JP2001320128A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2001320128A
JP2001320128A JP2000136326A JP2000136326A JP2001320128A JP 2001320128 A JP2001320128 A JP 2001320128A JP 2000136326 A JP2000136326 A JP 2000136326A JP 2000136326 A JP2000136326 A JP 2000136326A JP 2001320128 A JP2001320128 A JP 2001320128A
Authority
JP
Japan
Prior art keywords
layer
type
doped
grown
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000136326A
Other languages
Japanese (ja)
Other versions
JP3585809B2 (en
Inventor
Kouta Tateno
功太 舘野
Chikara Amano
主税 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000136326A priority Critical patent/JP3585809B2/en
Publication of JP2001320128A publication Critical patent/JP2001320128A/en
Application granted granted Critical
Publication of JP3585809B2 publication Critical patent/JP3585809B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor laser having a pin structure which is high in efficiency electrically and optically. SOLUTION: An Si doped n-type Al0.15Ga0.32In0.53As buffer layer 2 of 0.2 μm and an Si doped n-type Al0.48In0.52As layer 3 of 1 μm are grown on an n-type InP substrate 1. After a non-doped Al0.27-0.34Ga0.20-0.13In0.53As inclined layer of 50 nm is grown, a quantum well active layer 4 composed of an Al0.07 Ga0.25In0.68As layer of 8 nm and an Al0.27Ga0.20In0.53As layer of 10 nm 5, and a non-doped Al0.27-0.34Ga0.20-0.13In0.53As inclined layer of 50 nm, are grown. Successively, A carbon doped p-type AlAs0.56Sb0.44 layer 5 of 1 μm and a carbon doped p-type GaAs0.51Sb0.49 layer 6 of 50 nm are grown.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体レーザに関
し、より詳細には、電気的、光学的に効率の高いpin
構造の半導体レーザに関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor laser, and more particularly, to a pin having a high electrical and optical efficiency.
The present invention relates to a semiconductor laser having a structure.

【0002】[0002]

【従来の技術】一般に、1.55μm帯の長波長半導体
レーザは、InP基板上に半導体層を成長させて構成さ
れるもので、この半導体材料としては、GaInAsP
系、AlGaInAs系、AlGaAsSb系、の四元
系である。他に、これらにIII族(B,Al,Ga,I
n,Tl)か、V族(N,P,As,Sb,Bi)の元
素を追加した系が考えられるが、このIII 族又はV族を
用いる場合は、活性層に限定されるか特別な場合であ
る。また、元素の数が増えると、その分だけ成長が著し
く難しくなる。
2. Description of the Related Art In general, a long-wavelength semiconductor laser in the 1.55 μm band is formed by growing a semiconductor layer on an InP substrate. The semiconductor material is GaInAsP.
System, AlGaInAs system, and AlGaAsSb system. In addition, these include Group III (B, Al, Ga, I
n, Tl) or a system in which an element of group V (N, P, As, Sb, Bi) is added. When the group III or group V is used, it is limited to an active layer or a special layer. Is the case. In addition, as the number of elements increases, growth becomes extremely difficult.

【0003】従来の連続成長されるレーザは、同じ系の
四元材料を用いて基板の格子定数に近い条件の組成でn
型層、活性層、p型層を構成している。GaInAsP
系の材料では、V族元素が2種類であり、組成制御が難
しいとう欠点があった。また、伝導帯の差(ΔEc)が
大きく取れないため、温度特性が小さいという欠点があ
った。さらに、AlGaInAs系では、V族元素は1
種類であるものの、特に有機金属気相成長法ではIII 族
におけるAl組成が90%以上のAlGaInAsの場
合は酸素や不純物の影響で良好な膜を形成することは難
しいという欠点があった。また、ΔEcを大きくして、
温度特性を良くするためには、Al組成を大きくして格
子を歪ませる必要があった。
A conventional continuously grown laser uses a quaternary material of the same system and has a composition near the lattice constant of the substrate.
It forms a mold layer, an active layer, and a p-type layer. GaInAsP
In the system material, there are two kinds of group V elements, and there is a disadvantage that composition control is difficult. In addition, there is a disadvantage that the temperature characteristics are small because the difference (ΔEc) between the conduction bands cannot be made large. Further, in the AlGaInAs system, the group V element is 1
Although it is a kind, particularly in the case of metalorganic vapor phase epitaxy, it is difficult to form a good film due to the influence of oxygen and impurities in the case of AlGaInAs having a group III Al composition of 90% or more. Also, by increasing ΔEc,
In order to improve the temperature characteristics, it was necessary to increase the Al composition and strain the lattice.

