JP2001319923A - Method for anisotropic etching of base material and apparatus for etching base material - Google Patents

Method for anisotropic etching of base material and apparatus for etching base material

Info

Publication number
JP2001319923A
JP2001319923A JP2000137765A JP2000137765A JP2001319923A JP 2001319923 A JP2001319923 A JP 2001319923A JP 2000137765 A JP2000137765 A JP 2000137765A JP 2000137765 A JP2000137765 A JP 2000137765A JP 2001319923 A JP2001319923 A JP 2001319923A
Authority
JP
Japan
Prior art keywords
substrate
base material
etching
anisotropic etching
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000137765A
Other languages
Japanese (ja)
Inventor
Naoaki Kogure
直明 小榑
Kuniaki Horie
邦明 堀江
Yuji Araki
裕二 荒木
Hiroshi Nagasaka
浩志 長坂
Momoko Sumiya
桃子 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000137765A priority Critical patent/JP2001319923A/en
Publication of JP2001319923A publication Critical patent/JP2001319923A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an anisotropic etching method of a base material which makes anisotropic etching possible by casting charged particle beams such as ion beams, or high-speed neutral particle beams such as atomic and molecular beams, on the surface of the base material while an etching gas is brought into contact with the surface of the base material, to increase the activity of a desired part of the surface of the base material, and also provide an apparatus for etching the base material. SOLUTION: In a dry anisotropic etching method, a fluid which is highly reactive with the base material is brought into contact with the surface of the base material to compose a gas containing the constituent elements of the base material using a chemical reaction between the fluid and the base material. With generation of such a gas, the surface of the base material is successively removed. An organic gas [H(hfac)+O2] is used as the fluid highly reactive with the base material. By casting at least one beam selected among ultraviolet rays or laser beam, electron beam or charged particle beam, or atomic beam or molecular beam (Ar ion, Ar radical beam 15, or the like) on a desired part of the surface of the base material, the activity of the part can be locally increased to make anisotropic etching possible.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体デバイスの製
造に用いる基材の異方性食刻方法及び基材の食刻装置に
関し、特に半導体デバイスの配線材料として銅(Cu)
を用いる微細なCu配線パターンを形成するのに好適な
基材の異方性食刻方法及び基材の食刻装置に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic etching method for a substrate and an apparatus for etching a substrate used for manufacturing a semiconductor device, and more particularly to copper (Cu) as a wiring material for a semiconductor device.
TECHNICAL FIELD The present invention relates to an anisotropic etching method for a substrate and an apparatus for etching a substrate suitable for forming a fine Cu wiring pattern using the same.

【0002】[0002]

【従来の技術】半導体デバイスの高集積度が進み、配線
が微細化し、線幅が0.数μmオーダーになると、配線
材料としてアルミニウムに替え電気抵抗やエレクトロマ
イグレーション耐性等の点で優れたCuが注目されてい
る。ところが液体の薬剤を用いることなく、ガスを用い
る乾式の食刻方法でCuを異方性食刻(以下、必要に応
じてエッチングと記す)するのは極めて困難とされてお
り、実用化された例は見当たらない。
2. Description of the Related Art High integration of semiconductor devices has progressed, wirings have become finer, and line widths have become smaller. At the order of several μm, Cu, which is excellent in terms of electric resistance, electromigration resistance, and the like, is attracting attention instead of aluminum as a wiring material. However, it is extremely difficult to anisotropically etch Cu (hereinafter, referred to as etching as necessary) by a dry etching method using gas without using a liquid chemical, and it has been put to practical use. No examples are found.

【0003】数少ない研究事例によると、SiCl4
Cl2、N2及びNH3からなる混合ガスを用いて反応性
イオンエッチング(RIE)を行った結果が報告されて
いる〔有田ほか、応用物理、61、11(1992)
P.1156〕。これによると、図1に示すように、エ
ッチング速度として約100nm/minで、良好な加
工形状が得られたとされている。ここで、NH3を原料
ガスに加えるのは、エッチングの方向性を保持するた
め、側壁面にSiN系の保護膜を形成する目的で行って
いる。にも拘らず、図1に示すように、NH3流量を増
すにつれてエッチング速度が低下してしまうという問題
がある。
According to a few research cases, SiCl 4 ,
The result of performing reactive ion etching (RIE) using a mixed gas composed of Cl 2 , N 2 and NH 3 has been reported [Arita et al., Applied Physics, 61, 11 (1992)].
P. 1156]. According to this, as shown in FIG. 1, a favorable processed shape was obtained at an etching rate of about 100 nm / min. Here, NH 3 is added to the source gas for the purpose of forming a SiN-based protective film on the side wall surface in order to maintain the directionality of the etching. Nevertheless, as shown in FIG. 1, there is a problem that the etching rate decreases as the NH 3 flow rate increases.

【0004】一方、半導体基材のエッチングとは異なる
が、銅の化学気相蒸着(CVD)装置内部に付着した銅
皮膜の除去方法として、該銅皮膜にガス状のヘキサフル
オロアセチルアセトン〔C5226、以下H(hfa
c)と略記する〕と酸素ガスを接触して気化性の銅錯化
合物を形成する手法が公表されている〔小出知昭ら、第
47回応用物理学関係連合講演会講演予稿集(’00.
3)30P−YA−16〕。ここで、銅皮膜にH(hf
ac)ガスを接触しただけでは銅との反応は起こらず、
H(hfac)ガスにO2ガスを加えて、下式(1)に
よる金属銅の酸化、下式(2)による酸化銅の錯化、離
脱の反応によって付着した銅皮膜の揮発除去が起きると
されている。
On the other hand, different from the etching of a semiconductor substrate, as a method of removing a copper film adhered inside a chemical vapor deposition (CVD) apparatus of copper, gaseous hexafluoroacetylacetone [C 5 H] is added to the copper film. 2 O 2 F 6 , hereinafter H (hfa
abbreviated as c)] and contacting oxygen gas to form a vaporizable copper complex compound [Tomoaki Koide et al., Proceedings of the 47th Joint Lecture Meeting on Applied Physics ('00] .
3) 30P-YA-16]. Here, H (hf
ac) Reaction with copper does not occur just by contacting gas,
When O 2 gas is added to H (hfac) gas, oxidation of metallic copper by the following formula (1), complexation of copper oxide by the following formula (2), and volatilization and removal of the adhered copper film by the reaction of desorption occur. Have been.

【0005】 4Cu+O2→2Cu2O 2Cu+O2→2CuO (1) Cu2O+2H(hfac)→Cu(hfac)2↑+Cu+H2O CuO+2H(hfac)→Cu(hfac)2↑+H2O (2)[0005] 4Cu + O 2 → 2Cu 2 O 2Cu + O 2 → 2CuO (1) Cu 2 O + 2H (hfac) → Cu (hfac) 2 ↑ + Cu + H 2 O CuO + 2H (hfac) → Cu (hfac) 2 ↑ + H 2 O (2)

【0006】図2は上記報告によるCuの除去速度の実
測例を示す図である。図2から明らかなように、300
℃に昇温した銅基板は400nm/min程度の速度で
エッチング・除去される。然しながら、この報告の原理
をそのまま半導体デバイス製造のエッチング工程に適用
すると、食刻が図3に示すように等方的に生じるので、
半導体デバイスの配線形成上、著しい不都合を生じる。
FIG. 2 is a view showing an actual measurement example of the Cu removal rate reported above. As is clear from FIG.
The copper substrate heated to a temperature of ° C. is etched and removed at a rate of about 400 nm / min. However, if the principle of this report is applied to the etching process of semiconductor device manufacturing as it is, the etching isotropically occurs as shown in FIG.
Significant inconveniences occur in the formation of wiring for semiconductor devices.

