JP2001328139A - Fluid jet nozzle device - Google Patents

Fluid jet nozzle device

Info

Publication number
JP2001328139A
JP2001328139A JP2000149226A JP2000149226A JP2001328139A JP 2001328139 A JP2001328139 A JP 2001328139A JP 2000149226 A JP2000149226 A JP 2000149226A JP 2000149226 A JP2000149226 A JP 2000149226A JP 2001328139 A JP2001328139 A JP 2001328139A
Authority
JP
Japan
Prior art keywords
fluid
induction heating
heating coil
injection
nozzle device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000149226A
Other languages
Japanese (ja)
Other versions
JP4437356B2 (en
Inventor
Tsutomu Miyazaki
力 宮崎
Eiji Suzuki
英司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyaden Co Ltd
Original Assignee
Miyaden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyaden Co Ltd filed Critical Miyaden Co Ltd
Priority to JP2000149226A priority Critical patent/JP4437356B2/en
Publication of JP2001328139A publication Critical patent/JP2001328139A/en
Application granted granted Critical
Publication of JP4437356B2 publication Critical patent/JP4437356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a fluid jet nozzle device capable of stably ejecting a fluid and capable of achieving miniaturization, cost reduction and energy saving. SOLUTION: In the fluid jet nozzle device wherein the fluid flowing in the jet hole of a nozzle main body is ejected from the jet orifice provided to the leading end of the jet hole under predetermined pressure, the induction heating coil connected to a transistor inverter is arranged to the nozzle main body and the flux density by the induction heating coil is set so as to be different along the flow direction of the fluid flowing through the jet hole. A plurality of the induction coils are arranged along the flow direction of the fluid or the induction heating coil is changed in its winding pitch along the flow direction of the fluid to set different flux densities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えば射出成型機等に
設けられるノズル装置に係わり、特に、流動体を所定の
圧力で安定して噴射し得る流動体噴射用ノズル装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nozzle device provided in, for example, an injection molding machine, and more particularly to a nozzle device for jetting a fluid which can stably jet a fluid at a predetermined pressure.

【0002】[0002]

【従来の技術】従来、金属射出成型機やゴム射出成型機
等には、金属やゴム等の流動体を金型のキャビティ内に
噴射するためのノズル装置が設けられている。そして、
このノズル装置としては、例えば特開平11−3004
62号公報及び特開平8−34034号公報に開示され
ているように、ノズル装置の先端部外周面に誘導加熱コ
イルを配置したものが知られている。
2. Description of the Related Art Conventionally, a metal injection molding machine, a rubber injection molding machine and the like are provided with a nozzle device for injecting a fluid such as metal or rubber into a cavity of a mold. And
As this nozzle device, for example, JP-A-11-3004
As disclosed in Japanese Patent Application Laid-Open No. 62-34034 and Japanese Patent Application Laid-Open No. 8-34034, there is known a nozzle device in which an induction heating coil is arranged on the outer peripheral surface of the tip end portion.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
のノズル装置にあっては、ノズル装置の先端部の外周面
に一定ピッチで巻回された誘導加熱コイルを配置し、ノ
ズル装置内を流動してくる流動体を単に射出温度まで急
速加熱して噴射させるだけであるため、流動体の安定し
た噴射が難しいという問題点があった。
However, in these nozzle devices, an induction heating coil wound at a constant pitch is arranged on the outer peripheral surface of the tip portion of the nozzle device, and flows through the nozzle device. There is a problem that it is difficult to stably inject the fluid since the incoming fluid is simply heated up to the injection temperature and injected.

