JP2001324436A - Rotational viscometer - Google Patents

Rotational viscometer

Info

Publication number
JP2001324436A
JP2001324436A JP2000140178A JP2000140178A JP2001324436A JP 2001324436 A JP2001324436 A JP 2001324436A JP 2000140178 A JP2000140178 A JP 2000140178A JP 2000140178 A JP2000140178 A JP 2000140178A JP 2001324436 A JP2001324436 A JP 2001324436A
Authority
JP
Japan
Prior art keywords
driven
magnet
rotating shaft
rotational viscometer
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000140178A
Other languages
Japanese (ja)
Other versions
JP3481551B2 (en
Inventor
Yasuhiko Saito
泰彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKI SANGYO KK
Original Assignee
TOKI SANGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKI SANGYO KK filed Critical TOKI SANGYO KK
Priority to JP2000140178A priority Critical patent/JP3481551B2/en
Publication of JP2001324436A publication Critical patent/JP2001324436A/en
Application granted granted Critical
Publication of JP3481551B2 publication Critical patent/JP3481551B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly

Abstract

PROBLEM TO BE SOLVED: To provide a rotational viscometer which can support a driven rotary shaft, without friction and can be constituted inexpensively. SOLUTION: Magnetic shafts 80 and 90 are set between a driving rotary shaft 52 and the driven rotary shaft 60. The magnetic shafts 80 and 90 are constituted of external permanent magnets 82 and 92 fixed to the driving rotary shaft 52 and inside permanent magnets 84 and 94 fixed to the driven rotary shaft 60 respectively. The outside permanent magnets 82 and 92 and the inside permanent magnets 84 and 94 are arranged coaxially via an appropriate interval, so as to always generate a magnetic repulsive force in the diametrical direction.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、回転粘度計に関す
る。
The present invention relates to a rotational viscometer.

【0002】[0002]

【従来の技術】従来、液状物質の粘性を回転法で測定す
る回転粘度計として、駆動装置によって回転する駆動側
回転軸と、被測定流体に浸漬されるロータが連結された
従動側回転軸と、駆動側回転軸と従動側回転軸とを結合
する捩り弾性部材と、を備え、捩り弾性部材の捩り角度
を測定し、その捩り角度から粘性トルクに変換して粘度
を測定するものが知られている。このような回転粘度計
においては、従動回転軸を摩擦なくラジアル方向に調芯
(センタリング)して軸支することが、測定精度向上の
ために欠かすことができない重要な問題である。
2. Description of the Related Art Conventionally, as a rotational viscometer for measuring the viscosity of a liquid substance by a rotational method, a drive-side rotary shaft rotated by a drive device and a driven-side rotary shaft connected to a rotor immersed in a fluid to be measured. And a torsion elastic member that couples the drive side rotation shaft and the driven side rotation shaft, and measures the torsion angle of the torsion elastic member, and converts the torsion angle into a viscous torque to measure the viscosity. ing. In such a rotary viscometer, it is an important problem that the driven rotary shaft is axially supported (centered) without friction in the radial direction and is indispensable for improving measurement accuracy.

【0003】例えば、第1の例として特許第27465
66号公報では、従動側回転軸である指針支持筒にバラ
ンスウエイトを取り付けており、このバランスウエイト
の作用により捩り弾性部材であるピアノ線にスラスト方
向のテンションをかけて、ピアノ線の直線を保ち、指針
支持筒の軸芯を安定させることが記載されている。
For example, as a first example, Japanese Patent No. 27465
In Japanese Patent Publication No. 66, a balance weight is attached to a pointer support cylinder which is a driven side rotating shaft, and a tension in a thrust direction is applied to a piano wire which is a torsion elastic member by the action of the balance weight to maintain a straight line of the piano wire. It describes that the axis of the pointer support cylinder is stabilized.

【0004】第2の例として特開平8−5541号公報
には、駆動側回転軸と従動側回転軸とをそれぞれエアベ
アリングを介してケースに非接触状態で軸支することが
記載されている。
As a second example, Japanese Patent Application Laid-Open No. 8-5541 describes that a drive-side rotary shaft and a driven-side rotary shaft are supported by a case via air bearings in a non-contact state. .

【0005】第3の例として特公昭45−26840号
公報には、捩り弾性部材によって懸架される従動側回転
軸となる金属製吸引用枠型固定部と、支持固定部とにそ
れぞれ永久磁石を取り付け、それぞれの磁石間に発生す
る吸引力により、金属製吸引用枠型固定部を下方に吸引
し、捩り弾性部材に下方への張力を加えて、調軸を行う
ことが記載されている。
[0005] As a third example, Japanese Patent Publication No. 45-26840 discloses that a permanent magnet is fixed to a metal suction frame-type fixing portion serving as a driven-side rotating shaft suspended by a torsion elastic member, and a supporting fixing portion. It is described that the metal frame-type fixing portion made of metal is sucked downward by a suction force generated between the respective magnets and the torsion elastic member is applied with a downward tension to perform axis adjustment.

【0006】第4の例として特許第2749552号公
報には、出力軸の上端をピポット軸受けにより芯出し
し、出力軸に可動側環状マグネットを固定し、ハウジン
グ側に固定側環状マグネットを固定し、これらのマグネ
ットとの間の磁気吸着力により、出力軸の重量を支える
垂直を働かせることが記載されている。
As a fourth example, Japanese Patent No. 2749552 discloses that the upper end of an output shaft is centered by a pivot bearing, a movable annular magnet is fixed to the output shaft, and a fixed annular magnet is fixed to the housing. It is described that a vertical force for supporting the weight of the output shaft is exerted by a magnetic attraction force between these magnets.

【0007】上記以外に特開平1−53411号公報で
は、磁気軸受を用いた例があり、特許第2788222
号公報では、固定磁石で捩り弾性部材を吸引して軸方向
にテンションを与える構成が記載されている。
In addition to the above, JP-A-1-53411 discloses an example in which a magnetic bearing is used.
In the publication, a configuration is described in which a torsional elastic member is attracted by a fixed magnet to apply tension in the axial direction.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上記従
来例には次のような問題点がある。
However, the above conventional example has the following problems.

【0009】前記第1の例のように、バランスウエイト
を用いた場合には、その効果が不十分で、従動側回転軸
を調芯することができず、実用化は困難である。
When the balance weight is used as in the first example, the effect is insufficient, and the driven-side rotating shaft cannot be aligned, and it is difficult to put it to practical use.

【0010】また、第2の例のように、エアベアリング
を用いた場合には、十分な機能・効果が期待できるもの
の装置が複雑、大型化し、高価となるという問題があ
る。従って、高額な高級粘度計には適用できても、一般
に広く使用される普及機には適用が困難である。
[0010] Further, when an air bearing is used as in the second example, there is a problem that the device is complicated, large, and expensive, although sufficient functions and effects can be expected. Therefore, even if it can be applied to an expensive high-class viscometer, it is difficult to apply it to a widely used general-purpose machine.

【0011】また、第3の例、第4の例及びその他の例
では、磁力の吸引力を利用しているが、この方式の場
合、磁力は距離の2乗に反比例するため、僅かな偏心に
対しては調芯力が高いものの、偏心が大きくなり大きな
調芯力を必要とする状態では、吸引による磁力が弱くな
るという根本的な弱点がある。
In the third, fourth, and other examples, the magnetic attraction is used. In this method, however, the magnetic force is inversely proportional to the square of the distance, so that a slight eccentricity occurs. However, in a state where the eccentricity is large and a large centering force is required, there is a fundamental weakness that the magnetic force due to the suction is weakened.

【0012】よって、高価でない普及クラスの粘度計に
おいて、従動側回転軸を摩擦なく軸支することができる
回転粘度計は、実用化されていないのが現状である。
Therefore, among viscometers of popular and inexpensive class, rotational viscometers capable of supporting the driven rotary shaft without friction have not been put to practical use at present.

【0013】本発明はかかる課題に鑑みなされたもの
で、従動側回転軸を摩擦なく軸支することができ、安価
に構成することができる回転粘度計を提供することをそ
の目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a rotational viscometer capable of supporting a driven-side rotating shaft without friction and having a low cost.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に請求項1記載の発明は、駆動装置によって回転する駆
動側回転軸と、駆動側回転軸に捩り弾性部材によって同
軸状に連結され、被測定流体からのトルクを受ける従動
側回転軸と、前記捩り弾性部材の捩り角度を検出する検
出部と、を備え該捩り角度から被測定流体の粘度を検出
する回転粘度計において、従動側回転軸を少なくとも1
つの磁気軸受で軸支し、該磁気軸受を、従動側回転軸に
固定された従動側磁石と、該従動側磁石に対向する対向
磁石とから構成し、該従動側磁石及び対向磁石とを同軸
状に適当な間隔を設けて常時、径方向に磁気反発力を発
生しうるように配置することを特徴とする。径方向に磁
気反発力を発生する磁気軸受を用いることにより、偏心
が生じた場合に、強い反発による調芯力が得られ、偏心
からの強い回復力が得られる。これに対して、径方向の
磁気吸引力を利用する磁気軸受を使用したと仮定する
と、偏心が生じた場合、または磁気軸受を構成する磁石
の磁化が周方向にわたって均一でなく吸引力が弱い部分
が互いに離反するようにして偏心が生じた場合に、軸心
から離反すればするだけ離反した部分の吸引力が弱くな
るため、軸心への復帰が困難となる。本発明の磁気軸受
では、径方向の反発力を利用しているため、軸心から離
反すればするだけ、接近した部分での磁気反発力が強く
なり、偏心からの強い回復力が得られることになる。対
向磁石と従動側磁石との間隔を十分小さくすることで、
調芯状態でも十分な磁気反発力を発生させることができ
る。
According to a first aspect of the present invention, a driving-side rotating shaft rotated by a driving device is coaxially connected to the driving-side rotating shaft by a torsion elastic member. A rotational viscometer for detecting the viscosity of the fluid to be measured from the torsion angle, comprising: a driven rotation shaft that receives a torque from the fluid to be measured; and a detector that detects the torsion angle of the torsion elastic member. At least one axis
The magnetic bearing is composed of a driven magnet fixed to the driven rotating shaft and an opposing magnet facing the driven magnet, and the driven magnet and the opposing magnet are coaxial with each other. It is characterized in that it is arranged such that a magnetic repulsive force can always be generated in the radial direction with an appropriate interval provided in the shape. By using a magnetic bearing that generates a magnetic repulsive force in the radial direction, when eccentricity occurs, an alignment force due to strong repulsion is obtained, and a strong recovery force from eccentricity is obtained. On the other hand, assuming that a magnetic bearing utilizing a radial magnetic attraction force is used, if eccentricity occurs, or the magnetization of the magnet constituting the magnetic bearing is not uniform over the circumferential direction and the attraction force is weak. When the eccentricity occurs so as to separate from each other, if the eccentricity is separated from the axis, the suction force of the separated portion is weakened as much as possible, and it is difficult to return to the axis. In the magnetic bearing of the present invention, since the repulsion force in the radial direction is used, the magnetic repulsion force in the approaching portion increases as the distance from the shaft center increases, and a strong recovery force from eccentricity can be obtained. become. By making the space between the opposing magnet and the driven magnet sufficiently small,
Even in the centered state, a sufficient magnetic repulsion can be generated.

【0015】また、前記従動側磁石に対向する対向磁石
は、固定部に固定することも可能であるが、請求項2記
載の発明は、前記対向磁石を、駆動側回転軸に固定され
た駆動側磁石とすることを特徴とする。また、請求項3
記載の発明は、請求項1または2記載の前記磁気軸受の
従動側磁石と対向磁石との軸方向位置を予め所定量ずら
して配置することを特徴とする。これにより、軸方向の
磁気反発力を発生させることができ、従来のウエイトと
同様の効果を併せ持たせることができる。
Further, the opposed magnet facing the driven magnet can be fixed to a fixed portion. According to a second aspect of the present invention, the opposed magnet is fixed to a driving rotary shaft. It is characterized by a side magnet. Claim 3
The invention described in this aspect is characterized in that the axial positions of the driven magnet and the opposing magnet of the magnetic bearing according to claim 1 or 2 are shifted by a predetermined amount in advance. As a result, an axial magnetic repulsion can be generated, and the same effect as that of the conventional weight can be obtained.

【0016】また、請求項4記載の発明は、請求項3記
載の前記従動側磁石と対向磁石との軸方向位置を、従動
側回転軸を相対的に前記被測定流体の方向へ接近させる
ような軸方向の磁気反発力が発生するように、設定する
ことを特徴とする。これにより、従動側回転軸が被測定
流体から受ける軸方向の力に対して対向することがで
き、捩り弾性部材の座屈を防ぐことができる。
According to a fourth aspect of the present invention, the axial position of the driven magnet and the opposed magnet according to the third aspect is such that the driven-side rotary shaft is relatively close to the direction of the fluid to be measured. It is set so that a magnetic repulsive force in an axial direction is generated. Thereby, the driven-side rotation shaft can oppose the axial force received from the fluid to be measured, and buckling of the torsional elastic member can be prevented.

【0017】また、請求項5記載の発明は、請求項1な
いし4のいずれかに記載の前記捩り弾性部材と従動側磁
石との間に、捩り弾性部材を軸とする滑り軸受をさらに
設けることを特徴とする。捩り弾性部材と従動側磁石と
の間に滑り軸受を設けることにより、摩擦抵抗を小さく
抑えつつ、従動側磁石の径方向の変位をより確実に防ぐ
ことができる。
According to a fifth aspect of the present invention, a sliding bearing having a torsion elastic member as an axis is further provided between the torsion elastic member according to any one of the first to fourth aspects and the driven magnet. It is characterized by. By providing the sliding bearing between the torsion elastic member and the driven magnet, it is possible to more reliably prevent the driven magnet from being displaced in the radial direction while keeping the frictional resistance small.

【0018】請求項6記載の発明は、請求項5記載の前
記磁気軸受を、前記滑り軸受よりも従動側回転軸の捩り
弾性部材の連結点に接近して設ける。径方向の力が磁気
軸受により発生した場合、連結点から遠いところでは、
従動側回転軸を傾けるモーメントが大きくなるおそれが
あるが、連結点から離れた部分で滑り軸受を設けること
で、そのような大きなモーメントの発生を抑えることが
できる。
According to a sixth aspect of the present invention, the magnetic bearing according to the fifth aspect is provided closer to a connection point of the torsional elastic member of the driven-side rotary shaft than the slide bearing. If the radial force is generated by a magnetic bearing,
There is a possibility that the moment for tilting the driven-side rotary shaft may increase. However, by providing the sliding bearing at a portion away from the connection point, generation of such a large moment can be suppressed.

【0019】[0019]

【発明の実施の形態】以下、図面を用いて本発明の実施
の形態を説明する。図1は本発明の第1実施形態を表す
図である。図1において、この回転粘度計は大別して、
固定部10、駆動部12、従動部14及び捩り弾性部材
であるトーションワイヤ16とから構成される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a first embodiment of the present invention. In FIG. 1, this rotational viscometer is roughly divided into
It comprises a fixed part 10, a drive part 12, a driven part 14, and a torsion wire 16 which is a torsion elastic member.

【0020】固定部10は、上下に互いに平行に配設さ
れる上部基板22、中部基板24及び下部基板26を有
しており、互いの基板は、これらを連結する複数の連結
具28及び複数の柱30によって一体に連結されてい
る。図1では1つの柱30のみを表す。また、下部基板
26には、その下方に延びる円筒軸32が固定されてい
る。
The fixing portion 10 has an upper substrate 22, a middle substrate 24 and a lower substrate 26 which are vertically arranged in parallel with each other. Are integrally connected by a pillar 30. FIG. 1 shows only one pillar 30. Further, a cylindrical shaft 32 extending downward is fixed to the lower substrate 26.

【0021】駆動部12は、前記上部基板22によって
支持された減速機付きモータよりなる駆動装置40によ
って回転駆動されるものである。上部基板22を貫通し
て下方に突出した駆動装置40の出力軸40aが、駆動
部12の駆動軸組立体42に一体に連結されている。駆
動軸組立体42は簡略化して図示するが、全体として前
記中部基板24を貫通しており、該中部基板24に対し
てベアリング46により回転可能に軸支される。また、
駆動軸組立体42の下部には、上部円盤体48が固定さ
れており、上部円盤体48の下面には、120度間隔で
下方に延びる3個のスタッド50(図1では1個のみを
示す)が取り付けられている。各スタッド50は、後述
の下部円盤体66に形成された各円弧状の溝66aを貫
通して下方へ延びて、その下端が駆動側回転軸52の上
端部に取り付けられている。筒状の駆動側回転軸52の
下端は、底具56を介してベアリング54によって前記
円筒軸32に回転可能に軸支されている。以上のように
して駆動部12が構成される。
The drive section 12 is driven to rotate by a drive device 40 comprising a motor with a speed reducer supported by the upper substrate 22. An output shaft 40 a of the drive device 40 that penetrates through the upper substrate 22 and protrudes downward is integrally connected to a drive shaft assembly 42 of the drive unit 12. The drive shaft assembly 42 is illustrated in a simplified manner, but penetrates the central board 24 as a whole, and is rotatably supported by the bearing 46 with respect to the central board 24. Also,
An upper disk body 48 is fixed to a lower portion of the drive shaft assembly 42, and three studs 50 extending downward at intervals of 120 degrees (only one is shown in FIG. 1) are provided on a lower surface of the upper disk body 48. ) Is attached. Each stud 50 extends downward through an arc-shaped groove 66 a formed in a lower disk body 66 described later, and has a lower end attached to an upper end of the drive-side rotary shaft 52. The lower end of the cylindrical drive-side rotating shaft 52 is rotatably supported on the cylindrical shaft 32 by a bearing 54 via a bottom member 56. The driving unit 12 is configured as described above.

【0022】駆動部12の前記駆動軸組立体42の下部
には、後述の固定部58によってトーションワイヤ16
の上端が固定されており、トーションワイヤ16によっ
て、従動部14が駆動部12に繋留される。
The lower part of the drive shaft assembly 42 of the drive part 12 is fixed to a torsion wire 16 by a fixing part 58 described later.
Is fixed, and the driven portion 14 is anchored to the drive portion 12 by the torsion wire 16.

【0023】従動部14は、前記駆動側回転軸52の内
側に配設される筒状の従動側回転軸60を有しており、
該従動側回転軸60の下内部には、前記トーションワイ
ヤ16の下端を固定するワイヤチャック62が固定され
る。また、従動側回転軸60の下端にはロータ接続部6
4が取り付けられており、ロータ接続部64には被測定
流体に浸漬される図示しないロータが接続される。ま
た、従動側回転軸60の上端には、ホルダ68を介して
下部円盤体66が取り付けられる。以上のようにして従
動部14が構成される。
The driven portion 14 has a cylindrical driven-side rotating shaft 60 disposed inside the driving-side rotating shaft 52.
A wire chuck 62 for fixing the lower end of the torsion wire 16 is fixed below the driven rotation shaft 60. In addition, the lower end of the driven side rotation shaft 60 has a rotor connection portion 6.
4 is attached, and a rotor (not shown) immersed in the fluid to be measured is connected to the rotor connection portion 64. A lower disk 66 is attached to the upper end of the driven rotation shaft 60 via a holder 68. The driven part 14 is configured as described above.

【0024】従動部14の下部円盤体66は、図2に示
すように、120度間隔毎に120度未満の中心角を持
つ円弧状の溝66aが前記スタッド50に対応して形成
されている。また、スリット66bが所定角度毎(図の
例では、90度毎)に形成されている。上部円盤体48
にも、下部円盤体66と同じ角度毎にスリットが形成さ
れている。それぞれの下部円盤体66及び上部円盤体4
8のスリットを透光しうる位置に、検出部であるフォト
センサ70,72が設けられており、これらのフォトセ
ンサ70,72は、中部基板24から延びるホルダ74
に固定されている。これらのフォトセンサ70,72か
らの出力は、図示しない処理部へと送られるようになっ
ている。
As shown in FIG. 2, the lower disk body 66 of the driven portion 14 is formed with an arc-shaped groove 66a having a central angle of less than 120 degrees at intervals of 120 degrees corresponding to the stud 50. . Further, the slit 66b is formed at every predetermined angle (in the example of the figure, every 90 degrees). Upper disk 48
Also, slits are formed at the same angle as the lower disk body 66. Each lower disk body 66 and upper disk body 4
Photosensors 70 and 72 as detection units are provided at positions where light can pass through the eight slits, and these photosensors 70 and 72 are provided with holders 74 extending from the central substrate 24.
It is fixed to. Outputs from these photosensors 70 and 72 are sent to a processing unit (not shown).

【0025】駆動部12と従動部14との間、具体的に
は、駆動側回転軸52と従動側回転軸60との相対向す
る周面には、1つ以上の磁気軸受が設けられる。この実
施形態では、駆動側回転軸52と従動側回転軸60のそ
れぞれの上端部及び下端部に上側磁気軸受80及び下側
磁気軸受90がそれぞれ設けられる。上側磁気軸受80
は、駆動側回転軸52の内周面に設けられた円筒状の外
側永久磁石82と、従動側回転軸60の外周面に設けら
れた円筒状の内側永久磁石84とからなり、下側磁気軸
受90は、駆動側回転軸52の内周面に設けられた円筒
状の外側永久磁石92と、従動側回転軸60の外周面に
設けられた円筒状の内側永久磁石94とからなる。
One or more magnetic bearings are provided between the drive unit 12 and the driven unit 14, specifically, on the peripheral surfaces of the drive-side rotary shaft 52 and the driven-side rotary shaft 60 facing each other. In this embodiment, an upper magnetic bearing 80 and a lower magnetic bearing 90 are provided at the upper end and the lower end of the drive-side rotary shaft 52 and the driven-side rotary shaft 60, respectively. Upper magnetic bearing 80
Consists of a cylindrical outer permanent magnet 82 provided on the inner peripheral surface of the drive-side rotating shaft 52 and a cylindrical inner permanent magnet 84 provided on the outer peripheral surface of the driven-side rotating shaft 60. The bearing 90 includes a cylindrical outer permanent magnet 92 provided on the inner peripheral surface of the drive-side rotary shaft 52 and a cylindrical inner permanent magnet 94 provided on the outer peripheral surface of the driven-side rotary shaft 60.

【0026】これらの磁気軸受80,90は、対向する
磁石の着磁方向を軸方向としており、図3に示すよう
に、同極が接近するように配列され、互いに反発力を発
生するように構成されている。
The magnetic bearings 80 and 90 have the magnetizing direction of the magnets facing each other as the axial direction. As shown in FIG. 3, the magnetic bearings 80 and 90 are arranged so that the same poles are close to each other and generate repulsive forces from each other. It is configured.

【0027】以上のように構成される回転粘度計におい
ては、従動側回転軸60と駆動側回転軸52との間が磁
気軸受80,90によって調芯される。即ち、駆動側回
転軸52と従動側回転軸60との偏心が生じると、接近
した部分でより強く反発力が生じて調芯されるようにな
っている。偏心する程強い反発力が発生するので、偏心
からの回復力が強い。駆動側回転軸52と従動側回転軸
60のギャップを十分に小さくおくことにより、十分に
強い回復力を持たせることができる。Earnshaw
の定理によれば、永久磁石だけで構成される磁気軸受は
それだけでは成立し得ないが、このように、磁気反発で
浮遊する内側永久磁石84,94を、トーションワイヤ
16で拘束・位置決めすることにより、成立させること
ができる。
In the rotational viscometer configured as described above, the center between the driven side rotating shaft 60 and the driving side rotating shaft 52 is aligned by magnetic bearings 80 and 90. That is, when the drive-side rotation shaft 52 and the driven-side rotation shaft 60 become eccentric, a repulsive force is generated more strongly in a portion where the drive-side rotation shaft 52 and the driven-side rotation shaft 60 are close to each other, and the alignment is performed. The stronger the eccentricity, the stronger the repulsive force is generated, and the greater the eccentricity, the stronger the recovery from eccentricity. By setting the gap between the drive-side rotary shaft 52 and the driven-side rotary shaft 60 to be sufficiently small, a sufficiently strong recovery force can be provided. Earnshaw
According to the theorem, a magnetic bearing composed of only permanent magnets cannot be realized by itself, but in this way, the inner permanent magnets 84 and 94 floating due to magnetic repulsion must be restrained and positioned by the torsion wire 16. Can be established.

【0028】また、この実施形態では、各磁気軸受8
0、90共に、外側永久磁石82,92と内側永久磁石
84,94のそれぞれの位置を軸方向で予めずらして配
置しており、外側永久磁石82,92と内側永久磁石8
4,94の軸方向反発力が従動側回転軸60に作用する
ようになっている。具体的には、各磁気軸受80、90
の内側永久磁石84、94が外側永久磁石82、92に
対して軸方向にやや下方に位置づけられている。これに
より、各磁気軸受80,90において、従動側回転軸6
0が駆動側回転軸52から軸方向下方に飛び出すような
軸方向反発力が常時、従動側回転軸60に作用するよう
になっている。
In this embodiment, each magnetic bearing 8
In both 0 and 90, the positions of the outer permanent magnets 82 and 92 and the inner permanent magnets 84 and 94 are shifted in the axial direction in advance, and the outer permanent magnets 82 and 92 and the inner permanent magnet 8
4, 94 axial repulsion acts on the driven side rotation shaft 60. Specifically, each magnetic bearing 80, 90
Are positioned slightly below the outer permanent magnets 82, 92 in the axial direction. Thus, in each of the magnetic bearings 80 and 90, the driven side rotating shaft 6
An axial repulsive force such that 0 protrudes downward in the axial direction from the drive-side rotary shaft 52 always acts on the driven-side rotary shaft 60.

【0029】磁気軸受80,90の例としては、図1及
び図3に示した例に限ることなく、図4(a)ないし
(e)に示す配置とすることも可能である。図4(a)
ないし(c)に示すように、複数の磁石を用いることに
より、より調芯力の強い軸受を実現することができる。
また、図4(d)に示すように、ラジアル方向に着磁さ
せて、外側永久磁石82,92の内周面と内側永久磁石
84,94の外周面とが同極になるように着磁してもよ
い。さらには、図4(e)に示すように、駆動側回転軸
52と従動側回転軸60の軸上に複数の磁気軸受を配置
する代わりに、軸長さの長い2つの円筒状永久磁石から
構成することも可能である。
The examples of the magnetic bearings 80 and 90 are not limited to the examples shown in FIGS. 1 and 3, but may be arranged as shown in FIGS. 4 (a) to 4 (e). FIG. 4 (a)
As shown in (c), by using a plurality of magnets, it is possible to realize a bearing having a stronger alignment force.
As shown in FIG. 4D, the magnets are magnetized in the radial direction so that the inner peripheral surfaces of the outer permanent magnets 82 and 92 and the outer peripheral surfaces of the inner permanent magnets 84 and 94 have the same polarity. May be. Further, as shown in FIG. 4E, instead of arranging a plurality of magnetic bearings on the drive-side rotation shaft 52 and the driven-side rotation shaft 60, two cylindrical permanent magnets having long shaft lengths are used. It is also possible to configure.

【0030】図6は、トーションワイヤ16の上端の固
定部58及びその固定方法を表す拡大図である。トーシ
ョンワイヤ16の先端を2枚のワイヤチャックプレート
76,76で挟み付け、これらをタガ78内に圧入す
る。このとき、トーションワイヤ16をワイヤチャック
プレート76で変形させることにより、トーションワイ
ヤ16がワイヤチャックプレート76から外れることを
防ぐ。そして、これらを駆動軸組立体42の凹部42a
内に挿入する。この駆動軸組立体42の凹部42aの周
囲壁には、周方向に等間隔に複数のネジ孔42bが径方
向に形成されており、ネジ孔42bから径方向中心に向
けて止めネジ45が螺合されて、複数の止めネジ45で
タガ78を挟み付ける。図6の例では、それぞれ3つの
ネジ孔42b及び止めネジ45が周方向に等間隔に設け
られている。駆動側12即ち駆動軸組立体42を回転さ
せた状態で、トーションワイヤ16を顕微鏡M等で確認
しながら、トーションワイヤ16のぶれがなくなるよう
に止めネジ45の締め方を調整することにより、芯出し
を行うことができる。
FIG. 6 is an enlarged view showing a fixing portion 58 at the upper end of the torsion wire 16 and a fixing method thereof. The tip of the torsion wire 16 is sandwiched between two wire chuck plates 76, 76, and these are pressed into the tag 78. At this time, the torsion wire 16 is prevented from coming off the wire chuck plate 76 by deforming the torsion wire 16 with the wire chuck plate 76. Then, these are inserted into the concave portions 42a of the drive shaft assembly 42.
Insert inside. A plurality of screw holes 42b are formed radially in the peripheral wall of the recess 42a of the drive shaft assembly 42 at equal intervals in the circumferential direction, and a set screw 45 is screwed from the screw hole 42b toward the center in the radial direction. Then, the tag 78 is sandwiched between the set screws 45. In the example of FIG. 6, three screw holes 42b and set screws 45 are provided at equal intervals in the circumferential direction. While the drive side 12, that is, the drive shaft assembly 42 is rotated, the tightening of the set screw 45 is adjusted while checking the torsion wire 16 with a microscope M or the like so that the torsion wire 16 does not move. Can be delivered.

【0031】測定を行う際には、従動側回転軸60の下
端に取り付けられたロータを被測定流体に浸漬した状態
で、駆動装置40によって、駆動部12、即ち出力軸4
0a、駆動軸組立体42を介して、駆動側回転軸52を
回転させる。駆動部12に上端が固定され下端が従動側
回転軸60に固定されたトーションワイヤ16は、被測
定流体の粘度によって、捩りが発生する。この捩り角度
は、上部円盤体48と下部円盤体66の位相差となり、
この位相差がフォトセンサ70,72の出力差として検
出される。捩り角度から粘度に換算されて、被測定流体
の粘度を求めることができる。
When the measurement is performed, the drive unit 12, that is, the output shaft 4 is driven by the drive unit 40 while the rotor attached to the lower end of the driven-side rotary shaft 60 is immersed in the fluid to be measured.
0a, the drive side rotation shaft 52 is rotated via the drive shaft assembly 42. The torsion wire 16 whose upper end is fixed to the drive unit 12 and whose lower end is fixed to the driven-side rotary shaft 60 is twisted by the viscosity of the fluid to be measured. This torsion angle is a phase difference between the upper disk body 48 and the lower disk body 66,
This phase difference is detected as an output difference between the photo sensors 70 and 72. The viscosity of the fluid to be measured can be obtained by converting the torsion angle into a viscosity.

【0032】本実施形態では、磁気軸受80,90を用
いているため、偏心からの強い復元力を持たせつつ、従
動側回転軸60を摩擦なく軸支することができる。ま
た、磁気軸受80,90によって、従動側回転軸60が
軸方向下方に飛び出すような軸方向反発力が発生するよ
うに調整しているので、例えばワイゼンベルグ効果(法
線応力効果)を有する液体を測定するとき、または高い
粘稠性や高い塑性を有する液体に対してロータを押し込
みながら測定するときに、ロータに作用する浮上力を相
殺し、トーションワイヤ16に座屈が発生することを防
ぐことができる。磁気による軸方向反発力はかかる浮上
力よりも十分大きく設定することができるので、さらな
るウエイトを付加する必要もない。
In this embodiment, since the magnetic bearings 80 and 90 are used, the driven-side rotary shaft 60 can be supported without friction while having a strong restoring force from eccentricity. In addition, since the magnetic bearings 80 and 90 are adjusted so as to generate an axial repulsive force such that the driven rotary shaft 60 projects downward in the axial direction, a liquid having, for example, the Weissenberg effect (normal stress effect) is removed. To cancel the levitation force acting on the rotor and prevent buckling of the torsion wire 16 when measuring or when measuring while pushing the rotor against a liquid having high viscosity or high plasticity. Can be. Since the axial repulsion by magnetism can be set sufficiently larger than the levitation force, there is no need to add further weight.

【0033】次に、図5は本発明の第2実施形態を表す
図である。図において、図1と同一の部材は同一の符号
を付してその詳細説明を省略する。
Next, FIG. 5 is a diagram showing a second embodiment of the present invention. In the drawing, the same members as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0034】この実施形態では、第1実施形態のように
上側磁気軸受80と下側磁気軸受90の2つの磁気軸受
を設けずに、下側磁気軸受90のみを設け、その代わり
に従動側回転軸60の上端部に滑り軸受100を設けて
いる点で第1実施形態と異なっている。従動側回転軸6
0の上端に固定された滑り軸受100の位置は、そのト
ーションワイヤ16を受ける軸受部100aが、トーシ
ョンワイヤ16の上端を固定する固定部58よりも所定
距離だけ下方に離れた位置となるように設定されてい
る。この所定距離は、輸送中の衝撃などで従動側回転軸
60が径方向に移動したときに、滑り軸受100がトー
ションワイヤ16を押し曲げて変形させてしまわないよ
う、トーションワイヤ16の曲げ変形が弾性限度内であ
って、永久変形しない距離に設定されると良い。また、
滑り軸受100よりも下側軸受90の方が、トーション
ワイヤ16の従動側回転軸60の連結点であるワイヤチ
ャック62に接近している。
In this embodiment, only the lower magnetic bearing 90 is provided, instead of the two magnetic bearings of the upper magnetic bearing 80 and the lower magnetic bearing 90 as in the first embodiment. The difference from the first embodiment is that a slide bearing 100 is provided at the upper end of the shaft 60. Driven rotary shaft 6
The position of the sliding bearing 100 fixed to the upper end of the torsion wire 16 is such that the bearing portion 100a that receives the torsion wire 16 is located a predetermined distance below the fixing portion 58 that fixes the upper end of the torsion wire 16. Is set. The predetermined distance is set so that the torsion wire 16 is not bent and deformed so that the sliding bearing 100 does not push and bend the torsion wire 16 when the driven rotation shaft 60 moves in the radial direction due to an impact during transportation or the like. It is preferable that the distance is set within the elastic limit and does not cause permanent deformation. Also,
The lower bearing 90 is closer to the wire chuck 62, which is a connection point of the torsion wire 16 to the driven-side rotating shaft 60, than the sliding bearing 100.

【0035】磁気軸受だけで構成される場合と比較し
て、この実施形態によれば、磁気軸受を構成する磁石の
磁化が周方向にわたって均一でなく吸引力が弱い部分が
互いに離反するようにして偏心が生じた場合に、連結点
から遠いところでは、従動側回転軸60を傾けるモーメ
ントが大きくなるおそれがあるが、連結点から離れた部
分で滑り軸受100を設けることで、そのような大きな
モーメントの発生を抑えることができる。
According to this embodiment, as compared with the case where only the magnetic bearings are used, the magnets constituting the magnetic bearings are not uniform in the circumferential direction and the portions where the attraction force is weak are separated from each other. When eccentricity occurs, the moment of tilting the driven-side rotary shaft 60 may increase at a position far from the connection point. However, by providing the sliding bearing 100 at a position away from the connection point, such a large moment Can be suppressed.

【0036】また、第1実施形態と同様に磁気軸受90
に軸方向下向きの反発力を発生させるように、外側永久
磁石92と内側永久磁石94との位置調整を行うこと
で、ウエイトを付加することなく、従動側回転軸60に
作用する浮上力を抑えることができる。
The magnetic bearing 90 is similar to the first embodiment.
By adjusting the position of the outer permanent magnet 92 and the inner permanent magnet 94 so as to generate an axially downward repulsive force, the floating force acting on the driven-side rotary shaft 60 is suppressed without adding a weight. be able to.

【0037】このように、磁気軸受90に加えて滑り軸
受100を設けた場合でも、従来の粘度計に比較してそ
の摩擦を遙かに少なくすることができ、上下にそれぞれ
磁気軸受80,90を設けた第1実施形態の場合に比較
しても、その測定精度(再現性)を遜色のないようにす
ることができる。また、1つの磁気軸受だけで良いの
で、内側永久磁石と外側永久磁石のずらし方向と量の調
整作業が単純になる。また、構造が簡素化され、低コス
トで製造することができるようになる。
As described above, even when the sliding bearing 100 is provided in addition to the magnetic bearing 90, the friction can be made much smaller than that of the conventional viscometer, and the magnetic bearings 80 and 90 can be arranged vertically. The measurement accuracy (reproducibility) can be made comparable to the case of the first embodiment provided with. In addition, since only one magnetic bearing is required, the operation of adjusting the shifting direction and the amount of the inner permanent magnet and the outer permanent magnet is simplified. Further, the structure is simplified, and the device can be manufactured at low cost.

【0038】[0038]

【発明の効果】以上説明したように、本発明の発明によ
れば、磁気軸受の径方向の磁気反発力を利用するように
しているので、従動側回転軸を摩擦なく軸支することが
でき、安価に構成することができる。
As described above, according to the present invention, the magnetic repulsive force in the radial direction of the magnetic bearing is used, so that the driven rotary shaft can be supported without friction. , And can be configured at low cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施形態に係る回転粘度計の縦
断面図である。
FIG. 1 is a longitudinal sectional view of a rotational viscometer according to a first embodiment of the present invention.

【図2】図1の下部円盤体66の平面図である。FIG. 2 is a plan view of a lower disk body 66 of FIG.

【図3】図1の磁気軸受の構成例である。FIG. 3 is a configuration example of the magnetic bearing of FIG. 1;

【図4】磁気軸受の他の構成例である。FIG. 4 is another configuration example of a magnetic bearing.

【図5】本発明の第2の実施形態に係る回転粘度計の縦
断面図である。
FIG. 5 is a longitudinal sectional view of a rotational viscometer according to a second embodiment of the present invention.

【図6】(a)はトーションワイヤの固定部の拡大断面
図、(b)は(a)の矢視(a)方向から見た図、
(c)はトーションワイヤの固定方法を表す斜視図であ
る。
6A is an enlarged cross-sectional view of a fixing portion of a torsion wire, FIG. 6B is a diagram viewed from the direction of arrow (a) in FIG.
(C) is a perspective view showing the torsion wire fixing method.

【符号の説明】[Explanation of symbols]

16 トーションワイヤ(捩り弾性部材) 40 駆動装置 52 駆動側回転軸 60 従動側回転軸 70、72フォトセンサ(検出部) 80 上側磁気軸受 90 下側磁気軸受 82、92 外側永久磁石(駆動側磁石) 84、94 内側永久磁石(従動側磁石) 100 滑り軸受 Reference Signs List 16 torsion wire (torsion elastic member) 40 drive device 52 drive-side rotating shaft 60 driven-side rotating shaft 70, 72 photosensor (detection unit) 80 upper magnetic bearing 90 lower magnetic bearing 82, 92 outer permanent magnet (drive-side magnet) 84, 94 Inner permanent magnet (driven side magnet) 100 Sliding bearing

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 駆動装置によって回転する駆動側回転軸
と、駆動側回転軸に捩り弾性部材によって同軸状に連結
され、被測定流体からのトルクを受ける従動側回転軸
と、前記捩り弾性部材の捩り角度を検出する検出部と、
を備え該捩り角度から被測定流体の粘度を検出する回転
粘度計において、 従動側回転軸を少なくとも1つの磁気軸受で軸支し、該
磁気軸受を、従動側回転軸に固定された従動側磁石と、
該従動側磁石に対向する対向磁石とから構成し、該従動
側磁石及び対向磁石とを同軸状に適当な間隔を設けて常
時、径方向に磁気反発力を発生しうるように配置するこ
とを特徴とする回転粘度計。
A driving-side rotating shaft that is rotated by a driving device, a driven-side rotating shaft that is coaxially connected to the driving-side rotating shaft by a torsional elastic member, and that receives torque from a fluid to be measured; A detector for detecting a torsion angle;
A rotational viscometer for detecting the viscosity of the fluid to be measured from the torsion angle, wherein the driven-side rotating shaft is supported by at least one magnetic bearing, and the magnetic bearing is fixed to the driven-side rotating shaft. When,
An opposing magnet opposing the driven magnet, and the driven magnet and the opposing magnet are always arranged coaxially at an appropriate interval so as to always generate a magnetic repulsive force in the radial direction. Characteristic rotational viscometer.
【請求項2】 前記対向磁石を、駆動側回転軸に固定さ
れた駆動側磁石とすることを特徴とする請求項1記載の
回転粘度計。
2. The rotational viscometer according to claim 1, wherein the opposed magnet is a driving magnet fixed to a driving rotating shaft.
【請求項3】 前記磁気軸受の従動側磁石と対向磁石と
の軸方向位置を予め所定量ずらして配置することを特徴
とする請求項1または2記載の回転粘度計。
3. The rotational viscometer according to claim 1, wherein axial positions of the driven magnet and the opposing magnet of the magnetic bearing are shifted by a predetermined amount in advance.
【請求項4】 前記従動側磁石と対向磁石との軸方向位
置を、従動側回転軸を相対的に前記被測定流体の方向へ
接近させるような軸方向の磁気反発力が発生するよう
に、設定することを特徴とする請求項3記載の回転粘度
計。
4. An axial magnetic repulsive force such that an axial position of the driven magnet and the opposed magnet is relatively close to the driven rotating shaft in a direction of the fluid to be measured. The rotational viscometer according to claim 3, wherein the rotational viscometer is set.
【請求項5】 前記捩り弾性部材と従動側磁石との間
に、捩り弾性部材を軸とする滑り軸受をさらに設けるこ
とを特徴とする請求項1ないし4のいずれか1項に記載
の回転粘度計。
5. The rotational viscosity according to claim 1, wherein a sliding bearing having a torsion elastic member as a shaft is further provided between the torsion elastic member and the driven magnet. Total.
【請求項6】 前記磁気軸受を、前記滑り軸受よりも従
動側回転軸の捩り弾性部材の連結点に接近して設けるこ
とを特徴とする請求項5記載の回転粘度計。
6. The rotational viscometer according to claim 5, wherein the magnetic bearing is provided closer to a connection point of the torsional elastic member of the driven rotary shaft than the slide bearing.
JP2000140178A 2000-05-12 2000-05-12 Rotational viscometer Expired - Lifetime JP3481551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000140178A JP3481551B2 (en) 2000-05-12 2000-05-12 Rotational viscometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000140178A JP3481551B2 (en) 2000-05-12 2000-05-12 Rotational viscometer

Publications (2)

Publication Number Publication Date
JP2001324436A true JP2001324436A (en) 2001-11-22
JP3481551B2 JP3481551B2 (en) 2003-12-22

Family

ID=18647513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000140178A Expired - Lifetime JP3481551B2 (en) 2000-05-12 2000-05-12 Rotational viscometer

Country Status (1)

Country Link
JP (1) JP3481551B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387116A1 (en) * 2002-07-30 2004-02-04 Siemens-Elema AB Valve assembly
EP1723403A2 (en) * 2004-03-11 2006-11-22 Waters Investments Limited Rotary rheometer magnetic bearing
EP3534142A1 (en) * 2018-03-01 2019-09-04 Anton Paar GmbH Rheometer
JP2021003787A (en) * 2019-06-27 2021-01-14 ファナック株式会社 Rotating shaft structure and robot

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387116A1 (en) * 2002-07-30 2004-02-04 Siemens-Elema AB Valve assembly
EP1723403A2 (en) * 2004-03-11 2006-11-22 Waters Investments Limited Rotary rheometer magnetic bearing
EP1723403A4 (en) * 2004-03-11 2011-01-12 Waters Investments Ltd Rotary rheometer magnetic bearing
EP3534142A1 (en) * 2018-03-01 2019-09-04 Anton Paar GmbH Rheometer
CN110220822A (en) * 2018-03-01 2019-09-10 安东帕有限责任公司 Rheometer
AT520991A1 (en) * 2018-03-01 2019-09-15 Anton Paar Gmbh rheometer
US10908058B2 (en) 2018-03-01 2021-02-02 Anton Paar Gmbh Rheometer with a rotary rheometer and a linear DM (T)A analysis unit
AT520991B1 (en) * 2018-03-01 2023-05-15 Anton Paar Gmbh rheometer
JP2021003787A (en) * 2019-06-27 2021-01-14 ファナック株式会社 Rotating shaft structure and robot
JP7319105B2 (en) 2019-06-27 2023-08-01 ファナック株式会社 Rotary axis structure and robot

Also Published As

Publication number Publication date
JP3481551B2 (en) 2003-12-22

Similar Documents

Publication Publication Date Title
US7019516B2 (en) Magnetic sensor unit less responsive to leaking magnetic flux
JP5019793B2 (en) Coupling and angle measuring device having this coupling
JPS61237038A (en) Device and method of measuring viscoelasticity
JP3383537B2 (en) Testing machine for bearings
DK1644706T3 (en) Cross Spring element
JP2001324436A (en) Rotational viscometer
CN102023124A (en) Rotational viscometer based on velocity attenuation
US5031443A (en) Apparatus for measuring bearing torque
JP2007192737A (en) Method for evaluating performance of dynamic pressure bearing
US4235093A (en) Low friction bearing starting torque apparatus
JP2004325447A (en) Motor torque measuring instrument and measuring method
US4235092A (en) Low friction bearing running torque measuring apparatus
CN108692863B (en) High-precision centroid deviation rectifying device
JP2002039712A (en) Coupling structure of non-contact type rotary sensor and pivoting shaft
Ota et al. Novel micro torque measurement method for microdevices
JPS5821113A (en) Inclinometer using magnetoelectric converting element
JP2002295465A (en) Rolling bearing with rotation sensor
CN116952437B (en) Motor torque measuring device
JP2788222B2 (en) Viscometer
US3664185A (en) Rotary actuator
EP4056976A1 (en) Perturbator systems and methods
JP2749552B2 (en) Bearing structure of viscometer output shaft
JP5133221B2 (en) Inspection apparatus and inspection method for constant velocity universal joint
JP2587922Y2 (en) Horizontal axis stabilizer of surveying instrument
JP2002022572A (en) Dynamometer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030924

R150 Certificate of patent or registration of utility model

Ref document number: 3481551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091010

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101010

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term