【0007】図3において、101はSi基板であり、
該Si基板101面上に絶縁層102、Cu配線層10
3、レジスト層(マスク)104を順次形成し、レジス
ト層104の開口部104aにH(hfac)ガス10
6を吹込んでCu配線層103の食刻を行った場合、H
(hfac)ガス106の等方性エッチングによって生
じた腐食穴105がレジスト層104の下方で開口部1
04aの断面積より拡大し大きくなり、腐食穴105を
レジスト層104の開口部104aの垂直下方に限定し
て形成することができない。すなわちCu配線層103
の異方性(方向性)エッチングができない等の問題があ
る。
In FIG. 3, reference numeral 101 denotes a Si substrate,
An insulating layer 102 and a Cu wiring layer 10 are formed on the surface of the Si substrate 101.
3. A resist layer (mask) 104 is sequentially formed, and H (hfac) gas 10 is applied to the opening 104a of the resist layer 104.
6 is blown to etch the Cu wiring layer 103.
(Hfac) Corrosion holes 105 formed by isotropic etching of gas 106 have openings 1 under resist layer 104.
Since the cross-sectional area of the resist layer 104 is larger and larger than the cross-sectional area of the resist layer 104a, the corrosion hole 105 cannot be formed by being limited to a portion vertically below the opening 104a of the resist layer 104. That is, the Cu wiring layer 103
There is a problem that anisotropic (directional) etching cannot be performed.

【0008】[0008]

【発明が解決しようとする課題】本発明は上述の点に鑑
みてなされたもので、基材表面にエッチングガスを接触
しながら、イオン等の荷電粒子又は原子・分子状の高速
中性粒子ビームを該基材表面に照射し、これによって、
基材表面の所望部分の活性を高めることによって異方性
食刻を可能にした基材の異方性食刻方法及び基材の食刻
装置を提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above points, and is directed to a charged particle such as ions or an atomic / molecular high-speed neutral particle beam while contacting an etching gas with a substrate surface. Is irradiated on the substrate surface, whereby
An object of the present invention is to provide an anisotropic etching method for a substrate and an apparatus for etching a substrate, which enable anisotropic etching by increasing the activity of a desired portion of the substrate surface.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
請求項1に記載の発明は、基材表面に該基材と反応性の
良い流体を接触し、両者の間に化学反応に伴う該基材構
成元素を含む気体を合成し、これに伴って基材表面を順
次除去する乾式の食刻方法において、基材と反応性の良
い流体として、ガスを用い、更に該基材表面の所望する
部分の活性を局所的に高め異方性食刻を行うことを特徴
とする。
According to the first aspect of the present invention, a fluid having good reactivity with the substrate is brought into contact with the surface of the substrate, and the fluid accompanying the chemical reaction is formed between the two. In a dry-etching method of synthesizing a gas containing a base material constituent element and sequentially removing the base material surface, a gas is used as a fluid having a high reactivity with the base material, and the desired It is characterized by locally increasing the activity of the portion to be etched and performing anisotropic etching.

【0010】また、請求項2に記載の発明は、請求項1
に記載の基材の異方性食刻方法において、基材表面の活
性を局所的に高めるために、紫外線又はレーザ光線照
射、電子線又は粒子ビームの照射、原子線又は分子線の
照射から選ばれた少なくとも1つを行うことを特徴とす
る。
[0010] The invention described in claim 2 is the same as the claim 1.
In the anisotropic etching method of the substrate according to the above, in order to locally increase the activity of the substrate surface, selected from ultraviolet or laser beam irradiation, electron beam or particle beam irradiation, atomic beam or molecular beam irradiation Performing at least one of the operations described above.

【0011】上記のように基材と反応性の良い流体とし
てガスを用い、基材表面の所望する部分の紫外線又はレ
ーザ光線、電子線又は荷電粒子ビーム、原子線又は分子
線から選ばれた少なくとも1つを照射し、局所的に活性
を高めて異方性食刻を行うことにより、例えばこれまで
乾式の異方性食刻が不可能といわれていたCuの異方性
食刻が可能となる。
As described above, gas is used as a fluid having good reactivity with the substrate, and at least a portion selected from ultraviolet or laser beam, electron beam or charged particle beam, atomic beam or molecular beam at a desired portion of the substrate surface. By irradiating one and locally increasing the activity to perform anisotropic etching, for example, it is possible to perform anisotropic etching of Cu, which has been said to be impossible by dry anisotropic etching. Become.

【0012】また、請求項3に記載の発明は、請求項1
又は2に記載の基材の異方性食刻方法において、基材表
面の活性を局所的に高める粒子ビームの一形態であるイ
オンビーム、又は原子線、又は分子線を用いこれらの粒
子としてのエネルギーを200eV以上で1keV以下
とすることを特徴とする。
Further, the invention described in claim 3 is the first invention.
Or the anisotropic etching method of the substrate according to 2, wherein an ion beam, which is a form of a particle beam that locally enhances the activity of the substrate surface, or an atomic beam, or a molecular beam, is used as these particles. The energy is set to be 200 keV or more and 1 keV or less.

【0013】上記のように、イオンビーム、又は原子
線、又は分子線を用いこれらの粒子としてのエネルギー
を200eV以上で1keV以下とすれば、基材表面原
子のスパッタリングを有効に起こすことによって該基材
表面の該粒子照射部分の活性を高めることができる。
As described above, if the energy of these particles is set to 200 keV or more and 1 keV or less using an ion beam, an atomic beam, or a molecular beam, the sputtering of atoms on the surface of the base material is effectively caused, whereby the base is formed. The activity of the particle-irradiated portion on the material surface can be increased.

【0014】また、請求項4に記載の発明は、請求項1
又は2又は3に記載の基材の異方性食刻方法において、
基材は半導体デバイス製造用シリコン基板の表面に配線
用の銅皮膜が形成された基板であり、該銅皮膜表面の所
望する部分を異方性食刻で除去し、微細な銅配線パター
ンを形成することを特徴とする。
The invention described in claim 4 is the first invention.
Or in the anisotropic etching method of the substrate according to 2 or 3,
The base material is a substrate in which a copper film for wiring is formed on the surface of a silicon substrate for semiconductor device production, and a desired portion of the surface of the copper film is removed by anisotropic etching to form a fine copper wiring pattern. It is characterized by doing.

【0015】上記のように半導体デバイス製造用シリコ
ン基板面に形成された配線用銅皮膜を請求項1又は2又
は3に記載の異方性食刻方法で食刻することにより、従
来不可能とされていた銅皮膜の異方性乾式食刻が可能と
なり、シリコン基板上に微細な銅配線パターンを形成す
ることができる。
By etching the copper film for wiring formed on the surface of the silicon substrate for manufacturing a semiconductor device by the anisotropic etching method according to claim 1 or 2, it becomes impossible conventionally. The anisotropic dry etching of the copper film, which has been performed, becomes possible, and a fine copper wiring pattern can be formed on the silicon substrate.

【0016】また、請求項5に記載の発明は、基材を乾
式で異方性食刻する基材の異方性食刻装置であって、反
応室と、イオンビーム又は原子線等の粒子線の発生源と
して用いるイオン発生・加速機構と、基材表面と反応性
を持つ反応性流体を供給する反応性流体供給機構とを具
備し、反応室の所定位置に配置された基材表面に反応性
流体供給機構から反応性流体を供給すると共に、該基材
表面にイオン発生・加速機構からイオンビーム又は原子
線等の粒子線を照射して基材表面の所望する部分の活性
を局所的に高め異方性食刻を行うことを特徴とする。
According to a fifth aspect of the present invention, there is provided a substrate anisotropic etching apparatus for dry anisotropically etching a substrate, comprising a reaction chamber, a particle such as an ion beam or an atomic beam. Equipped with an ion generation / acceleration mechanism to be used as a source of rays and a reactive fluid supply mechanism to supply a reactive fluid having reactivity with the substrate surface, and to a substrate surface arranged at a predetermined position in the reaction chamber. A reactive fluid is supplied from a reactive fluid supply mechanism, and the surface of the substrate is irradiated with a particle beam such as an ion beam or an atomic beam from an ion generation / acceleration mechanism to locally activate a desired portion of the substrate surface. And anisotropic etching is performed.

【0017】上記のように、反応室の所定位置に配置さ
れた基材表面に反応性流体を供給すると共に、該基材表
面にイオンビーム照射又は原子線を照射して基材表面の
所望する部分の活性を局所的に高め異方性食刻を行うこ
とにより、例えばこれまで乾式の異方性食刻が不可能と
いわれていたCuの異方性食刻が可能な基材の食刻装置
となる。
As described above, the reactive fluid is supplied to the surface of the substrate disposed at a predetermined position in the reaction chamber, and the surface of the substrate is irradiated with an ion beam or an atomic beam to thereby obtain a desired surface of the substrate. By locally increasing the activity of a portion and performing anisotropic etching, for example, etching of a substrate capable of performing anisotropic etching of Cu, which has been said to be impossible by dry anisotropic etching. Device.

【0018】[0018]

【発明の実施の形態】以下、本発明の実施の形態例を図
面に基づいて説明する。ここでは、配線加工パターンを
付与したレジストをマスクとして粒子ビーム照射と並行
してH(hfac)ガスとO2ガスの供給を行うことに
よって、堆積したブランケット銅表面をエッチングする
場合について説明する。図4は本発明に係る基材の異方
性食刻方法の概念図である。図4において、11はSi
基板であり、該Si基板11の面上に絶縁層(Si
2)12、Cu配線層13が形成され、該配線層13
の面上に、配線加工パターンを付与したレジスト層14
が形成されている。
Embodiments of the present invention will be described below with reference to the drawings. Here, a case will be described in which the H (hfac) gas and the O 2 gas are supplied in parallel with the particle beam irradiation using the resist provided with the wiring processing pattern as a mask to etch the deposited blanket copper surface. FIG. 4 is a conceptual diagram of the anisotropic etching method for a substrate according to the present invention. In FIG. 4, 11 is Si
And an insulating layer (Si) on the surface of the Si substrate 11.
O 2 ) 12 and a Cu wiring layer 13 are formed.
Layer 14 provided with a wiring processing pattern on the surface of
Are formed.

【0019】上記基板のレジスト層14の表面にAr+
イオン又はArラジカルビーム15の照射を行いなが
ら、H(hfac)ガスとO2ガスの混合体を基板に接
触することによって異方性エッチングを行う。これによ
りレジスト層14の開口部14aのCu配線層13が基
板面に対して垂直方向にエッチング除去され、凹みを形
成することができる。
Ar + is formed on the surface of the resist layer 14 of the substrate.
Anisotropic etching is performed by bringing a mixture of H (hfac) gas and O 2 gas into contact with the substrate while irradiating with the ion or Ar radical beam 15. As a result, the Cu wiring layer 13 in the opening 14a of the resist layer 14 is etched away in a direction perpendicular to the substrate surface, so that a recess can be formed.

【0020】これは基板(Cu配線層13)の表面に吸
着しているか、又は基板表面近傍の気相中に滞在してい
るH(hfac)ガス及びO2ガスにAr+イオン又はA
r原子を照射すると、気相の圧力と照射ビームの粒子の
エネルギーを適度に調整すれば、該気相中に滞在してい
るガス成分の基板表面への付着量を増加すると共に、上
記ガスとCu配線層13にエネルギーを付与したり、基
材表面の照射部分のスパッタリングを生じたりすること
によって、該照射部分の反応性を高めることができる。
Cu配線層13のうちAr+イオン又はAr原子の照射
ビーム密度の高い部分(凹み16の底部)では、側壁部
分と比べ、相対的に活発な反応が起きるので、結果とし
て異方性エッチングが進行する。
This is because the H (hfac) gas and the O 2 gas adsorbed on the surface of the substrate (Cu wiring layer 13) or staying in the gas phase near the substrate surface have Ar + ions or A + ions.
By irradiating r atoms, if the pressure of the gas phase and the energy of the particles of the irradiation beam are adjusted appropriately, the amount of gas components staying in the gas phase attached to the substrate surface is increased, and the gas and By applying energy to the Cu wiring layer 13 or causing sputtering of the irradiated portion of the substrate surface, the reactivity of the irradiated portion can be increased.
In the portion of the Cu wiring layer 13 where the irradiation beam density of Ar + ions or Ar atoms is high (the bottom of the recess 16), a relatively active reaction occurs as compared with the side wall portion, and as a result, anisotropic etching proceeds. I do.

【0021】なお、図4ではエッチングガスとしてH
(hfac)ガス+O2ガスの混合体を用いているが、
これに限らず、例えば、図5に示すようにエッチングガ
スをH(hfac)ガスだけとし、基材に酸素イオンや
酸素ラジカルのビーム15を照射することも可能とな
る。
In FIG. 4, H is used as an etching gas.
A mixture of (hfac) gas and O 2 gas is used,
However, the present invention is not limited to this. For example, as shown in FIG. 5, it is possible to irradiate the substrate 15 with a beam 15 of oxygen ions or oxygen radicals by using only H (hfac) gas as an etching gas.

【0022】図6は図5に示す組み合わせによるエッチ
ングの状況を示す概念図である。上記のように酸素イオ
ンや酸素ラジカルのビーム17を照射すると共に、H
(hfac)ガスを供給することにより、H(hfa
c)分子が吸着した面上の照射ビーム密度の高い部分に
集中的に酸素が供給されることになる結果、凹み部の底
部に限定してCu→Cu2O→Cu(hfac)2の反応
が起こり、Cu配線層13の異方性エッチングが進行す
る。 図6では図4の場合と異なり、酸素イオンや酸素
ラジカルのビーム17によって反応エネルギーの付与を
行っている。
FIG. 6 is a conceptual diagram showing the state of etching by the combination shown in FIG. Irradiation with the beam 17 of oxygen ions and oxygen radicals as described above
By supplying (hfac) gas, H (hfa)
c) As a result of the oxygen being supplied intensively to the portion where the irradiation beam density is high on the surface where the molecules are adsorbed, the reaction of Cu → Cu 2 O → Cu (hfac) 2 is limited only to the bottom of the concave portion. Occurs, and anisotropic etching of the Cu wiring layer 13 proceeds. In FIG. 6, unlike in the case of FIG. 4, the reaction energy is applied by the beam 17 of oxygen ions or oxygen radicals.

【0023】ここで、上記文献〔小出知昭ら、第47回
応用物理学関係連合講演会講演予稿集(’00.3)3
0P−YA−16〕によると、エッチングガスとしてH
(hfac)と酸素を用いた場合、基板にガスを接触す
る順序としては先ず始めにH(hfac)ガスだけを導
入し、その後酸素を追加するのが望ましいとされてい
る。これはCu配線層13の表面に先ずH(hfac)
を吸着させ、その後酸素を供給すれば、系内に過剰に存
在するH(hfac)の作用によって、次式(3)の物
質変換が同時に進行し、速やかな反応が実現することに
起因すると考えられる。
Here, the above document [Tomoaki Koide et al., Proceedings of the 47th Lecture Meeting on Applied Physics ('00 .3) 3
0P-YA-16], H is used as an etching gas.
In the case where (hfac) and oxygen are used, it is considered that it is desirable to first introduce only H (hfac) gas and then add oxygen as a sequence for bringing the gas into contact with the substrate. This is done by first forming H (hfac) on the surface of the Cu wiring layer 13.
Is adsorbed and then oxygen is supplied, it is considered that the substance conversion of the following formula (3) proceeds simultaneously by the action of H (hfac) which is excessively present in the system, thereby realizing a rapid reaction. Can be

【0024】 Cu→Cu2O Cu2O→Cu(hfac)2 (3)Cu → Cu 2 O Cu 2 O → Cu (hfac) 2 (3)

【0025】上記粒子エネルギーの形に替え熱だけの付
与により反応を起すにはCu−CVDと同程度の温度
(170℃)が適するとされているが、上記のようにH
(hfac)ガスと酸素イオンや酸素ラジカルのビーム
17を組合せれば、上記のような機構によって、高速
で、生成物による残渣の発生を抑制したエッチングが昇
温機構無しで可能となる。また、酸素ビームの場合も、
Arビームの場合と同様の原理によって、凹み16底部
での反応が側壁でのそれに比べて著しく激しく起こるの
で、エッチングの異方性が実現する。
It is said that a temperature equivalent to that of Cu-CVD (170 ° C.) is suitable for causing a reaction by applying only heat instead of the above-described particle energy, but as described above, H
When the (hfac) gas is combined with the beam 17 of oxygen ions or oxygen radicals, the above-described mechanism enables high-speed etching without generation of residues due to products without a temperature raising mechanism. Also, in the case of oxygen beam,
According to the same principle as in the case of the Ar beam, the anisotropy of the etching is realized because the reaction at the bottom of the recess 16 occurs significantly more severely than at the side wall.

【0026】上述のように、上記基板の食刻方法を用い
ることにより、従来実際上不可能とされていた乾式によ
るCuの異方性エッチングが可能となった。
As described above, the use of the above-described substrate etching method enables dry anisotropic etching of Cu, which has been practically impossible in the past.

【0027】上記粒子のエネルギーは200eV以上で
1keV以下とすることが望ましい。その理由を下記に
説明する。図7は粒子のもつエネルギーと粒子ビームの
侵入深さを表す線図に、基材の照射面で生じる支配的な
現象を併記してあるものを示す。通常のスパッタリング
装置を用いて、基材表面のスパッタクリーニング(物理
エッチング)を行う場合、スパッタガスとして200〜
1,000eV程度のエネルギー(図7参照)をもつA
rイオンを利用している。即ち、この範囲のエネルギー
をもつArイオンを用いることによって基材表面原子の
スパッタリングを起こすと考えて良い。
The energy of the particles is desirably 200 eV or more and 1 keV or less. The reason will be described below. FIG. 7 is a diagram showing the energy of the particles and the penetration depth of the particle beam, in which the dominant phenomena occurring on the irradiated surface of the substrate are also shown. When performing sputter cleaning (physical etching) on the base material surface using a normal sputtering apparatus, 200 to 200 g
A having an energy of about 1,000 eV (see FIG. 7)
r ion is used. That is, it can be considered that sputtering of atoms on the substrate surface is caused by using Ar ions having an energy in this range.

【0028】因みに、例えば1,000eVのArイオ
ンで銅表面をイオン電流密度0.85mA/cm2でス
パッタすると銅表面のエッチング速度は実測値で約34
nm/min程度と極めて遅い〔志水隆一・吉原一紘編
「実用オージェ電子分光法」1989.6初版 共立出
版(株)P.233〕。したがって、表面の乾式洗浄
(表面汚染除去)用に限れば、Arイオンエッチングを
行うことは意味があるものの、所望の形状に表面を削
り、凹みを創製するための手法としては極めて効率が悪
い。要するに、エッチング速度が極めて低いので、実用
的な量産品の処理装置に適用できる可能性は無い。
Incidentally, when the copper surface is sputtered with, for example, 1,000 eV of Ar ions at an ion current density of 0.85 mA / cm 2 , the etching rate of the copper surface is about 34 as a measured value.
nm / min, which is extremely slow [Ryuichi Shimizu and Kazuhiro Yoshiwara, edited by "Practical Auger Electron Spectroscopy", 1989. First Edition Kyoritsu Shuppan Co., Ltd. 233]. Therefore, although it is meaningful to perform Ar ion etching only for dry cleaning of the surface (removal of surface contamination), it is extremely inefficient as a method for shaving the surface into a desired shape and creating a dent. In short, since the etching rate is extremely low, there is no possibility of being applicable to a practical mass-produced processing apparatus.

【0029】なお、前記イオンビーム照射によって、基
材側の電気的な帯電、或いはイオンの電気的相互反発に
よる発散に起因した面内不均一が問題となる場合には、
イオンビーム照射に替えて、中性の分子ビーム又は原子
ビームを照射すれば良い。
When the ion beam irradiation causes in-plane non-uniformity due to electric charging on the substrate side or divergence due to electric mutual repulsion of ions,
Instead of ion beam irradiation, a neutral molecular beam or an atomic beam may be applied.

【0030】従来研究等を主体に用いられてきたArイ
オンだけを用いる物理エッチング速度は、上記文献〔志
水隆一・吉原一紘編「実用オージェ電子分光法」198
9.6初版 共立出版(株)P.233〕に示すよう
に、30nm/min程度が通常の値であり、これは半
導体製造プロセスで行われているリアクティブエッチン
グ(RIE)で容易に得られる速度約400nm/mi
nに比べて著しく低い。
The physical etching rate using only Ar ions, which has been mainly used in conventional research, is described in the above-mentioned document [Practical Auger Electron Spectroscopy, edited by Ryuichi Shimizu and Kazuhiro Yoshihara, 198].
9.6 First Edition Kyoritsu Shuppan Co., Ltd. As shown in [233], a normal value is about 30 nm / min, which is about 400 nm / mi, which is easily obtained by reactive etching (RIE) performed in a semiconductor manufacturing process.
n is significantly lower than n.

【0031】上記のように、本発明の基材の異方性食刻
方法によって銅の表面エッチングを行う場合、H(hf
ac)ガスの化学作用による食刻と、Arイオンの物
理作用による食刻とが同時に起きるので、該化学作用
による食刻と物理作用による食刻を重畳したエッチ
ング効果が得られる。
As described above, when the surface of copper is etched by the anisotropic etching method for a substrate of the present invention, H (hf
Since the etching by the chemical action of ac) gas and the etching by the physical action of Ar ions occur simultaneously, an etching effect in which the etching by the chemical action and the etching by the physical action are superimposed is obtained.

【0032】上述のように、図2による基材温度を30
0℃とすれば、上記化学作用による食刻によるエッチ
ング速度として約400nm/minを得ることがで
き、更にArイオンの加速電圧を1.000Vとすると
上記の物理作用による食刻によるエッチング速度とし
て約30nm/minを得ることができる。したがっ
て、化学作用による食刻と物理作用による食刻が同
時に作動すれば上記単なるArイオンだけを用いたとき
のエッチング速度の10倍以上の値を容易に得ることが
可能となるので、半導体デバイスのCu配線形成のため
の異方性(方向性)エッチング手段として画期的な効果
を奏する。
As mentioned above, the substrate temperature according to FIG.
At 0 ° C., an etching rate of about 400 nm / min can be obtained as an etching rate by the above-mentioned chemical action. Further, when an acceleration voltage of Ar ions is 1.000 V, an etching rate of about 400 nm / min is obtained as an etching rate by the above-mentioned physical action. 30 nm / min can be obtained. Therefore, if the etching by the chemical action and the etching by the physical action operate simultaneously, it becomes possible to easily obtain a value of 10 times or more the etching rate when only the simple Ar ions are used. This provides an epoch-making effect as an anisotropic (directional) etching means for forming Cu wiring.

【0033】また、本発明の基材の異方性食刻方法は通
常のプラズマエッチングに対して下記のような優位性を
有する。本発明は通常の乾式エッチング(例えばRI
E)と異なり、基材をプラズマ環境に置くことが無く、
制御されたエッチング加工が可能となる。基材をプラズ
マ中に置くと、エッチングガスと基材及び部材との間で
化学反応を生じ、無用の副生成物を生じることによっ
て、基材や周囲を汚染したり、エッチングガスが基材到
達以前に分解反応を生じる結果、本来のエッチング作用
を妨げたりする弊害を引起し易い。
The anisotropic substrate etching method of the present invention has the following advantages over ordinary plasma etching. The present invention uses conventional dry etching (eg, RI
Unlike E), the substrate is not placed in a plasma environment,
Controlled etching can be performed. When the substrate is placed in the plasma, a chemical reaction occurs between the etching gas and the substrate and the members, generating unnecessary by-products, thereby contaminating the substrate and its surroundings, and causing the etching gas to reach the substrate. As a result of the previous decomposition reaction, the adverse effect of hindering the original etching action is likely to occur.

【0034】本発明では、上記のようにプラズマの悪影
響を完全に排除した条件下で所望のエッチング加工がで
きる。また、プラズマ印加に起因した基材表面の過度の
昇温を避けることができるので、堆積している銅のそれ
以降の凝集・粒状化を抑制できる利点もある。以上のよ
うに本発明の基材の異方性食刻方法によれば、従来殆ど
不可能とされたCuの異方性乾式エッチングを可能とす
るので、Cu配線構造を持つ半導体デバイスの製造に寄
与するところが大きい。
According to the present invention, a desired etching process can be performed under the condition that the adverse effect of the plasma is completely eliminated as described above. In addition, since an excessive rise in temperature of the substrate surface due to the application of plasma can be avoided, there is an advantage that the subsequent aggregation and granulation of the deposited copper can be suppressed. As described above, according to the method of anisotropic etching of a base material of the present invention, anisotropic dry etching of Cu, which has been almost impossible in the past, is made possible. The contribution is great.

【0035】なお、上記例では基材としてCuを食刻す
る例を示したが、基材はCuに限定されるものではな
い。要は基材表面に該基材と反応性の良い流体を接触
し、両者の間に化学反応に伴う該基材構成元素を含む気
体を合成し、これに伴って基材表面を順次除去する乾式
の異方性食刻方法であって、基材と反応性の良い流体と
して、有機ガスを用い、更に該基材表面の所望する部分
に紫外線又はレーザ光線、電子線又は荷電粒子ビーム、
原子線又は分子線から選ばれた少なくとも1つを照射
し、活性を局所的に高め異方性食刻を行うのであれば、
基材はCuに限定されない。また、基材の種類によって
は、有機ガス以外の無機系のガスを用いることも可能と
なる。
In the above example, Cu is etched as a substrate, but the substrate is not limited to Cu. In short, a fluid having good reactivity with the substrate is brought into contact with the surface of the substrate, and a gas containing the element constituting the substrate accompanying the chemical reaction is synthesized between the two, and the surface of the substrate is sequentially removed with this. A dry anisotropic etching method, using an organic gas as a fluid having good reactivity with the base material, and further applying an ultraviolet or laser beam to a desired portion of the base material surface, an electron beam or a charged particle beam,
If irradiating at least one selected from an atomic beam or a molecular beam to locally increase the activity and perform anisotropic etching,
The substrate is not limited to Cu. In addition, depending on the type of the base material, an inorganic gas other than the organic gas can be used.

【0036】図8は本発明に係る基材の異方性食刻方法
を実行する異方性食刻装置の概念構成例を示す図であ
る。図8において、20は反応室であり、該反応室20
の上部にはサセプタ21に保持された基材22が配置さ
れている。基材22は例えば、図4に示すようにSi基
板11の面上に絶縁層12、Cu配線層13、配線加工
パターンを付与したレジスト層14が順次積層された構
成の基板である。該基材22のCu配線層面上に形成さ
れたレジスト層22aを下向きにして配置している。な
お、サセプタ21内には加熱・冷却のための加熱・冷却
機構21aが配設されている。
FIG. 8 is a view showing a conceptual configuration example of an anisotropic etching apparatus for executing the anisotropic etching method for a substrate according to the present invention. In FIG. 8, reference numeral 20 denotes a reaction chamber.
The base material 22 held by the susceptor 21 is arranged on the upper part of the substrate. The base material 22 is, for example, a substrate having a configuration in which an insulating layer 12, a Cu wiring layer 13, and a resist layer 14 provided with a wiring processing pattern are sequentially laminated on the surface of a Si substrate 11, as shown in FIG. The resist layer 22a formed on the surface of the Cu wiring layer of the base material 22 is disposed facing downward. The susceptor 21 has a heating / cooling mechanism 21a for heating / cooling.

【0037】反応室20の下部には基材22のレジスト
層22aに対向してAr+イオンビーム又はAr原子ビ
ームを生成するための高速イオン発生機構23が配置さ
れている。反応室20は真空排気系24に接続されてい
る。25はH(hfac)ガスを貯留するH(hfa
c)容器であり、該H(hfac)容器25にはマスフ
ローコントローラ(MFC)26を介してHeガスを貯
留するHe貯留器28が接続されている。He貯留器2
8からマスフローコントローラ(MFC)26を介して
H(hfac)容器25にHeガスを供給することによ
り、H(hfac)ガスが反応室20内に供給されるよ
うになっている。また、反応室20にはマスフローコン
トローラ(MFC)29を介してO2ガス源30からO2
ガスが供給されるようになっている。更に、高速イオン
発生機構23にはArガス源31からArガスが供給さ
れるようになっている。
At the lower part of the reaction chamber 20, a high-speed ion generating mechanism 23 for generating an Ar + ion beam or an Ar atom beam is disposed facing the resist layer 22a of the base material 22. The reaction chamber 20 is connected to a vacuum exhaust system 24. H (hfa) 25 stores H (hfac) gas.
c) a container, and an H (hfac) container 25 is connected to a He reservoir 28 for storing He gas via a mass flow controller (MFC) 26. He reservoir 2
The H (hfac) gas is supplied into the reaction chamber 20 by supplying He gas to the H (hfac) container 25 from 8 via a mass flow controller (MFC) 26. The reaction chamber 20 is supplied from an O 2 gas source 30 via a mass flow controller (MFC) 29 to an O 2 gas source 30.
Gas is supplied. Further, Ar gas is supplied to the high-speed ion generating mechanism 23 from an Ar gas source 31.

【0038】上記異方性食刻装置において、反応室20
内にH(hfac)ガス及びO2ガスを供給し、高速イ
オン発生機構23からAr+イオンビーム又はAr原子
ビームを基材22に向けて照射すると、図4に示すと同
様、基材22の表面に吸着しているか、又は基材22の
表面近傍の気相中に滞在しているH(hfac)ガス及
びO2ガスにAr+イオン又はAr原子からエネルギーが
付与される。ここで基材22のCu配線層のAr+イオ
ン又はAr原子ビームの照射密度が高くなる基材凹み底
部では、側壁部に比べ、相対的に活発な反応が起きるの
で、異方性エッチングが進行する。
In the above anisotropic etching apparatus, the reaction chamber 20
When an H (hfac) gas and an O 2 gas are supplied into the inside and an Ar + ion beam or an Ar atom beam is irradiated from the high-speed ion generation mechanism 23 toward the substrate 22, as shown in FIG. The H (hfac) gas and the O 2 gas adsorbed on the surface or staying in the gas phase near the surface of the substrate 22 are given energy from Ar + ions or Ar atoms. Here, at the bottom of the concave portion of the substrate where the irradiation density of the Ar + ion or Ar atom beam of the Cu wiring layer of the substrate 22 becomes high, a relatively active reaction occurs as compared with the side wall portion. I do.

【0039】図9は本発明に係る基材の異方性食刻方法
を実行する異方性食刻装置の他の概念構成例を示す図で
ある。図9において図8と同一符号を付した部分は同一
部分を示す。図9の異方性食刻装置が図8のそれと異な
る点は高速イオン発生機構23の上部に電気的にイオン
を中和するイオン中和機構32が配置されている点であ
る。そして高速イオン発生機構23にはO2ガス源33
からO2ガスが供給されるようになっている。上記構成
の異方性食刻装置における異方性食刻は図6に示すと同
様である。
FIG. 9 is a view showing another conceptual configuration example of an anisotropic etching apparatus for performing the anisotropic etching method for a substrate according to the present invention. In FIG. 9, the portions denoted by the same reference numerals as those in FIG. 8 indicate the same portions. The anisotropic etching apparatus of FIG. 9 is different from that of FIG. 8 in that an ion neutralizing mechanism 32 for electrically neutralizing ions is disposed above the high-speed ion generating mechanism 23. The high-speed ion generating mechanism 23 has an O 2 gas source 33.
Is supplied with O 2 gas. Anisotropic etching in the anisotropic etching apparatus having the above configuration is the same as that shown in FIG.

【0040】上記のように電気的にイオンを中和するイ
オン中和機構32を使用することにより、装置の大口径
化が容易となる。即ち、イオンビームのような荷電粒子
ビームを使う場合、個々の粒子が同極性の電荷を持つの
で、特に大口径の装置でよくあるように、ビームの飛距
離が長くなると互いに反発する傾向がある。その結果、
図10(a)に示すように、基材22の外周側ではエッ
チング方向の傾斜度が増加し易い。これに対してイオン
を中和することによって生成した中性粒子ビームを用い
れば、図10(b)に示すように照射方向が平行に保持
される結果、上述の弊害を解消でき、大口径の装置を製
作することが容易となる。更に、照射粒子が電気的に中
性であるので、基材22の過度な帯電による損傷を回避
することができる。
By using the ion neutralizing mechanism 32 for electrically neutralizing ions as described above, it is easy to increase the diameter of the apparatus. That is, when a charged particle beam such as an ion beam is used, the individual particles have the same polarity of charge, and therefore tend to repel each other when the flight distance of the beam is long, as is often the case with a large-diameter device. . as a result,
As shown in FIG. 10A, the inclination in the etching direction is likely to increase on the outer peripheral side of the base material 22. On the other hand, if a neutral particle beam generated by neutralizing ions is used, the irradiation direction is maintained parallel as shown in FIG. It is easy to manufacture the device. Further, since the irradiated particles are electrically neutral, damage due to excessive charging of the substrate 22 can be avoided.

【0041】[0041]

【発明の効果】以上説明したように各請求項に記載の発
明によれば、下記のような優れた効果が得られる。
As described above, according to the invention described in each claim, the following excellent effects can be obtained.

【0042】請求項1及び2に記載の発明によれば、基
材と反応性の良い流体としてガスを用い、基材表面の所
望する部分の活性を局所的に高めて異方性食刻を行うこ
とによって、例えばこれまで乾式の異方性食刻が不可能
といわれていたCuの異方性食刻が可能となる。
According to the first and second aspects of the present invention, gas is used as a fluid having high reactivity with the substrate, and the activity of a desired portion on the surface of the substrate is locally increased to perform anisotropic etching. By doing so, for example, anisotropic etching of Cu, which has been said to be impossible in dry anisotropic etching, becomes possible.

【0043】また、請求項3に記載の発明によれば、基
材表面の所望する部分を局所的に活性を高めるためのイ
オンビーム、又は原子線、又は分子線を用いこれらの粒
子としてのエネルギーを200eV以上で1keV以下
とすることにより、基材表面原子のスパッタリングを有
効に起すことができる。
According to the third aspect of the present invention, an ion beam, an atomic beam, or a molecular beam for locally increasing the activity of a desired portion on the surface of the substrate is used as the energy of these particles. Is set to 200 keV or more and 1 keV or less, sputtering of atoms on the substrate surface can be effectively caused.

【0044】また、請求項4に記載の発明によれば、半
導体デバイス製造用シリコン基板面に形成された配線用
銅皮膜を請求項1又は2又は3に記載の異方性食刻方法
で食刻することにより、従来不可能とされていた銅皮膜
の乾式食刻が可能となり、シリコン基板上に微細な銅配
線パターンを形成することができる。
According to the fourth aspect of the present invention, the copper film for wiring formed on the surface of the silicon substrate for manufacturing a semiconductor device is etched by the anisotropic etching method according to the first, second or third aspect. By engraving, it becomes possible to dry-etch a copper film, which has been impossible in the past, and a fine copper wiring pattern can be formed on a silicon substrate.

【0045】また、請求項5に記載の発明によれば、反
応室の所定位置に配置された基材表面に反応性流体を供
給すると共に、該基材表面にイオンビーム又は原子線を
照射して基材表面の所望する部分の活性を局所的に高め
異方性食刻を行うことにより、例えばこれまで乾式の異
方性食刻が不可能といわれていたCuの異方性食刻が可
能な基材の食刻装置を提供できる。
According to the fifth aspect of the present invention, the reactive fluid is supplied to the surface of the substrate disposed at a predetermined position in the reaction chamber, and the surface of the substrate is irradiated with an ion beam or an atomic beam. By locally increasing the activity of the desired portion of the base material surface and performing anisotropic etching, for example, anisotropic etching of Cu, which has been said to be impossible to dry anisotropic etching until now, A possible substrate etching apparatus can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Cuの反応性イオンエッチング速度に及ぼすS
iCl4.Cl2.N2混合ガスへのNH3の添加効果を示
す図である。
1 shows the effect of S on the reactive ion etching rate of Cu
iCl 4 . Cl 2 . FIG. 3 is a diagram showing the effect of adding NH 3 to a N 2 mixed gas.

【図2】H(hfac)+O2ガスによるCuの除去速
度の実測例を示す図である。
FIG. 2 is a view showing an actual measurement example of a removal rate of Cu by H (hfac) + O 2 gas.

【図3】H(hfac)+O2ガスによる等方性エッチ
ングを説明する概念図である。
FIG. 3 is a conceptual diagram illustrating isotropic etching using H (hfac) + O 2 gas.

【図4】本発明に係る基材の異方性エッチング(エッチ
ングガス=H(hfac)+O 2、粒子ビーム=Arイ
オン又はArラジカル)を説明するための概念図であ
る。
FIG. 4 shows anisotropic etching (etching) of a substrate according to the present invention.
Gas = H (hfac) + O Two, Particle beam = Ar y
FIG. 3 is a conceptual diagram for explaining (on or Ar radical).
You.

【図5】本発明に係る基材の異方性エッチングに用いる
エッチングガスと粒子ビームの組合せ例を示す図であ
る。
FIG. 5 is a diagram showing an example of a combination of an etching gas and a particle beam used for anisotropic etching of a substrate according to the present invention.

【図6】本発明に係る基材の異方性エッチング(エッチ
ングガス=H(hfac)、粒子ビーム=酸素イオン又
は酸素ラジカル)を説明するための概念図である。
FIG. 6 is a conceptual diagram for explaining anisotropic etching (etching gas = H (hfac), particle beam = oxygen ions or oxygen radicals) of a substrate according to the present invention.

【図7】粒子のエネルギーと粒子ビーム照射による被照
射面への侵入深さを示す図である。
FIG. 7 is a diagram showing the energy of particles and the depth of penetration into a surface to be irradiated by particle beam irradiation.

【図8】本発明に係る基材の異方性食刻方法を実行する
異方性食刻装置の概念構成例を示す図である。
FIG. 8 is a diagram showing an example of a conceptual configuration of an anisotropic etching apparatus that executes the anisotropic etching method for a base material according to the present invention.

【図9】本発明に係る基材の異方性食刻方法を実行する
異方性食刻装置の概念構成例を示す図である。
FIG. 9 is a diagram showing a conceptual configuration example of an anisotropic etching apparatus for executing the anisotropic etching method for a base material according to the present invention.

【図10】イオンビームと中性粒子ビームによるエッチ
ングの傾向を説明するための概念図である。
FIG. 10 is a conceptual diagram for explaining a tendency of etching by an ion beam and a neutral particle beam.

【符号の説明】[Explanation of symbols]

11 Si基板 12 絶縁層(SiO2) 13 Cu配線層 14 レジスト層 15 Arイオン又はArラジカルビーム 16 凹み 17 酸素イオン又は酸素ラジカルビーム 20 反応室 21 サセプタ 22 基材 23 高速イオン発生機構 24 真空排気系 25 H(hfac)容器 26 マスフローコントローラ(MFC) 28 He貯留器 29 マスフローコントローラ(MFC) 30 O2ガス源 31 Arガス源 32 イオン中和機構 33 O2ガス源Reference Signs List 11 Si substrate 12 Insulating layer (SiO 2 ) 13 Cu wiring layer 14 Resist layer 15 Ar ion or Ar radical beam 16 Depression 17 Oxygen ion or oxygen radical beam 20 Reaction chamber 21 Susceptor 22 Base material 23 High-speed ion generating mechanism 24 Vacuum exhaust system 25 H (hfac) container 26 Mass flow controller (MFC) 28 He reservoir 29 Mass flow controller (MFC) 30 O 2 gas source 31 Ar gas source 32 Ion neutralization mechanism 33 O 2 gas source

───────────────────────────────────────────────────── フロントページの続き (72)発明者 荒木 裕二 東京都大田区羽田旭町11番1号 株式会社 荏原製作所内 (72)発明者 長坂 浩志 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 (72)発明者 角谷 桃子 神奈川県藤沢市本藤沢4丁目2番1号 株 式会社荏原総合研究所内 Fターム(参考) 4K057 DA11 DA12 DA13 DD04 DD05 DD06 DD08 DE14 DE20 DN01 5F004 AA02 AA05 BA11 BA19 BB01 BB02 BB03 DA00 DA22 DA23 DA26 DB08 EB02  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Yuji Araki 11-1 Haneda Asahimachi, Ota-ku, Tokyo Ebara Corporation (72) Inventor Hiroshi Nagasaka 4-2-1 Motofujisawa, Fujisawa City, Kanagawa Prefecture (72) Inventor Momoko Kadoya 4-2-1 Motofujisawa, Fujisawa-shi, Kanagawa F-term (reference) 4K057 DA11 DA12 DA13 DD04 DD05 DD06 DD08 DE14 DE20 DN01 5F004 AA02 AA05 BA11 BA19 BB01 BB02 BB03 DA00 DA22 DA23 DA26 DB08 EB02

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基材表面に該基材と反応性の良い流体を
接触し、両者の間に化学反応に伴う該基材構成元素を含
む気体を合成し、これに伴って基材表面を順次除去する
乾式の食刻方法において、 前記基材と反応性の良い流体として、ガスを用い、更に
該基材表面の所望する部分の活性を局所的に高め異方性
食刻を行うことを特徴とする基材の異方性食刻方法。
1. A substrate and a fluid having good reactivity with the substrate are brought into contact with the surface of the substrate, and a gas containing the element constituting the substrate accompanying a chemical reaction is synthesized between the two. In the dry etching method of sequentially removing, using a gas as a fluid having a good reactivity with the base material, further locally increasing the activity of a desired portion of the base material surface and performing anisotropic etching. Characteristic anisotropic etching method for substrates.
【請求項2】 請求項1に記載の基材の異方性食刻方法
において、 前記基材表面の活性を局所的に高めるために、紫外線又
はレーザ光線照射、電子線又は粒子ビームの照射、原子
線又は分子線の照射から選ばれた少なくとも1つを行う
ことを特徴とする基材の異方性食刻方法。
2. The anisotropic etching method for a substrate according to claim 1, wherein the activity of the surface of the substrate is locally increased by irradiating an ultraviolet ray or a laser beam, irradiating an electron beam or a particle beam, A method of anisotropically etching a substrate, wherein at least one selected from irradiation of an atomic beam or a molecular beam is performed.
【請求項3】 請求項1又は2に記載の基材の異方性食
刻方法において、 前記基材表面の活性を局所的に高める粒子ビームの一形
態であるイオンビーム、又は原子線、又は分子線を用い
これらの粒子としてのエネルギーを200eV以上で1
keV以下とすることを特徴とする基材の異方性食刻方
法。
3. The anisotropic etching method for a substrate according to claim 1 or 2, wherein the ion beam or the atomic beam is one form of a particle beam that locally increases the activity of the surface of the substrate. Using a molecular beam, the energy of these particles is 1 at 200 eV or more.
An anisotropic etching method for a substrate, wherein the method is keV or less.
【請求項4】 請求項1又は2又は3に記載の基材の異
方性食刻方法において、前記基材は半導体デバイス製造
用シリコン基板の表面に配線用の銅皮膜が形成された基
板であり、該銅皮膜表面の所望する部分を前記異方性食
刻で除去し、微細な銅配線パターンを形成することを特
徴とする基材の異方性食刻方法。
4. The method for anisotropically etching a substrate according to claim 1, wherein the substrate is a substrate having a copper film for wiring formed on a surface of a silicon substrate for manufacturing a semiconductor device. A method of anisotropically etching a substrate, comprising removing a desired portion of the surface of the copper film by the anisotropic etching to form a fine copper wiring pattern.
【請求項5】 基材を乾式で異方性食刻する基材の異方
性食刻装置であって、 反応室と、イオンビーム又は原子線等の粒子線の発生源
として用いるイオン発生・加速機構と、基材表面と反応
性を持つ反応性流体を供給する反応性流体供給機構とを
具備し、 前記反応室の所定位置に配置された基材表面に前記反応
性流体供給機構から反応性流体を供給すると共に、該基
材表面に前記イオン発生・加速機構からイオンビーム又
は原子線等の粒子線を照射して基材表面の所望する部分
の活性を局所的に高め異方性食刻を行うことを特徴とす
る基材の食刻装置。
5. An anisotropic etching apparatus for a substrate for dry anisotropic etching of a substrate, comprising: a reaction chamber; and an ion generating and / or ion generating source used as a source of a particle beam such as an ion beam or an atomic beam. An acceleration mechanism, and a reactive fluid supply mechanism that supplies a reactive fluid having reactivity with the substrate surface, wherein the reactive fluid supply mechanism reacts with the substrate surface disposed at a predetermined position in the reaction chamber. While supplying an anaerobic fluid, the surface of the substrate is irradiated with a particle beam such as an ion beam or an atomic beam from the ion generation / acceleration mechanism to locally increase the activity of a desired portion of the substrate surface and anisotropically etch the substrate. An apparatus for etching a substrate, wherein the apparatus performs engraving.
JP2000137765A 2000-05-10 2000-05-10 Method for anisotropic etching of base material and apparatus for etching base material Pending JP2001319923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000137765A JP2001319923A (en) 2000-05-10 2000-05-10 Method for anisotropic etching of base material and apparatus for etching base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000137765A JP2001319923A (en) 2000-05-10 2000-05-10 Method for anisotropic etching of base material and apparatus for etching base material

Publications (1)

Publication Number Publication Date
JP2001319923A true JP2001319923A (en) 2001-11-16

Family

ID=18645484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000137765A Pending JP2001319923A (en) 2000-05-10 2000-05-10 Method for anisotropic etching of base material and apparatus for etching base material

Country Status (1)

Country Link
JP (1) JP2001319923A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148073B1 (en) * 2005-03-15 2006-12-12 Kla-Tencor Technologies Corp. Methods and systems for preparing a copper containing substrate for analysis
KR100754369B1 (en) 2006-06-29 2007-09-03 한국기초과학지원연구원 Method for forming predetermined patterns on a wafer by direct etching with neutral particle beams
US7304302B1 (en) 2004-08-27 2007-12-04 Kla-Tencor Technologies Corp. Systems configured to reduce distortion of a resist during a metrology process and systems and methods for reducing alteration of a specimen during analysis
US7318844B2 (en) * 2003-07-21 2008-01-15 Abb Research Ltd Laser-irradiated metallized electroceramic
US7323699B2 (en) * 2005-02-02 2008-01-29 Rave, Llc Apparatus and method for modifying an object
US7365321B2 (en) 2004-03-22 2008-04-29 Kla-Tencor Technologies Corp. Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis
US7394067B1 (en) 2005-07-20 2008-07-01 Kla-Tencor Technologies Corp. Systems and methods for reducing alteration of a specimen during analysis for charged particle based and other measurement systems
US7781340B2 (en) 2002-09-27 2010-08-24 Tokyo Electron Limited Method and system for etching high-k dielectric materials
JP2012054304A (en) * 2010-08-31 2012-03-15 Tokyo Electron Ltd Etching method and etching apparatus
US20130075248A1 (en) * 2011-09-21 2013-03-28 Hyogo Prefecture Etching method, etching apparatus, and storage medium
JP2014209552A (en) * 2013-03-26 2014-11-06 東京エレクトロン株式会社 Method for etching film including transition metal

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7781340B2 (en) 2002-09-27 2010-08-24 Tokyo Electron Limited Method and system for etching high-k dielectric materials
US7318844B2 (en) * 2003-07-21 2008-01-15 Abb Research Ltd Laser-irradiated metallized electroceramic
US7365321B2 (en) 2004-03-22 2008-04-29 Kla-Tencor Technologies Corp. Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis
US8765496B2 (en) 2004-03-22 2014-07-01 Kla-Tencor Technologies Corp. Methods and systems for measuring a characteristic of a substrate or preparing a substrate for analysis
US7304302B1 (en) 2004-08-27 2007-12-04 Kla-Tencor Technologies Corp. Systems configured to reduce distortion of a resist during a metrology process and systems and methods for reducing alteration of a specimen during analysis
US7495240B2 (en) 2005-02-02 2009-02-24 Rave Llc Apparatus and method for modifying an object
US7323699B2 (en) * 2005-02-02 2008-01-29 Rave, Llc Apparatus and method for modifying an object
US7148073B1 (en) * 2005-03-15 2006-12-12 Kla-Tencor Technologies Corp. Methods and systems for preparing a copper containing substrate for analysis
US7394067B1 (en) 2005-07-20 2008-07-01 Kla-Tencor Technologies Corp. Systems and methods for reducing alteration of a specimen during analysis for charged particle based and other measurement systems
KR100754369B1 (en) 2006-06-29 2007-09-03 한국기초과학지원연구원 Method for forming predetermined patterns on a wafer by direct etching with neutral particle beams
WO2008002045A1 (en) * 2006-06-29 2008-01-03 Korea Basic Science Institute Method for forming predetermined patterns on a wafer by direct etching with neutral particle beams
JP2012054304A (en) * 2010-08-31 2012-03-15 Tokyo Electron Ltd Etching method and etching apparatus
US20130203260A1 (en) * 2010-08-31 2013-08-08 Tokyo Electron Limited Etching method and etching apparatus
US20130075248A1 (en) * 2011-09-21 2013-03-28 Hyogo Prefecture Etching method, etching apparatus, and storage medium
CN103021834A (en) * 2011-09-21 2013-04-03 东京毅力科创株式会社 Etching method, etching apparatus, and storage medium
JP2013080901A (en) * 2011-09-21 2013-05-02 Tokyo Electron Ltd Etching method, etching apparatus, and storage medium
US9449844B2 (en) * 2011-09-21 2016-09-20 Tokyo Electron Limited Etching method, etching apparatus, and storage medium
JP2014209552A (en) * 2013-03-26 2014-11-06 東京エレクトロン株式会社 Method for etching film including transition metal
US9096937B2 (en) 2013-03-26 2015-08-04 Tokyo Electron Limited Method for etching film having transition metal

Similar Documents

Publication Publication Date Title
KR102439391B1 (en) Tin oxide thin film spacers in semiconductor device manufacturing
CN106057637B (en) Pass through atomic layer deposition and atomic layer etch depositing conformal film
JP6009520B2 (en) Smooth SiConi etching of silicon-containing films
US6893893B2 (en) Method of preventing short circuits in magnetic film stacks
JP2002512437A (en) Copper deposition method with enhanced adhesion
CN109952632A (en) Reduce method of the wet etch rate of SiN film without damaging the substrate that underlies
JP2016103632A (en) Adjustment of vuv emission of plasma via collisional resonant energy transfer to energy absorber gas
TW201521096A (en) Methods and apparatuses for atomic layer cleaning of contacts and vias
US11075079B2 (en) Directional deposition for semiconductor fabrication
JP2001319923A (en) Method for anisotropic etching of base material and apparatus for etching base material
TWI766866B (en) Etching method
US10707088B2 (en) Method of processing target object
CN109922898A (en) Engraving method is recycled from limitation for the film based on carbon
Matsui et al. Direct writing onto Si by electron beam stimulated etching
US10692726B2 (en) Method for processing workpiece
TW593770B (en) Method for anisotropic etching of copper thin films with a beta-diketone, a beta-ketoimine, or a breakdown product thereof
JP2019121685A (en) Etching method
TWI782975B (en) Etching method
US20230170189A1 (en) Etching method and plasma processing apparatus
JPS61228633A (en) Formation of thin film
JP2008047686A (en) Substrate processing method and apparatus, and memory medium
JPH07177761A (en) Manufacture of micromachine
JP3326864B2 (en) Dry etching method
JP7220603B2 (en) METHOD AND PLASMA PROCESSING APPARATUS FOR ETCHING FILM
Cote et al. High selectivity magnetically enhanced reactive ion etching of boron nitride films