【0004】一般に、p型のドーパントとしてZnが用
いられるが、Znは、蒸気圧が高いためにZn材料を多
く必要とし、また、拡散定数が大きいため急峻なp層は
得られにくいという欠点がある。拡散定数の小さい炭素
によるドーピングでは、GaInAsPやAlGaIn
Asの材料系では結合の弱いInを多く含むIII 族サイ
トに入りやすくp型になりにくい欠点があった。一方、
AlGaAsSb系では、ドーパントが結合の弱いSb
を多く含むV族サイトに入りやすいことからIV族のドー
パントではp型になりやすく、n型のドーパントとして
一般に用いられる拡散定数の小さいSiもV族に入りn
型にはなりにくいという欠点があった。
[0004] In general, Zn is used as a p-type dopant. However, Zn has a disadvantage that it requires a large amount of Zn material because of its high vapor pressure, and it is difficult to obtain a steep p-layer because of its large diffusion constant. is there. In doping with carbon having a small diffusion constant, GaInAsP or AlGaIn
The material system of As has a drawback that it is easy to enter a group III site containing a large amount of In, which has a weak bond, and is unlikely to be p-type. on the other hand,
In the AlGaAsSb system, the dopant is Sb having a weak bond.
Group-dopant is likely to be p-type with a group IV dopant, and Si, which is generally used as an n-type dopant and has a small diffusion constant, also enters the group V and has n
There was a drawback that it was difficult to become a mold.

【0005】また、S,Se,TeのVI族のドーパント
もn型ドーパントとして用いられるが、拡散定数が大き
く急峻なドーピングが難しい点や、蒸気圧が高くメモリ
ー効果が大きい点で問題がある。従って、同じ材料系で
pin型のレーザを連続的に成長するとどちらかの伝導
型を成長する場合にメモリー効果など成長に問題があっ
たり、ドーパントの活性化効率の低い膜が成長されるな
どの要因で、電気的あるいは光学的に効率の低いレーザ
となった。有機金属気相成長法では結晶性の良い膜が得
られやすく、また、量産性に優れているが、上述したド
ーパントの性質は特に顕著に表れる傾向があった。
[0005] In addition, group VI dopants of S, Se, and Te are also used as n-type dopants, but they have problems in that they have a large diffusion constant, making it difficult to do steep doping, and have a high vapor pressure and a large memory effect. Therefore, when a pin type laser is continuously grown in the same material system, there is a problem in growth such as a memory effect when growing either conduction type, or a film having low dopant activation efficiency is grown. Due to the factors, the laser became electrically or optically inefficient. In the metalorganic chemical vapor deposition method, a film having good crystallinity is easily obtained, and the mass productivity is excellent. However, the properties of the dopant tend to be particularly remarkable.

【0006】[0006]

【発明が解決しようとする課題】長波長の面発光レーザ
においては、反射率の高いDBR(Distributed BraggR
eflector;分布ブラック反射器)をGaAs基板上に作
製し、後にInP基板上に作製した活性層を含む部分を
貼り合せて作製する方法と、InP基板上にすべての構
造を成長して作製する方法がある。前者の貼り合せ法
は、GaAs基板に炭素ドープしたp型DBRを作製で
きるが、貼り合せ界面が活性層に近いため不純物や欠陥
の影響で素子寿命や信頼性に問題がある。後者の連続成
長のものは、作製が容易であり、不純物、欠陥等が活性
層付近に存在しないものであるが、未だに前者のものよ
りも劣った特性である。その要因として厚膜を成長しな
ければならず、良好な成長が難しいこと、p型あるいは
n型のいずれかのドーパントの効率が上述したように悪
く、電気的、光学的に良い膜が得られていないこと、高
いΔEcを有する構造ができていないこと、酸化狭窄構
造がなされていないこと等が考えられる。
In a long-wavelength surface emitting laser, a DBR (Distributed Bragg®) having a high reflectance is used.
A method in which an eflector (distributed black reflector) is formed on a GaAs substrate, and a portion including an active layer formed later on an InP substrate is bonded, and a method in which all structures are grown on the InP substrate. There is. The former bonding method can produce a p-type DBR in which a GaAs substrate is doped with carbon. However, since the bonding interface is close to the active layer, there is a problem in element life and reliability due to impurities and defects. The latter, which is continuously grown, is easy to manufacture and has no impurities, defects, etc. near the active layer, but still has inferior characteristics to the former. As a factor, a thick film must be grown, and good growth is difficult, and the efficiency of either the p-type or the n-type dopant is poor as described above, and an electrically and optically good film can be obtained. It is conceivable that no structure having a high ΔEc is formed, an oxide confined structure is not formed, or the like.

