JP2001327096A - Charging control circuit of lithium ion battery - Google Patents

Charging control circuit of lithium ion battery

Info

Publication number
JP2001327096A
JP2001327096A JP2000143173A JP2000143173A JP2001327096A JP 2001327096 A JP2001327096 A JP 2001327096A JP 2000143173 A JP2000143173 A JP 2000143173A JP 2000143173 A JP2000143173 A JP 2000143173A JP 2001327096 A JP2001327096 A JP 2001327096A
Authority
JP
Japan
Prior art keywords
voltage
battery
charging
control
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000143173A
Other languages
Japanese (ja)
Inventor
Tomomi Sano
佐野  友美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2000143173A priority Critical patent/JP2001327096A/en
Publication of JP2001327096A publication Critical patent/JP2001327096A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PROBLEM TO BE SOLVED: To ensure a voltage required for control using a simple and inexpensive arrangement, even when the battery voltage is low. SOLUTION: When a PWM control AC/DC converter is employed for charging a lithium ion battery, the voltage of a battery 9 to be charged may be as low as 2 V. Since the secondary voltage is also close to the battery voltage in this case and charge control is disabled, a current control element (FET) 2 is connected in series between the output end Tv of a secondary rectifying/ smoothing section 1 and the battery 9, and its control (gate) terminal is controlled so as to ensure a voltage required for control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、各種携帯機器用
電源として大量に使用されてきているリチウムイオン電
池の充電制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge control circuit for a lithium ion battery which has been widely used as a power source for various portable devices.

【0002】[0002]

【従来の技術】リチウムイオン電池の充電制御は、充電
電流,電圧を監視して行なわれる。過電圧の印加は電池
を劣化させるため、充電時の電圧は満充電時の電圧が
4.2Vの電池で4.2V±30mV(変動率にすると
±0.7%)と、高精度の電圧管理が要求される。電池
を1本で使用する場合には、4.1Vまたは4.2Vと
なる。
2. Description of the Related Art A charge control of a lithium ion battery is performed by monitoring a charge current and a voltage. Since the application of overvoltage deteriorates the battery, the voltage at the time of charging is 4.2V ± 30mV (± 0.7% in terms of the variation rate) of the battery at the time of full charge of 4.2V, and the voltage management with high accuracy. Is required. When one battery is used, the voltage is 4.1 V or 4.2 V.

【0003】図5に電池充電用電源としての一般的なA
C/DCコンバータを示す。これは、AC電源24を両
波整流し、平滑した電圧を高周波でスイッチングし、ト
ランス25を介して二次側に誘起する電圧を整流,平滑
して電池充電用とするものである。ACライン側と二次
側の充電制御回路部22は、トランス25およびホトカ
プラ23により絶縁されている。二次側の電圧制御は、
ホトカプラ23を通して一次側の制御器21に伝えるこ
とにより行なう。一次側の制御器21はホトカプラ23
から得られる光量に応じ、高周波でスイッチングしてい
るパルス幅を変化(PWM制御:電流の通電期間を変
化)させて二次側の電圧を制御する。つまり、二次側か
らの指令で発光量が多い時には出力電圧を低く、少ない
時には出力電圧を高くするように一次側で制御する。起
動時は二次側の制御電源は0Vで、ホトカプラ23によ
るフィードバックは無い(発光しない)ため、出力電圧
を高める指令となる。その結果、二次側の制御器22は
動作電圧を得て制御を実行できるようになる。
FIG. 5 shows a general A as a power source for charging a battery.
3 shows a C / DC converter. This is to double-wave rectify the AC power supply 24, switch the smoothed voltage at a high frequency, and rectify and smooth the voltage induced on the secondary side via the transformer 25 for battery charging. The charging control circuit section 22 on the AC line side and the secondary side is insulated by the transformer 25 and the photocoupler 23. The secondary side voltage control is
This is performed by transmitting the signal to the controller 21 on the primary side through the photocoupler 23. The controller 21 on the primary side is a photocoupler 23
The secondary-side voltage is controlled by changing the pulse width of high-frequency switching (PWM control: changing the current supply period) according to the amount of light obtained from. That is, the primary side controls so that the output voltage is low when the light emission amount is large and the output voltage is high when the light emission amount is small according to a command from the secondary side. At the time of start-up, the control power supply on the secondary side is 0 V, and there is no feedback (no light emission) by the photocoupler 23, so the command is to increase the output voltage. As a result, the controller 22 on the secondary side can obtain the operating voltage and execute the control.

