost can be greatly reduced.
【0034】また、伝熱管径が異なるため、外見で区別
でき、1つの組立工程内に混在しても、数種類の管内面
形状を有する伝熱管を、確実に所定の配置に組み立てる
ことが可能で、安定して所定の熱交換能力を有する熱交
換器ユニットが得られる。Further, since the heat transfer tubes have different diameters, they can be distinguished by their appearance, and even if they are mixed in one assembly process, it is possible to assemble the heat transfer tubes having several types of inner surface shapes into a predetermined arrangement without fail. Thus, a heat exchanger unit having a predetermined heat exchange capacity can be obtained stably.
【0035】(実施例4)図7は実施例4の発明である
熱交換器ユニットの曲げ加工後の斜視図、図8は曲げ加
工前の斜視図、図9はその要部断面図である。図7にお
いて、この熱交換器ユニット40は、矢印Wで示す気流
の気体流入側W1に位置するフィン付き熱交換器40a
と、気体流出側W2に位置するフィン付き熱交換器40
bからなる。フィン付き熱交換器40aは、所定間隔で
並設した多数のフィン群41aと、このフィン群41a
を略直角に貫通して蛇行状に配列した伝熱管群42aと
からなる。また、フィン付き熱交換器40bは、所定間
隔で並設した多数のフィン群41bと、このフィン群4
1bを略直角に貫通して蛇行状に配列した伝熱管群42
bとからなる。熱交換器ユニットは、所定の曲げ半径R
で90度に曲げ加工が施されており、室外の空気調和機
への収納性を向上させている。図8はその曲げ加工前の
状態を示す。図8において、フィン付き熱交換器40a
とフィン付き熱交換器40bとは、互いに切り離されて
おり、伝熱管群42aの長さは、伝熱管群42b長さよ
り段差dL分長い。これにより、図7のように両端面で
の段差がない状態に仕上げることができる。次に、図9
において、伝熱管群42a内の内壁面46aは、伝熱管
群42aの内壁面形状46aは平滑な面で形成されてお
り、また、伝熱管群42bの内壁面形状46bは連続し
た螺旋状の凸部44bと溝部45bとで形成されてい
る。なお、気流Wはフィン群41aとフィン群41bを
矢印方向に流動し、伝熱管群42aと伝熱管群42bの
内部を流動する流体と熱交換する。(Embodiment 4) FIG. 7 is a perspective view of a heat exchanger unit according to an embodiment 4 of the present invention after bending, FIG. 8 is a perspective view before bending, and FIG. 9 is a sectional view of a main part thereof. . 7, the heat exchanger unit 40 includes a finned heat exchanger 40a located on the gas inflow side W1 of the airflow indicated by the arrow W.
And the finned heat exchanger 40 located on the gas outlet side W2
b. The finned heat exchanger 40a includes a plurality of fin groups 41a arranged side by side at predetermined intervals, and the fin groups 41a.
And a heat transfer tube group 42a penetrating at substantially right angles and arranged in a meandering manner. The finned heat exchanger 40b includes a plurality of fin groups 41b arranged side by side at predetermined intervals, and the fin groups 4b.
Tube group 42 arranged in a meandering shape by penetrating substantially perpendicularly through 1b
b. The heat exchanger unit has a predetermined bending radius R
, And is bent at 90 degrees to improve the storability in outdoor air conditioners. FIG. 8 shows a state before the bending. In FIG. 8, the finned heat exchanger 40a
And the finned heat exchanger 40b are separated from each other, and the length of the heat transfer tube group 42a is longer than the length of the heat transfer tube group 42b by the step dL. As a result, it is possible to finish in a state where there is no step at both end surfaces as shown in FIG. Next, FIG.
In the inner wall surface 46a in the heat transfer tube group 42a, the inner wall surface shape 46a of the heat transfer tube group 42a is formed as a smooth surface, and the inner wall surface shape 46b of the heat transfer tube group 42b is a continuous spiral convex. It is formed by a portion 44b and a groove 45b. The airflow W flows through the fin group 41a and the fin group 41b in the direction of the arrow, and exchanges heat with the fluid flowing inside the heat transfer tube group 42a and the heat transfer tube group 42b.