【0007】現在、AlGaAsSbの面発光レーザ
は、例えば、F.Genty et al.J.Crystal.Growth 201/202
(1999)pp.1024-1027.の論文で報告されているが、分子
線エピタキシャル成長法による結晶性の劣った結果であ
り、低温の光励起でレーザ発振する程度である。また、
AlGaInAsでは、J.P.Debray et al.IEEE Photon
ics Technol.Lett.11(1999)pp.770-772.で報告されてお
り、MOVPEで成長し電流注入でパルスによりレーザ
発振しているが、炭素ドーピングが不充分でZnを共有
したものであり、特性は劣っている。
At present, a surface emitting laser of AlGaAsSb is disclosed in, for example, F. Genty et al. J. Crystal. Growth 201/202.
(1999) pp. 1024-1027. This is a result of inferior crystallinity by molecular beam epitaxy, and the laser oscillation is caused by low-temperature optical excitation. Also,
For AlGaInAs, JPDebray et al. IEEE Photon
ics Technol. Lett. 11 (1999) pp. 770-772. Growing by MOVPE and oscillating by current injection pulse. , The properties are inferior.

【0008】そこで、本発明は、如何に良好なp型かつ
n型膜を成長し、電気的、光学的に効率の高いpin構
造の半導体レーザ、特に、低コストで素子特性が良く、
素子寿命、信頼性の高いInP基板上の長波長系面発光
レーザを作製するかが課題になっている。
Accordingly, the present invention provides a method of growing a good p-type and n-type film, and a semiconductor laser having a pin structure with high electrical and optical efficiency, particularly, low cost and good device characteristics.
The issue is how to manufacture a long-wavelength surface emitting laser on an InP substrate with high device life and high reliability.

【0009】本発明は、このような問題に鑑みてなされ
たもので、その目的とするところは、電気的かつ光学的
に効率の高いpin構造の半導体レーザを提供すること
にある。
The present invention has been made in view of such a problem, and an object of the present invention is to provide a semiconductor laser having a pin structure that is electrically and optically highly efficient.

【0010】[0010]

【課題を解決するための手段】本発明は、このような目
的を達成するために、請求項1に記載の発明は、Al
1-x-yGayInxAs(x>0.4)あるいはGa1-x
xAsy1-y(x>0.4)をn型層とし、Sbを含
むAlxGa1-xAs1-ySby(y>0.4)をp型層と
して活性層を挟むことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides such an eye.
In order to achieve the target, the invention described in claim 1
1-xyGayInxAs (x> 0.4) or Ga1-xI
nxAsyP1-y(X> 0.4) is an n-type layer and contains Sb.
Mu AlxGa1-xAs1-ySby(Y> 0.4) with the p-type layer
The active layer.

【0011】また、請求項1において、前記n型層と前
記p型層は酸化狭窄されたAlGaAsSb層をさらに
挟むことを特徴とするものである。
Further, in the first aspect of the present invention, the n-type layer and the p-type layer further include an AlGaAsSb layer which is oxidized and confined.

【0012】また、請求項1又は2において、前記n型
層と前記p型層はDBRであることを特徴とするもので
ある。
Further, in the first or second aspect, the n-type layer and the p-type layer are DBRs.

【0013】また、請求項1、2又は3において、前記
p型層はC,Si,Ge,Snのいずれか1つの元素を
不純物として含むことを特徴とするものである。
Further, in the first, second or third aspect, the p-type layer contains any one of C, Si, Ge and Sn as an impurity.

【0014】また、請求項1乃至4いずれか1項におい
て、前記n型層はC元素を不純物として含むことを特徴
とするものである。
Further, in any one of the first to fourth aspects, the n-type layer contains a C element as an impurity.

