JP2001321664A - Adsorbent and method for manufacturing the same - Google Patents

Adsorbent and method for manufacturing the same

Info

Publication number
JP2001321664A
JP2001321664A JP2000144611A JP2000144611A JP2001321664A JP 2001321664 A JP2001321664 A JP 2001321664A JP 2000144611 A JP2000144611 A JP 2000144611A JP 2000144611 A JP2000144611 A JP 2000144611A JP 2001321664 A JP2001321664 A JP 2001321664A
Authority
JP
Japan
Prior art keywords
wood
resin
adsorbent
carbonized
pores
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000144611A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
鈴木  寛
Sumio Kamiya
純夫 神谷
Hidemitsu Sakamoto
秀光 坂元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2000144611A priority Critical patent/JP2001321664A/en
Publication of JP2001321664A publication Critical patent/JP2001321664A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an adsorbent which can exhibit high adsorption ability to a wide range of gaseous species and consists of carbonized timber as a base material and to provide method for manufacturing the same. SOLUTION: This adsorbent has the base material which consists of the carbonized timber having pores corresponding to the vessels of the timber, coating layers which consist of resin carbide for coating the inside walls of the pores, mesopores which open to these coating layers and have a peak of a diameter distribution within a range of 1 to 10 nm and micropores which open to the inside walls of the mesopores and have a peak of a diameter distribution within a range of 0.1 to 1 nm. The method for manufacturing the adsorbent includes a process step of forming the coating layers consisting of the resin at the inside walls of the vessels by impregnating the timber with the resin, a process step of carbonizing the timber including the coating layers and a process step for activating the carbonized timber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ガス吸着材の改良
に関し、詳しくは、木材の導管に対応する気孔を有する
炭化木材を基材とする吸着材およびその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a gas adsorbent, and more particularly, to an adsorbent based on carbonized wood having pores corresponding to a conduit for wood and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、木材を炭化して吸着材として
用られている。例えば、特開平9−276693号公報
には、木材を600〜700℃で焼成した木炭とし、更
に窒素ガス等の不活性ガス雰囲気中で800〜2000
℃で加熱することにより熱変換させて得た炭化木材から
なる吸着材が開示されている。
2. Description of the Related Art Conventionally, wood is carbonized and used as an adsorbent. For example, Japanese Unexamined Patent Publication No. 9-276693 discloses that wood is made of charcoal fired at 600 to 700 ° C., and is further burned in an inert gas atmosphere such as nitrogen gas.
An adsorbent comprising carbonized wood obtained by heat conversion by heating at a temperature of 0 ° C is disclosed.

【0003】また、特許第2552577号公報には、
木材又は木質材料にフェノール樹脂を含浸させ、硬化さ
せた後、炭化することによって得たウッドセラミックス
が開示されている。これら従来の炭化木材系の吸着材
は、木材中に存在する多数の導管の内壁が吸着サイトと
して機能することにより、通常の木炭に比べれば高い吸
着能力が得られるが、活性炭の吸着能力には及ばなかっ
た。
[0003] Also, Japanese Patent No. 25552577 discloses that
Wood ceramics obtained by impregnating wood or woody material with a phenolic resin, hardening and carbonizing the wood or wood material are disclosed. These conventional carbonized wood-based adsorbents provide higher adsorption capacity than ordinary charcoal because the inner walls of many conduits present in the wood function as adsorption sites, but the adsorption capacity of activated carbon is Did not reach.

【0004】また、活性炭は多数の細孔により高い吸着
能力を発揮するが、細孔の直径分布が1〜2nmにピー
クがあり且つ非常に狭いため、吸着できるガス種がかな
り限定されてしまう。炭素学会年会1997予稿集1A
16等に細孔径を大きくする提案もなされているが、コ
ストが高い上、技術的にも困難が大きいため、実用化に
は適さず、かつ細孔の直径分布のピークは10nm以上
にあるため吸着対象はガスよりも液体が適している。
[0004] Activated carbon exhibits high adsorption ability due to a large number of pores. However, since the diameter distribution of the pores has a peak at 1 to 2 nm and is very narrow, the types of gases that can be adsorbed are considerably limited. 1997 Annual Meeting of the Carbon Society of Japan 1A
Although it has been proposed to increase the pore diameter to 16 or the like, it is not suitable for practical use because the cost is high and the technical difficulty is large, and the peak of the pore diameter distribution is 10 nm or more. A liquid to be adsorbed is more suitable than a gas.

【0005】[0005]

【発明が解決しようとする課題】本発明は、広範囲のガ
ス種に対して高い吸着能力を発揮できる、炭化木材を基
材とする吸着材およびその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an adsorbent based on carbonized wood, which can exhibit a high adsorption capacity for a wide range of gas species, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の吸着材は、下記:木材の導管に対応する
気孔を有する炭化木材から成る基材、上記気孔の内壁を
被覆する樹脂炭化物から成る被覆層、上記被覆層に開口
し、1〜10nmの範囲内に直径分布のピークを有する
メソ細孔、および上記メソ細孔の内壁に開口し、0.1
〜1nmの範囲内に直径分布のピークを有するミクロ細
孔、を備えたことを特徴とする。
In order to achieve the above object, an adsorbent according to the present invention has the following features: a substrate made of carbonized wood having pores corresponding to a conduit of wood; and an inner wall of the pores is coated. A coating layer made of resin carbide, an opening in the coating layer, a mesopore having a diameter distribution peak in the range of 1 to 10 nm, and an opening in the inner wall of the mesopore;
A micropore having a peak of a diameter distribution in a range of 11 nm.

【0007】本発明の望ましい態様の一つにおいては、
前記メソ細孔およびミクロ細孔の少なくとも一方にアル
カリ金属が担持されている。本発明の吸着材の製造方法
は、木材の導管に対応する気孔を有する炭化木材を基材
とする吸着材の製造方法であって、木材に樹脂を含浸し
て導管の内壁に該樹脂から成る被覆層を形成する工程、
上記被覆層を含めて上記木材を炭化する工程、および上
記炭化された木材を賦活する工程を含むことを特徴とす
る。
In one preferred embodiment of the present invention,
An alkali metal is supported on at least one of the mesopores and micropores. The method for producing an adsorbent of the present invention is a method for producing an adsorbent based on carbonized wood having pores corresponding to a conduit for wood, wherein the resin is impregnated into wood and the inner wall of the conduit is made of the resin. Forming a coating layer,
The method includes a step of carbonizing the wood including the coating layer, and a step of activating the carbonized wood.

【0008】前記木材に含浸させる樹脂の量は、該木材
の重量の30〜50wt%であることが望ましい。木材と
しては、製造する吸着材に適した密度と導管径のものを
用い、例えば松材、杉材等が適している。木材に含浸す
る樹脂としては、熱硬化性で残炭率の高いものが適して
おり、典型的にはフェノール樹脂またはフラン樹脂を用
いる。
The amount of the resin impregnated in the wood is preferably 30 to 50% by weight of the weight of the wood. Wood having a density and a conduit diameter suitable for the adsorbent to be manufactured is used, and for example, pine, cedar, and the like are suitable. As a resin to be impregnated in wood, a resin having a high residual carbon ratio and thermosetting is suitable, and a phenol resin or a furan resin is typically used.

【0009】前記賦活は、典型的にはCO2 により行
う。
[0009] The activation is typically performed with CO 2 .

【0010】[0010]

【発明の実施の形態】本発明の吸着材は、気孔内壁の樹
脂炭化物から成る被覆層に開口するメソ細孔(直径分布
ピーク1〜10nm)と、メソ細孔内壁に開口するミク
ロ細孔(直径分布ピーク0.1〜1nm)を備えた構造
により、広範囲のガス種に対して高い吸着能力を発揮す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The adsorbent of the present invention comprises mesopores (diameter distribution peak 1 to 10 nm) opening in a coating layer made of resin carbide on the inner wall of pores, and micropores (diameter distribution peaks) opening on the inner wall of mesopores. Due to the structure having a diameter distribution peak (0.1 to 1 nm), it exhibits a high adsorption capacity for a wide range of gas species.

【0011】この構造は、炭化後に行う賦活処理におい
て、樹脂炭化物から成る被覆層が賦活されてメソ細孔が
生成し、メソ細孔を介して露出された炭化木材が賦活さ
れてミクロ細孔が生成することにより得られる。図1
に、賦活処理によりメソ細孔およびミクロ細孔が生成す
る状態を概念的に示す。
In this structure, in the activation treatment performed after carbonization, the coating layer made of the resin carbide is activated to generate mesopores, and the carbonized wood exposed through the mesopores is activated to form micropores. It is obtained by generating. FIG.
FIG. 2 conceptually shows a state in which mesopores and micropores are generated by the activation treatment.

【0012】図1(a)は炭化木材のみを賦活した際の
ミクロ細孔の生成を示す。木質を構成する高分子(セル
ロース系)が複雑に絡み合っており、その隙間に微小な
細孔が生成する。典型的な細孔径は0.5〜0.6nm
程度であり、一般的に1nm以下の細孔の呼称であるミ
クロ細孔(ミクロ孔)に該当する。図1(b)は樹脂の
みを賦活した際のメソ細孔の生成を示す。木質に比べ
て、賦活され易いが緻密であるため、生成する細孔は大
きい。典型的な細孔径は2〜5nm程度であり、一般的
に1nm〜10nmの細孔の呼称であるメソ細孔(メソ
孔)に該当する。
FIG. 1A shows the formation of micropores when only carbonized wood is activated. The macromolecules (cellulosic) composing the wood are intricately entangled, and minute pores are generated in the gaps. Typical pore size is 0.5-0.6 nm
And corresponds to a micropore (micropore) which is generally called a pore of 1 nm or less. FIG. 1 (b) shows the formation of mesopores when only the resin is activated. Compared to wood, it is easily activated but is dense, so the pores generated are large. A typical pore diameter is about 2 to 5 nm, and generally corresponds to mesopores (mesopores), which are called pores of 1 nm to 10 nm.

【0013】図1(c)は、本発明により気孔内壁を樹
脂炭化物で被覆して成る〔炭化木材/樹脂炭化物〕複合
体を賦活した際のメソ細孔およびミクロ細孔の生成を示
す。先ず、気孔内に露出している樹脂炭化物層が賦活さ
れてメソ細孔が生成する。メソ細孔の生成により樹脂炭
化物層の下から炭化木材が露出する。露出された炭化木
材表面はメソ細孔の底部を成しており、元々の気孔内壁
とは異なり不規則な凹凸面となっている。その結果、賦
活される炭化木材の表面積が大きくなり、炭化木材の賦
活が促進され、炭化木材あるいは樹脂炭化物をそれぞれ
単独で賦活した場合に比べて短時間で多量のミクロ細孔
が生成する。
FIG. 1 (c) shows the formation of mesopores and micropores when a [wood carbonized / carbonized resin] composite in which pores are coated with resin carbide according to the present invention. First, the resin carbide layer exposed in the pores is activated to generate mesopores. Due to the formation of the mesopores, the carbonized wood is exposed from under the resin carbide layer. The exposed surface of the carbonized wood forms the bottom of the mesopores, and has an irregular uneven surface unlike the original pore inner wall. As a result, the surface area of the activated carbonized wood is increased, activation of the activated carbonized wood is promoted, and a large amount of micropores is generated in a shorter time than when activated activated carbonized wood or resin carbide alone.

【0014】従来、炭化木材あるいは樹脂炭化物の賦活
には、バルク状態では長時間を要するため、粉砕して粉
末状あるいは顆粒状で賦活処理する必要があった。本発
明によれば、バルク状態で短時間の賦活が可能である。
このように、本発明の吸着材においては、炭化木材と樹
脂炭化物とを複合させたことにより、ミクロ細孔とメソ
細孔とを共存させることができ、メソ細孔の存在による
ミクロ細孔の生成・成長の促進により賦活処理を短時間
で行うことができる。
Conventionally, activation of carbonized wood or resin carbide requires a long time in a bulk state, so that it has been necessary to pulverize and activate the powder or granules. According to the present invention, activation in a short time in a bulk state is possible.
Thus, in the adsorbent of the present invention, by combining carbonized wood and resin carbide, micropores and mesopores can coexist, and micropores due to the presence of mesopores The activation treatment can be performed in a short time by promoting generation and growth.

【0015】更に、本発明はメソ細孔の内壁にミクロ細
孔が開口したメソ/ミクロ細孔連結構造を有することに
より、両者の相乗作用により高い吸着能力が得られる。
図2に、本発明のメソ/ミクロ細孔連結構造によるガス
の吸着モデルを示す。ミクロ細孔内に吸着されたガスは
毛管現象によって凝縮されて液化し、ガス状態に比べて
高密度に吸蔵できる。メソ細孔内にはガス状態での吸着
しか起こらないが、ミクロ細孔内のガスの液化により吸
着が促進される。
Further, the present invention has a meso / micropore connection structure in which micropores are opened on the inner wall of the mesopores, so that a high adsorption capacity can be obtained by a synergistic action of both.
FIG. 2 shows a gas adsorption model using the meso / micropore connection structure of the present invention. The gas adsorbed in the micropores is condensed and liquefied by capillary action and can be stored at a higher density than in the gas state. Although only adsorption in the gas state occurs in the mesopores, the adsorption is promoted by liquefaction of the gas in the micropores.

【0016】このように炭化木材と樹脂炭化物との複合
による賦活促進効果を得るためには、炭化前に木材に含
浸する樹脂の量を適量とすることが重要である。含浸量
が少ないと、賦活促進効果が少なく長時間の賦活を必要
とし、生成する細孔の直径分布も大きい方にシフトす
る。逆に含浸量が多すぎると、木材の導管が閉塞され、
内部まで賦活されないし、炭化後の気孔も閉塞され吸着
材としての性能も低下する。このような観点から、含浸
量は、含浸後の木材と樹脂との総重量に対して30〜5
0wt%程度が適当である。
In order to obtain the activation promoting effect of the composite of the carbonized wood and the resin carbide as described above, it is important to adjust the amount of the resin impregnated into the wood before carbonization. When the impregnation amount is small, the activation promoting effect is small and the activation is required for a long time, and the diameter distribution of the generated pores shifts to a larger one. Conversely, if the impregnation is too high, the wood conduit will be blocked,
It is not activated to the inside, the pores after carbonization are also closed, and the performance as an adsorbent is reduced. From such a viewpoint, the impregnation amount is 30 to 5 with respect to the total weight of the wood and resin after impregnation.
About 0 wt% is appropriate.

【0017】本発明において賦活処理の方法は特に限定
する必要はないが、CO2 賦活を用いることが望まし
い。H2 O賦活を用いることもできるが、賦活が急速に
進行するため、処理が短時間で済む反面、賦活による重
量減少と比表面積との相関が弱く、細孔の生成量を制御
することが困難である。CO2 賦活は、H2 O賦活より
も進行が緩速であり、処理時間が若干長いが、賦活によ
る重量減少と比表面積との相関が良く、細孔の生成量を
制御し易い。
In the present invention, the method of the activation treatment is not particularly limited, but it is desirable to use CO 2 activation. Although H 2 O activation can be used, the activation proceeds rapidly, so that the treatment can be performed in a short time. On the other hand, the correlation between the weight loss due to the activation and the specific surface area is weak, and it is difficult to control the amount of generated pores. Have difficulty. The CO 2 activation progresses more slowly than the H 2 O activation, and the treatment time is slightly longer. However, there is a good correlation between the weight loss due to the activation and the specific surface area, and it is easy to control the amount of pores generated.

【0018】CO2 賦活は本質的に下記式の反応により
進行する。 C+CO2 → 2CO(↑) すなわち、炭化木材および樹脂炭化物のCがCO2 ガス
により酸化されてCOガスとして放出され、これにより
Cの抜けた部分が細孔となり、それに対応して重量減少
が生ずる。なお、上記式の左辺は700℃以下で安定で
あり、右辺は700℃以上で安定である。
The CO 2 activation essentially proceeds by the following reaction. C + CO 2 → 2CO (↑) That is, C of carbonized wood and resin carbide is oxidized by CO 2 gas and released as CO gas, whereby a portion where C is removed becomes a pore and a corresponding weight loss occurs. . The left side of the above equation is stable at 700 ° C. or lower, and the right side is stable at 700 ° C. or higher.

【0019】[0019]

【実施例】本発明により炭化木材と樹脂炭化物との複合
体としての吸着材を下記の手順で作製した。木材とし
て、適度の硬度を示すラジアタパインを用いた。これ
に、減圧含浸によりフェノール樹脂を含浸させた。すな
わち、真空容器内に木材(寸法:100×100×50
mm〜40×40×5mm)を装入し、1〜10Torrに減圧
した後に容器内に樹脂を注入し、10分以上保持して、
樹脂を木材中に浸透させた。
EXAMPLE An adsorbent as a composite of carbonized wood and resin carbide was prepared according to the present invention by the following procedure. Radiatapain showing appropriate hardness was used as wood. This was impregnated with a phenol resin by vacuum impregnation. That is, wood (size: 100 × 100 × 50) is placed in a vacuum container.
mm to 40 × 40 × 5 mm), and after reducing the pressure to 1 to 10 Torr, inject the resin into the container, hold for 10 minutes or more,
The resin was allowed to penetrate the wood.

【0020】樹脂を含浸させた木材を、窒素雰囲気中で
400〜500℃にて1時間加熱することにより炭化さ
せた。得られた炭化木材をCO2 雰囲気中で700〜9
00℃での1〜3時間の加熱する処理を、所定重量減に
なるまで繰り返すことにより賦活を行った。比較のため
に、上記と同じ炭化処理を行い、炭化木材のみの吸着
材、樹脂炭化物のみの吸着材も作製した。 〔賦活処理時間の短縮効果〕図3に、CO2 雰囲気中、
800℃の賦活処理時間と賦活による重量減(細孔生成
量に対応)との関係を示す。樹脂炭化物は、材料特性と
しては賦活され易いが、緻密体であり、賦活ガスとの接
触面積が少ないため賦活に長時間を要する。炭化木材は
多数の気孔を含む多孔質であるが、材料特性として賦活
され難い。炭化木材の気孔内壁に樹脂炭化物層が形成さ
れた形に複合体としたことにより、炭化木材の多孔質構
造により賦活ガスとの接触面積が増大し、樹脂炭化物の
賦活され易い特性が最大限に発揮され、賦活が促進され
る。 〔細孔径の分布〕ガス吸着法を用い、N2 ガスの77K
における吸着、脱着等温線から細孔径を求めた。その
際、ミクロ細孔分布にはHK法、メソ細孔分布にはBJ
H法をそれぞれ用いた。
The wood impregnated with the resin was carbonized by heating at 400 to 500 ° C. for 1 hour in a nitrogen atmosphere. The obtained carbonized wood is subjected to 700-9 in a CO 2 atmosphere.
Activation was performed by repeating the heating treatment at 00 ° C. for 1 to 3 hours until the weight was reduced by a predetermined value. For comparison, the same carbonization treatment as described above was performed, and an adsorbent made of only carbonized wood and an adsorbent made of only resin carbide were produced. 3 Shortening effect of activation processing time], in a CO 2 atmosphere,
The relationship between the activation treatment time at 800 ° C. and the weight reduction due to the activation (corresponding to the amount of generated pores) is shown. Resin carbide is easily activated as a material property, but is a dense body and requires a long time for activation because of a small contact area with an activation gas. Although carbonized wood is porous including many pores, it is hard to be activated as a material property. By forming the composite in a form in which a resin carbide layer is formed on the inner wall of the pores of carbonized wood, the porous structure of the carbonized wood increases the contact area with the activation gas, maximizing the property that resin carbide is easily activated. It is exerted and activation is promoted. [Distribution of pore diameter] Using a gas adsorption method, 77K of N 2 gas
The pore size was determined from the adsorption and desorption isotherms at At this time, the HK method was used for the micropore distribution, and the BJ method was used for the mesopore distribution.
The H method was used for each.

【0021】図4に、(a)炭化木材のみ、(b)樹脂
炭化物のみ、(c)炭化木材と樹脂炭化物と複合体につ
いて、それぞれ賦活により生成した細孔の直径分布を示
す。炭化木材のみの場合は細孔径分布は0.5nm近傍
に集中し、樹脂炭化物のみの場合は細孔径分布は2〜5
nm近傍に集中する。本発明により炭化木材と樹脂炭化
物とを複合したことにより、細孔径分布は0.5〜0.
6nm近傍(ミクロ細孔)と2〜5nm近傍(メソ細
孔)の両方にピークを持つ。
FIG. 4 shows the diameter distribution of pores formed by activation for (a) only carbonized wood, (b) only resin carbide, and (c) composite of carbonized wood and resin carbide. In the case of only carbonized wood, the pore size distribution is concentrated around 0.5 nm, and in the case of only resin carbide, the pore size distribution is 2 to 5 nm.
Concentrate around nm. The composite of carbonized wood and resin carbide according to the present invention has a pore size distribution of 0.5 to 0.5.
It has peaks both in the vicinity of 6 nm (micropore) and in the vicinity of 2 to 5 nm (mesopore).

【0022】これにより、広範なガス種に対して吸着性
能を発揮できる。すなわち、H2 のような分子サイズの
小さいガス種に対してはミクロ細孔が有効な吸着サイト
として機能し、CH4 やガソリン揮発成分のような分子
サイズの大きいガス種に対してはメソ細孔が有効な吸着
サイトとして機能する。従来の活性炭は、図4(d)に
示すように、気相吸着炭が1nm近傍に細孔径分布のピ
ークがあり、液相吸着炭が10nm近傍に細孔径分布の
ピークがある。 〔各種ガスの吸着性能〕ガソリン蒸気、水素、メタンに
対する吸着性能を下記の方法で測定した。
As a result, adsorption performance can be exhibited for a wide range of gas types. That is, micropores function as effective adsorption sites for gas species having a small molecular size such as H 2 , and meso-fine gas species for gas species having a large molecular size such as CH 4 and gasoline volatile components. The holes function as effective adsorption sites. In the conventional activated carbon, as shown in FIG. 4D, the gas-phase adsorbed carbon has a pore size distribution peak near 1 nm, and the liquid-phase adsorbed carbon has a pore size distribution peak near 10 nm. [Adsorption performance of various gases] Adsorption performance for gasoline vapor, hydrogen and methane was measured by the following method.

【0023】(a)ガソリン蒸気 密閉容器中にガソリンおよび吸着材を装入し、常温常圧
にてガソリン蒸気の吸着量を測定した。 (b)水素 密閉耐圧容器内に吸着材を装入し、77K(液体窒素温
度)、40atmにて水素を充填したときの圧力変化に
より吸着量を算出した。
(A) Gasoline Vapor Gasoline and an adsorbent were charged into a closed container, and the adsorption amount of gasoline vapor was measured at normal temperature and normal pressure. (B) Hydrogen An adsorbent was charged into a closed pressure-resistant container, and the amount of adsorption was calculated from a change in pressure when hydrogen was charged at 77 K (liquid nitrogen temperature) and 40 atm.

【0024】(c)メタン 密閉耐圧容器内に吸着材を装入し、メタン圧力と充填量
の関係を測定した。図5に、(a)ガソリン蒸気、
(b)水素および(c)メタンの吸着量をそれぞれ相対
比で示す。比較のために、(a)ガソリンについては市
販活性炭、炭化木材のみ、樹脂炭化物のみによる吸着
量、(b)水素については活性炭による吸着量、(c)
メタンについては圧縮天然ガスによる貯蔵量も併せて示
す。いずれのガスについても、本発明による複合吸着材
により最も高い吸着性能が得られた。特に、水素につい
ては、2000m2 /gという高比表面積の活性炭に比
べても更に高い吸着性能が得られている。 〔賦活による重量減少と細孔生成量との関係〕図6に、
CO2 雰囲気中、800℃でのCO2 賦活による重量減
と比表面積(細孔生成量に対応)との関係を示す。両者
の相関性が非常に良く、重量減をパラメータとして細孔
の生成量を制御できる。 〔アルカリ金属の担持による水素吸着量の向上〕本発明
の炭化木材/樹脂炭化物複合吸着材に、下記の手順でK
(カリウム)を担持させた。すなわち、水溶性カリウム
塩(硝酸カリウム、炭酸カリウム、酢酸カリウムなど)
の1〜10wt%水溶液を調製した。吸着材に対して金属
カリウム分が重量割合で1〜10wt%となるように水溶
液と吸着材を秤量し、水分を蒸発させて固化させること
により炭化木材気孔内壁にKを担持させた。
(C) Methane The adsorbent was charged into a closed pressure vessel, and the relationship between the methane pressure and the filling amount was measured. FIG. 5 shows (a) gasoline vapor,
The amounts of (b) hydrogen and (c) methane adsorbed are indicated by relative ratios. For comparison, (a) for gasoline, the amount of adsorption by commercially available activated carbon, carbonized wood only, and resin carbide only; (b) for hydrogen, the amount of adsorption by activated carbon; (c)
For methane, the amount stored by compressed natural gas is also shown. Regarding any gas, the highest adsorption performance was obtained by the composite adsorbent according to the present invention. In particular, with respect to hydrogen, even higher adsorption performance is obtained than activated carbon having a high specific surface area of 2000 m 2 / g. [Relationship between Weight Reduction by Activation and Pore Generation Amount] FIG.
4 shows the relationship between the weight loss due to CO 2 activation at 800 ° C. in a CO 2 atmosphere and the specific surface area (corresponding to the amount of generated pores). The correlation between the two is very good, and the amount of formed pores can be controlled using the weight loss as a parameter. [Improvement of the amount of hydrogen adsorbed by supporting an alkali metal] The carbonized wood / resin carbide composite adsorbent of the present invention is subjected to K
(Potassium) was supported. That is, water-soluble potassium salts (potassium nitrate, potassium carbonate, potassium acetate, etc.)
From 1 to 10 wt% aqueous solution was prepared. The aqueous solution and the adsorbent were weighed so that the metal potassium content was 1 to 10% by weight with respect to the adsorbent, and K was carried on the inner walls of the carbonized wood pores by evaporating and solidifying the water content.

【0025】示差熱天秤装置を用いて、700℃にて真
空処理した吸着材を水素雰囲気化で冷却および再加熱し
たときの温度と重量変化を測定した。図7に、吸着材の
温度変化に対する重量変化を示す。一旦700℃に加熱
した後に室温まで降温した場合、吸着重量の約4%の水
素が吸着される。
The temperature and weight change when the adsorbent vacuum-treated at 700 ° C. was cooled and reheated in a hydrogen atmosphere were measured using a differential thermal balance apparatus. FIG. 7 shows a change in weight of the adsorbent with respect to a change in temperature. When the temperature is once lowered to room temperature after heating to 700 ° C., about 4% of hydrogen by weight of adsorption is adsorbed.

【0026】[0026]

【発明の効果】本発明によれば、広範囲のガス種に対し
て高い吸着能力を発揮できる、炭化木材を基材とする吸
着材およびその製造方法が提供される。
According to the present invention, there is provided an adsorbent based on carbonized wood and a method for producing the same, which can exhibit a high adsorption capacity for a wide range of gas species.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、(a)炭化木材のみ、(b)樹脂炭化
物のみ、(c)本発明の炭化木材と樹脂炭化物の複合体
について、賦活による細孔の生成を模式的に示す断面図
である。
FIG. 1 is a cross-sectional view schematically showing generation of pores by activation of (a) only carbonized wood, (b) only resin carbide, and (c) a composite of carbonized wood and resin carbide of the present invention. FIG.

【図2】図2は、本発明の炭化木材と樹脂炭化物との複
合体によるガス吸着モデルを示す断面図である。
FIG. 2 is a cross-sectional view showing a gas adsorption model using a composite of carbonized wood and resin carbide of the present invention.

【図3】図3は、CO2 賦活による処理時間と重量減と
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the processing time due to CO 2 activation and weight reduction.

【図4】図4は、(a)炭化木材のみ、(b)樹脂炭化
物のみ、(c)本発明の炭化木材と樹脂炭化物との複合
体について賦活により生成した細孔の直径分布を示すグ
ラフ、および(d)活性炭の細孔径分布を示すグラフで
ある。
FIG. 4 is a graph showing the diameter distribution of pores formed by activation of (a) only carbonized wood, (b) only resin carbide, and (c) a composite of the carbonized wood and resin carbide of the present invention. And (d) is a graph showing the pore size distribution of activated carbon.

【図5】図5は、(a)ガソリン蒸気、(b)水素、
(c)メタンについて、本発明の炭化木材と樹脂炭化物
との複合体の吸着量を比較例と共に示すグラフである。
FIG. 5 shows (a) gasoline vapor, (b) hydrogen,
(C) It is a graph which shows the adsorption amount of the composite of the carbonized wood of the present invention and the resin carbide together with the comparative example for methane.

【図6】図6は、本発明の炭化木材と樹脂炭化物との複
合体をCO2 により賦活した場合の、賦活による重量減
と比表面積(細孔生成量に対応)との関係を示すグラフ
である。
FIG. 6 is a graph showing the relationship between the weight loss due to activation and the specific surface area (corresponding to the amount of generated pores) when the composite of carbonized wood and resin carbide of the present invention is activated by CO 2. It is.

【図7】図7は、本発明により炭化木材と樹脂炭化物と
の複合体から成り、かつKを担持させた吸着材につい
て、温度変化と重量変化(水素吸着量の変化に対応)と
の関係を示すグラフである。
FIG. 7 is a graph showing a relationship between a temperature change and a weight change (corresponding to a change in hydrogen adsorption amount) for an adsorbent made of a composite of carbonized wood and a resin carbide according to the present invention and carrying K. FIG.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂元 秀光 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 4G066 AA04B AA13A AA13D AA43A AA53A AC21A AC25A BA23 BA24 BA26 CA38 CA51 DA03 DA04 FA12 FA18 FA22 FA23 FA37  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Hidemitsu Sakamoto 1 Toyota Town, Toyota City, Aichi Prefecture Toyota Motor Corporation F-term (reference) 4G066 AA04B AA13A AA13D AA43A AA53A AC21A AC25A BA23 BA24 BA26 CA38 CA51 DA03 DA04 FA12 FA18 FA22 FA23 FA37

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 下記:木材の導管に対応する気孔を有す
る炭化木材から成る基材、 上記気孔の内壁を被覆する樹脂炭化物から成る被覆層、 上記被覆層に開口し、1〜10nmの範囲内に直径分布
のピークを有するメソ細孔、および上記メソ細孔の内壁
に開口し、0.1〜1nmの範囲内に直径分布のピーク
を有するミクロ細孔、を備えたことを特徴とする吸着
材。
1. A substrate made of carbonized wood having pores corresponding to a conduit of wood, a coating layer made of a resin carbide coating the inner wall of the pores, and having an opening in the coating layer in a range of 1 to 10 nm. Characterized by comprising a mesopore having a peak of a diameter distribution at the top and a micropore opening on the inner wall of the mesopore and having a peak of a diameter distribution within a range of 0.1 to 1 nm. Wood.
【請求項2】 前記メソ細孔およびミクロ細孔の少なく
とも一方にアルカリ金属が担持されていることを特徴と
する請求項1記載の吸着材。
2. The adsorbent according to claim 1, wherein an alkali metal is supported on at least one of the mesopores and the micropores.
【請求項3】 木材の導管に対応する気孔を有する炭化
木材を基材とする吸着材の製造方法であって、 木材に樹脂を含浸して導管の内壁に該樹脂から成る被覆
層を形成する工程、 上記被覆層を含めて上記木材を炭化する工程、および上
記炭化された木材を賦活する工程を含むことを特徴とす
る吸着材の製造方法。
3. A method for producing an adsorbent based on carbonized wood having pores corresponding to a pipe made of wood, wherein the wood is impregnated with a resin to form a coating layer made of the resin on an inner wall of the pipe. A method for producing an adsorbent, comprising: a step of carbonizing the wood including the coating layer; and a step of activating the carbonized wood.
【請求項4】 前記木材に含浸させる樹脂の量が、該木
材の重量の30〜50wt%であることを特徴とする吸着
材の製造方法。
4. A method for producing an adsorbent, wherein the amount of resin impregnated in the wood is 30 to 50% by weight of the weight of the wood.
【請求項5】 前記賦活をCO2 により行うことを特徴
とする請求項3または4記載の吸着材の製造方法。
5. The method for producing an adsorbent according to claim 3, wherein the activation is performed by CO 2 .
【請求項6】 前記樹脂として、フェノール樹脂または
フラン樹脂を用いることを特徴とする請求項3から5ま
でのいずれか1項記載の吸着材の製造方法。
6. The method for producing an adsorbent according to claim 3, wherein a phenol resin or a furan resin is used as the resin.
JP2000144611A 2000-05-12 2000-05-12 Adsorbent and method for manufacturing the same Pending JP2001321664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000144611A JP2001321664A (en) 2000-05-12 2000-05-12 Adsorbent and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000144611A JP2001321664A (en) 2000-05-12 2000-05-12 Adsorbent and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001321664A true JP2001321664A (en) 2001-11-20

Family

ID=18651246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000144611A Pending JP2001321664A (en) 2000-05-12 2000-05-12 Adsorbent and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001321664A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US7622217B2 (en) 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8092954B2 (en) 2004-09-20 2012-01-10 3M Innovative Properties Company Method of making a fuel cell polymer electrolyte membrane comprising manganese oxide
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
KR20140080910A (en) * 2012-12-20 2014-07-01 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572534B2 (en) 2004-09-20 2009-08-11 3M Innovative Properties Company Fuel cell membrane electrode assembly
US7803847B2 (en) 2004-09-20 2010-09-28 3M Innovative Properties Company Fuel cell membrane electrode assembly
US8092954B2 (en) 2004-09-20 2012-01-10 3M Innovative Properties Company Method of making a fuel cell polymer electrolyte membrane comprising manganese oxide
US8101317B2 (en) 2004-09-20 2012-01-24 3M Innovative Properties Company Durable fuel cell having polymer electrolyte membrane comprising manganese oxide
US9034538B2 (en) 2004-09-20 2015-05-19 3M Innovative Properties Company Casting solution and method for making a polymer electrolyte membrane
US7622217B2 (en) 2005-10-12 2009-11-24 3M Innovative Properties Company Fuel cell nanocatalyst
US8367267B2 (en) 2005-10-28 2013-02-05 3M Innovative Properties Company High durability fuel cell components with cerium oxide additives
US8628871B2 (en) 2005-10-28 2014-01-14 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
US9431670B2 (en) 2005-10-28 2016-08-30 3M Innovative Properties Company High durability fuel cell components with cerium salt additives
KR20140080910A (en) * 2012-12-20 2014-07-01 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom
KR102023064B1 (en) * 2012-12-20 2019-09-19 재단법인 포항산업과학연구원 Method for manufacturing porous pelletized activated carbon from wood pellet and porous pelletized activated carbon manufactured therefrom

Similar Documents

Publication Publication Date Title
CA2193949C (en) Carbon adsorbent, manufacturing method therefor,gas seperation method and device therefor
Manocha Porous carbons
Gergova et al. A comparison of adsorption characteristics of various activated carbons
US5240474A (en) Air separation by pressure swing adsorption with a high capacity carbon molecular sieve
Sevilla et al. Superactivated carbide-derived carbons with high hydrogen storage capacity
Teng et al. Preparation of activated carbons from bituminous coals with CO2 activation—influence of coal oxidation
Kopac Hydrogen storage characteristics of bio‐based porous carbons of different origin: a comparative review
EP0474106B1 (en) Process for making modified carbon molecular sieves for gas separation
Adeniran et al. A family of microporous carbons prepared via a simple metal salt carbonization route with high selectivity for exceptional gravimetric and volumetric post-combustion CO 2 capture
Travis et al. Superior CO 2 adsorption from waste coffee ground derived carbons
US5164355A (en) High capacity coconut shell char for carbon molecular sieves
RU2562285C2 (en) Method for production of filter for tobacco smoke filtering
KR101564794B1 (en) Activated carbon from microcrystalline cellulose
US5086033A (en) Use of helium and argon diluent gases in modification of carbon molecular sieves
Freeman et al. Studies of activated charcoal cloth. I. Modification of adsorptive properties by impregnation with boron-containing compounds
US20100116136A1 (en) Carbon-based sorbent for gas storage, and method for preparation thereof
Stoeckli et al. Water adsorption in carbons described by the dubinin–astakhov and dubinin–serpinski equations
Krishnankutty et al. Effect of pretreatment on surface area, porosity, and adsorption properties of a carbon black
JP2001321664A (en) Adsorbent and method for manufacturing the same
Hussein et al. Oil palm trunk as a raw material for activated carbon production
Nahil et al. Characterisation of activated carbons with high surface area and variable porosity produced from agricultural cotton waste by chemical activation and co-activation
JP2018047453A (en) Spherical phenol resin activated carbon for methane occlusion and method for producing the same, and methane occlusion material using activated carbon and methane occlusion method using activated carbon
CN115209985B (en) Mercury adsorbent and method for producing same
JP2003342014A (en) Activated carbon and its manufacturing method
US8007908B2 (en) Single walled carbon nanohorn adsorptive material and method for production thereof

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040309