【0036】この構成によれば、フィン付き熱交換器4
0a内の伝熱管群42aの内壁面形状46aが平坦な面
である平滑管で構成したもので、平滑管を使用すること
により、軽量化が可能で、溝加工の工程がないことから
加工コストも大幅に低減できる。According to this configuration, the finned heat exchanger 4
0a, the inner wall surface 46a of the heat transfer tube group 42a is formed of a smooth tube having a flat surface. By using the smooth tube, the weight can be reduced. Can also be significantly reduced.
【0037】また、フィン付き熱交換器40aの伝熱管
41aとフィン付き熱交換器40bの伝熱管とは、互い
に管内壁面の形状が異なり、かつ、長さが異なっている
ことで、同一管径で同じ組立工程内に溝形状の異なる伝
熱管が混在しても、確実に所定の配置に組み立てること
が可能で、安定して所定の熱交換能力を有する熱交換器
ユニットが得られる。The heat transfer tube 41a of the finned heat exchanger 40a and the heat transfer tube of the finned heat exchanger 40b have different inner wall shapes and different lengths, so that the same tube diameter is obtained. Therefore, even if the heat transfer tubes having different groove shapes are mixed in the same assembling process, it is possible to reliably assemble them in a predetermined arrangement, and to obtain a heat exchanger unit having a predetermined heat exchange ability stably.
【0038】(実施例5)実施例5の説明を、図7と図
9〜10に従い説明する。図7において、熱交換器ユニ
ット40は、矢印Wで示す気流の気体流入側W1に位置
するフィン付き熱交換器40aと、気体流出側W2に位
置するフィン付き熱交換器40bからなる。フィン付き
熱交換器40aは、所定間隔で並設した多数のフィン群
41aと、このフィン群41aを略直角に貫通して蛇行
状に配列した伝熱管群42aとからなる。また、フィン
付き熱交換器40bは、所定間隔で並設した多数のフィ
ン群41bと、このフィン群41bを略直角に貫通して
蛇行状に配列した伝熱管群42bとからなる。図9にお
いて、伝熱管群42a内の内壁面46aは、平滑な面で
形成されており、また、伝熱管群42bの内壁面形状4
6bは連続した螺旋状の凸部44bと溝部45bとで形
成されている。なお、気流Wはフィン群41aとフィン
群41bを矢印方向に流動し、伝熱管群42aと伝熱管
群42bの内部を流動する流体と熱交換する。(Embodiment 5) A description of Embodiment 5 will be given with reference to FIGS. 7 and 9 to 10. In FIG. 7, the heat exchanger unit 40 includes a finned heat exchanger 40a located on the gas inflow side W1 of the airflow indicated by the arrow W and a finned heat exchanger 40b located on the gas outflow side W2. The finned heat exchanger 40a is composed of a large number of fin groups 41a arranged side by side at predetermined intervals and a group of heat transfer tubes 42a penetrating the fin groups 41a at substantially right angles and arranged in a meandering manner. The finned heat exchanger 40b includes a large number of fin groups 41b arranged side by side at predetermined intervals and a group of heat transfer tubes 42b penetrating the fin groups 41b at substantially right angles and arranged in a meandering manner. In FIG. 9, the inner wall surface 46a in the heat transfer tube group 42a is formed of a smooth surface, and the inner wall surface shape 4 of the heat transfer tube group 42b is
6b is formed by a continuous spiral convex part 44b and a groove part 45b. The airflow W flows through the fin group 41a and the fin group 41b in the direction of the arrow, and exchanges heat with the fluid flowing inside the heat transfer tube group 42a and the heat transfer tube group 42b.
【0039】上記構成において、空気調和機の冷凍サイ
クルの凝縮器として使用した場合、伝熱管内を流れる流
体は、気相状態でA1側であるフィン付き熱交換器40
bから流入し、分岐部43bにより上下に分流し伝熱管
群42b内を流れた後、フィン付き熱交換器40aの伝
熱管群42a内へ流入し分岐部43aで再び合流し、A
2側へ流出する。伝熱管内を流動する流体は、途中、気
流Wとの熱交換により、気相状態から気液二相状態を経
て液状態に相変化する。In the above configuration, when used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tubes is in a gaseous state and the finned heat exchanger 40 on the A1 side.
b, flows up and down by the branch portion 43b, flows through the heat transfer tube group 42b, flows into the heat transfer tube group 42a of the finned heat exchanger 40a, and merges again at the branch portion 43a.
Outflow to the two sides. The fluid flowing in the heat transfer tube undergoes a phase change from a gas phase state to a liquid state through a gas-liquid two-phase state due to heat exchange with the gas flow W on the way.
【0040】また、空気調和機の冷凍サイクルの蒸発器
として使用した場合、伝熱管内を流れる流体は、気液二
相状態でA2側から流入し、分岐部43aで上下に分流
し、伝熱管群42aの伝熱管を通り、伝熱管群42bへ
流入し、再び分岐部13bで合流し、A1側へ流出す
る。伝熱管内を流動する流体は、途中、気流Wとの熱交
換により、気液二相状態ではあるが、乾き度の小さい状
態から乾き度の大きい状態へと変化する。When used as an evaporator in a refrigeration cycle of an air conditioner, the fluid flowing through the heat transfer tube flows in the gas-liquid two-phase state from the A2 side, and is split up and down at the branch 43a. The heat passes through the heat transfer tubes of the group 42a, flows into the heat transfer tube group 42b, merges again at the branch portion 13b, and flows out to the A1 side. The fluid flowing in the heat transfer tube is in a gas-liquid two-phase state due to heat exchange with the airflow W on the way, but changes from a state of low dryness to a state of high dryness.
【0041】この構成によれば、フィン付き熱交換器4
0a内の伝熱管群42aの内壁面形状46aが平坦な面
である平滑管で構成したもので、平滑管を使用すること
により、軽量化が可能で、溝加工の工程がないことから
加工コストも大幅に低減できる。According to this configuration, the finned heat exchanger 4
0a, the inner wall surface 46a of the heat transfer tube group 42a is formed of a smooth tube having a flat surface. By using the smooth tube, the weight can be reduced. Can also be significantly reduced.
【0042】一方、平滑管を使用することは、熱交換能
力の低下を引き起こす。熱交換器ユニットの熱交換能力
について、図10に従い説明する。図10は、伝熱管内
を流れる流体の乾き度と熱伝達率の関係を示す。曲線E
が伝熱性能の低い伝熱管群42aの熱伝達率、曲線Fが
伝熱性能の高い伝熱管群42bの熱伝達率を示す。図1
0によれば、乾き度の小さい領域では、熱伝達率は共に
低いものの、乾き度の大きい領域では曲線Fの熱伝達率
の値が急激に向上し、熱伝達率の向上度合は、乾き度の
大きい領域の方が著しく大きいことがわかる。空気調和
機の冷凍サイクルの凝縮器として使用した場合、伝熱管
内を流れる流体は、気相状態で伝熱性能の高い伝熱管群
42b側へ流入し、二相状態を経て液相状態で伝熱性能
の低い伝熱管群42aから流出する。乾き度の小さい側
に伝熱管群42aを使用することで伝熱性能の低下を抑
制しながら低コスト化を図ることができる。On the other hand, the use of a smooth tube causes a decrease in heat exchange capacity. The heat exchange capacity of the heat exchanger unit will be described with reference to FIG. FIG. 10 shows the relationship between the dryness of the fluid flowing in the heat transfer tube and the heat transfer coefficient. Curve E
Represents the heat transfer coefficient of the heat transfer tube group 42a having low heat transfer performance, and the curve F represents the heat transfer coefficient of the heat transfer tube group 42b having high heat transfer performance. FIG.
According to 0, although the heat transfer coefficient is low in the region where the dryness is small, the value of the heat transfer coefficient of the curve F sharply increases in the region where the dryness is large, and the degree of improvement of the heat transfer coefficient is the dryness. It can be seen that the region with the larger value is significantly larger. When used as a condenser in a refrigeration cycle of an air conditioner, the fluid flowing in the heat transfer tubes flows into the heat transfer tube group 42b having a high heat transfer performance in a gaseous state, and is transferred in a liquid state through a two-phase state. It flows out from the heat transfer tube group 42a having low thermal performance. By using the heat transfer tube group 42a on the side where the dryness is small, it is possible to reduce the cost while suppressing a decrease in the heat transfer performance.
【0043】[0043]
【発明の効果】上記実施例から明らかなように、請求項
1に記載の発明は、所定間隔で平行に並設し、その間を
気体が流動するフィン群と、このフィン群を略直角に貫
通して列を成し、内部を流体が流動する伝熱管群とを備
え、前記フィン群が複数に分割され、同一管径の伝熱管
で構成された熱交換器ユニットにおいて、少なくとも1
つ以上の独立したフィン付き熱交換器を構成する伝熱管
内の内面形状が他のフィン付き熱交換器を構成する伝熱
管内の内面形状と異なる伝熱管で構成したもので、フィ
ン付き熱交換器毎に組立工程を独立させることが可能
で、溝形状のことなる伝熱管の混在も回避でき、数種類
の管内面形状を有する伝熱管を間違えることなく、所定
の配置に組立が可能で、安定して高性能な熱交換器ユニ
ットが得られる。As is apparent from the above embodiment, the invention according to claim 1 is arranged in parallel at a predetermined interval, and a fin group through which gas flows and a fin group penetrating the fin group at a substantially right angle. A fin group is divided into a plurality of fin groups, and the heat exchanger unit comprises heat transfer tubes having the same pipe diameter.
One or more independent finned heat exchangers are composed of heat transfer tubes whose inner surface shape is different from the inner surface shape of the heat transfer tubes that make up other finned heat exchangers. The assembly process can be made independent for each vessel, the heat transfer tubes with different groove shapes can be avoided, and the heat transfer tubes with several types of tube inner surface shapes can be assembled in a predetermined arrangement without mistake, and stable. As a result, a high-performance heat exchanger unit is obtained.
【0044】請求項2に記載の発明は、所定間隔で平行
に並設し、その間を気体が流動するフィン群と、このフ
ィン群を略直角に貫通して列を成し、内部を流体が流動
する伝熱管群とを備え、前記フィン群が複数に分割され
た熱交換器ユニットにおいて、少なくとも1つ以上の独
立したフィン付き熱交換器内の伝熱管の内面形状が平滑
管で構成したもので、平滑管を使用することにより、軽
量で、溝加工が必要でないことから加工コストも大幅に
低減できる。According to a second aspect of the present invention, a plurality of fins are arranged in parallel at predetermined intervals, and a gas flows between the fins and the fins penetrate through the fins at substantially right angles to form a line. A heat exchanger unit comprising a flowing heat transfer tube group, wherein the fin group is divided into a plurality of heat exchanger units, wherein at least one or more independent heat transfer tubes in the heat exchanger with fins have smooth inner surfaces. By using a smooth tube, the processing cost can be significantly reduced because the pipe is lightweight and does not require groove processing.
【0045】請求項3に記載の発明は、少なくとも1つ
以上の独立したフィン付き熱交換器の長手方向の長さが
他のフィン付き熱交換器の長さと異なるもので、伝熱管
の長さが異なることで、溝形状の違いを容易に区別で
き、数種類の管内面形状を有する伝熱管を間違えること
なく、所定の配置に組立が可能で、安定して高性能な熱
交換器ユニットを得ることができる。According to a third aspect of the present invention, the length of the heat exchanger with at least one or more independent fins is different from the length of the other heat exchangers with fins, and the length of the heat transfer tube is different. Are different, the difference in groove shape can be easily distinguished, and a heat transfer tube having several types of tube inner surface shapes can be assembled in a predetermined arrangement without mistake, thereby obtaining a stable and high-performance heat exchanger unit. be able to.
【0046】請求項4に記載の発明は、少なくとも1つ
以上の独立したフィン付き熱交換器の管径が他のフィン
付き熱交換器で用いられている管径より小さく、しかも
平滑管を用いることで、さらに軽量化が図れ、大幅なコ
スト削減を図ることができる。According to a fourth aspect of the present invention, the diameter of at least one or more independent finned heat exchangers is smaller than the diameter of a tube used in another finned heat exchanger, and a smooth tube is used. Thus, the weight can be further reduced, and the cost can be significantly reduced.
【0047】請求項5に記載の発明は、平滑管を用いた
フィン付き熱交換器を、凝縮時に、管内を流れる冷媒の
流出側に配置することで、凝縮時の冷媒出口付近では平
滑管と溝付管の伝熱性能の差が比較的小さいため大幅な
性能低下を抑制でき、低コスト化が図れるものである。According to a fifth aspect of the present invention, a finned heat exchanger using a smooth tube is disposed on the outflow side of the refrigerant flowing in the tube during condensation, so that the smooth tube is formed near the refrigerant outlet during condensation. Since the difference in the heat transfer performance of the grooved tubes is relatively small, a significant decrease in performance can be suppressed, and cost reduction can be achieved.
【図1】本発明の実施例1を示す熱交換器ユニットの斜
視図FIG. 1 is a perspective view of a heat exchanger unit showing a first embodiment of the present invention.
【図2】同実施例の熱交換器ユニットの側面図FIG. 2 is a side view of the heat exchanger unit of the embodiment.
【図3】同実施例を示す熱交換器ユニットの要部断面図FIG. 3 is a sectional view of a main part of the heat exchanger unit showing the embodiment.
【図4】伝熱管の内壁面形状を拡大した断面図FIG. 4 is an enlarged sectional view of the shape of the inner wall surface of the heat transfer tube.
【図5】本発明の実施例2を示す熱交換器ユニットの要
部断面図FIG. 5 is a sectional view of a main part of a heat exchanger unit according to a second embodiment of the present invention.
【図6】本発明の実施例3を示す熱交換器ユニットの要
部断面図FIG. 6 is a sectional view of a main part of a heat exchanger unit according to a third embodiment of the present invention.
【図7】本発明の実施例4を示す熱交換器ユニットの斜
視図FIG. 7 is a perspective view of a heat exchanger unit according to a fourth embodiment of the present invention.
【図8】同実施例を示す熱交換器ユニットの斜視図FIG. 8 is a perspective view of a heat exchanger unit showing the embodiment.
【図9】同実施例を示す熱交換器ユニットの要部断面図FIG. 9 is a sectional view of a main part of the heat exchanger unit showing the embodiment.
【図10】管内を流れる流体の熱伝達率と乾き度の関係
を表す特性図FIG. 10 is a characteristic diagram showing a relationship between a heat transfer coefficient and a dryness of a fluid flowing in a pipe.
【図11】第1従来例を示す熱交換器ユニットの断面図FIG. 11 is a sectional view of a heat exchanger unit showing a first conventional example.
【図12】第2従来例を示す熱交換器ユニットの断面図FIG. 12 is a sectional view of a heat exchanger unit showing a second conventional example.
10、40 熱交換器ユニット 10a、10b、20a、20b、30a、30b、4
0a、40b フィン付き熱交換器 11a、11b、21a、21b、31a、31b、4
1a、41b フィン群 12a、12b、22a、22b、32a、32b、4
2a、42b 伝熱管群 13a、13b、43a、43b 分岐部 14、14a、14b、24a、24b 伝熱管内の凸
部 15、15a、15b、25a、25b 伝熱管内の溝
部 A1 凝縮時の管内流体の入口側 A2 凝縮時の管内流体の出口側 W 気流主流方向 W1 気流流入側 W2 気流流出側10, 40 heat exchanger unit 10a, 10b, 20a, 20b, 30a, 30b, 4
0a, 40b Finned heat exchangers 11a, 11b, 21a, 21b, 31a, 31b, 4
1a, 41b Fin group 12a, 12b, 22a, 22b, 32a, 32b, 4
2a, 42b Heat transfer tube group 13a, 13b, 43a, 43b Branch portion 14, 14a, 14b, 24a, 24b Convex portion in heat transfer tube 15, 15a, 15b, 25a, 25b Groove in heat transfer tube A1 Fluid in tube during condensation A2 Outlet side of pipe fluid during condensation W Airflow main flow direction W1 Airflow inflow side W2 Airflow outflow side
Claims (5)
が流動するフィン群と、このフィン群を略直角に貫通し
て列を成し、内部を流体が流動する伝熱管群とを備え、
前記フィン群が複数に分割され、同一管径の伝熱管で構
成された複数のフィン付き熱交換器が組み合わされた熱
交換器ユニットにおいて、少なくとも1つ以上の独立し
たフィン付き熱交換器を構成する伝熱管内の内面形状が
他のフィン付き熱交換器を構成する伝熱管内の内面形状
と異なる伝熱管で構成した熱交換器ユニット。1. A group of fins, which are arranged in parallel at a predetermined interval and through which gas flows, and a group of heat transfer tubes through which the fins penetrate at substantially right angles to form a row and through which a fluid flows. Prepared,
In the heat exchanger unit in which the fin group is divided into a plurality of parts and a plurality of finned heat exchangers configured by heat transfer tubes having the same pipe diameter are combined, at least one or more independent finned heat exchangers are configured. A heat exchanger unit comprising a heat transfer tube having an inner surface shape different from the inner surface shape of a heat transfer tube constituting another finned heat exchanger.
が流動するフィン群と、このフィン群を略直角に貫通し
て列を成し、内部を流体が流動する伝熱管群とを備え、
前記フィン群が複数に分割された複数のフィン付き熱交
換器が組み合わされた熱交換器ユニットにおいて、少な
くとも1つ以上の独立したフィン付き熱交換器内の伝熱
管の内面形状が平滑管で構成した熱交換器ユニット。2. A group of fins arranged in parallel at a predetermined interval and through which a gas flows, and a group of heat transfer tubes through which the fins penetrate at substantially right angles to form a row and through which a fluid flows. Prepared,
In a heat exchanger unit in which a plurality of finned heat exchangers in which the fin group is divided into a plurality of parts are combined, at least one or more independent finned heat exchangers have smooth inner surfaces of heat transfer tubes. Heat exchanger unit.
き熱交換器の長手方向の長さが他のフィン付き熱交換器
の長さと異なる請求項1〜請求項2のいずれか1項に記
載の熱交換器ユニット。3. The heat exchanger according to claim 1, wherein the longitudinal length of at least one or more independent finned heat exchangers is different from the length of the other finned heat exchangers. Heat exchanger unit.
き熱交換器の管径が他のフィン付き熱交換器で用いられ
ている管径より小さく、しかも平滑管を用いた請求項1
〜請求項3のいずれか1項に記載の熱交換器ユニット。4. The heat exchanger with at least one independent fin having a smaller diameter than a tube used in another heat exchanger with fins and using a smooth tube.
The heat exchanger unit according to claim 3.
凝縮時に、管内を流れる冷媒の流出側に配置した請求項
2〜請求項4のいずれか1項に記載の熱交換器ユニッ
ト。5. A finned heat exchanger using a smooth tube,
The heat exchanger unit according to any one of claims 2 to 4, wherein the heat exchanger unit is disposed on the outflow side of the refrigerant flowing in the tube during condensation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000147711A JP2001330388A (en) | 2000-05-19 | 2000-05-19 | Heat exchanger unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000147711A JP2001330388A (en) | 2000-05-19 | 2000-05-19 | Heat exchanger unit |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001330388A true JP2001330388A (en) | 2001-11-30 |
Family
ID=18653858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000147711A Pending JP2001330388A (en) | 2000-05-19 | 2000-05-19 | Heat exchanger unit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001330388A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002095302A1 (en) * | 2001-05-23 | 2002-11-28 | Matsushita Electric Industrial Co., Ltd. | Refrigerating cycle device |
JP2013194508A (en) * | 2012-03-15 | 2013-09-30 | Denso Corp | Fuel vaporizing device |
CN106871664A (en) * | 2017-01-09 | 2017-06-20 | 青岛海尔空调电子有限公司 | A kind of heat exchanger, air-conditioning and design of heat exchanger method |
WO2020105164A1 (en) * | 2018-11-22 | 2020-05-28 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle device |
WO2020202492A1 (en) * | 2019-04-03 | 2020-10-08 | 三菱電機株式会社 | Heat exchanger and air conditioner |
CN112179164A (en) * | 2019-07-05 | 2021-01-05 | 海信容声(广东)冷柜有限公司 | Fin type heat exchanger and refrigeration equipment |
US20230043875A1 (en) * | 2020-03-05 | 2023-02-09 | Mitsubishi Electric Corporation | Heat exchanger and air conditioner |
-
2000
- 2000-05-19 JP JP2000147711A patent/JP2001330388A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002095302A1 (en) * | 2001-05-23 | 2002-11-28 | Matsushita Electric Industrial Co., Ltd. | Refrigerating cycle device |
JP2013194508A (en) * | 2012-03-15 | 2013-09-30 | Denso Corp | Fuel vaporizing device |
CN106871664A (en) * | 2017-01-09 | 2017-06-20 | 青岛海尔空调电子有限公司 | A kind of heat exchanger, air-conditioning and design of heat exchanger method |
JPWO2020105164A1 (en) * | 2018-11-22 | 2021-09-27 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle equipment |
WO2020105164A1 (en) * | 2018-11-22 | 2020-05-28 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle device |
EP3885690A4 (en) * | 2018-11-22 | 2021-12-01 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle device |
JP7134250B2 (en) | 2018-11-22 | 2022-09-09 | 三菱電機株式会社 | Heat exchanger and refrigeration cycle equipment |
US11852386B2 (en) | 2018-11-22 | 2023-12-26 | Mitsubishi Electric Corporation | Heat exchanger and refrigeration cycle apparatus |
WO2020202492A1 (en) * | 2019-04-03 | 2020-10-08 | 三菱電機株式会社 | Heat exchanger and air conditioner |
CN113614481A (en) * | 2019-04-03 | 2021-11-05 | 三菱电机株式会社 | Heat exchanger and air conditioner |
US11959648B2 (en) | 2019-04-03 | 2024-04-16 | Mitsubishi Electric Corporation | Heat exchanger and air conditioning apparatus |
CN112179164A (en) * | 2019-07-05 | 2021-01-05 | 海信容声(广东)冷柜有限公司 | Fin type heat exchanger and refrigeration equipment |
CN112179164B (en) * | 2019-07-05 | 2022-02-15 | 海信容声(广东)冷柜有限公司 | Fin type heat exchanger and refrigeration equipment |
US20230043875A1 (en) * | 2020-03-05 | 2023-02-09 | Mitsubishi Electric Corporation | Heat exchanger and air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6017047B2 (en) | Heat exchanger, air conditioner, refrigeration cycle apparatus, and heat exchanger manufacturing method | |
US7703504B2 (en) | Air conditioner and manufacturing method therefor | |
EP2312254B1 (en) | Heat exchanger and air conditioner having the heat exchanger | |
KR100265657B1 (en) | Evaporator or condenser | |
US20110030932A1 (en) | Multichannel heat exchanger fins | |
US7182127B2 (en) | Heat exchanger | |
WO2012098920A1 (en) | Heat exchanger and air conditioner | |
JP5195733B2 (en) | Heat exchanger and refrigeration cycle apparatus equipped with the same | |
JP2004144460A (en) | Heat exchanger | |
JP2005055108A (en) | Heat exchanger | |
JP5716499B2 (en) | Heat exchanger and air conditioner | |
JPWO2012098912A1 (en) | Heat exchanger and air conditioner | |
KR100612765B1 (en) | Heat exchanger having fins formed thereon | |
JP6734002B1 (en) | Heat exchanger and refrigeration cycle device | |
JP2006284134A (en) | Heat exchanger | |
JP5545160B2 (en) | Heat exchanger | |
JP2000193389A (en) | Outdoor unit of air-conditioner | |
JP6520353B2 (en) | Heat exchanger and air conditioner | |
JP2006284133A (en) | Heat exchanger | |
JP5608478B2 (en) | Heat exchanger and air conditioner using the same | |
JP2001330388A (en) | Heat exchanger unit | |
JP2005090805A (en) | Heat exchanger | |
JP7366255B2 (en) | Heat exchangers, outdoor units of air conditioners, and air conditioners | |
CN211552123U (en) | Heat exchange assembly and air conditioning system | |
EP3115730B1 (en) | Refrigeration cycle device |