【0015】つまり、本発明は、InP基板上に成長さ
れるレーザ構造においてInを含むAl1-x-yGayIn
xAs(x>0.4)あるいはGa1-xInxAsy1-y
(x>0.4)をn型層とし、Sbを含むAlxGa1-x
As1-ySby(y>0.4)をp型層として構成される
ことを特徴とし、また、n型のAlGaInAsあるい
はGaInAsPからなるDBRとp型のAlGaAs
SbからなるDBRを含む面発光レーザ構造を特徴と
し、また、活性層近傍に酸化狭窄されたAlGaAsS
b層を含むことを特徴とし、また、p型あるいはn型の
ドーパントとして拡散の小さいIV族のC,Si,Ge,
Snを用いることを特徴とし、さらに、有機金属気相成
長法で連続成長が可能なことを特徴とした半導体レーザ
である。
[0015] That is, the present invention is, Al 1-xy Ga y In containing In in a laser structure is grown on an InP substrate
x As (x> 0.4) or Ga 1-x In x As y P 1-y
(X> 0.4) is an n-type layer, and Al x Ga 1 -x containing Sb
As 1-y Sb y with (y> 0.4) characterized in that it is constructed as a p-type layer, also, DBR and p-type AlGaAs consisting of a n-type AlGaInAs or GaInAsP
It features a surface emitting laser structure including a DBR made of Sb, and has an AlGaAsS which is oxidized and confined in the vicinity of the active layer.
b, and as a p-type or n-type dopant, a group IV C, Si, Ge,
A semiconductor laser characterized by using Sn and capable of continuous growth by metal organic chemical vapor deposition.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して本発明の実
施例について説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】(実施形態1)図1は、本発明の第1実施
形態について説明するための半導体レーザの構成図で、
この半導体レーザは、n型のInP(100)基板上1
にSiドープn型Al0.15Ga0.32In0.53As(バン
ドギャップ波長:λg=1.3μm)バッファ層2を
0.2μm、Siドープn型Al0.48In0.52As層3
を1μm成長し、ノンドープAl0.27-0.34Ga
0.20-0.13In0.53As傾斜層(λg=1.0−1.1
μm)を50nmを成長した後、1%圧縮歪みAl0.07
Ga0.25In0.68As層(λg=1.55μm)8nm
/Al0.27Ga0.20In0.53As層(λg=1.1μ
m)10nm5ペアからなる量子井戸活性層4、ノンド
ープAl0.27 -0.34Ga0.20-0.13In0.53As傾斜層
(λg=1.1−1.0μm)を50nmを成長し、引
き続き炭素ドープp型AlAs0.56Sb0.44層5を1μ
m、炭素ドープp型GaAs0.51Sb0.49層6を50n
mを成長した構成になっている。
(Embodiment 1) FIG. 1 is a configuration diagram of a semiconductor laser for explaining a first embodiment of the present invention.
This semiconductor laser is formed on an n-type InP (100) substrate.
Buffer layer 2 (band gap wavelength: λg = 1.3 μm) of Si-doped n-type Al 0.15 Ga 0.32 In 0.53 As and Si-doped n-type Al 0.48 In 0.52 As layer 3
Is grown to 1 μm, and non-doped Al 0.27-0.34 Ga
0.20-0.13 In 0.53 As graded layer (λg = 1.0-1.1
μm) after growing 50 nm, 1% compressive strain Al 0.07
Ga 0.25 In 0.68 As layer (λg = 1.55 μm ) 8 nm
/ Al 0.27 Ga 0.20 In 0.53 As layer (λg = 1.1 μm
m) Quantum well active layer 4 composed of 5 pairs of 10 nm, non-doped Al 0.27 -0.34 Ga 0.20 -0.13 In 0.53 As gradient layer (λg = 1.1-1.0 μm) is grown to a thickness of 50 nm, and subsequently carbon-doped p-type AlAs 0.56 1μ of Sb 0.44 layer 5
m, carbon doped p-type GaAs 0.51 Sb 0.49 layer 6 of 50 n
m is grown.

【0018】つまり、Al1-x-yGayInxAs(x>
0.4)あるいはGa1-xInxAsy1-y(x>0.
4)をn型層3とし、Sbを含むAlxGa1-xAs1-y
Sby(y>0.4)をp型層5として活性層4を挟む
構成になっている。
[0018] That is, Al 1-xy Ga y In x As (x>
0.4) or Ga 1-x In x As y P 1-y (x> 0.
4) is the n-type layer 3, and Al x Ga 1 -x As 1 -y containing Sb
Has a configuration sandwiching the active layer 4 sb y a (y> 0.4) as the p-type layer 5.

【0019】図2は、活性層近傍の発振時のエネルギー
バンドを示す図で、ノンドープのAlGaInAsとp
−AlAsSb間の材料系の電子親和力の違いに起因し
た高いΔEcによりキャリアが効率良く活性層に閉じ込
められる構成である。成長されたエピ層はp型電極とし
てAuZnNi/Auを蒸着し、過酸化水素/硫酸水溶
液によりストライプ状にエッチングした後、表面をSi
2 で保護し、裏面にn型電極としてAuGeNi/A
uを蒸着した。端面をへき開して反射鏡を作製し、測定
を行った。
FIG. 2 is a diagram showing an energy band in the vicinity of the active layer during oscillation, in which undoped AlGaInAs and p
In this configuration, carriers are efficiently confined in the active layer due to a high ΔEc caused by a difference in electron affinity of the material system between -AlAsSb. The grown epi layer is formed by depositing AuZnNi / Au as a p-type electrode and etching it in a stripe shape with a hydrogen peroxide / sulfuric acid aqueous solution, and then etching the surface with Si.
Protected with O 2 and AuGeNi / A on the back as n-type electrode
u was deposited. The end face was cleaved to produce a reflector, and the measurement was performed.

【0020】図3は、電流−光出力曲線を示す図であ
る。AlGaAsSbのΔEcが高いためキャリアが効
率良く閉じ込められることと、炭素ドーパントが結晶成
長中に活性層まで拡散されないためZnドーピングした
ものよりも活性層の特性が良いこと、また、p型,n型
共にドーパントの活性化率が高いため、不純物による吸
収の影響が小さいこと等により、従来のGaInAsP
系レーザと比較して閾値電流、微分効率共に改善されて
いることがわかる。また、高いΔEcのため温度特性も
AlGaAsレーザ並に高いことを確認した。また、p
基板上にAlGaAsSbから成長してレーザを作製し
ても同様の効果が得られた。また、n型層及び活性層を
GaInAsP系としても同様の効果が得られた。
FIG. 3 is a diagram showing a current-light output curve. AlGaAsSb has a high ΔEc, so that carriers are efficiently confined. The carbon dopant is not diffused to the active layer during crystal growth, so that the active layer has better characteristics than Zn-doped one. Since the activation rate of the dopant is high and the influence of absorption by impurities is small, the conventional GaInAsP
It can be seen that both the threshold current and the differential efficiency are improved as compared with the system laser. It was also confirmed that the temperature characteristics were as high as AlGaAs laser due to the high ΔEc. Also, p
Similar effects were obtained even when a laser was fabricated by growing the substrate from AlGaAsSb on a substrate. Similar effects were obtained when the n-type layer and the active layer were made of GaInAsP.

【0021】(実施形態2)図4は、本発明の第2実施
形態を説明するための面発光レーザの構成図で、この面
発光レーザは、n型のInP(311)B基板上11に
中間に傾斜組成のAl0.15-0.34Ga0.32-0.13In0.53
As中間層10nmを挟んだ低屈折率の光学長λ/4
(λ=1550nm)のn−Al0.15Ga0.32In0.53
Asと高屈折率の光学長λ/4のn−Al0.48In0.52
Asの50.5ペアのn型DBR12を成長後、光学長
λの活性層13aを含むAlGaInAsのスペーサ層
13を成長し、引き続き中間に傾斜組成のAl0.16-0.9
Ga0.84-0.1As0.52-0.56Sb0 .48-0.44中間層10n
mを挟んだ低屈折率の光学長λ/4のp−Al0.9Ga
0.1As0.56Sb0.44と高屈折率の光学長λ/4のp−
Al0.16Ga0.84As0.52Sb0.48の25ペアのp型D
BR14を成長した構成になっている。なお、14aは
酸化狭窄層である。
(Embodiment 2) FIG. 4 is a structural view of a surface emitting laser for explaining a second embodiment of the present invention. This surface emitting laser is mounted on an n-type InP (311) B substrate 11. Al 0.15-0.34 Ga 0.32-0.13 In 0.53 with gradient composition in the middle
Optical length λ / 4 of low refractive index sandwiching As intermediate layer 10 nm
(Λ = 1550 nm) n-Al 0.15 Ga 0.32 In 0.53
As and n-Al 0.48 In 0.52 with a high refractive index and an optical length of λ / 4
After growing an n-type DBR 12 of 50.5 pairs of As, a spacer layer 13 of AlGaInAs including an active layer 13a having an optical length λ is grown, and subsequently, a graded composition of Al 0.16-0.9
Ga 0.84-0.1 As 0.52-0.56 Sb 0 .48-0.44 intermediate layer 10n
p-Al 0.9 Ga having an optical length of λ / 4 with a low refractive index sandwiching m
0.1- As 0.56 Sb 0.44 and p- of optical length λ / 4 with high refractive index
25 pairs of p-type D of Al 0.16 Ga 0.84 As 0.52 Sb 0.48
The structure is such that BR14 is grown. In addition, 14a is an oxidation constriction layer.

【0022】ここで、活性層から数ペア目の低屈折率層
のAlGaAsSbのAl組成を他の層よりも高くする
ことにより、選択酸化が可能であるが、ここでは活性層
から3層目をAl0.98Ga0.02As0.56Sb0.44層とし
た。SiNxの円形パターン20μmφを作製した後、
活性層までドライエッチングし、さらに過酸化水素、硫
酸水溶液でエッチングを行い、水蒸気により400℃で
Al0.98Ga0.02As 0.56Sb0.44層を選択酸化した。
選択酸化により形成された電流狭窄径は5μmφであっ
た。
Here, a low-refractive-index layer several pairs from the active layer
AlGaAsSb with higher Al composition than other layers
In this case, selective oxidation is possible.
The third layer from Al0.98Ga0.02As0.56Sb0.44As layers
Was. After producing a circular pattern of 20 μmφ of SiNx,
Dry etching to the active layer, hydrogen peroxide, sulfuric acid
Etching with an acid aqueous solution
Al0.98Ga0.02As 0.56Sb0.44The layer was selectively oxidized.
The diameter of the current constriction formed by selective oxidation was 5 μmφ.
Was.

【0023】次に、ウエハ表面にAuZnNi/Auか
らなる15μmφの径のリング状のp−電極23を作製
した後、SiNx22で表面を保護し、上側にCr/A
uよりなる配線電極、下側にAuGeNi/Auからな
るn−電極21を形成した。
Next, a ring-shaped p-electrode 23 having a diameter of 15 μm and made of AuZnNi / Au is formed on the wafer surface, the surface is protected with SiNx22, and Cr / A is formed on the upper side.
An n-electrode 21 made of AuGeNi / Au was formed below the wiring electrode made of u.

【0024】図5は、作製された面発光レーザを示す図
で、図6は、図5に示した面発光レーザの電流−光出力
特性を示す図である。室温で1mW以上の光出力で、低
閾値電流で高効率な面発光レーザが作製された。
FIG. 5 is a diagram showing the fabricated surface emitting laser, and FIG. 6 is a diagram showing current-light output characteristics of the surface emitting laser shown in FIG. A surface-emitting laser with a light output of 1 mW or more at room temperature, a low threshold current, and a high efficiency was fabricated.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、A
1-x-yGayInxAs(x>0.4)あるいはGa1-x
InxAsy1-y(x>0.4)をn型層とし、Sbを
含むAlxGa1-xAs1-ySby(y>0.4)をp型層
として活性層を挟むように構成、つまり、n型のAlG
aInAsあるいはGaInAsPとp型のAlGaA
sSbをInP基板上に成長する構成としたので、拡散
定数の小さいCやSiのドーパントを効率良く用いるこ
とができ、また、AlGaAsSbと活性層の伝導帯の
差を大きく取れるため、電気的、光学的に効率の高い半
導体レーザが実現される。
As described above, according to the present invention, A
l 1-xy Ga y In x As (x> 0.4) or Ga 1-x
In x As y P 1-y and (x> 0.4) and n-type layer, active layer Al x Ga 1-x As 1 -y Sb y (y> 0.4) containing Sb as a p-type layer , That is, n-type AlG
aInAs or GaInAsP and p-type AlGaAs
Since sSb is grown on the InP substrate, a dopant of C or Si having a small diffusion constant can be used efficiently, and a large difference in conduction band between AlGaAsSb and the active layer can be obtained. A highly efficient semiconductor laser is realized.

【0026】特に、AlGaAsSbはAl組成を高く
することができ、酸化狭窄構造により更に高効率化が可
能となる。また、有機金属気相成長法により連続的に特
性の良い面発光レーザ構造が成長可能となるため、低コ
ストで、素子寿命、信頼性の高いレーザ素子の提供が可
能となる。
In particular, AlGaAsSb can increase the Al composition, and can achieve higher efficiency due to the oxide confinement structure. In addition, since a surface emitting laser structure having good characteristics can be continuously grown by the metal organic chemical vapor deposition method, it is possible to provide a laser device with low cost, high device life, and high reliability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体レーザの構成図である。FIG. 1 is a configuration diagram of a semiconductor laser of the present invention.

【図2】活性層近傍のエネルギーバンドを示す図であ
る。
FIG. 2 is a diagram showing an energy band near an active layer.

【図3】電流−光出力特性を示す図である。FIG. 3 is a diagram showing current-light output characteristics.

【図4】本発明の面発光レーザの構成図である。FIG. 4 is a configuration diagram of a surface emitting laser of the present invention.

【図5】作製された面発光レーザを示す図である。FIG. 5 is a diagram showing a manufactured surface emitting laser.

【図6】図5に示した面発光レーザの電流−光出力特性
を示す図である。
FIG. 6 is a diagram showing current-light output characteristics of the surface emitting laser shown in FIG. 5;

【符号の説明】[Explanation of symbols]

1 n型のInP基板 2 Siドープn型Al0.15Ga0.32In0.53Asバッ
ファ層 3 Siドープn型Al0.48In0.52As層 4 Al0.07Ga0.25In0.68As層/Al0.27Ga
0.20In0.53As層からなる量子井戸活性層 5 炭素ドープp型AlAs0.56Sb0.44層 6 炭素ドープp型GaAs0.51Sb0.49層 11 n型のInPB基板 12 n型DBR 13 AlGaInAsのスペーサ層 13a 活性層 14 p型DBR 14a 酸化狭窄層 21 n−電極 22 SiNx 23 p−電極
Reference Signs List 1 n-type InP substrate 2 Si-doped n-type Al 0.15 Ga 0.32 In 0.53 As buffer layer 3 Si-doped n-type Al 0.48 In 0.52 As layer 4 Al 0.07 Ga 0.25 In 0.68 As layer / Al 0.27 Ga
0.20 In 0.53 As quantum well active layer 5 As layer 5 Carbon-doped p-type AlAs 0.56 Sb 0.44 layer 6 Carbon-doped p-type GaAs 0.51 Sb 0.49 layer 11 n-type InPB substrate 12 n-type DBR 13 AlGaInAs spacer layer 13a active layer 14 p-type DBR 14a oxidation confinement layer 21 n-electrode 22 SiNx 23 p-electrode

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F073 AA46 AA51 AA65 AA74 AB17 CA07 CA12 CA15 CA17 CB07 CB08 CB19 DA23 DA24 DA27 DA35 EA23  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F073 AA46 AA51 AA65 AA74 AB17 CA07 CA12 CA15 CA17 CB07 CB08 CB19 DA23 DA24 DA27 DA35 EA23

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Al1-x-yGayInxAs(x>0.
4)あるいはGa1-xInxAsy1-y(x>0.4)を
n型層とし、Sbを含むAlxGa1-xAs1-ySby(y
>0.4)をp型層として活性層を挟むことを特徴とし
た半導体レーザ。
[Claim 1] Al 1-xy Ga y In x As (x> 0.
4) or Ga 1-x In x As y P 1-y and (x> 0.4) and n-type layer, Al containing Sb x Ga 1-x As 1 -y Sb y (y
> 0.4) with a p-type layer sandwiching the active layer.
【請求項2】 前記n型層と前記p型層は酸化狭窄され
たAlGaAsSb層をさらに挟むことを特徴とした請
求項1に記載の半導体レーザ。
2. The semiconductor laser according to claim 1, wherein said n-type layer and said p-type layer further sandwich an oxidation-constricted AlGaAsSb layer.
【請求項3】 前記n型層と前記p型層はDBRである
ことを特徴とした請求項1又は2に記載の半導体レー
ザ。
3. The semiconductor laser according to claim 1, wherein said n-type layer and said p-type layer are DBRs.
【請求項4】 前記p型層はC,Si,Ge,Snのい
ずれか1つの元素を不純物として含むことを特徴とした
請求項1、2又は3に記載の半導体レーザ。
4. The semiconductor laser according to claim 1, wherein said p-type layer contains one of C, Si, Ge, and Sn as an impurity.
【請求項5】 前記n型層はC元素を不純物として含む
ことを特徴とした請求項1乃至4いずれか1項に記載の
半導体レーザ。
5. The semiconductor laser according to claim 1, wherein the n-type layer contains a C element as an impurity.
JP2000136326A 2000-05-09 2000-05-09 Semiconductor laser Expired - Fee Related JP3585809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136326A JP3585809B2 (en) 2000-05-09 2000-05-09 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136326A JP3585809B2 (en) 2000-05-09 2000-05-09 Semiconductor laser

Publications (2)

Publication Number Publication Date
JP2001320128A true JP2001320128A (en) 2001-11-16
JP3585809B2 JP3585809B2 (en) 2004-11-04

Family

ID=18644283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136326A Expired - Fee Related JP3585809B2 (en) 2000-05-09 2000-05-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP3585809B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175295A (en) * 2003-12-12 2005-06-30 Hitachi Ltd Semiconductor optical element and optical module
JP2006074043A (en) * 2004-08-31 2006-03-16 Samsung Electro Mech Co Ltd Manufacturing method for laser diode
JP2009290161A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Optical semiconductor device
US7847735B2 (en) * 2005-04-29 2010-12-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Integrated photovoltaic cell and antenna
JP2013074171A (en) * 2011-09-28 2013-04-22 Oki Data Corp Light-emitting device, light-emitting element array, and image display apparatus
JP2014220464A (en) * 2013-05-10 2014-11-20 日本電信電話株式会社 Lamination structure of antimony-based p-type compound semiconductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175295A (en) * 2003-12-12 2005-06-30 Hitachi Ltd Semiconductor optical element and optical module
JP2006074043A (en) * 2004-08-31 2006-03-16 Samsung Electro Mech Co Ltd Manufacturing method for laser diode
US7847735B2 (en) * 2005-04-29 2010-12-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Integrated photovoltaic cell and antenna
JP2009290161A (en) * 2008-06-02 2009-12-10 Mitsubishi Electric Corp Optical semiconductor device
JP2013074171A (en) * 2011-09-28 2013-04-22 Oki Data Corp Light-emitting device, light-emitting element array, and image display apparatus
JP2014220464A (en) * 2013-05-10 2014-11-20 日本電信電話株式会社 Lamination structure of antimony-based p-type compound semiconductor

Also Published As

Publication number Publication date
JP3585809B2 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
US6711195B2 (en) Long-wavelength photonic device with GaAsSb quantum-well layer
US7638792B2 (en) Tunnel junction light emitting device
JP2016036050A (en) Laser with quantum wells having high indium and low aluminum, with barrier layers having high aluminum and low indium, and with reduced traps
JP2002531959A (en) Compound semiconductor structures for photoelectric devices
JPH07235732A (en) Semiconductor laser
US20060193361A1 (en) Vertical cavity surface emitting laser device having a higher optical output power
US6472691B2 (en) Distributed feedback semiconductor laser device
JPH10233557A (en) Semiconductor light emitting element
US8304757B2 (en) Semiconductor light-emitting device, optical module, transmitter, and optical communication system
JP2000012971A (en) Semiconductor laser
EP1553670B1 (en) Semiconductor device having a quantum well structure including dual barrier layers, semiconductor laser employing the semiconductor device and methods of manufacturing the semiconductor device and the semiconductor laser.
JP2019009196A (en) Semiconductor laser
CN113422295A (en) Multi-junction distributed feedback semiconductor laser and preparation method thereof
US6931044B2 (en) Method and apparatus for improving temperature performance for GaAsSb/GaAs devices
JP3585809B2 (en) Semiconductor laser
JP5381692B2 (en) Semiconductor light emitting device
JP2000353858A (en) Surface-emitting laser and manufacture thereof
US20070127533A1 (en) Long-wavelength vertical cavity surface emitting lasers having oxide aperture and method for manufacturing the same
JP2003347582A (en) Semiconductor element
JPH09199791A (en) Optical semiconductor device and its manufacture
JP2001144375A (en) Semiconductor light-emitting device
JP2002033553A (en) Semiconductor laser device and its manufacturing method
CN215771900U (en) Multi-junction distributed feedback semiconductor laser
JP2004103679A (en) Semiconductor light emitting element and semiconductor light emitting element module
JP3568147B2 (en) Semiconductor light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Effective date: 20040701

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20040727

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040804

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20080813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100813

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees