JP2001329347A - Shape memory alloy actuator, and its manufacturing method - Google Patents

Shape memory alloy actuator, and its manufacturing method

Info

Publication number
JP2001329347A
JP2001329347A JP2000148414A JP2000148414A JP2001329347A JP 2001329347 A JP2001329347 A JP 2001329347A JP 2000148414 A JP2000148414 A JP 2000148414A JP 2000148414 A JP2000148414 A JP 2000148414A JP 2001329347 A JP2001329347 A JP 2001329347A
Authority
JP
Japan
Prior art keywords
thin film
shape memory
substrate
sample
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000148414A
Other languages
Japanese (ja)
Inventor
Yoshitake Nishi
義武 西
Hiromasa Yabe
洋正 矢部
Kazuya Oguri
和也 小栗
Haruhisa Uchida
晴久 内田
Yoshito Matsumura
義人 松村
Hirohisa Uchida
裕久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai University
Original Assignee
Tokai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai University filed Critical Tokai University
Priority to JP2000148414A priority Critical patent/JP2001329347A/en
Publication of JP2001329347A publication Critical patent/JP2001329347A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To increase magnetostrictive susceptibility and to attain time saving and cost reduction at thin film deposition. SOLUTION: This shape memory alloy actuator utilizing a shape memory effect has a substrate 21 and a thin film 22 composed of Fe-Pd alloy which is formed on the substrate 21 and has an acicular metallic structure oriented in the directions of (111) face and (220) face. Moreover, respective atomic percentages of Fe and Pd satisfy the relation of Fe:Pd=(60 to 50):(40 to 50).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、形状記憶合金アク
チュエータ及びその製造方法に関する。
The present invention relates to a shape memory alloy actuator and a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近、磁場によって誘起される形状記憶
合金の報告が盛んになってきている。
2. Description of the Related Art Recently, reports on shape memory alloys induced by a magnetic field have been active.

【0003】この磁気誘起形状記憶合金に期待できる性
能としては、第1にニチノールに代表される感熱型形状
記憶合金よりも、速い応答速度が挙げられる。これは磁
場の伝達速度が、熱よりもはるかに速いからである。第
2には、超磁歪材料よりも大きな変形量が期待できる。
これらの性能を生かした応用例としては、マイクロマシ
ン用アクチュエータ、軽量、低コストアクチュエータ、
高速応答性アクチュエータなどが挙げられる。
First, as a performance that can be expected from the magnetically induced shape memory alloy, first, a higher response speed than a heat-sensitive shape memory alloy represented by nitinol can be cited. This is because the transmission speed of the magnetic field is much faster than heat. Second, a larger deformation can be expected than with a giant magnetostrictive material.
Examples of applications that take advantage of these capabilities include actuators for micromachines, lightweight, low-cost actuators,
A high-speed responsive actuator is exemplified.

【0004】このような磁気誘起形状記憶合金をインテ
リジェントアクチュエータとして航空機に用いた場合、
軽量化、低コスト化が期待できる。また、高速度旋回も
可能になると思われる。従来、上記形状記憶合金による
薄膜の製作方法としては、スパッタリング法が知られて
いるが、磁歪感受率が低く、多大な時間や経費がかかる
という問題点があった。
When such a magnetically induced shape memory alloy is used in an aircraft as an intelligent actuator,
Lighter weight and lower cost can be expected. It is also expected that high speed turning will be possible. Conventionally, a sputtering method is known as a method for producing a thin film using the shape memory alloy. However, there has been a problem that the magnetostriction susceptibility is low, and a great deal of time and cost are required.

【0005】[0005]

【発明が解決しようとする課題】本発明はこうした事情
を考慮してなされてもので、基板と、この基板上に形成
され、金属組織が(111)面及び(220)面に配向
しかつ針状であるFe及びPdの合金からなる薄膜とを
具備し、FeとPdの原子%がFe:Pd=60〜4
0:40〜60となる構成にすることにより、磁歪感受
率が高い形状記憶合金アクチュエータを提供することを
目的とする。
SUMMARY OF THE INVENTION Since the present invention has been made in view of such circumstances, a substrate and a metal structure formed on the substrate are oriented in the (111) plane and the (220) plane, and the needle is formed. And a thin film made of an alloy of Fe and Pd in a state of Fe: Pd = 60-4.
An object of the present invention is to provide a shape memory alloy actuator having a high magnetostriction susceptibility by adopting a configuration of 0:40 to 60.

【0006】また、本発明は、金属組織が(111)面
及び(220)面に配向した針状でかつ原子%がFe:
Pd=60〜50:40〜50であるFe及びPdの合
金を、基板上にマグネトロンスパッタリングにより蒸着
し、Fe及びPdの合金からなる薄膜を形成することに
より、磁歪感受率が高く、かつ薄膜作製の際の時間や経
費を低減し得る形状記憶合金アクチュエータの製造方法
を提供することを目的とする。
Further, according to the present invention, the metal structure is acicular with the (111) plane and the (220) plane oriented and the atomic% is Fe:
An alloy of Fe and Pd with Pd = 60 to 50:40 to 50 is deposited on a substrate by magnetron sputtering to form a thin film made of an alloy of Fe and Pd, so that the magnetostrictive susceptibility is high and a thin film is formed. It is an object of the present invention to provide a method of manufacturing a shape memory alloy actuator that can reduce the time and cost for the above.

【0007】[0007]

【課題を解決するための手段】本願第1の発明は、基板
と、この基板上に形成され、金属組織が(111)面及
び(220)面に配向しかつ針状であるFe及びPdの
合金からなる薄膜とを具備し、FeとPdの原子%がF
e:Pd=60〜50:40〜50であることを特徴と
する形状記憶効果を利用した形状記憶合金アクチュエー
タである。
According to a first aspect of the present invention, there is provided a substrate comprising: a substrate and Fe and Pd formed on the substrate and having a metal structure oriented in the (111) plane and the (220) plane and having a needle shape. An alloy thin film, wherein the atomic% of Fe and Pd is F
e: Pd = 60 to 50: A shape memory alloy actuator utilizing the shape memory effect, which is characterized by being 40 to 50.

【0008】本願第2の発明は、金属組織が(111)
面及び(220)面に配向した針状でかつ原子%がF
e:Pd=60〜50:40〜50であるFe及びPd
の合金を、基板上にマグネトロンスパッタリングにより
蒸着し、Fe及びPdの合金からなる薄膜を形成するこ
とを特徴とする形状記憶合金アクチュエータの製造方法
である。
In the second invention of the present application, the metal structure is (111)
Needles oriented in the (220) plane and the atomic%
e: Fe and Pd with Pd = 60 to 50:40 to 50
Is deposited on a substrate by magnetron sputtering to form a thin film made of an alloy of Fe and Pd.

【0009】[0009]

【発明の実施の形態】以下、本発明について更に詳細に
説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail.

【0010】本発明に使用するマグネトロンスパッタリ
ング法は、磁場の影響が強く、規則不規則層が生じやす
い。また、蒸着速度が速いので、針状晶組織が得られ
る。その結果、異方性が強く、磁歪が生じやすく、磁歪
誘起マルテンサイト変態が起こりやすいので、磁歪感受
率が高い薄膜を得ることが可能である。更に、トータル
の磁場で誘起される歪の量は液体急冷した試料よりも、
マグネトロンスパッタリングした試料のほうが大きい。
言い換えれば、マグネトロンスパッタリング法で作った
試料最大磁歪量の方が、液体急冷した試料よりも大きく
なる。マグネトロンスパッタリング法による規則層不規
則層の形成しやすさ、及び針状晶試料の形成による異方
性、さらにその二つにより感受率が良い薄膜が形成でき
る。
In the magnetron sputtering method used in the present invention, the influence of a magnetic field is strong, and an irregularly disordered layer is easily formed. Further, since the deposition rate is high, a needle crystal structure can be obtained. As a result, anisotropy is strong, magnetostriction is easily generated, and magnetostriction-induced martensite transformation is easily generated, so that a thin film having high magnetostriction susceptibility can be obtained. In addition, the amount of strain induced by the total magnetic field is greater than that of the liquid quenched sample.
The magnetron sputtered sample is larger.
In other words, the maximum magnetostriction of the sample made by the magnetron sputtering method is larger than that of the liquid-quenched sample. A thin film having a good susceptibility can be formed by the ease of forming an irregular layer by magnetron sputtering and the anisotropy by forming a needle-like crystal sample.

【0011】このようなことから、本発明では、マグネ
トロンスパッタリング法で作製した所定配合割合のFe
−Pd薄膜を用いた高感度磁歪誘起マルテンサイト変態
型アクチェエータを提案する。
In view of the above, according to the present invention, a predetermined compounding ratio of Fe prepared by magnetron sputtering is used.
-We propose a high sensitivity magnetostriction induced martensitic transformation type actuator using Pd thin film.

【0012】本発明において、Fe及びPdの合金中の
FeとPdの原子%がFe:Pd=60〜50:40〜
50と規定したが、好ましくは原子%でFe:Pd=5
8〜50:42〜55である。これらのFeとPdの原
子%の比は、図1の原子%と温度との関係を示す状態図
に基づく(“FePd合金の規則初期過程に及ぼす磁場
効果”、大嶋隆一郎他、日本金属学会誌 第62巻第4
号(1998)317―326)。図1において、γ相
の領域でFe:Pd=60〜50:40〜50の範囲で
は、高感度のものが得られる。ここで、Pdの原子%が
40未満では磁歪感受率が低く、50を超えると磁歪が
小さくなる。
In the present invention, the atomic% of Fe and Pd in the alloy of Fe and Pd is Fe: Pd = 60-50: 40-
50, but preferably in atomic% Fe: Pd = 5
8 to 50: 42 to 55. The ratios of the atomic percentages of Fe and Pd are based on a phase diagram showing the relationship between the atomic percentages and the temperature in FIG. 1 (“The magnetic field effect on the initial process of FePd alloy”, Ryuichiro Oshima et al., Journal of the Japan Institute of Metals. Volume 62 Number 4
No. (1998) 317-326). In FIG. 1, high sensitivity is obtained in the range of Fe: Pd = 60 to 50:40 to 50 in the γ phase region. Here, if the atomic% of Pd is less than 40, the magnetostriction susceptibility is low, and if it exceeds 50, the magnetostriction becomes small.

【0013】本発明において、薄膜は、金属組織が(1
11)面及び(220)面に配向しかつ針状であるFe
及びPdの合金であることが必要である。磁気形状記憶
効果は、米国MITのO'Handley博士の理論によれば、
磁歪によってTwin変態が引き起こされるときに発現
することが示されている。さらに、我々は過去の研究に
おいて、急冷凝固によって粒状晶や柱状晶がつくること
ができることを報告している。また、一般的に柱状晶の
集合組織は、異方性がはっきりしているのでTwinが
発生しやすいことが知られている。このような材料は磁
気誘起の形状記憶効果が大きく、磁気により誘起される
形状記憶効果の、第一にひずみ量が大きくなる可能性が
あり、第二に感度が非常に良くなる可能性がある。そこ
で、急冷凝固を行ない柱状晶の試料を作製し、磁場に対
する特性を確認した。
In the present invention, the thin film has a metal structure of (1)
11) and (220) plane oriented and acicular Fe
And an alloy of Pd. According to the theory of Dr. O'Handley of the United States MIT, the magnetic shape memory effect
It is shown to occur when Twin transformation is caused by magnetostriction. In addition, we have reported in previous studies that rapid solidification can form granular and columnar crystals. In addition, it is generally known that the texture of columnar crystals tends to generate Twin because the anisotropy is clear. Such a material has a large magnetically induced shape memory effect, and the shape memory effect induced by magnetism may firstly have a large amount of strain, and secondly it may have a very high sensitivity. . Therefore, a columnar crystal sample was prepared by rapid solidification, and the characteristics with respect to the magnetic field were confirmed.

【0014】また、温度を変化させたときの試料の形状
変化を調べたところ、試料温度が高くなるにつれて、ひ
ずみが大きくなることが確認された。逆に試料温度が低
くなるにつれて、ひずみが小さくなることが確認され
た。例えば試験開始温度300Kでは、形状はほぼ元の
形に戻る。この結果から、柱状晶Fe−Pd合金は形状
記憶効果を示していることがわかる。
When the shape of the sample was changed when the temperature was changed, it was confirmed that the strain increased as the sample temperature increased. Conversely, it was confirmed that the strain decreased as the sample temperature decreased. For example, at a test start temperature of 300 K, the shape almost returns to the original shape. From this result, it can be seen that the columnar Fe-Pd alloy has a shape memory effect.

【0015】本発明においては、例えば図2に示すよう
なマグネトロンスパッタリング装置が使用される。図2
において、符番1は反応容器を示す。この反応容器1内
には、上部にターゲット2が配置され、下部に基板3を
支持するホルダー4が配置され、両者間にシャッター5
が配置されている。ここで、シャッター5は安定してか
ら開けられる。前記反応容器1の下部、側部にはバルブ
6a,6bを介して真空装置(TP)7a、真空装置
(RP)7bが夫々接続されている。両真空装置7a,
7b間もバルブ6cを介装した配管8により接続されて
いる。前記反応容器1には、夫々Hガスを収容したボ
ンベ9、Arガスを収容したボンベ10が接続されてい
る。
In the present invention, for example, a magnetron sputtering apparatus as shown in FIG. 2 is used. FIG.
In the figure, reference numeral 1 indicates a reaction vessel. In the reaction vessel 1, a target 2 is disposed at an upper part, a holder 4 for supporting a substrate 3 is disposed at a lower part, and a shutter 5 is provided between the two.
Is arranged. Here, the shutter 5 is opened after being stabilized. A vacuum device (TP) 7a and a vacuum device (RP) 7b are connected to lower and side portions of the reaction vessel 1 via valves 6a and 6b, respectively. Both vacuum devices 7a,
7b is also connected by a pipe 8 with a valve 6c interposed. A cylinder 9 containing H 2 gas and a cylinder 10 containing Ar gas are connected to the reaction vessel 1, respectively.

【0016】本発明において、アクチュエータに磁場を
かけた時の歪みの測定の概要と印加される磁場の方向
は、図4に示す通りである。図4において、付番11は
基板であり、この基板11上にFe,Pdを適宜含む合
金からなる薄膜12が形成されている。こうした構成の
アクチュエータの歪みを測定する際には、例えばHe−
Neレーザ13より反射板14を経て薄膜12の端部に
レーザ光15を照射し、この照射によるアクチュエータ
の変形をメジャー16で測定することにより行う。な
お、図中の矢印Aは、印加される磁場の方向を示す。
In the present invention, the outline of the measurement of strain when a magnetic field is applied to the actuator and the direction of the applied magnetic field are as shown in FIG. In FIG. 4, reference numeral 11 denotes a substrate, on which a thin film 12 made of an alloy containing Fe and Pd as appropriate is formed. When measuring the strain of the actuator having such a configuration, for example, He-
The end of the thin film 12 is irradiated with a laser beam 15 from a Ne laser 13 via a reflection plate 14, and the deformation of the actuator caused by the irradiation is measured by a measure 16. The arrow A in the figure indicates the direction of the applied magnetic field.

【0017】[0017]

【実施例】以下、本発明の一実施例について図面を参照
して説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0018】図3は、本発明に係る形状記憶合金アクチ
ュエータの断面図を示す。図3において、符番21は基
板を示す。このSi基板21上には、金属組織が(11
1)面及び(220)面に配向しかつ針状であるFe及
びPdの合金からなる薄膜22が形成されている。ここ
で、Feの原子%は55%、Pdの原子%は45%(F
e−45at%Pd)である。
FIG. 3 shows a sectional view of a shape memory alloy actuator according to the present invention. In FIG. 3, reference numeral 21 indicates a substrate. On the Si substrate 21, a metal structure (11
An acicular thin film 22 made of an alloy of Fe and Pd is formed on the (1) and (220) planes. Here, the atomic% of Fe is 55%, and the atomic% of Pd is 45% (F
e-45 at% Pd).

【0019】次に、こうした構成のアクチュエータの製
造方法について説明する。まず、図2のマグネトロンス
パッタリング装置を用いて、ホルダー4上にSi基板2
1をセットする。つづいて、真空装置7a,7bを用い
て反応容器1内を真空にした後、シャッター5を開け、
ガスとArガスを同時に反応容器1内に送り、直流
プレーナマグネトロン型のスパッタガンを用いて、Si
基板21上に厚さ約2μmの薄膜22を成膜した。成膜
条件は、到達真空度:3.9×10 −5Pa、リークレ
イト(ガスの漏れ):5.0×10−7Pa・m
s、Ar分圧:6.0×10−2Pa、スパッタリング
ガス:Ar、ターゲット投入電力:200W、スパッタ
時間:3600s、基板材料:Si(100)面、基板
温度:300K(室温)とした。
Next, the manufacture of the actuator having such a configuration will be described.
The fabrication method will be described. First, the magnetrons shown in Fig. 2
Using a puttering device, place the Si substrate 2 on the holder 4
Set 1 Then, using the vacuum devices 7a and 7b
After the inside of the reaction container 1 is evacuated, the shutter 5 is opened,
H2Gas and Ar gas are simultaneously sent into the reaction vessel 1 and
Using a planar magnetron type sputtering gun,
A thin film 22 having a thickness of about 2 μm was formed on a substrate 21. Film formation
The conditions are: ultimate vacuum: 3.9 × 10 -5Pa, Ricre
Light (gas leak): 5.0 × 10-7Pa ・ m3/
s, Ar partial pressure: 6.0 × 10-2Pa, sputtering
Gas: Ar, target input power: 200W, sputtering
Time: 3600s, Substrate material: Si (100) surface, substrate
Temperature: 300K (room temperature).

【0020】上記実施例に係る形状記憶合金アクチュエ
ータは、Si基板21と、この基板21上に形成され、
金属組織が(111)面及び(220)面に配向しかつ
針状であるFe及びPdの合金(Fe−45at%P
d)からなる薄膜22とから構成されている。従って、
本発明によれば、以下に述べる効果を有する。
The shape memory alloy actuator according to the above embodiment is formed on a Si substrate 21 and on the substrate 21.
An alloy of Fe and Pd (Fe-45at% P) having a metal structure oriented in the (111) plane and the (220) plane and having a needle shape.
d). Therefore,
According to the present invention, the following effects are provided.

【0021】1)従来と比べ、磁歪感受率を高くするこ
とができる。例えば、Fe−45at%Pdの磁歪感受
率は、(Tb,Dy1−xFe1−y薄膜と比
べ、約3倍高い値を示している。
1) The magnetostriction susceptibility can be increased as compared with the prior art. For example, magnetostrictive susceptibility of Fe-45at% Pd is, (Tb x, Dy 1- x) than y Fe 1-y thin film, which showed about 3 times higher.

【0022】2)一般に薄膜作製は、非常に手間や時
間、経費がかかる試料作製方法である。しかるに、本発
明によれば、マグネトロンスパッタリング法により薄膜
22を形成するので、短時間で容易に成膜を行うことが
できる。従って、コストを低減できる。
2) Generally, the preparation of a thin film is a sample preparation method that requires much labor, time, and cost. However, according to the present invention, since the thin film 22 is formed by the magnetron sputtering method, the film can be easily formed in a short time. Therefore, cost can be reduced.

【0023】3)試料は耐食性が良いため、大気中での
使用が可能である。これは、現行の(Tb,Dy
1−yFe1−y薄膜と比較すると、実用化におい
ては、大きな優位性を示している。
3) Since the sample has good corrosion resistance, it can be used in the atmosphere. This is the current (Tb x , Dy
1-y ) y Fe Compared with the 1-y thin film, it shows a great advantage in practical use.

【0024】事実、温度を変化させたときの試料の形状
変化を調べたところ、試料温度が高くなるにつれて、ひ
ずみが大きくなることが確認された。逆に試料温度が低
くなるにつれて、ひずみが小さくなることが確認され
た。例えば試験開始温度300Kでは、形状はほぼ元の
形に戻る。この結果から、柱状晶Fe−Pd合金は形状
記憶効果を示していることが判明した。
In fact, when the shape change of the sample when the temperature was changed was examined, it was confirmed that the strain increased as the sample temperature increased. Conversely, it was confirmed that the strain decreased as the sample temperature decreased. For example, at a test start temperature of 300 K, the shape almost returns to the original shape. From this result, it was found that the columnar Fe-Pd alloy exhibited a shape memory effect.

【0025】また、Fe及びPdの合金(Fe−47a
t%Pd)からなる薄膜を用いる以外は、上記実施例1
と同様にして作製したアクチュエータについて、温度3
00Kにおける印加磁場H(kOe)と磁場によって誘
起される歪みλ(ppm)の関係を調べたところ、図1
2に示す特性図が得られた。これにより、低磁場応答性
のよい歪みを有することが見出した。
An alloy of Fe and Pd (Fe-47a
Example 1 except that a thin film made of t% Pd) was used.
For the actuator manufactured in the same manner as in
The relationship between the applied magnetic field H (kOe) at 00K and the strain λ (ppm) induced by the magnetic field was examined.
The characteristic diagram shown in FIG. 2 was obtained. As a result, it has been found that the distortion has a good low magnetic field response.

【0026】磁歪の測定はバイメタルの反りの測定に一
般的に用いられる、光てこ法を用いる。磁場の印加には
電磁石を用いて、0kOeから15kOeまでの磁場を
印加する。しかしながら、Fe−45at%Pd薄膜
は、印加磁場3kOeで歪が飽和するので、永久磁石を
用いた磁場印加でも、十分に駆動する。図5は、作成し
た薄膜試料のX線回折図を示す。図5より、(111)
面及び(220)面に強く配向していることが分かる。
特に、(220)面のピークが高いFe:Pd=55:
45の試料では、大きな磁歪量、磁歪感受率を示す。ま
た、図6は、薄膜試料の印加磁場と磁化の関係を示し
た。図6が示すように、反磁界による影響を考慮して
も、磁化の異方性がはっきり認められる。なお、図示し
ないが、電子顕微鏡によりその断面図を観察したとこ
ろ、薄膜の組織が柱状晶であることが確認できた。従っ
て、薄膜の試料は液体急冷した試料よりも、大きな異方
性を持っていることが分かる。
The measurement of magnetostriction uses an optical lever method, which is generally used for measuring the warpage of a bimetal. A magnetic field of 0 kOe to 15 kOe is applied using an electromagnet to apply the magnetic field. However, since the strain of the Fe-45 at% Pd thin film is saturated at an applied magnetic field of 3 kOe, the thin film can be sufficiently driven even by applying a magnetic field using a permanent magnet. FIG. 5 shows an X-ray diffraction diagram of the prepared thin film sample. From FIG. 5, (111)
It can be seen that the crystal is strongly oriented on the (220) plane and the (220) plane.
In particular, Fe: Pd = 55:
Forty-five samples show large magnetostriction and magnetostriction susceptibility. FIG. 6 shows the relationship between the applied magnetic field and the magnetization of the thin film sample. As shown in FIG. 6, even when the influence of the demagnetizing field is considered, the magnetization anisotropy is clearly recognized. Although not shown, when the cross-sectional view was observed with an electron microscope, it was confirmed that the structure of the thin film was columnar. Therefore, it can be seen that the thin film sample has greater anisotropy than the liquid quenched sample.

【0027】図7は、薄膜試料の温度とひずみの関係を
示す。3000ppmを超える大きな変形を示すことが
わかる。加熱による変形は冷却することによって、ほぼ
元の形状に戻ることがわかる。また、図7が示すよう
に、磁場を印加することで、さらなるひずみが得られる
ことがわかる。図8に、作製した薄膜の印加磁場と磁歪
量の関係を示す。図8より、Fe−Pd合金薄膜は3k
Oeの低磁場においてひずみが飽和することを見出し
た。また、温度が低くなるにつれて、最大磁歪量が大き
くなることを見いだした。Fe−Pd薄膜の最大磁歪量
はTb0.3Dy .7Fe超磁歪薄膜の磁歪量の約
半分であるが、低磁場での磁歪感受率はFe−Pd合金
薄膜のほうが良いことがわかる。
FIG. 7 shows the relationship between temperature and strain of a thin film sample. It can be seen that large deformation exceeding 3000 ppm is shown. It can be seen that the deformation due to heating returns to almost the original shape by cooling. Further, as shown in FIG. 7, it can be seen that further distortion can be obtained by applying a magnetic field. FIG. 8 shows the relationship between the applied magnetic field and the amount of magnetostriction of the manufactured thin film. From FIG. 8, the Fe-Pd alloy thin film is 3k
It has been found that the strain is saturated in a low magnetic field of Oe. It has also been found that the maximum magnetostriction increases as the temperature decreases. The maximum magnetostriction of the Fe—Pd thin film is Tb 0.3 Dy 0 . 7 It is about half the magnetostriction of the Fe 2 giant magnetostrictive thin film, but it can be seen that the magnetostrictive susceptibility in a low magnetic field is better for the Fe—Pd alloy thin film.

【0028】図9は、印加磁場400keまでの低磁場
におけるFe−Pd液体急冷試料、薄膜試料、Tb
0.3Dy0.7Fe薄膜試料の磁歪量を示してい
る。この結果より、Fe−Pd薄膜の磁歪感受率は大変
高いことがわかる。図10に、Fe−Pd薄膜の試料温
度と、最大ひずみ量の関係を示す。このように、温度が
下がるほどに最大磁歪量が増加することがわかる。ま
た、図11に、Fe−Pd液体急冷試料、薄膜試料、F
Tb0.3Dy0.7Fe薄膜試料の温度と磁歪
感受率の関係を示す。FeTb0.3Dy0.7Fe
薄膜試料では、成膜時の基板温度が低くなるほど、磁
歪感受率が良くなることがわかる。また、Fe−Pd液
体急冷試料よりも、Fe−Pd薄膜試料のほうが磁歪感
受率が良く、Fe−Pd薄膜の磁歪感受率は試験温度が
下がるほどに高くなることがわかるなお、上記実施例で
は、Fe−45at%Pd薄膜を形成した場合について
述べたが、これに限らず、FeとPdの原子%がFe:
Pd=60〜50:40〜50である範囲の薄膜であれ
ば、上記実施例と略同様な効果が得られる。
FIG. 9 shows the quenched sample of the Fe—Pd liquid, the thin film sample, and Tb in a low magnetic field up to an applied magnetic field of 400 ke.
The figure shows the magnetostriction of a 0.3 Dy 0.7 Fe 2 thin film sample. From this result, it is understood that the magnetostriction susceptibility of the Fe—Pd thin film is very high. FIG. 10 shows the relationship between the sample temperature of the Fe—Pd thin film and the maximum strain. Thus, it can be seen that the maximum magnetostriction increases as the temperature decreases. FIG. 11 shows a sample of the quenched Fe—Pd liquid, a sample of the thin film,
The relationship between the temperature of the e 2 Tb 0.3 Dy 0.7 Fe 2 thin film sample and the magnetostriction susceptibility is shown. Fe 2 Tb 0.3 Dy 0.7 Fe
In the two thin film samples, it can be seen that the lower the substrate temperature during film formation, the better the magnetostrictive susceptibility. In addition, it can be seen that the Fe-Pd thin film sample has a better magnetostriction susceptibility than the Fe-Pd liquid quenched sample, and the magnetostriction susceptibility of the Fe-Pd thin film becomes higher as the test temperature decreases. , Fe-45 at% Pd thin film was formed, but the present invention is not limited to this, and the atomic% of Fe and Pd is Fe:
With a thin film in the range of Pd = 60 to 50:40 to 50, substantially the same effects as in the above embodiment can be obtained.

【0029】[0029]

【発明の効果】以上詳述したように本発明によれば、磁
歪感受率が高く、かつ薄膜作製に時間や経費を低減し得
る形状記憶合金アクチュエータ及びその製造方法を提供
できる。
As described above in detail, according to the present invention, it is possible to provide a shape memory alloy actuator having a high magnetostriction susceptibility and capable of reducing time and cost for producing a thin film, and a method of manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】原子%パラジウムと温度との関係を示す状態
図。
FIG. 1 is a state diagram showing the relationship between atomic% palladium and temperature.

【図2】本発明に係るマグネトロンスパッタリング装置
の全体図。
FIG. 2 is an overall view of a magnetron sputtering apparatus according to the present invention.

【図3】本発明の一実施例に係る形状記憶合金アクチュ
エータの断面図。
FIG. 3 is a sectional view of a shape memory alloy actuator according to one embodiment of the present invention.

【図4】図1のアクチュエータの温度を変化させたとき
の形状変化を示す特性図。
FIG. 4 is a characteristic diagram showing a shape change when the temperature of the actuator of FIG. 1 is changed.

【図5】図3のアクチュエータのX線回折図5 is an X-ray diffraction diagram of the actuator of FIG.

【図6】薄膜試料の印加磁場と磁化の関係を示す特性
図。
FIG. 6 is a characteristic diagram showing a relationship between an applied magnetic field and magnetization of a thin film sample.

【図7】薄膜試料の温度とひずみの関係を示す特性図。FIG. 7 is a characteristic diagram showing a relationship between temperature and strain of a thin film sample.

【図8】作製した薄膜の印加磁場と磁歪量の関係を示すFIG. 8 shows the relationship between the applied magnetic field and the amount of magnetostriction of the fabricated thin film.

【図9】印加磁場400keまでの低磁場におけるFe
−Pd液体急冷試料、薄膜試料、Tb0.3Dy0.7
Fe薄膜試料の磁歪量を示す特性図。
FIG. 9 shows Fe in a low magnetic field up to an applied magnetic field of 400 ke.
-Pd liquid quenched sample, thin film sample, Tb 0.3 Dy 0.7
FIG. 4 is a characteristic diagram showing a magnetostriction amount of the Fe 2 thin film sample.

【図10】Fe−Pd薄膜の試料温度と、最大ひずみ量
の関係を示す特性図。
FIG. 10 is a characteristic diagram showing a relationship between a sample temperature of a Fe—Pd thin film and a maximum strain amount.

【図11】Fe−Pd液体急冷試料、薄膜試料、Tb
0.3Dy0.7Fe薄膜試料の温度と磁歪感受率の
関係を示す特性図。
FIG. 11: Fe-Pd liquid quenched sample, thin film sample, Tb
FIG. 4 is a characteristic diagram showing a relationship between a temperature of a 0.3 Dy 0.7 Fe 2 thin film sample and a magnetostriction susceptibility.

【図12】300Kにおける印加磁場Hと磁場により誘
起された歪みλとの関係を示す特性図。
FIG. 12 is a characteristic diagram showing a relationship between an applied magnetic field H at 300 K and a distortion λ induced by the magnetic field.

【図13】各試料の300Kにおける印加磁場Hと磁場
により誘起された歪みλとの関係を示す特性図。
FIG. 13 is a characteristic diagram showing a relationship between an applied magnetic field H at 300 K and a strain λ induced by the magnetic field of each sample.

【符号の説明】[Explanation of symbols]

1…反応容器、 2…ターゲット、 3…基板、 4…ホルダー、 5…シャッター、 6a,6b…バルブ、 7a,7b…真空装置、 8…配管、 9,10…ボンベ、 21…Si基板、 22…薄膜。 DESCRIPTION OF SYMBOLS 1 ... Reaction container, 2 ... Target, 3 ... Substrate, 4 ... Holder, 5 ... Shutter, 6a, 6b ... Valve, 7a, 7b ... Vacuum apparatus, 8 ... Piping, 9, 10 ... Cylinder, 21 ... Si substrate, 22 ... a thin film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小栗 和也 神奈川県平塚市北金目1117 東海大学理学 部内 (72)発明者 内田 晴久 神奈川県平塚市北金目1117 東海大学教養 学部内 (72)発明者 松村 義人 神奈川県平塚市北金目1117 東海大学工学 部内 (72)発明者 内田 裕久 神奈川県平塚市北金目1117 東海大学工学 部内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kazuya Oguri 1117 Kita-Kaneme, Hiratsuka-shi, Kanagawa Pref. Yoshito Matsumura 1117 Kita-Kaneme, Hiratsuka-shi, Kanagawa Prefecture (72) Inventor Hirohisa Uchida 1117 Kita-Kaneme, Hiratsuka-shi, Kanagawa Tokai University Engineering Department

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 基板と、この基板上に形成され、金属組
織が(111)面及び(220)面に配向しかつ針状で
あるFe及びPdの合金からなる薄膜とを具備し、Fe
とPdの原子%がFe:Pd=60〜50:40〜50
であることを特徴とする形状記憶効果を利用した形状記
憶合金アクチュエータ。
1. A substrate comprising: a substrate; and a thin film made of an alloy of Fe and Pd formed on the substrate and having a metal structure oriented in the (111) plane and the (220) plane and having a needle shape.
And the atomic% of Pd is Fe: Pd = 60-50: 40-50
A shape memory alloy actuator utilizing a shape memory effect, characterized in that:
【請求項2】 FeとPdの原子%がFe:Pd=58
〜50:42〜55であることを特徴とする請求項1記
載の形状記憶合金アクチュエータ。
2. The atomic percentage of Fe and Pd is Fe: Pd = 58.
2. The shape memory alloy actuator according to claim 1, wherein the ratio is from 50 to 42:55.
【請求項3】 金属組織が(111)面及び(220)
面に配向した針状でかつ原子%がFe:Pd=60〜5
0:40〜50であるFe及びPdの合金を、基板上に
マグネトロンスパッタリングにより蒸着し、Fe及びP
dの合金からなる薄膜を形成することを特徴とする形状
記憶合金アクチュエータの製造方法。
3. A metal structure having a (111) plane and a (220) plane.
Needle-like with atomic orientation Fe: Pd = 60-5
An alloy of Fe and Pd having a ratio of 0:40 to 50 is deposited on the substrate by magnetron sputtering, and Fe and Pd are deposited.
A method for manufacturing a shape memory alloy actuator, comprising forming a thin film made of the alloy d.
JP2000148414A 2000-05-19 2000-05-19 Shape memory alloy actuator, and its manufacturing method Pending JP2001329347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000148414A JP2001329347A (en) 2000-05-19 2000-05-19 Shape memory alloy actuator, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000148414A JP2001329347A (en) 2000-05-19 2000-05-19 Shape memory alloy actuator, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2001329347A true JP2001329347A (en) 2001-11-27

Family

ID=18654452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000148414A Pending JP2001329347A (en) 2000-05-19 2000-05-19 Shape memory alloy actuator, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2001329347A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1728879A2 (en) * 2004-10-12 2006-12-06 Heraeus, Inc. Low oxygen content alloy compositions
US7371295B2 (en) 2003-03-18 2008-05-13 Honda Motor Co., Ltd. Shape memory alloy and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7371295B2 (en) 2003-03-18 2008-05-13 Honda Motor Co., Ltd. Shape memory alloy and method for producing same
EP1728879A2 (en) * 2004-10-12 2006-12-06 Heraeus, Inc. Low oxygen content alloy compositions
EP1728879A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content alloy compositions

Similar Documents

Publication Publication Date Title
Basantkumar et al. Integration of thin-film galfenol with MEMS cantilevers for magnetic actuation
US5585196A (en) Magnetoresistance effect element
US20030175546A1 (en) Method of manufacturing magnetic multilayer film, method of manufacturing magnetic recording medium, magnetic multilayer film and magnetic recording medium
Loving et al. Strain-tuning of the magnetocaloric transition temperature in model FeRh films
Ried et al. Crystallization behaviour and magnetic properties of magnetostrictive TbDyFe films
Suzuki et al. Fabrication and characterization of sputtered Ni2MnGa thin films
Inoue et al. Shape memory behavior of Fe–Pd alloy thin films prepared by dc magnetron sputtering
Na et al. Fabrication condition effects on the magnetic and magnetostrictive properties of sputtered Tb-Fe thin films
Lim et al. Application-related properties of giant magnetostrictive thin films
JP2001329347A (en) Shape memory alloy actuator, and its manufacturing method
Zhang et al. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN–PT composite using oblique pulsed laser deposition
Shima et al. Overlayer-induced anisotropic alignment of Nd 2 Fe 14 B nanograins
Sella et al. Annealing effects on the structure and magnetic properties of Ni/Ti multilayers
Zhao et al. Cluster-assembled Tb–Fe nanostructured films produced by low energy cluster beam deposition
EP1887568A1 (en) Heat assisted magnetic recording medium and method for fabricating the same
Yamaki et al. Giant magnetostrictive thin film formation by plasma process
Khanduri et al. Structural, magnetic and magneto-optical studies of Mn/Al bilayer thin films on GaAs substrates
JP4919310B2 (en) Method for manufacturing giant magnetostrictive thin film element
Altuncevahir et al. Deposition-order-dependent coercivity of CoNi/Gd bilayers
Sharp et al. Unidirectional anisotropy in multilayer films of Cr and NiFe
Bannykh et al. Thin-film magnetically soft Fe-Zr-N alloys with high saturation induction
El Hadri et al. Large anisotropic magnetocaloric effect in all-sputtered epitaxial terbium thin films
JP3532607B2 (en) Magnetoresistance effect element
Chelvane et al. Effect of Ti underlayer and substrate temperature on the magnetostrictive properties of Fe-Ga thin films: structural and magnetic microscopy studies
Jarratt et al. GMR in sputtered Co/sub 90/Fe/sub 10//Ag multilayers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104