【0004】図5の構成で、二次側の制御器22の電源
は、二次側巻線からとるのが一番自然であるが、充電す
る電池の電圧に応じて二次巻線から得られる電圧は、電
池電圧に応じて変動する。つまり、電池電圧が2V程度
と低い時には、二次巻線から得られる電圧も同様の2V
+αとなるため、制御器が必要とする電圧(4〜6V)
をどのように確保するかが課題となっている。すなわ
ち、電池への充電時には二次側の電圧は電池電圧よりも
多少高い(=電池電圧+0.3V〜0.5V:逆阻止ダ
イオードDの順方向電圧降下+電流検出用抵抗Rでの電
圧降下)程度である。特に放電し過ぎた電池を充電しよ
うとすると、電池電圧は最低で2V程度までを考慮して
おく必要がある。このような電圧の低い電池を充電する
場合、トランスの二次側巻線の電圧を整流,平滑した電
圧(以下、充電電圧とも言う)は2.3V(=2V(電
池電圧)+0.3V)程度しか発生しない。
In the configuration shown in FIG. 5, it is most natural that the power of the controller 22 on the secondary side is obtained from the secondary side winding, but it is obtained from the secondary winding in accordance with the voltage of the battery to be charged. The applied voltage varies according to the battery voltage. That is, when the battery voltage is as low as about 2V, the voltage obtained from the secondary winding is also 2V.
+ Α, the voltage required by the controller (4-6V)
The challenge is how to secure these. That is, when charging the battery, the voltage on the secondary side is slightly higher than the battery voltage (= battery voltage + 0.3 V to 0.5 V: forward voltage drop of reverse blocking diode D + voltage drop at current detecting resistor R). ). In particular, when attempting to charge an excessively discharged battery, it is necessary to consider a battery voltage of at least about 2 V. When charging such a low-voltage battery, a voltage obtained by rectifying and smoothing the voltage of the secondary winding of the transformer (hereinafter also referred to as a charging voltage) is 2.3 V (= 2 V (battery voltage) +0.3 V). Only occurs to the extent.

【0005】よって、充電電圧はこの2.3Vになる
が、この電圧を制御器の電源電圧として使用するには
(電圧を安定化するための電圧ロス分も必要)電圧が低
すぎる。低電圧動作を追求する目的ならば良いかも知れ
ないが、通常のアナログ,ディジタル混在の制御器には
3〜5Vの安定化した電圧が必要である。このことか
ら、安定化するために1Vのマージンを見込むと、最低
で4〜6Vの電圧が必要になる。しかし、充電する電池
が1本の構成で、その電池電圧が2V程度の場合には充
電電圧は上記のように2.3V程度のため、制御器に必
要な電圧(4〜6V)を確保することができない。
[0005] Therefore, the charging voltage becomes 2.3 V, but the voltage is too low to use this voltage as the power supply voltage of the controller (a voltage loss for stabilizing the voltage is also required). Although it may be good for the purpose of pursuing low-voltage operation, a normal analog / digital mixed controller requires a stabilized voltage of 3 to 5V. For this reason, if a margin of 1 V is expected for stabilization, a voltage of at least 4 to 6 V is required. However, when the battery to be charged is a single battery and the battery voltage is about 2 V, the charging voltage is about 2.3 V as described above, so that the voltage (4 to 6 V) necessary for the controller is secured. Can not do.

【0006】その対策として、次のような方法がある。
制御用の電源を電池充電用電源から取るのではなく、別
のルートから安定した電圧を確保する図6のような構成
が考えられる。これは、二次側の電圧制御を一次側で実
施するのではなく、二次側の電圧を整流,平滑したDC
電圧をベースにステップダウン構成のスイッチングレギ
ュレータ32を設け、制御器用の電源には二次側の電圧
を整流,平滑したDC電圧をするか、別巻線を設けてそ
の電圧を使用するようにする。このようにすると、一次
側の制御器は特に必要無くなり、商用電源周波数での電
源トランス構成も考えられるが、トランスが大きく重い
ことから、この部分も高周波スイッチング方式が必須で
ある。その結果、二次側に類似の回路32を準備するこ
とになり、部品数の増大に伴うコストアップや回路サイ
ズの増大等の問題が発生する。なお、33は充電制御
器、34はリチウムイオン電池を示す。
As a countermeasure, there is the following method.
A configuration as shown in FIG. 6 is conceivable in which a control power source is not obtained from a battery charging power source but a stable voltage is secured from another route. This is because the secondary side voltage control is not performed on the primary side, but the secondary side voltage is rectified and smoothed by DC.
A switching regulator 32 having a step-down configuration is provided based on the voltage, and a DC voltage obtained by rectifying and smoothing the voltage on the secondary side or a separate winding is provided as a power supply for the controller, and the voltage is used. In this case, a controller on the primary side is not particularly required, and a power transformer configuration at a commercial power frequency can be considered. However, since the transformer is large and heavy, a high-frequency switching system is indispensable for this portion as well. As a result, a similar circuit 32 is prepared on the secondary side, causing problems such as an increase in cost and an increase in circuit size due to an increase in the number of components. 33 indicates a charge controller, and 34 indicates a lithium ion battery.

【0007】[0007]

【発明が解決しようとする課題】したがって、この発明
の課題は、電池電圧が低い場合でも、簡単かつ安価な構
成で制御のために必要な電圧を確保し得るようにするこ
とにある。
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a simple and inexpensive configuration capable of securing a voltage required for control even when a battery voltage is low.

【0008】[0008]

【課題を解決するための手段】このような課題を解決す
べく、請求項1の発明では、AC/DCコンバータの二
次側のDC電圧をリチウムイオン電池の充電用電源とし
て使用し、充電制御シーケンスに応じた充電電流,電圧
を得るためにこれらの値を検出し、それぞれが目標値と
なるようDC電圧を制御する電流制御ループおよび電圧
制御ループを備え、その出力を切り替えてAC側のパル
ス幅変調制御器にフィードバックしてパルス幅を変化さ
せるリチウムイオン電池の充電制御回路において、前記
充電用電源の二次側の電圧を整流平滑したDC電圧を一
定にするための電流制御素子を前記DC電圧と電池との
間に接続し、その電流制御素子のコントロール端子へD
C電圧に接続された電圧検出用分圧回路からの電圧と基
準電圧とを比較した比較結果を入力することにより、前
記DC電圧を一定にすることを特徴とする。この請求項
1の発明においては、前記電流制御素子を強制的にオ
ン,オフさせる信号をそのコントロール端子に与えるこ
とにより、電池への充電電流を遮断可能にすることがで
きる(請求項2の発明)。
In order to solve such a problem, according to the first aspect of the present invention, a DC voltage on the secondary side of an AC / DC converter is used as a power supply for charging a lithium ion battery, and charge control is performed. A current control loop and a voltage control loop for detecting these values in order to obtain a charging current and a voltage according to a sequence and controlling a DC voltage so that each of them becomes a target value are provided. In a charge control circuit for a lithium ion battery which changes a pulse width by feeding back to a width modulation controller, a current control element for rectifying and smoothing a DC voltage obtained by rectifying and smoothing a secondary side voltage of the charging power source is provided by the DC Connect between the voltage and the battery, and connect the D terminal to the control terminal of the current control element.
The DC voltage is made constant by inputting a result of comparison between a voltage from a voltage detection voltage dividing circuit connected to the C voltage and a reference voltage. According to the first aspect of the present invention, a signal for forcibly turning on and off the current control element is given to its control terminal, so that charging current to the battery can be interrupted (the second aspect of the present invention). ).

【0009】[0009]

【発明の実施の形態】図1はこの発明の実施の形態を示
す構成図で、1は整流・平滑部、2は電流制御素子(P
チャンネルFET:PchFET)、3は電圧比較用増
幅器、4は電圧分圧回路、5は低電圧ロック回路(UV
LO)、6は基準電源(VREF)、7は制御用電源
(VREG)、8Aは電流制御用増幅器、8Bは電圧制
御用増幅器、9はリチウムイオン電池、10はホトカプ
ラをそれぞれ示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, in which 1 is a rectifying / smoothing section, and 2 is a current control element (P).
Channel FET: PchFET), 3 is a voltage comparison amplifier, 4 is a voltage divider, 5 is a low voltage lock circuit (UV
LO, 6 is a reference power supply (VREF), 7 is a control power supply (VREG), 8A is a current control amplifier, 8B is a voltage control amplifier, 9 is a lithium ion battery, and 10 is a photocoupler.

【0010】まず、電池の充電制御方式について図2を
参照して説明する。なお、同図(a)は図1の要部回路
図、同(b)はその動作説明図である。同図(a)に示
す電流制御用増幅器8Aおよび電圧制御用増幅器8Bに
より電流,電圧の検出値を指令値と比較し、それぞれの
出力電圧の低い方の電圧を選択してホトカプラ10の発
光ダイオードDへの通電電流が決まるように構成されて
いる。電池電圧の制御は同(b)に示すように、電池電
圧が低い状態では点線で示すように定電流制御を行な
い、電池電圧が一定(例えば、電池1本の4.2Vタイ
プであればその4.2V)になると定電圧充電に移行
し、その充電電流が一定値(例えば、定電流充電時の電
流の1/10)以下になった時に充電終了となる。
First, a battery charge control method will be described with reference to FIG. 1A is a circuit diagram of a main part of FIG. 1, and FIG. 1B is an explanatory diagram of its operation. The detected values of the current and the voltage are compared with the command values by the current control amplifier 8A and the voltage control amplifier 8B shown in FIG. 3A, and the lower one of the output voltages is selected to select the light emitting diode of the photocoupler 10. The configuration is such that the current flowing through D is determined. In the battery voltage control, as shown in (b), when the battery voltage is low, constant current control is performed as shown by a dotted line, and the battery voltage is constant (for example, if the battery voltage is a 4.2 V type with one battery, When the charging current reaches 4.2 V), the charging is shifted to the constant voltage charging. When the charging current becomes equal to or less than a constant value (for example, 1/10 of the current at the time of the constant current charging), the charging is completed.

【0011】定電流充電から定電圧充電へのモード切り
替えは、各制御における制御電圧の低い方の電圧にした
がってホトカプラ10の発光量が制御される構成となっ
ているため、この電圧の切り替わりを充電時の電池電圧
が4.2Vになったとき、電圧制御用増幅器8Bの出力
電圧が電流制御用増幅器8Aの出力電圧よりも低くなる
ように設定しておけば、各増幅器の出力が制御切替用ダ
イオードD1,D2のカソードに接続され、その制御切
替用ダイオードD1,D2のアノードが共通に発光ダイ
オードDのカソードに接続されていることにより、電流
制御出力よりも低い出力電圧となる電圧制御を自動的に
選択して実行することができる。
The mode switching from constant current charging to constant voltage charging is such that the amount of light emitted from the photocoupler 10 is controlled in accordance with the lower control voltage in each control. If the output voltage of the voltage control amplifier 8B is set to be lower than the output voltage of the current control amplifier 8A when the battery voltage at the time becomes 4.2 V, the output of each amplifier is used for control switching. Since the cathodes of the diodes D1 and D2 are connected to each other, and the anodes of the control switching diodes D1 and D2 are commonly connected to the cathode of the light emitting diode D, the voltage control to achieve an output voltage lower than the current control output is automatically performed. Can be selected and executed.

【0012】図1に示す電池9への充電電圧は、最終的
には電池電圧で決まるが、この電池電圧が2V程度と低
いときでも制御器の電源電圧4〜6Vを確保するため、
図1では整流・平滑部1の出力である充電電圧をPch
FET(2)のソースに接続し、その出力であるドレイ
ンを電池9の充電用回路に接続している。また、充電電
圧は制御器の電源に接続し、基準電圧(VREF)およ
び制御器の内部電源電圧(3〜5V:VREG)を作成
するための回路6,7にそれぞれ供給されている。ま
た、充電電圧を確保するための電圧検出用の抵抗分圧回
路4も接続されている。
The charging voltage for the battery 9 shown in FIG. 1 is ultimately determined by the battery voltage. Even when the battery voltage is as low as about 2 V, a power supply voltage of 4 to 6 V for the controller is required.
In FIG. 1, the charging voltage which is the output of the rectifying / smoothing unit 1 is represented by Pch
The drain is connected to the source of the FET (2), and the output is connected to the charging circuit of the battery 9. The charging voltage is connected to the power supply of the controller and supplied to circuits 6 and 7 for generating a reference voltage (VREF) and an internal power supply voltage of the controller (3 to 5 V: VREG). Further, a resistor voltage dividing circuit 4 for voltage detection for securing a charging voltage is also connected.

【0013】図1の動作について説明する。説明を分か
りやすくするため制御器の内部電源電圧を5V、そのた
めに外部より入力する電圧(充電電圧)は最低でも6V
(5V+1V)とする。電圧が2V程度と低い電池9が
接続され、AC電源がオンされたとすると、ACの一次
側の回路はフィードバック用の二次側のホトカプラが発
光していないため、フル電圧出力の指令として動作が開
始される。電池と直列に接続された制御用のPchFE
T(2)は、充電電圧が低く制御器用の電源が確保でき
ない状態でオフのままであるため、制御器の電源端子T
vに印加される電圧(=充電電圧)は上昇してくる。充
電電圧が制御器の動作を開始する電圧(4〜6よりも少
し低い電圧)になると、制御器内部の低電圧ロック回路
(UVLO)5のロックが外れ、回路6,7の出力がイ
ネーブル状態となる。
The operation of FIG. 1 will be described. The controller's internal power supply voltage is 5 V for easy understanding, and the externally input voltage (charging voltage) is at least 6 V
(5V + 1V). Assuming that the battery 9 having a low voltage of about 2 V is connected and the AC power supply is turned on, the operation of the primary circuit of the AC is performed as a full voltage output command because the secondary photocoupler for feedback does not emit light. Be started. PchFE for control connected in series with battery
T (2) remains off in a state where the charging voltage is low and the power supply for the controller cannot be secured, so that the power supply terminal T
The voltage applied to v (= charging voltage) increases. When the charging voltage reaches a voltage at which the operation of the controller starts (a voltage slightly lower than 4 to 6), the lock of the low voltage lock circuit (UVLO) 5 inside the controller is released, and the outputs of the circuits 6 and 7 are enabled. Becomes

【0014】これにより、各部の電圧制御が開始され、
充電電流検出用の抵抗Rの電源側端子電圧は上記のよう
に2.3V(2V+0.3V)程度の電圧になる。付加
された電圧比較用増幅器3は充電電圧を分圧した電圧と
基準電圧とを比較し、その比較出力でPchFET
(2)のゲート端子を制御することにより、充電電圧端
子Tvを6Vとなるように制御する。ここで、PchF
ET(2)のゲート電圧はソース電圧を6V、ドレイン
電圧が2.3Vになるような電位(5V位)に設定され
る。この制御により、電池電圧が制御器の電源より低い
場合でも、充電電圧端子(制御器への電源供給端子)T
vを6Vに確保することができる。一方、電池電圧が制
御器の動作最低電圧よりも高いとき(充電電圧は6V以
上)は、PchFET(2)のソース電圧が6Vを越え
ているため、より電流を流して電圧を低下させるべくゲ
ート電圧を0V近くまで下げてやるが、PchFET
(2)は十分にオン状態となり、単にオンしているスイ
ッチSWとして働くことになる。
Thus, the voltage control of each section is started,
The power-supply-side terminal voltage of the charging current detection resistor R is about 2.3 V (2 V + 0.3 V) as described above. The added voltage comparison amplifier 3 compares the voltage obtained by dividing the charging voltage with the reference voltage, and outputs the PchFET
By controlling the gate terminal of (2), the charging voltage terminal Tv is controlled to be 6V. Here, PchF
The gate voltage of ET (2) is set to a potential (about 5V) such that the source voltage becomes 6V and the drain voltage becomes 2.3V. With this control, even when the battery voltage is lower than the power supply of the controller, the charging voltage terminal (power supply terminal to the controller) T
v can be secured at 6V. On the other hand, when the battery voltage is higher than the minimum operation voltage of the controller (charging voltage is 6 V or more), since the source voltage of the PchFET (2) exceeds 6 V, the gate is required to reduce the voltage by flowing more current. I will lower the voltage to near 0V, but PchFET
(2) is sufficiently turned on, and simply functions as a switch SW that is turned on.

【0015】図3に充電電圧と電池電圧の変動の様子を
示す。電池電圧の低いときの充電電圧は、制御器が設定
した制御器の動作下限電圧となるようPchFETによ
り制御されるが、電池電圧設定電圧より高くなるとPc
hFETはオン状態となり、電池電圧より0.3V程度
(ダイオードD,電流検出用抵抗R)高い電圧で推移す
る。
FIG. 3 shows how the charging voltage and the battery voltage fluctuate. The charging voltage when the battery voltage is low is controlled by the PchFET so as to be the lower limit operation voltage of the controller set by the controller.
The hFET is turned on, and transitions at a voltage higher than the battery voltage by about 0.3 V (diode D, current detection resistor R).

【0016】付加されたPchFETは外部からの指令
によりオフすることが可能であり、電池への電流を切る
場合や電池電圧を測定したい時にこの機能を利用するこ
とができる。図4にその場合の例を示す。例えば、同回
路のオン/オフコントロール端子Tcを「ハイレベル」
とすることにより、充電電圧を分圧検出していた電圧が
NchFET(11)により短絡され0Vとなるため、
PchFETをオフする方向(ゲート電圧をソース電圧
に近づける)に制御する結果、PchFETがオフとな
る。このように、充電電源を切り離す機能も兼ねてい
る。図3にPchFETがオフしたときの電圧を示す。
SW11をオフする時には制御器は電流,電圧制御をオ
フとしているため、充電電圧は一次側で設定した最大デ
ューティで動作し、二次側の電圧も最大まで上昇するこ
とになる。
The added PchFET can be turned off by an external command, and this function can be used when cutting off the current to the battery or measuring the battery voltage. FIG. 4 shows an example in that case. For example, the on / off control terminal Tc of the circuit is set to “high level”.
As a result, the voltage at which the charging voltage was divided is short-circuited by the NchFET (11) and becomes 0 V,
As a result of controlling the PchFET to be turned off (to bring the gate voltage closer to the source voltage), the PchFET is turned off. In this way, it also has a function of disconnecting the charging power supply. FIG. 3 shows a voltage when the PchFET is turned off.
When the SW 11 is turned off, the controller turns off the current and voltage control, so that the charging voltage operates at the maximum duty set on the primary side, and the voltage on the secondary side also increases to the maximum.

【0017】[0017]

【発明の効果】この発明によれば、二次側の整流,平滑
出力に対し直列に電流制御素子(FET)を接続し、こ
のFETを電流制御するだけの簡単かつ安価な構成によ
り、各種制御のための電圧を確保することが可能となる
利点が得られる。
According to the present invention, a current control element (FET) is connected in series to the rectification and smoothing output on the secondary side, and various controls can be performed by a simple and inexpensive configuration that only controls the current of the FET. The advantage that it is possible to secure the voltage for the above is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1の実施の形態を示す構成図であ
る。
FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】図1における充電方式を説明するための説明図
である。
FIG. 2 is an explanatory diagram for explaining a charging method in FIG. 1;

【図3】図1における充電電圧と電池電圧との関係説明
図である。
FIG. 3 is an explanatory diagram showing a relationship between a charging voltage and a battery voltage in FIG. 1;

【図4】この発明の第2の実施の形態を示す構成図であ
る。
FIG. 4 is a configuration diagram showing a second embodiment of the present invention.

【図5】電池充電用電源としてのAC/DCコンバータ
を示す構成図である。
FIG. 5 is a configuration diagram showing an AC / DC converter as a battery charging power supply.

【図6】電池充電用電源の別の例を示す構成図である。FIG. 6 is a configuration diagram showing another example of a battery charging power supply.

【符号の説明】[Explanation of symbols]

1…整流・平滑部、2…電流制御素子(PチャンネルF
ET)、3…電圧比較用増幅器、4…電圧分圧回路、5
…低電圧ロック回路(UVLO)、6…基準電源(VR
EF)、7…制御用電源(VREG)8A…電流制御用
増幅器、8B…電圧制御用増幅器、9…リチウムイオン
電池、10…フォトカプラ、11…スイッチ(Nチャン
ネルFET)。
1: rectifying / smoothing section 2: current control element (P channel F
ET), 3 ... voltage comparison amplifier, 4 ... voltage dividing circuit, 5
... Low voltage lock circuit (UVLO), 6 ... Reference power supply (VR)
EF), 7: control power supply (VREG) 8A: current control amplifier, 8B: voltage control amplifier, 9: lithium ion battery, 10: photocoupler, 11: switch (N-channel FET).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02M 3/28 H02M 3/28 K ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H02M 3/28 H02M 3/28 K

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 AC/DCコンバータの二次側のDC電
圧をリチウムイオン電池の充電用電源として使用し、充
電制御シーケンスに応じた充電電流,電圧を得るために
これらの値を検出し、それぞれが目標値となるようDC
電圧を制御する電流制御ループおよび電圧制御ループを
備え、その出力を切り替えてAC側のパルス幅変調制御
器にフィードバックしてパルス幅を変化させるリチウム
イオン電池の充電制御回路において、 前記充電用電源の二次側の電圧を整流平滑したDC電圧
を一定にするための電流制御素子を前記DC電圧と電池
との間に接続し、その電流制御素子のコントロール端子
へDC電圧に接続された電圧検出用分圧回路からの電圧
と基準電圧とを比較した比較結果を入力することによ
り、前記DC電圧を一定にすることを特徴とするリチウ
ムイオン電池の充電制御回路。
1. A DC voltage on a secondary side of an AC / DC converter is used as a power supply for charging a lithium ion battery, and these values are detected to obtain a charging current and a voltage according to a charging control sequence. DC to reach the target value
A charge control circuit for a lithium-ion battery, comprising: a current control loop for controlling voltage; and a voltage control loop, the output of which is switched and fed back to a pulse width modulation controller on the AC side to change a pulse width. A current control element for making a DC voltage obtained by rectifying and smoothing the voltage on the secondary side constant between the DC voltage and the battery, and a control terminal of the current control element for detecting a voltage connected to the DC voltage. A charge control circuit for a lithium ion battery, wherein the DC voltage is made constant by inputting a comparison result obtained by comparing a voltage from a voltage dividing circuit with a reference voltage.
【請求項2】 前記電流制御素子を強制的にオン,オフ
させる信号をそのコントロール端子に与えることによ
り、電池への充電電流を遮断可能にしたことを特徴とす
る請求項1に記載のリチウムイオン電池の充電制御回
路。
2. The lithium ion according to claim 1, wherein a signal for forcibly turning on and off the current control element is given to a control terminal thereof, so that charging current to the battery can be cut off. Battery charge control circuit.
JP2000143173A 2000-05-16 2000-05-16 Charging control circuit of lithium ion battery Pending JP2001327096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143173A JP2001327096A (en) 2000-05-16 2000-05-16 Charging control circuit of lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143173A JP2001327096A (en) 2000-05-16 2000-05-16 Charging control circuit of lithium ion battery

Publications (1)

Publication Number Publication Date
JP2001327096A true JP2001327096A (en) 2001-11-22

Family

ID=18650028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143173A Pending JP2001327096A (en) 2000-05-16 2000-05-16 Charging control circuit of lithium ion battery

Country Status (1)

Country Link
JP (1) JP2001327096A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283969A (en) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp Charging device and lighting device
CN102097846A (en) * 2011-03-15 2011-06-15 网拓(上海)通信技术有限公司 Nickel-metal hydride battery pack charging device
CN107809175A (en) * 2016-09-09 2018-03-16 苏州力生美半导体有限公司 Switching Power Supply, digital voltage power and numerical control adjustable reference source chip

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283969A (en) * 2009-06-03 2010-12-16 Mitsubishi Electric Corp Charging device and lighting device
CN102097846A (en) * 2011-03-15 2011-06-15 网拓(上海)通信技术有限公司 Nickel-metal hydride battery pack charging device
CN107809175A (en) * 2016-09-09 2018-03-16 苏州力生美半导体有限公司 Switching Power Supply, digital voltage power and numerical control adjustable reference source chip
CN107809175B (en) * 2016-09-09 2024-01-30 苏州力生美半导体有限公司 Switching power supply, numerical control voltage source and numerical control adjustable reference source chip

Similar Documents

Publication Publication Date Title
US6597221B2 (en) Power converter circuit and method for controlling
US7221128B2 (en) Converter with start-up circuit
US7911081B2 (en) Power supply control method and structure therefor
US6879501B2 (en) Switching power supply
US9685875B2 (en) Switching power supply
US20120155123A1 (en) Reverse shunt regulator
US20050078492A1 (en) Switching power supply
US20040145924A1 (en) Pulse width modulation signal generator and switching mode power supply including the same
EP3868012B1 (en) Bias power regulator circuit for isolated converters with a wide output voltage range
EP0794607B1 (en) Switching power source apparatus
US6233165B1 (en) Power converter having a low voltage regulator powered from a high voltage source
JPS6013469A (en) Dc/dc converter
US6912140B2 (en) Switching power supply
US6532159B2 (en) Switching power supply unit
US8437151B2 (en) Self-excited switching power supply circuit
JP4214484B2 (en) DC power supply
JP2001327096A (en) Charging control circuit of lithium ion battery
JP2005176534A (en) Charging control circuit for lithium ion battery
JP2001327095A (en) Charging control circuit for lithium ion battery
JP2001037219A (en) Power source unit and its control method
JP2004328948A (en) Switching power circuit and switching regulator equipped with the switching power circuit
JPH0654525A (en) Dc/dc converter
JPH10323031A (en) Power unit
JP2000102248A (en) Multiple output switching power supply
JP3113710B2 (en) Switching regulator