【0004】すなわち、ノズル装置内に流入する流動体
は、その径小な噴射口から高圧となって噴射されるた
め、この圧力による噴射速度以上に加熱速度を安定維持
するのが制御上困難で、射出圧力にムラが発生し易い
等、流動体の安定した噴射が難しくなる。また、噴射速
度以上に急速加熱するためには、高出力の誘導加熱装置
が必要となり、装置自体の大型化とコストアップになり
易く、かつ電力消費量が多くなって省エネ化が難しいと
いう問題点もあった。
That is, since the fluid flowing into the nozzle device is ejected from the small-diameter injection port at a high pressure, it is difficult to control the heating speed more stably than the injection speed due to this pressure. As a result, it is difficult to stably inject the fluid, for example, the injection pressure tends to be uneven. In addition, in order to perform rapid heating at a speed higher than the injection speed, a high-output induction heating device is required, which tends to increase the size and cost of the device itself, and increase power consumption, making it difficult to save energy. There was also.

【0005】本発明は、このような事情に鑑みてなされ
たもので、流動体を安定して噴射し得ると共に、装置の
小型化とコストダウンが図れかつ省エネ化が図れる流動
体噴射用ノズル装置を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and is capable of stably injecting a fluid, reducing the size and cost of the device, and achieving energy saving. Is to provide.

【0006】[0006]

【課題を解決するための手段】かかる目的を達成すべ
く、本発明のうち請求項1記載の発明は、ノズル本体の
噴射孔内に流入する流動体を、噴射孔の先端に設けた噴
射口から所定圧力で噴射する流動体噴射用ノズル装置に
おいて、前記ノズル本体にトランジスタインバータに接
続された誘導加熱コイルを配設すると共に、該誘導加熱
コイルによる磁束密度を噴射孔内を流動する流動体の流
動方向に沿って異なる如く設定したことを特徴とする。
In order to achieve the above object, according to the first aspect of the present invention, a fluid flowing into an injection hole of a nozzle body is provided at an end of the injection hole. A nozzle device for injecting fluid at a predetermined pressure from the nozzle body, the nozzle body is provided with an induction heating coil connected to a transistor inverter, and the magnetic flux density of the induction heating coil is applied to the fluid flowing through the injection hole. It is characterized in that it is set differently along the flow direction.

【0007】このように構成することにより、ノズル本
体の噴射孔内に流入する流動体は、噴射孔の長手方向
(流動体の流動方向)に沿って配設された誘導加熱コイ
ルの磁束に基づき誘導加熱されつつ、噴射孔先端の噴射
口から噴射される。この時、誘導加熱コイルから発生す
る磁束密度が、例えば下流側となる噴射口側が高くその
上流側が低くなるように設定されていることから、流動
体が流動中に徐々に加熱されつつ噴射される。これによ
り、噴射口部分における流動体の加熱条件が均一化さ
れ、安定した噴射状態が得られる。また、磁束密度が異
なる如く配置された誘導加熱コイルによって、局部的な
急速加熱が不要となり、トランジスタインバータの低出
力化が図れて装置の小型化とコストダウンが図れると共
に、トランジスタインバータの使用等により、省電力化
が図れる。
With this configuration, the fluid flowing into the injection hole of the nozzle body is based on the magnetic flux of the induction heating coil disposed along the longitudinal direction of the injection hole (the flow direction of the fluid). It is injected from the injection port at the tip of the injection hole while being induction heated. At this time, since the magnetic flux density generated from the induction heating coil is set so that, for example, the downstream orifice side is high and the upstream side is low, the fluid is injected while being gradually heated during the flow. . Thereby, the heating condition of the fluid at the injection port portion is made uniform, and a stable injection state is obtained. In addition, the induction heating coil arranged so that the magnetic flux density is different eliminates the need for local rapid heating, which reduces the output of the transistor inverter and reduces the size and cost of the device. Power can be saved.

【0008】また、請求項2記載の発明は、前記誘導加
熱コイルが、流動体の流動方向に沿って複数配置される
ことにより、前記磁束密度が異なる如く設定されている
ことを特徴とし、請求項3記載の発明は、前記誘導加熱
コイルが、流動体の流動方向に沿ってその巻回ピッチを
変化させることにより、前記磁束密度が異なる如く設定
されていることを特徴とする。このように構成すること
により、誘導加熱コイルを複数配置したり、その巻回ピ
ッチを変化させることにより、磁束密度を異ならせるこ
とができることから、コイル自体の構成が簡略化されて
装置のより小型化とコストダウンが図れる。
According to a second aspect of the present invention, a plurality of the induction heating coils are arranged along a flowing direction of the fluid so that the magnetic flux densities are set differently. The invention described in Item 3 is characterized in that the magnetic flux density is set to be different by changing the winding pitch of the induction heating coil along the flowing direction of the fluid. With this configuration, the magnetic flux density can be varied by arranging a plurality of induction heating coils or changing the winding pitch of the coils, so that the configuration of the coil itself is simplified and the device becomes more compact. And cost reduction.

【0009】[0009]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて詳細に説明する。図1は、本発明に係わる流
動体噴射用ノズル装置の一実施例を示す概略構成図であ
る。図1において、ノズル装置1は、内部に噴射孔3が
形成されたノズル本体2を有し、このノズル本体2は、
例えば鉄系金属の磁性体で径大部2aと径小部2b及び
傾斜部2cを有する略管状に形成され、先端側(噴射孔
3の先端)の径小部2b内には所定内径の噴射口3aが
形成されている。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a schematic configuration diagram showing one embodiment of a nozzle device for ejecting a fluid according to the present invention. In FIG. 1, a nozzle device 1 has a nozzle body 2 having an injection hole 3 formed therein.
For example, a magnetic material of an iron-based metal is formed in a substantially tubular shape having a large-diameter portion 2a, a small-diameter portion 2b, and an inclined portion 2c. The mouth 3a is formed.

【0010】また、ノズル本体2の径大部2aと径小部
2bの外周面には、誘導加熱コイル4、5が嵌装状態で
配置されている。この誘導加熱コイル4、5は、例えば
銅パイプ6を所定巻き数巻回し、その周囲をセラミック
等の耐熱性部材7で覆うことにより形成され、銅パイプ
6の両端部がケーブル8によってトランジスタインバー
タ9の出力端子にそれぞれ接続されている。なお、ケー
ブル8としては、誘導加熱コイル4、5とトランジスタ
インバータ9とを電気的に接続すると共に、トランジス
タインバータ9に一体的(もしくは別体)で設けられた
冷却機(図示せず)の冷却水を、誘導加熱コイル4、5
の銅パイプ6内に循環供給し得る適宜構造のケーブル8
が使用される。
Further, induction heating coils 4 and 5 are arranged on the outer peripheral surfaces of the large-diameter portion 2a and the small-diameter portion 2b of the nozzle body 2 in a fitted state. The induction heating coils 4 and 5 are formed, for example, by winding a copper pipe 6 by a predetermined number of turns and covering the periphery thereof with a heat-resistant member 7 such as a ceramic. Are connected to the output terminals. The cable 8 electrically connects the induction heating coils 4 and 5 to the transistor inverter 9 and cools a cooling machine (not shown) provided integrally (or separately) with the transistor inverter 9. Water is supplied to induction heating coils 4 and 5
Cable 8 of an appropriate structure capable of being circulated and supplied in copper pipe 6
Is used.

【0011】なお、誘導加熱コイル4、5は、その銅パ
イプ6の巻回ピッチpがそれぞれ略一定となるように設
定されると共に、両コイル4、5の巻き数nが異なり、
かつ誘導加熱コイル4と誘導加熱コイル5とが所定の間
隔Pを有してノズル本体2の外周面に配置されている。
この一対の誘導加熱コイル4、5によって、両コイル
4、5から発生する磁束密度がノズル本体2の噴射孔3
の長手方向(流動体Rの流動方向)において、下流側で
ある径小部2b部分が高く、その直上流側の傾斜部2c
部分が低く、さらにその上流側の径大部2a部分が高く
なる、すなわち流動体Rがその流動方向に沿ってスムー
ズに流動し得るように設定されている。
The induction heating coils 4 and 5 are set so that the winding pitch p of the copper pipe 6 is substantially constant, and the number of turns n of the coils 4 and 5 is different.
Further, the induction heating coil 4 and the induction heating coil 5 are arranged on the outer peripheral surface of the nozzle body 2 with a predetermined interval P.
Due to the pair of induction heating coils 4, 5, the magnetic flux density generated from both coils 4, 5 is reduced by the injection holes 3 of the nozzle body 2.
In the longitudinal direction (flow direction of the fluid R), the small-diameter portion 2b on the downstream side is high, and the inclined portion 2c on the immediately upstream side
The portion is low, and the large-diameter portion 2a on the upstream side is high, that is, the fluid R is set to flow smoothly in the flow direction.

【0012】前記トランジスタインバータ9は、図示し
ない例えばMOSFET、IGBT等の半導体スイッチ
ング素子を用いたインバータ回路及び出力トランス(変
流器)等を有し、数KHz〜数MHzの所定出力の高周
波電流を、誘導加熱コイル4、5に出力し得るように構
成されている。このトランジスタインバータ9は、例え
ば射出成型機を制御する制御装置10の制御信号によっ
て、その動作が制御される。
The transistor inverter 9 has an inverter circuit using a semiconductor switching element such as a MOSFET or IGBT (not shown), an output transformer (current transformer), and the like, and outputs a high-frequency current having a predetermined output of several KHz to several MHz. , And induction heating coils 4 and 5. The operation of the transistor inverter 9 is controlled by, for example, a control signal of a control device 10 for controlling an injection molding machine.

【0013】次に、このノズル装置1の動作の一例につ
いて説明する。先ず、ノズル装置1は、射出成型機(図
示せず)に装備され、ノズル本体2の径小部2bの先端
が、金型11の注入孔11a部に密着されることにより
セットされ、また、射出成型機の作動と同時にトランジ
スタインバータ9も作動して、誘導加熱コイル4、5に
高周波電流が供給される。誘導加熱コイル4、5に高周
波電流が供給されると、該コイル4、5から発生する磁
束により磁性体からなるノズル本体2に渦電流が誘起さ
れてノズル本体2が所定温度まで誘導加熱される。
Next, an example of the operation of the nozzle device 1 will be described. First, the nozzle device 1 is mounted on an injection molding machine (not shown), and is set by bringing the tip of the small diameter portion 2b of the nozzle body 2 into close contact with the injection hole 11a of the mold 11, and At the same time as the operation of the injection molding machine, the transistor inverter 9 also operates, and a high-frequency current is supplied to the induction heating coils 4 and 5. When a high-frequency current is supplied to the induction heating coils 4 and 5, an eddy current is induced in the nozzle body 2 made of a magnetic material by the magnetic flux generated from the coils 4 and 5, and the nozzle body 2 is induction-heated to a predetermined temperature. .

【0014】そして、ノズル本体2が誘導加熱される
と、該本体2の噴射孔3内に流入する金属やゴム(樹
脂)等の流動体Rが所定温度まで加熱され、この加熱状
態の流動体Rが圧力により下流側に流動して、ノズル本
体2の噴射口3aから所定圧力で金型11、12のキャ
ビティ13内に噴射される。この時、誘導加熱コイル
4、5による磁束密度が、流動体Rの流動方向に沿って
異なるように設定されていることから、流動体Rが噴射
孔3内をスムーズに流動して、所定圧力で噴射口3aか
ら噴射されることになる。
When the nozzle body 2 is induction-heated, the fluid R such as metal or rubber (resin) flowing into the injection hole 3 of the body 2 is heated to a predetermined temperature. R flows downstream due to the pressure and is injected into the cavities 13 of the dies 11 and 12 from the injection port 3a of the nozzle body 2 at a predetermined pressure. At this time, since the magnetic flux densities of the induction heating coils 4 and 5 are set to be different along the flow direction of the fluid R, the fluid R flows smoothly in the injection hole 3 and has a predetermined pressure. Is injected from the injection port 3a.

【0015】このように上記実施例のノズル装置1によ
れば、ノズル本体2の外周面にその長手方向に沿って一
対の誘導加熱コイル4、5を配置すると共に、この誘導
加熱コイル4、5による磁束密度を流動体Rの流動方向
に沿って異ならせているため、噴射孔3内を流動する流
動体Rの温度を流動に適した最適温度に容易に加熱維持
することができて、流動体Rを噴射口3aから安定した
状態で噴射することができる。
As described above, according to the nozzle device 1 of the above embodiment, the pair of induction heating coils 4 and 5 are arranged on the outer peripheral surface of the nozzle body 2 along the longitudinal direction, and the induction heating coils 4 and 5 are arranged. Is varied along the flow direction of the fluid R, so that the temperature of the fluid R flowing in the injection hole 3 can be easily heated and maintained at an optimum temperature suitable for the flow. The body R can be injected from the injection port 3a in a stable state.

【0016】特に、ノズル本体2の径大部2a、傾斜部
2c及び径小部2bの形状に対応して一対の誘導加熱コ
イル4、5を配置しているため、内径の大きな部分から
内径の小さな部分に流動する流動体Rをスムーズに流動
させることができて、噴射圧にバラツキやムラのない安
定した噴射を得ることができ、結果として、成型品の不
良率を低減させることが可能になる。
In particular, since a pair of induction heating coils 4 and 5 are arranged corresponding to the shapes of the large-diameter portion 2a, the inclined portion 2c and the small-diameter portion 2b of the nozzle body 2, the portion from the large inner diameter to the inner diameter is changed. It is possible to smoothly flow the fluid R flowing in a small portion, and to obtain a stable injection without variation and unevenness in the injection pressure, and as a result, it is possible to reduce a defective rate of a molded product. Become.

【0017】また、噴射口部分に一つの誘導加熱コイル
を配置して該部分を急速加熱する従来例に比較して、予
め流動体Rをその上流側から徐々に加熱して、噴射口3
a部分において所定の噴射温度(噴射圧力)とするた
め、制御装置10による制御が簡略化されると共に、ノ
ズル本体2の噴射口3a部分の耐久性を大幅に高める必
要がなくなる。さらに、噴射口3a部分を急速加熱する
必要がないため、トランジスタインバータ10の出力を
より低くすることができて、装置1自体の小型化とコス
トダウン及び省電力化を図ることができる。
Further, as compared with the conventional example in which one induction heating coil is arranged at the injection port portion and the portion is rapidly heated, the fluid R is gradually heated from the upstream side in advance and the injection port 3 is heated.
Since the predetermined injection temperature (injection pressure) is set at the portion a, the control by the control device 10 is simplified, and the durability of the injection port 3a of the nozzle body 2 does not need to be significantly increased. Furthermore, since there is no need to rapidly heat the injection port 3a, the output of the transistor inverter 10 can be further reduced, and the size, cost, and power consumption of the device 1 itself can be reduced.

【0018】なお、上記実施例においては、ノズル本体
2の噴射孔3の長手方向に一対の巻回ピッチが略一定の
誘導加熱コイル4、5を配置して、流動体Rの流動方向
における磁束密度を異ならせたが、本発明はこれに何等
限定されるものでもなく、例えば図2及び図3に示すよ
うに構成することもできる。すなわち、図2に示すノズ
ル装置1は、一対の誘導加熱コイル4、5の巻回ピッチ
を各コイル4、5毎に上流側が粗で下流側が密となるよ
うに異ならせることにより、発生する磁束密度を流動体
Rの流動方向において異ならせたものである。
In the above embodiment, a pair of induction heating coils 4 and 5 having a substantially constant winding pitch are arranged in the longitudinal direction of the injection hole 3 of the nozzle body 2 so that the magnetic flux in the flow direction of the fluid R is changed. Although the density is different, the present invention is not limited to this, and may be configured as shown in FIGS. 2 and 3, for example. That is, the nozzle device 1 shown in FIG. 2 generates a magnetic flux by changing the winding pitch of the pair of induction heating coils 4 and 5 so that the upstream side is coarse and the downstream side is dense for each coil 4 and 5. The density is different in the flow direction of the fluid R.

【0019】また、図3に示すノズル装置1は、ノズル
本体2の径大部2a、傾斜部2c及び径小部2bにかけ
て1つの誘導加熱コイル4を配置し、この誘導加熱コイ
ル4の巻回ピッチを上流側が粗で下流側が密となるよう
に設定したものである。このように、本発明に係わる誘
導加熱コイルは、流動体Rの流動方向において、磁束密
度が異なる適宜形状及び配置形態を採用することができ
る。
In the nozzle device 1 shown in FIG. 3, one induction heating coil 4 is disposed over the large-diameter portion 2a, the inclined portion 2c, and the small-diameter portion 2b of the nozzle body 2, and the winding of the induction heating coil 4 is performed. The pitch is set so that the upstream side is coarse and the downstream side is dense. As described above, the induction heating coil according to the present invention can adopt an appropriate shape and arrangement having different magnetic flux densities in the flow direction of the fluid R.

【0020】さらに、上記実施例においては、誘導加熱
コイル4、5から発生する磁束密度が、上流側が粗で下
流側が密である場合について説明したが、例えば流動体
Rの種類によっては、下流側が粗で上流側が密となる誘
導加熱コイル4、5の形状や配置形態を採用できる等、
要は、流動体Rの流動方向において磁束密度が異なり、
流動体Rがスムーズに噴射される適宜の構造を採用する
ことができる。
Further, in the above embodiment, the case where the magnetic flux density generated from the induction heating coils 4 and 5 is coarse on the upstream side and dense on the downstream side, for example, depending on the type of the fluid R, the magnetic flux density on the downstream side is high. The shape and arrangement of the induction heating coils 4 and 5 that are rough and dense on the upstream side can be adopted.
In short, the magnetic flux density differs in the flow direction of the fluid R,
An appropriate structure in which the fluid R is smoothly injected can be adopted.

【0021】また、上記実施例においては、ノズル装置
1が射出成型機に装備される場合について説明したが、
本発明は、例えば塗料を噴射するノズル装置とか燃料を
噴射するノズル装置等の、各種流動体を噴射するノズル
装置に適用し得ることはいうまでもない。またさらに、
上記実施例においては、誘導加熱コイル4、5をノズル
本体2の外周面に固定的に配置したが、例えば誘導加熱
コイル4、5をノズル本体2の側壁内に埋設状態で配設
したり、ノズル本体2に着脱可能に配置することもでき
るし、ノズル本体2の形状も適宜に変更できる。
In the above embodiment, the case where the nozzle device 1 is provided in the injection molding machine has been described.
It is needless to say that the present invention can be applied to a nozzle device for injecting various fluids, such as a nozzle device for injecting paint or a nozzle device for injecting fuel. In addition,
In the above embodiment, the induction heating coils 4 and 5 are fixedly arranged on the outer peripheral surface of the nozzle body 2. However, for example, the induction heating coils 4 and 5 are arranged in a buried state in the side wall of the nozzle body 2, The nozzle body 2 can be detachably disposed, and the shape of the nozzle body 2 can be appropriately changed.

【0022】[0022]

【発明の効果】以上詳述したように、請求項1記載の発
明によれば、ノズル本体に配置される誘導加熱コイルか
ら発生する磁束密度が、流動体の流動方向に沿って異な
るように設定されているため、噴射口部分における流動
体の加熱条件が均一化され、安定した噴射状態を容易に
得ることができると共に、局部的な急速加熱が不要とな
るため、トランジスタインバータの低出力化が図れ、装
置の小型化とコストダウンが図れると共に省電力化を図
ることができる。
As described above in detail, according to the first aspect of the present invention, the magnetic flux density generated from the induction heating coil disposed in the nozzle body is set so as to be different along the flow direction of the fluid. As a result, the heating conditions of the fluid at the injection port are made uniform, a stable injection state can be easily obtained, and local rapid heating is not required. Thus, the size and cost of the apparatus can be reduced, and power can be saved.

【0023】また、請求項2または3記載の発明によれ
ば、請求項1記載の発明の効果に加え、誘導加熱コイル
を複数配置したり、その巻回ピッチを変化させることに
より、磁束密度を異ならせることができるため、誘導加
熱コイル自体の構成が簡略化され装置のより小型化とコ
ストダウンを図ることができる。
According to the second or third aspect of the present invention, in addition to the effect of the first aspect of the present invention, the magnetic flux density can be reduced by arranging a plurality of induction heating coils or changing the winding pitch. Since the induction heating coil itself can be made different, the configuration of the induction heating coil itself can be simplified, and the size and cost of the device can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる流動体噴射用ノズル装置の一実
施例を示す概略構成図
FIG. 1 is a schematic configuration diagram showing one embodiment of a nozzle device for fluid injection according to the present invention.

【図2】本発明に係わる流動体噴射用ノズル装置の他の
実施例を示す要部の断面図
FIG. 2 is a sectional view of a main part showing another embodiment of the nozzle device for fluid injection according to the present invention.

【図3】本発明に係わる流動体噴射用ノズル装置のさら
に他の実施例を示す要部の断面図
FIG. 3 is a cross-sectional view of a main part showing still another embodiment of the fluid injection nozzle device according to the present invention.

【符号の説明】[Explanation of symbols]

1 ノズル装置 2 ノズル本体 2a 径大部 2b 径小部 3 噴射孔 3a 噴射口 4、5 誘導加熱コイル 6 銅パイプ 7 耐熱性部材 9 トランジスタインバータ 10 制御装置 11、12 金型 13 キャビティ DESCRIPTION OF SYMBOLS 1 Nozzle apparatus 2 Nozzle main body 2a Large diameter part 2b Small diameter part 3 Injection hole 3a Injection port 4, 5 Induction heating coil 6 Copper pipe 7 Heat resistant member 9 Transistor inverter 10 Control device 11, 12 Mold 13 Cavity

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H05B 6/44 H05B 6/44 Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat II (reference) H05B 6/44 H05B 6/44

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】ノズル本体の噴射孔内に流入する流動体
を、噴射孔の先端に設けた噴射口から所定圧力で噴射す
る流動体噴射用ノズル装置において、前記ノズル本体に
トランジスタインバータに接続された誘導加熱コイルを
配設すると共に、該誘導加熱コイルによる磁束密度を噴
射孔内を流動する流動体の流動方向に沿って異なる如く
設定したことを特徴とする流動体噴射用ノズル装置。
1. A fluid ejecting nozzle device for ejecting a fluid flowing into an injection hole of a nozzle body at a predetermined pressure from an injection port provided at a tip of the injection hole, wherein the nozzle body is connected to a transistor inverter. Wherein the induction heating coil is disposed and the magnetic flux density of the induction heating coil is set to be different along the flow direction of the fluid flowing in the injection hole.
【請求項2】前記誘導加熱コイルは、流動体の流動方向
に沿って複数配置されることにより、前記磁束密度が異
なる如く設定されていることを特徴とする請求項1記載
の流動体噴射用ノズル装置。
2. The fluid injection device according to claim 1, wherein a plurality of the induction heating coils are arranged along a flowing direction of the fluid so that the magnetic flux densities are set differently. Nozzle device.
【請求項3】前記誘導加熱コイルは、流動体の流動方向
に沿ってその巻回ピッチを変化させることにより、前記
磁束密度が異なる如く設定されていることを特徴とする
請求項1記載の流動体噴射用ノズル装置。
3. The flow according to claim 1, wherein the magnetic flux density is set to be different by changing a winding pitch of the induction heating coil along a flowing direction of the fluid. Nozzle device for body injection.
JP2000149226A 2000-05-22 2000-05-22 Nozzle device for fluid injection Expired - Fee Related JP4437356B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149226A JP4437356B2 (en) 2000-05-22 2000-05-22 Nozzle device for fluid injection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149226A JP4437356B2 (en) 2000-05-22 2000-05-22 Nozzle device for fluid injection

Publications (2)

Publication Number Publication Date
JP2001328139A true JP2001328139A (en) 2001-11-27
JP4437356B2 JP4437356B2 (en) 2010-03-24

Family

ID=18655114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149226A Expired - Fee Related JP4437356B2 (en) 2000-05-22 2000-05-22 Nozzle device for fluid injection

Country Status (1)

Country Link
JP (1) JP4437356B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065915A1 (en) * 2004-01-07 2005-07-21 Sumitomo Heavy Industries, Ltd. Forming machine and its temperature controlling method
JP7403753B2 (en) 2019-12-09 2023-12-25 表面機能デザイン研究所合同会社 Die-casting equipment and method for manufacturing die-cast products

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102785339B (en) * 2012-08-11 2014-11-12 天津熔之宝科技有限公司 Magnetic fusion heating system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005065915A1 (en) * 2004-01-07 2005-07-21 Sumitomo Heavy Industries, Ltd. Forming machine and its temperature controlling method
KR100782309B1 (en) * 2004-01-07 2007-12-06 스미도모쥬기가이고교 가부시키가이샤 Forming machine and its temperature controlling method
JP7403753B2 (en) 2019-12-09 2023-12-25 表面機能デザイン研究所合同会社 Die-casting equipment and method for manufacturing die-cast products

Also Published As

Publication number Publication date
JP4437356B2 (en) 2010-03-24

Similar Documents

Publication Publication Date Title
US7034264B2 (en) Heating systems and methods utilizing high frequency harmonics
KR100542728B1 (en) Method and mold for molding of plastic articles
US7718935B2 (en) Apparatus and method for inductive heating of a material in a channel
EP1389517B1 (en) Method of controlling a shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines
KR100734948B1 (en) Non-contact high-frequency induction heating apparatus for plastic mold and method using the same
US20100025391A1 (en) Composite inductive heating assembly and method of heating and manufacture
JPH0433253B1 (en)
JP2009528190A (en) Non-contact high frequency induction heating device for plastic mold and injection nozzle
JP2010501107A (en) Temperature cycling apparatus and method
JP2005517265A (en) Method and apparatus for controlling the temperature of an object
US20130015178A1 (en) High frequency electromagnetic induction heating device and method for using the same to heat surface of mold
JP4437356B2 (en) Nozzle device for fluid injection
JP2854459B2 (en) Intermittent heating device for plasticized fluid in injection molding etc.
KR100844069B1 (en) High-frequency induction resin injection apparatus for plastic mold
JPH06238715A (en) Probe for injection mold and runnerless injection molding device
JP2010500737A (en) Induction heating apparatus and method
JP4001557B2 (en) Electromagnetic expansion coil
JP2002003933A (en) Hardening apparatus and hardening method
KR102489311B1 (en) High frequency heating apparatus
KR100734949B1 (en) Non-contact high-frequency induction resin injection apparatus for plastic mold
KR20230097506A (en) Induction tube heater
JP2005259558A (en) Surface heating inductor in bottomed hole
JP2005271438A (en) Heating medium supply method at time of secondary molding of resin molded product and device
JPH1076555A (en) Method for injection molding of plastic molded article with partly thin part and mold used for injection molding
KR20090029318A (en) Quick heating and quick cooling for mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130115

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140115

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees