JP2001319658A - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP2001319658A
JP2001319658A JP2000139381A JP2000139381A JP2001319658A JP 2001319658 A JP2001319658 A JP 2001319658A JP 2000139381 A JP2000139381 A JP 2000139381A JP 2000139381 A JP2000139381 A JP 2000139381A JP 2001319658 A JP2001319658 A JP 2001319658A
Authority
JP
Japan
Prior art keywords
positive electrode
graphite
secondary battery
battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000139381A
Other languages
Japanese (ja)
Inventor
Tetsuo Itsu
哲夫 伊津
Yukio Nodo
幸雄 納堂
Toshihiro Koyama
俊洋 小山
Fusaji Kita
房次 喜多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2000139381A priority Critical patent/JP2001319658A/en
Publication of JP2001319658A publication Critical patent/JP2001319658A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-aqueous secondary battery, in which a load characteristic and a cycle characteristic are improved without reducing a battery capacity to have a high capacity, superior load characteristic, and superior cycle characteristic. SOLUTION: A positive active material with a mean particle size within a range from 5 to 20 μm is used and an expansive graphite is used as an electrically conductive material to configure a non-aqueous secondary battery. As the electrically conductive material, using the expansive graphite in combination with at least one of the kinds of the other electrically conductive materials is preferable. As the electrically conductive material other than the expansive graphite, the electrically conductive materials of graphite type such as a artificial graphite and a natural graphite, and the electrically conductive materials of carbon black type such as an acetylene black and Ketchen black are preferable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水二次電池に関
するものであり、さらに詳しくは、高容量で、かつ負荷
特性およびサイクル特性が優れた非水二次電池に関する
ものである。
The present invention relates to a non-aqueous secondary battery, and more particularly, to a non-aqueous secondary battery having a high capacity and excellent load characteristics and cycle characteristics.

【0002】[0002]

【従来の技術】正極に金属酸化物を用い、負極に炭素系
材料を用いたリチウムイオン電池に代表される非水二次
電池は、高電圧、高エネルギー密度であることから、そ
の需要がますます増えている。
2. Description of the Related Art Non-aqueous secondary batteries, such as lithium-ion batteries using a metal oxide for the positive electrode and a carbon-based material for the negative electrode, are in high demand due to their high voltage and high energy density. Increasingly.

【0003】現在、上記リチウムイオン電池としては、
リチウムイオンを母体中に取り込み繰り返し挿入・脱離
を行うことができる黒鉛などの炭素系材料やLi挿入可
能な金属酸化物などを負極活物質として用い、これをL
iCoO2 、LiNiO2 、LiMn2 4 などのリチ
ウム含有金属酸化物からなる正極活物質と組み合わせた
ものが実用化されている。
At present, the above-mentioned lithium ion batteries include:
As a negative electrode active material, a carbon-based material such as graphite, which can take lithium ions into a matrix and can be repeatedly inserted / desorbed, or a metal oxide capable of inserting Li, is used.
A combination with a positive electrode active material composed of a lithium-containing metal oxide such as iCoO 2 , LiNiO 2 , and LiMn 2 O 4 has been put to practical use.

【0004】上記リチウム含有金属酸化物をリチウムイ
オン電池の正極活物質として用いる場合、リチウム含有
金属酸化物自身は導電性が低いため、通常、正極合剤の
調製にあたっては導電性物質が添加される。
When the above-mentioned lithium-containing metal oxide is used as a positive electrode active material of a lithium-ion battery, the lithium-containing metal oxide itself has low conductivity. .

【0005】この導電性物質として一般的に用いられて
いるものに、アセチレンブラック、ケッチェンブラック
などのカーボンブラック系の材料がある。このカーボン
ブラック系の導電性物質は、導電性が優れかつ吸液性も
優れているが、通常、充放電を行う正極の電位領域にお
いては不活性な材料であるため、一定以上の量を正極合
剤中に添加することは正極容量を低下させることにな
る。すなわち、正極に良好な導電性を付与し、充放電サ
イクル特性を良好に維持するために前記導電性物質を正
極合剤中に一定量以上添加すると、それに伴い正極合剤
中での正極活物質の体積割合が減少して正極の容量が低
下し、電池の高容量化が図れないという問題がある。
[0005] Carbon black-based materials such as acetylene black and Ketjen black are generally used as the conductive material. This carbon black-based conductive substance has excellent conductivity and excellent liquid absorption, but is generally an inactive material in the potential region of the positive electrode where charging and discharging are performed. The addition to the mixture lowers the positive electrode capacity. That is, when the conductive material is added to the positive electrode mixture in a certain amount or more to impart good conductivity to the positive electrode and maintain good charge / discharge cycle characteristics, the positive electrode active material in the positive electrode mixture is accordingly added. However, there is a problem that the capacity ratio of the positive electrode is reduced due to a decrease in the volume ratio of the positive electrode, and the capacity of the battery cannot be increased.

【0006】一方、導電性物質として膨張黒鉛を用いた
場合、その特異な形状により正極活物質との接触が良好
に保たれることから、前記のアセチレンブラックやケッ
チェンブラックなどを用いた場合よりさらに導電性が優
れた正極が得られるが、膨張黒鉛を含有する正極合剤
は、アセチレンブラックやケッチェンブラックなどを含
有する正極合剤よりも加圧成形されにくいため、正極活
物質の充填密度が低下し、その結果として、導電性物質
の含有量が少なくても大きな容量ロスを生じることにな
る。
[0006] On the other hand, when expanded graphite is used as the conductive material, its unique shape keeps good contact with the positive electrode active material, so that it is better than when acetylene black or Ketjen black is used. Although a positive electrode with better conductivity can be obtained, the positive electrode mixture containing expanded graphite is less likely to be molded under pressure than the positive electrode mixture containing acetylene black or Ketjen black. As a result, even if the content of the conductive substance is small, a large capacity loss occurs.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点を解決し、容量を低下させることな
く、負荷特性およびサイクル特性を向上させ、高容量
で、かつ負荷特性およびサイクル特性が優れた非水二次
電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems of the prior art, improves load characteristics and cycle characteristics without lowering the capacity, and achieves a high capacity, load characteristics and An object is to provide a nonaqueous secondary battery having excellent cycle characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意研究を重ねた結果、導電性物質とし
て膨張黒鉛を含有する正極合剤は、正極活物質の粒子径
により圧縮成形されやすさが大きく異なり、正極活物質
の充填密度に差が生じること、また、負荷特性およびサ
イクル特性が正極活物質の粒子径の影響を受けやすくな
ることを見出し、それに基づいて、本発明を完成するに
至った。
The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, the positive electrode mixture containing expanded graphite as a conductive material is compressed according to the particle diameter of the positive electrode active material. It has been found that the easiness of molding is greatly different, the packing density of the positive electrode active material is different, and that the load characteristics and the cycle characteristics are easily affected by the particle size of the positive electrode active material. Was completed.

【0009】すなわち、本発明は、正極活物質として平
均粒子径が5〜20μmの範囲内のものを用い、かつ、
導電性物質として膨張黒鉛を用いたことを特徴とし、そ
れによって、非水二次電池の容量を低下させることな
く、負荷特性およびサイクル特性を向上させ、高容量
で、かつ負荷特性およびサイクル特性が優れた非水二次
電池を提供したものである。
That is, the present invention uses a positive electrode active material having an average particle diameter in the range of 5 to 20 μm,
It is characterized by using expanded graphite as a conductive substance, thereby improving load characteristics and cycle characteristics without lowering the capacity of a non-aqueous secondary battery, and achieving high capacity, load characteristics and cycle characteristics. An excellent non-aqueous secondary battery is provided.

【0010】[0010]

【発明の実施の形態】本発明において、正極活物質は平
均粒子径が5〜20μmの範囲内のものを用いるが、こ
れは、正極活物質の平均粒子径を5μm以上とすること
により、正極合剤が圧縮成形されやすくなり、正極活物
質の充填密度を向上させることができるからである。ま
た、正極活物質の平均粒子径を20μm以下にすること
により、負荷特性およびサイクル特性を向上させること
ができる。このように、正極活物質の平均粒子径を5〜
20μmにすることによって、正極活物質の充填密度が
向上したり、負荷特性やサイクル特性が向上するように
なる理由は、現在のところ必ずしも明確ではないが、正
極合剤層中の空隙が減少することが関係しているものと
考えられる。正極活物質の平均粒子径は前記のように5
〜20μmの範囲内にあることを要するが、この正極活
物質の平均粒子径は10〜20μmが好ましく、15〜
20μmがより好ましい。本発明において、平均粒子径
とは、粒度分布図において、それぞれ0μmから積分し
た値が50%となったときの粒径のことで、例えば、粒
度分析計を用い、レーザ光の散乱により粒子の直径を測
定することによって、容易に算出することができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, a positive electrode active material having an average particle diameter in the range of 5 to 20 μm is used. This is because the mixture is easily subjected to compression molding and the packing density of the positive electrode active material can be improved. By setting the average particle diameter of the positive electrode active material to 20 μm or less, load characteristics and cycle characteristics can be improved. Thus, the average particle diameter of the positive electrode active material is set to 5 to
The reason why the filling density of the positive electrode active material is improved by setting the thickness to 20 μm or the load characteristics or cycle characteristics are improved is not always clear at present, but the voids in the positive electrode mixture layer are reduced. Is considered to be related. The average particle diameter of the positive electrode active material is 5 as described above.
It is necessary that the average particle diameter of the positive electrode active material is 10 to 20 μm, preferably 15 to 20 μm.
20 μm is more preferred. In the present invention, the average particle diameter is a particle diameter when a value integrated from 0 μm becomes 50% in a particle size distribution diagram. For example, using a particle size analyzer, scattering of the particles by laser light is performed. It can be easily calculated by measuring the diameter.

【0011】上記正極活物質としては、平均粒子径さえ
5〜20μmの範囲内という条件を満たせば特に限定さ
れることはないが、例えば、LiCoO2 、LiNiO
2 、LiMn2 4 などのリチウム含有金属酸化物や、
有機イオウなどのイオウ系化合物などを用いることがで
きる。
The positive electrode active material is not particularly limited as long as it satisfies the condition that the average particle diameter is in the range of 5 to 20 μm. For example, LiCoO 2 , LiNiO 2
2 , lithium-containing metal oxides such as LiMn 2 O 4 ,
Sulfur-based compounds such as organic sulfur can be used.

【0012】また、本発明で用いる膨張黒鉛としては、
平均粒子径が1〜25μmのものが好ましい。すなわ
ち、膨張黒鉛の平均粒子径を1μm以上にすることによ
り、正極合剤と正極集電体との間の結着状態を良好なも
のとすることができ、また、25μm以下にすることに
より、正極合剤中の膨張黒鉛の分散状態を良好なものと
することができる。
The expanded graphite used in the present invention includes:
Those having an average particle diameter of 1 to 25 μm are preferred. That is, by setting the average particle size of the expanded graphite to 1 μm or more, the binding state between the positive electrode mixture and the positive electrode current collector can be improved, and by setting the average particle size to 25 μm or less, The dispersed state of the expanded graphite in the positive electrode mixture can be improved.

【0013】この膨張黒鉛の正極合剤中の含有量として
は、2〜10重量%が好ましい。すなわち、膨張黒鉛の
正極合剤中の含有量を2重量%以上にすることによっ
て、正極合剤の導電性を向上させ、また、10重量%以
下にすることによって、正極合剤中における正極活物質
の含有量の低下を抑制し、容量の低下を抑制することが
できる。
The content of the expanded graphite in the positive electrode mixture is preferably 2 to 10% by weight. That is, by setting the content of the expanded graphite in the positive electrode mixture to 2% by weight or more, the conductivity of the positive electrode mixture is improved. A decrease in the content of the substance can be suppressed, and a decrease in the capacity can be suppressed.

【0014】また、正極合剤中に、膨張黒鉛に加えて、
膨張黒鉛以外の導電性物質の少なくとも1種を含有させ
ることにより、導電性をさらに向上させ、負荷特性およ
びサイクル特性をさらに向上させることができる。膨張
黒鉛以外の導電性物質としては、例えば、人造黒鉛や天
然黒鉛などの黒鉛系材料や、アセチレンブラックやケッ
チェンブラックなどのカーボンブラック系材料などを用
いることができる。
In the positive electrode mixture, in addition to the expanded graphite,
By containing at least one conductive material other than expanded graphite, the conductivity can be further improved, and the load characteristics and cycle characteristics can be further improved. As the conductive substance other than the expanded graphite, for example, a graphite-based material such as artificial graphite or natural graphite, or a carbon black-based material such as acetylene black or Ketjen black can be used.

【0015】正極は、例えば、上記正極活物質に、導電
性物質として膨張黒鉛と必要に応じて膨張黒鉛以外の導
電性物質の少なくとも1種を加え、さらに例えばポリフ
ッ化ビニリデンなどのバインダーを適宜添加して混合
し、溶剤でペースト状にし(バインダーはあらかじめ溶
剤に溶解させておいてから正極活物質などと混合しても
よい)、得られた正極合剤含有ペーストを金属箔などか
らなる正極集電体に塗布し、乾燥して正極合剤層を形成
し、必要に応じて加圧成形して正極活物質の充填密度を
高めることによって作製される。ただし、正極の作製方
法は、上記例示のものに限られることはなく、他の方法
によってもよい。また、この正極における正極合剤の充
填密度は2.90g/cm3 以上、特に3.25g/c
3 以上であることが好ましい。そうすることによっ
て、膨張黒鉛のかさ高さに基づく正極合剤間の密着性の
低下を抑制でき、優れた電子伝導機構を確保して、負荷
特性を向上させることができる。
For the positive electrode, for example, expanded graphite and, if necessary, at least one conductive material other than expanded graphite are added to the positive electrode active material, and a binder such as polyvinylidene fluoride is appropriately added. Into a paste with a solvent (the binder may be dissolved in the solvent in advance and then mixed with the positive electrode active material, etc.), and the obtained positive electrode mixture-containing paste is mixed with a positive electrode comprising metal foil or the like. The positive electrode mixture layer is formed by applying to a conductor and drying to form a positive electrode mixture layer and, if necessary, press forming to increase the packing density of the positive electrode active material. However, the method for manufacturing the positive electrode is not limited to the above-described example, and another method may be used. Further, the packing density of the positive electrode mixture in the positive electrode is 2.90 g / cm 3 or more, particularly 3.25 g / cm 3.
It is preferably at least m 3 . By doing so, it is possible to suppress a decrease in the adhesiveness between the positive electrode mixtures based on the bulkiness of the expanded graphite, secure an excellent electron conduction mechanism, and improve the load characteristics.

【0016】負極活物質としては、例えば、天然黒鉛、
熱分解炭素類、コークス類、ガラス状炭素類、有機高分
子化合物の焼成体、メソカーボンマイクロビーズ、炭素
繊維、活性炭などの炭素系材料の1種または2種以上が
用いられる。また、Si、Sn、Inなどの合金または
Liに近い低電圧で充放電できる酸化物や窒化物などの
化合物も負極活物質として用いることができる。
As the negative electrode active material, for example, natural graphite,
One or more of carbon-based materials such as pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads, carbon fibers, and activated carbon are used. Further, alloys such as Si, Sn, and In, or compounds such as oxides and nitrides that can be charged and discharged at a low voltage close to Li can also be used as the negative electrode active material.

【0017】負極は、例えば、上記負極活物質にバイン
ダーを添加して混合し、溶剤を用いてペースト状にし
(バインダーはあらかじめ溶剤の溶解させておいてから
負極活物質と混合してもよい)、得られた負極合剤含有
ペーストを負極集電体に塗布し、乾燥して負極合剤層を
形成し、必要に応じて加圧成形して負極活物質の充填密
度を高めることによって作製される。ただし、負極の作
製方法は、上記例示のものに限られることはなく、他の
方法によってもよい。
The negative electrode is prepared, for example, by adding a binder to the above-mentioned negative electrode active material, mixing the mixture, and forming a paste using a solvent (the binder may be mixed with the negative electrode active material after the solvent is dissolved in advance). The obtained negative electrode mixture-containing paste is applied to a negative electrode current collector, dried to form a negative electrode mixture layer, and optionally molded by pressing to increase the packing density of the negative electrode active material. You. However, the method for manufacturing the negative electrode is not limited to the above-described example, and another method may be used.

【0018】正極や負極の作製にあたって用いるバイン
ダーとしては、例えば、ポリフッ化ビニリデン、ポリテ
トラフルオロエチレン、エチレンプロピレンジエンゴ
ム、フッ素ゴム、スチレンブタジエンゴム、セルロース
系樹脂、ポリアクリル酸などが挙げられ、これらはそれ
ぞれ単独でまたは2種以上の混合物として用いることが
できる。また、正極集電体や負極集電体としては、例え
ば、アルミニウム、銅、ニッケル、ステンレス鋼などの
箔、エキスパンドメタル、パンチドメタル、網などを用
い得るが、正極集電体としては特にアルミニウム箔が好
ましく、負極集電体としては特に銅箔が好ましい。
Examples of the binder used for producing the positive electrode and the negative electrode include polyvinylidene fluoride, polytetrafluoroethylene, ethylene propylene diene rubber, fluoro rubber, styrene butadiene rubber, cellulose resin, and polyacrylic acid. Can be used alone or as a mixture of two or more. Further, as the positive electrode current collector and the negative electrode current collector, for example, foils such as aluminum, copper, nickel, and stainless steel, expanded metal, punched metal, and a net can be used. A foil is preferred, and a copper foil is particularly preferred as the negative electrode current collector.

【0019】電解質としては、液状電解質、ゲル状電解
質、固体電解質のいずれも用いることができるが、本発
明においては、通常、電解液と呼ばれる液状電解質が用
いられる。電解液は、有機溶剤を主材とする非水溶媒に
電解質塩を溶解させることによって調製されるが、その
溶媒としては、例えば、ジメチルカーボネート、ジエチ
ルカーボネート、メチルエチルカーボネート、プロピオ
ン酸メチルなどの鎖状のCOO−結合を有する有機溶
媒、リン酸トリメチルなどの鎖状リン酸トリエステル、
1,2−ジメトキシエタン、1,3−ジオキソラン、テ
トラヒドロフラン、2−メチル−テトラヒドロフラン、
ジエチルエーテルなどを用いることができる。そのほ
か、アミンイミド系有機溶媒やスルホランなどのイオウ
系有機溶媒なども用いることができる。また、ゲル状電
解質にするにあたっては、ポリエチレンオキサイドやポ
リメタクリル酸メチルなどのポリマーを含んでもよい。
As the electrolyte, any of a liquid electrolyte, a gel electrolyte, and a solid electrolyte can be used. In the present invention, a liquid electrolyte called an electrolyte is usually used. The electrolytic solution is prepared by dissolving an electrolyte salt in a non-aqueous solvent containing an organic solvent as a main component. Examples of the solvent include chains such as dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, and methyl propionate. Organic solvents having a linear COO-bond, chain phosphate triesters such as trimethyl phosphate,
1,2-dimethoxyethane, 1,3-dioxolan, tetrahydrofuran, 2-methyl-tetrahydrofuran,
Diethyl ether or the like can be used. In addition, an amine imide organic solvent and a sulfur organic solvent such as sulfolane can also be used. Further, in forming the gel electrolyte, a polymer such as polyethylene oxide or polymethyl methacrylate may be included.

【0020】さらにその他の溶媒成分としてエステルが
多用される。このエステルとしては誘電率が高いエステ
ル(誘電率30以上)が好ましく、その具体例として
は、例えば、エチレンカーボネート、プロピレンカーボ
ネート、ブチレンカーボネート、ガンマーブチロラクト
ンなどが挙げられ、また、エチレングリコールサルファ
イトなどのイオウ系エステルも用いることができる。ま
た、環状構造のエステルが好ましく、特にエチレンカー
ボネートのような環状カーボネートが好ましい。
Esters are often used as other solvent components. As the ester, an ester having a high dielectric constant (dielectric constant of 30 or more) is preferable, and specific examples thereof include ethylene carbonate, propylene carbonate, butylene carbonate, gamma-butyrolactone, and the like. Sulfur esters can also be used. Further, an ester having a cyclic structure is preferable, and a cyclic carbonate such as ethylene carbonate is particularly preferable.

【0021】電解液の調製にあたっては上記溶媒に溶解
させる電解質塩としては、例えば、LiClO4 、Li
PF6 、LiBF4 、LiAsF6 、LiSbF6 、L
iCF3 SO3 、LiC4 9 SO3 、LiCF3 CO
2 、Li2 2 4 (SO32 、LiN(Rf1 SO
2 )(Rf2 SO2 )〔ここで、Rf1 、Rf2 はフル
オロアルキル基を含む置換基である〕、LiN(Rf3
OSO2 )(Rf4 OSO2 )〔ここで、Rf3 、Rf
4 はフルオロアルキル基である〕、LiCn 2n+1SO
3 (n≧2)、LiC(Rf5 SO2 3 、LiN(R
6 OSO2 2 〔ここで、Rf5 、Rf6 はフルオロ
アルキル基である〕、ポリマータイプイミドリチウム塩
などが単独でまたは2種以上混合して用いられる。これ
らが正極表面の被膜中に取り込まれると、被膜にイオン
伝導性を付与することができ、特にLiPF6 はその効
果が大きいので好ましい。電解液中における電解質塩の
濃度は、特に限定されるものではないが、濃度を1mo
l/l以上、特に1.2mol/l以上にするのが好ま
しく、また、1.7mol/l以下、特に1.5mol
/l以下にするのが好ましい。
When preparing the electrolytic solution, dissolve in the above solvent.
As the electrolyte salt to be used, for example, LiClOFour, Li
PF6, LiBFFour, LiAsF6, LiSbF6, L
iCFThreeSOThree, LiCFourF9SOThree, LiCFThreeCO
Two, LiTwoCTwoFFour(SOThree)Two, LiN (Rf1SO
Two) (RfTwoSOTwo) [Where Rf1, RfTwoIs full
A substituent containing an oloalkyl group], LiN (RfThree
OSOTwo) (RfFourOSOTwo) [Where RfThree, Rf
FourIs a fluoroalkyl group], LiCnF 2n + 1SO
Three(N ≧ 2), LiC (RfFiveSOTwo)Three, LiN (R
f6OSOTwo) Two[Where RfFive, Rf6Is fluoro
Alkyl group], polymer type imide lithium salt
And the like are used alone or in combination of two or more. this
When they are incorporated into the coating on the positive electrode surface,
Conductivity can be imparted, especially LiPF6Is its effect
It is preferable because the fruits are large. Of electrolyte salt in electrolyte
The concentration is not particularly limited.
l / l or more, particularly preferably 1.2 mol / l or more.
And 1.7 mol / l or less, especially 1.5 mol
/ L or less.

【0022】セパレータとしては、例えば、ポリエチレ
ン製、ポリプロピレン製、またはエチレンとプロピレン
とのコポリマー製の微孔性フィルムなどが用いられる。
As the separator, for example, a microporous film made of polyethylene, polypropylene, or a copolymer of ethylene and propylene is used.

【0023】電池は、例えば、上記のような正極と負極
との間にセパレータを介在させて渦巻状に巻回して作製
した渦巻状電極体などの巻回構造の電極積層体を、ニッ
ケルメッキを施した鉄やステンレス鋼製の電池ケース内
に挿入し、封口する工程を経て作製される。また、上記
電池には、通常、電池内部に発生したガスをある一定圧
力まで上昇した段階で電池外部に排出して、電池の高圧
下での破裂を防止するための防爆機構が設けられる。た
だし、電池の形態は、上記のような筒形のものに限定さ
れることなく、ボタン形、コイン形、扁平形のいずれで
あってもよい。
The battery is formed, for example, by subjecting an electrode laminate having a spiral structure such as a spiral electrode body produced by spirally winding a separator between the positive electrode and the negative electrode as described above to nickel plating. It is manufactured through a process of inserting into a given battery case made of iron or stainless steel and sealing. In addition, the battery is generally provided with an explosion-proof mechanism for discharging the gas generated inside the battery to the outside at the stage when the gas has risen to a certain pressure to prevent the battery from bursting under high pressure. However, the form of the battery is not limited to the above-described cylindrical one, and may be any of a button shape, a coin shape, and a flat shape.

【0024】つぎに、実施例を挙げて本発明をより具体
的に説明する。ただし、本発明はそれらの実施例に例示
のもののみに限定されることはない。
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only those examples.

【0025】実施例1 まず、エチレンカーボネートとメチルエチルカーボネー
トとの体積比1:3の混合溶媒にLiPF6 を1.4m
ol/l相当加えて混合することにより有機溶媒系の電
解液を調製した。
Example 1 First, 1.4 m of LiPF 6 was added to a mixed solvent of ethylene carbonate and methyl ethyl carbonate at a volume ratio of 1: 3.
ol / l was added and mixed to prepare an organic solvent-based electrolyte solution.

【0026】そして、正極の作製にあたっては、平均粒
子径7μmのLiCoO2 91.5重量部に平均粒子径
15μmの膨張黒鉛を4.5重量部加えて混合し、得ら
れた混合物をあらかじめ4重量部のポリフッ化ビニリデ
ンをN−メチル−2−ピロリドンに溶解させておいたポ
リフッ化ビニリデン含有溶液に分散させて正極合剤含有
ペーストを調製した。この正極合剤ペーストを厚さ20
μmのアルミニウム箔からなる正極集電体の両面に塗布
し、乾燥して正極合剤層を形成した後、ローラープレス
機により加圧成形し、所定の大きさに切断後、リード体
の溶接を行い、帯状の正極を作製した。
In preparing the positive electrode, 4.5 parts by weight of expanded graphite having an average particle diameter of 15 μm was added to 91.5 parts by weight of LiCoO 2 having an average particle diameter of 7 μm, and the mixture was mixed. A part of polyvinylidene fluoride was dispersed in a solution of polyvinylidene fluoride dissolved in N-methyl-2-pyrrolidone to prepare a paste containing the positive electrode mixture. This positive electrode mixture paste is coated with a thickness of 20
After coating on both sides of a positive electrode current collector made of a μm aluminum foil and drying to form a positive electrode mixture layer, it is pressed and molded by a roller press, cut into a predetermined size, and welded to the lead body. Then, a belt-shaped positive electrode was manufactured.

【0027】これとは別に、メソカーボンマイクロビー
ズ92重量部をあらかじめ8重量部のポリフッ化ビニリ
デンをN−メチル−2−ピロリドンに溶解させておいた
ポリフッ化ビニリデン含有溶液に分散させて負極合剤含
有ペーストを調製した。この負極合剤含有ペーストを厚
さ10μmの帯状の銅箔からなる負極集電体の両面に塗
布し(ただし、作製後の負極をセパレータを介して正極
と渦巻状に巻回して渦巻状電極体としたときに正極と対
向しない最外周部の外面側となる部分には負極合剤含有
ペーストを塗布しなかった)、乾燥して負極合剤層を形
成した後、ローラープレス機により加圧成形して所定の
大きさに切断後、リード体の溶接を行い、帯状の負極を
作製した。
Separately, 92 parts by weight of the mesocarbon microbeads are dispersed in a polyvinylidene fluoride-containing solution in which 8 parts by weight of polyvinylidene fluoride is dissolved in N-methyl-2-pyrrolidone in advance, and a negative electrode mixture is prepared. A containing paste was prepared. The paste containing the negative electrode mixture is applied to both surfaces of a negative electrode current collector made of a strip-shaped copper foil having a thickness of 10 μm (provided that the prepared negative electrode is spirally wound around the positive electrode via a separator to form a spiral electrode body). The negative electrode mixture-containing paste was not applied to the portion on the outer surface of the outermost peripheral portion that did not face the positive electrode when dried), dried to form the negative electrode mixture layer, and then pressed by a roller press. After cutting to a predetermined size, the lead body was welded to produce a strip-shaped negative electrode.

【0028】つぎに、上記の帯状正極を、厚さ25μm
の微孔性ポリエチレンフィルムからなるセパレータを介
して、上記帯状負極と重ね、渦巻状に巻回して渦巻状電
極体としたのち、絶縁板とともに外径18mmの有底円
筒状の電池ケース内に挿入し、負極のリード体を電池ケ
ースの底部に溶接した後、グルービングを行い、上記の
電解液を電池ケース内に注入し、常法にしたがって電池
ケース内の開口部を封口し、電池の予備充電を行って、
図1に示す構造で円筒形の非水二次電池を作製した。
Next, the above-mentioned strip-shaped positive electrode was coated with a thickness of 25 μm.
The separator is made of a microporous polyethylene film, and is overlapped with the above-mentioned band-shaped negative electrode, spirally wound into a spiral electrode body, and then inserted together with an insulating plate into a cylindrical battery case having an outer diameter of 18 mm and a bottom. After welding the lead of the negative electrode to the bottom of the battery case, grooving is performed, the above electrolyte is injected into the battery case, the opening in the battery case is sealed according to a conventional method, and the battery is precharged. Go to
A cylindrical non-aqueous secondary battery having the structure shown in FIG. 1 was produced.

【0029】ここで、図1に示す電池について説明する
と、1は前記の正極で、2は前記の負極である。ただ
し、図1では、繁雑化を避けるため、正極1や負極2の
作製にあたって使用した集電体などは図示していない。
そして、これらの正極1と負極2はセパレータ3を介し
て渦巻状に巻回され、渦巻状巻回構造の電極積層体とし
て上記の電解液4と共に電池ケース5内に収容されてい
る。
Here, the battery shown in FIG. 1 will be described. 1 is the positive electrode and 2 is the negative electrode. However, FIG. 1 does not show the current collectors used for producing the positive electrode 1 and the negative electrode 2 in order to avoid complication.
The positive electrode 1 and the negative electrode 2 are spirally wound with a separator 3 interposed therebetween, and are housed in a battery case 5 together with the electrolytic solution 4 as an electrode laminate having a spirally wound structure.

【0030】電池ケース5はステンレス鋼製で、その底
部には上記電極積層体の挿入に先立って、ポリプロピレ
ンからなる絶縁板6が配置されている。封口板7は、ア
ルミニウム製で円板状をしていて、その中央部に薄肉部
7aを設け、かつ上記薄肉部7aの周囲に電池内圧を防
爆弁9に作用させるための圧力導入口7bとしての孔が
設けられている。そして、この薄肉部7aの上面に防爆
弁9の突出部9aが溶接され、溶接部分11を構成して
いる。なお、上記の封口板7に設けた薄肉部7aや防爆
弁9の突出部9aなどは、図面上での理解がしやすいよ
うに、切断面のみを図示しており、切断面後方の輪郭は
図示を省略している。また、封口板7の薄肉部7aと防
爆弁9の突出部9aの溶接部分11も、図面上での理解
が容易なように、実際よりは誇張した状態に図示してい
る。
The battery case 5 is made of stainless steel, and an insulating plate 6 made of polypropylene is disposed at the bottom of the battery case 5 before the electrode laminate is inserted. The sealing plate 7 is made of aluminum and is in the shape of a disk. A thin portion 7a is provided at the center of the sealing plate 7 and serves as a pressure inlet 7b around the thin portion 7a for applying the internal pressure of the battery to the explosion-proof valve 9. Holes are provided. The projection 9a of the explosion-proof valve 9 is welded to the upper surface of the thin portion 7a to form a welded portion 11. In addition, the thin portion 7a provided on the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 and the like are shown only in a cut surface so that the drawing can be easily understood, and the outline behind the cut surface is Illustration is omitted. Also, the welded portion 11 of the thin portion 7a of the sealing plate 7 and the protruding portion 9a of the explosion-proof valve 9 is shown in an exaggerated state in order to facilitate understanding on the drawing.

【0031】端子板8は、圧延鋼製で表面にニッケルメ
ッキが施され、周縁部が鍔状になった帽子状をしてお
り、この端子板8にはガス排出口8aが設けられてい
る。防爆弁9は、アルミニウム製で円板状をしており、
その中央部には発電要素側(図1では、下側)に先端部
を有する突出部9aが設けられ、かつ薄肉部9bが設け
られ、上記突出部9aの下面が、前記したように、封口
板7の薄肉部7aの上面に溶接され、溶接部分11を構
成している。絶縁パッキング10は、ポリプロピレン製
で環状をしており、封口板7の周縁部の上部に配置さ
れ、その上部に防爆弁9が配置していて、封口板7と防
爆弁9とを絶縁するとともに、両者の間から電解液が漏
れないように両者の間隙を封止している。環状ガスケッ
ト12はポリプロピレン製で、リード体13はアルミニ
ウム製で、前記封口板7と正極1とを接続し、電極積層
体の上部には絶縁体14が配置され、負極2と電池ケー
ス5の底部とはニッケル製のリード体15で接続されて
いる。
The terminal plate 8 is made of rolled steel, has a nickel-plated surface, and has a cap-like shape with a peripheral edge formed in a flange shape. The terminal plate 8 is provided with a gas outlet 8a. . The explosion-proof valve 9 is made of aluminum and has a disk shape.
In the center thereof, a protruding portion 9a having a tip portion is provided on the power generation element side (the lower side in FIG. 1), and a thin portion 9b is provided, and the lower surface of the protruding portion 9a is closed as described above. It is welded to the upper surface of the thin portion 7a of the plate 7 to form a welded portion 11. The insulating packing 10 is made of polypropylene and has an annular shape. The insulating packing 10 is disposed above the peripheral edge of the sealing plate 7, and the explosion-proof valve 9 is disposed thereon. The gap between the two is sealed so that the electrolyte does not leak from between the two. The annular gasket 12 is made of polypropylene, and the lead body 13 is made of aluminum. The sealing plate 7 and the positive electrode 1 are connected to each other. An insulator 14 is disposed on the electrode laminate, and the negative electrode 2 and the bottom of the battery case 5 are connected. Are connected by a lead body 15 made of nickel.

【0032】この電池においては、封口板7の薄肉部7
aと防爆弁9の突出部9aとが溶接部分11で接触し、
防爆弁9の周縁部と端子板8の周縁部とが接触し、正極
1と封口板7とは正極側のリード体13で接続されてい
るので、通常の状態では、正極1と端子板8とはリード
体13、封口板7、防爆弁9およびそれらの溶接部分1
1によって電気的接続が得られ、電路として正常に機能
する。
In this battery, the thin portion 7 of the sealing plate 7
a and the projecting portion 9a of the explosion-proof valve 9 come into contact at the welded portion 11,
Since the peripheral portion of the explosion-proof valve 9 and the peripheral portion of the terminal plate 8 are in contact with each other, and the positive electrode 1 and the sealing plate 7 are connected by the lead 13 on the positive electrode side, in a normal state, the positive electrode 1 and the terminal plate 8 Means a lead body 13, a sealing plate 7, an explosion-proof valve 9, and their welded parts 1
1 provides an electrical connection and functions normally as an electrical circuit.

【0033】そして、電池が高温にさらされるなど、電
池に異常事態が起こり、電池内部にガスが発生して電池
の内圧が上昇した場合には、その内圧上昇により、防爆
弁9の中央部が内圧方向(図1では、上側の方向)に変
形し、それに伴って溶接部分11で一体化されている薄
肉部7aに剪断力が働いて該薄肉部7aが破断するか、
または防爆弁9の突出部9aと封口板7の薄肉部7aと
の溶接部分11が剥離した後、この防爆弁9に設けられ
ている薄肉部9bが開裂してガスを端子板8のガス排出
口8aから電池外部に排出させて電池の破裂を防止する
ことができるように設計されている。
When an abnormal situation occurs in the battery, such as when the battery is exposed to a high temperature, and gas is generated inside the battery and the internal pressure of the battery rises, the central pressure of the explosion-proof valve 9 is increased due to the rise in the internal pressure. It deforms in the direction of the internal pressure (upward direction in FIG. 1), and accordingly, the thin portion 7a integrated at the welded portion 11 is subjected to shearing force to break the thin portion 7a.
Alternatively, after the welding portion 11 between the projecting portion 9a of the explosion-proof valve 9 and the thin portion 7a of the sealing plate 7 is peeled off, the thin portion 9b provided on the explosion-proof valve 9 is torn, and gas is discharged from the terminal plate 8. The battery is designed to be discharged from the outlet 8a to the outside of the battery to prevent the battery from bursting.

【0034】実施例2 平均粒子径7μmのLiCoO2 91.5重量部に、平
均粒子径15μmの膨張黒鉛を4重量部およびカーボン
ブラックを0.5重量部加え、さらにポリフッ化ビニリ
デンを4重量部加えること以外は、実施例1と同様にし
て円筒形の非水二次電池を作製した。
[0034] LiCoO 2 91.5 parts by weight Example 2 The average particle diameter of 7 [mu] m, an average expanded graphite having a particle diameter of 15 [mu] m 4 parts by weight of carbon black 0.5 parts by weight of 4 parts by weight of further polyvinylidene fluoride A cylindrical non-aqueous secondary battery was manufactured in the same manner as in Example 1 except for adding.

【0035】実施例3 平均粒子径7μmのLiCoO2 91.5重量部に、平
均粒子径15μmの膨張黒鉛を2重量部、人造黒鉛を2
重量部、カーボンブラックを0.5重量部加え、さらに
ポリフッ化ビニリデンを4重量部加えること以外は、実
施例1と同様にして円筒形の非水二次電池を作製した。
Example 3 21.5 parts by weight of expanded graphite having an average particle diameter of 15 μm and 2 parts by weight of artificial graphite were added to 91.5 parts by weight of LiCoO 2 having an average particle diameter of 7 μm.
A cylindrical nonaqueous secondary battery was produced in the same manner as in Example 1, except that 0.5 parts by weight of carbon black, 0.5 parts by weight of carbon black, and 4 parts by weight of polyvinylidene fluoride were further added.

【0036】実施例4 平均粒子径15μmのLiCoO2 を用いること以外
は、実施例1と同様にして円筒形の非水二次電池を作製
した。
Example 4 A cylindrical non-aqueous secondary battery was manufactured in the same manner as in Example 1 except that LiCoO 2 having an average particle diameter of 15 μm was used.

【0037】比較例1 平均粒子径7μmのLiCoO2 91.5重量部に、人
造黒鉛を4.5重量部加え、これにポリフッ化ビニリデ
ンを4重量部加えること以外は、実施例1と同様にして
円筒形の非水二次電池を作製した。
Comparative Example 1 The procedure of Example 1 was repeated, except that 4.5 parts by weight of artificial graphite and 4 parts by weight of polyvinylidene fluoride were added to 91.5 parts by weight of LiCoO 2 having an average particle diameter of 7 μm. Thus, a cylindrical non-aqueous secondary battery was manufactured.

【0038】比較例2 平均粒子径25μmのLiCoO2 を用いること以外
は、実施例1と同様にして円筒形の非水二次電池を作製
した。
Comparative Example 2 A cylindrical non-aqueous secondary battery was manufactured in the same manner as in Example 1, except that LiCoO 2 having an average particle diameter of 25 μm was used.

【0039】比較例3 平均粒子径3μmのLiCoO2 を用いること以外は実
施例1と同様にして円筒形の非水二次電池を作製しよう
と試みたが、正極作製時に正極活物質の充填密度が著し
く低下し、正極が厚くなりすぎたため、これを用いた渦
巻状電極体を電池ケースに挿入することができなかっ
た。
Comparative Example 3 An attempt was made to produce a cylindrical nonaqueous secondary battery in the same manner as in Example 1 except that LiCoO 2 having an average particle diameter of 3 μm was used. Was significantly reduced and the positive electrode became too thick, so that the spiral electrode body using the same could not be inserted into the battery case.

【0040】ここで、上記実施例1〜4および比較例1
〜3の非水二次電池のLiCoO2(正極活物質)の平
均粒子径、正極合剤中の導電性物質の含有量を示す。な
お、正極活物質のLiCoO2 の正極合剤中の含有量
は、実施例1〜4、比較例1〜3とも、91.5重量%
であり、バインダーのポリフッ化ビニリデンの正極合剤
中の含有量は、実施例1〜4、比較例1〜3とも、4.
0重量%である。また、表1には実施例1〜4および比
較例1〜3の正極合剤の充填密度も示す。
Here, the above Examples 1 to 4 and Comparative Example 1
3 shows the average particle diameter of LiCoO 2 (positive electrode active material) and the content of the conductive substance in the positive electrode mixture of the nonaqueous secondary batteries of Nos. 1 to 3. The content of LiCoO 2 of the positive electrode active material in the positive electrode mixture was 91.5% by weight in Examples 1-4 and Comparative Examples 1-3.
And the content of polyvinylidene fluoride as a binder in the positive electrode mixture was 4 in Examples 1-4 and Comparative Examples 1-3.
0% by weight. Table 1 also shows the packing densities of the positive electrode mixtures of Examples 1 to 4 and Comparative Examples 1 to 3.

【0041】[0041]

【表1】 [Table 1]

【0042】つぎに、上記の実施例1〜4および比較例
1〜2の円筒形の非水二次電池を次の条件下で充放電し
た。すなわち、電流1600mAh(1C)で電圧3.
0Vから4.2Vまで定電流で充電し、4.2Vに達し
た後は4.2Vの定電圧で2時間保持した。また、放電
も1Cで3.0Vまで放電した。この充放電を2回繰り
返し行った後、電流を0.2C、1C、2Cと変化させ
て3.0Vまで放電したときの放電容量を測定した。表
2に各電池の0.2Cの放電容量(電流0.2Cでの放
電容量)と、2C/0.2Cの容量比を百分率〔(2C
での放電容量/0.2Cでの放電容量)×100〕で表
した結果を示す。さらに、電流1600mAh(1C)
で電圧3.0〜4.2Vの条件で300サイクルの充放
電を繰り返し行った。このとき、300サイクル経過時
の放電容量を2サイクル目に得られた放電容量で割った
値の百分率〔(300サイクル経過時の放電容量/2サ
イクル目の放電容量)×100〕を300サイクル経過
時の容量維持率として表2に示す。
Next, the cylindrical non-aqueous secondary batteries of Examples 1 to 4 and Comparative Examples 1 and 2 were charged and discharged under the following conditions. That is, the current is 1600 mAh (1 C) and the voltage is 3.
The battery was charged with a constant current from 0 V to 4.2 V, and after reaching 4.2 V, was held at a constant voltage of 4.2 V for 2 hours. The discharge was also performed at 1 C to 3.0 V. After repeating this charge / discharge twice, the discharge capacity was measured when the current was changed to 0.2 C, 1 C, and 2 C and discharged to 3.0 V. Table 2 shows the discharge capacity of 0.2 C (discharge capacity at a current of 0.2 C) of each battery and the capacity ratio of 2 C / 0.2 C as a percentage [(2 C
(Discharge capacity at 0.2 C / discharge capacity at 0.2 C) × 100]. Further, a current of 1600 mAh (1 C)
And charging and discharging of 300 cycles were repeatedly performed under the conditions of a voltage of 3.0 to 4.2 V. At this time, the percentage of the value obtained by dividing the discharge capacity at the time of 300 cycles by the discharge capacity obtained at the second cycle [(discharge capacity at the time of 300 cycles / discharge capacity at the second cycle) × 100] is 300 cycles Table 2 shows the capacity retention ratio at the time.

【0043】[0043]

【表2】 [Table 2]

【0044】表2に示す結果から明らかなように、実施
例1〜4の電池は、0.2Cの放電容量が比較例1〜2
の電池と同等であって、容量の低下がなく、負荷特性を
示す2C/0.2Cやサイクル特性を示す300サイク
ル後の容量維持率が高かった。この結果から、本発明の
実施例1〜4の電池は、容量の低下を引き起こすことな
く、負荷特性およびサイクル特性が向上していることが
わかる。
As is clear from the results shown in Table 2, the batteries of Examples 1 to 4 had a discharge capacity of 0.2 C in Comparative Examples 1 to 2.
The capacity was not reduced, and the capacity retention rate after 2 cycles of 2C / 0.2C indicating load characteristics and 300 cycles indicating cycle characteristics was high. From these results, it is understood that the batteries of Examples 1 to 4 of the present invention have improved load characteristics and cycle characteristics without causing a decrease in capacity.

【0045】また、同じ平均粒子径のLiCoO2 (正
極活物質)を用いた実施例1〜3の電池間で比較する
と、導電性物質として膨張黒鉛のみを用いた実施例1の
電池よりも、導電性物質として膨張黒鉛とそれ以外の導
電性物質とを併用した実施例2〜3の電池の方が負荷特
性やサイクル特性が優れていた。
In addition, comparing the batteries of Examples 1 to 3 using LiCoO 2 (positive electrode active material) having the same average particle size, the batteries of Example 1 using only expanded graphite as the conductive material showed a higher value. The batteries of Examples 2 and 3, in which expanded graphite and other conductive materials were used in combination as the conductive materials, had better load characteristics and cycle characteristics.

【0046】[0046]

【発明の効果】以上説明したように、本発明では、容量
の低下を引き起こすことなく、負荷特性およびサイクル
特性を向上させ、高容量で、かつ負荷特性およびサイク
ル特性が優れた非水二次電池を提供することができた。
また、導電性物質として、膨張黒鉛と、それ以外に黒鉛
系材料やカーボンブラック系材料などからなる少なくと
も1種の導電性物質を併用することにより、負荷特性お
よびサイクル特性をより向上させることができた。
As described above, according to the present invention, load characteristics and cycle characteristics are improved without causing a decrease in capacity, and a non-aqueous secondary battery having high capacity and excellent load characteristics and cycle characteristics is provided. Could be provided.
In addition, by using expanded graphite as the conductive material and at least one other conductive material composed of a graphite-based material, a carbon black-based material, and the like, load characteristics and cycle characteristics can be further improved. Was.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の非水二次電池の一例を模式的に示す
縦断面図である。
FIG. 1 is a longitudinal sectional view schematically showing one example of a non-aqueous secondary battery of the present invention.

【符号の説明】 1 正極 2 負極 3 セパレータ[Description of Signs] 1 Positive electrode 2 Negative electrode 3 Separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 俊洋 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 (72)発明者 喜多 房次 大阪府茨木市丑寅一丁目1番88号 日立マ クセル株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AK03 AL08 AM03 AM04 AM05 AM07 BJ02 DJ08 DJ16 EJ04 HJ05 5H050 AA07 AA08 BA17 CA08 CB09 DA02 DA10 EA09 EA24 FA17 HA05  ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Toshihiro Koyama 1-88 Ushitora 1-chome, Ibaraki-shi, Osaka Inside Hitachi Maxell Co., Ltd. (72) Futsuji Kita 1-1-88 Ushitora 1-chome, Ibaraki-shi, Osaka F-term in Hitachi Maxell, Ltd. (reference) 5H029 AJ03 AJ05 AK03 AL08 AM03 AM04 AM05 AM07 BJ02 DJ08 DJ16 EJ04 HJ05 5H050 AA07 AA08 BA17 CA08 CB09 DA02 DA10 EA09 EA24 FA17 HA05

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質の平均粒子径が5〜20μm
の範囲内にあり、かつ導電性物質として膨張黒鉛を用い
たことを特徴とする非水二次電池。
An average particle diameter of the positive electrode active material is 5 to 20 μm.
A non-aqueous secondary battery characterized by using expanded graphite as a conductive substance.
【請求項2】 膨張黒鉛以外に少なくとも1種の導電性
物質を含有することを特徴とする請求項1記載の非水二
次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the non-aqueous secondary battery contains at least one kind of conductive material in addition to the expanded graphite.
JP2000139381A 2000-05-12 2000-05-12 Non-aqueous secondary battery Withdrawn JP2001319658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000139381A JP2001319658A (en) 2000-05-12 2000-05-12 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000139381A JP2001319658A (en) 2000-05-12 2000-05-12 Non-aqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2001319658A true JP2001319658A (en) 2001-11-16

Family

ID=18646836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000139381A Withdrawn JP2001319658A (en) 2000-05-12 2000-05-12 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2001319658A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086228A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
JP2015038901A (en) * 2011-01-26 2015-02-26 五十嵐 五郎 Expanded graphite for adsorbing and storing uses
WO2019150909A1 (en) * 2018-01-30 2019-08-08 日本ゼオン株式会社 Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038901A (en) * 2011-01-26 2015-02-26 五十嵐 五郎 Expanded graphite for adsorbing and storing uses
JP2014086228A (en) * 2012-10-22 2014-05-12 Toyota Motor Corp Enclosed nonaqueous electrolytic secondary battery, and method for manufacturing the same
WO2019150909A1 (en) * 2018-01-30 2019-08-08 日本ゼオン株式会社 Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element
JPWO2019150909A1 (en) * 2018-01-30 2021-02-12 日本ゼオン株式会社 Additives for electrochemical elements, binder compositions for electrochemical elements, slurry compositions for electrochemical elements, electrodes for electrochemical elements, and electrochemical elements
EP3748746A4 (en) * 2018-01-30 2021-11-03 Zeon Corporation Additive for electrochemical device, binder composition for electrochemical device, slurry composition for electrochemical device, electrode for electrochemical device, and electrochemical device
US11302923B2 (en) 2018-01-30 2022-04-12 Zeon Corporation Additive for electrochemical device, binder composition for electrochemical device, slurry composition for electrochemical device, electrode for electrochemical device, and electrochemical device
JP7314802B2 (en) 2018-01-30 2023-07-26 日本ゼオン株式会社 Additive for electrochemical element, binder composition for electrochemical element, slurry composition for electrochemical element, electrode for electrochemical element, and electrochemical element

Similar Documents

Publication Publication Date Title
WO2019216275A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2006260864A (en) Manufacturing method of lithium secondary battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
JP2003092148A (en) Nonaqueous secondary battery
JP2000123868A (en) Nonaqueous secondary battery
JP2002087807A (en) Multilayer graphite, manufacturing method thereof and non-aqueous electrolyte secondary battery
JP2004319311A (en) Winding type cylindrical lithium ion battery
JP3988901B2 (en) Organic electrolyte secondary battery
JP2000036324A (en) Nonaqueous secondary battery
JP2003123764A (en) Nonaqueous secondary battery
JP2003272704A (en) Nonaqueous secondary battery
JP2002093405A (en) Nonaqueous secondary battery and its charging method
JP4439070B2 (en) Non-aqueous secondary battery and charging method thereof
JP2003045433A (en) Nonaqueous secondary battery
JP2000357505A (en) Nonaqueous electrolyte secondary battery
JP6392566B2 (en) Nonaqueous electrolyte secondary battery
JP2002008656A (en) Lithium secondary battery
JP2007123156A (en) Lithium ion cell
JP2004296420A (en) Organic electrolyte battery
JP2001319658A (en) Non-aqueous secondary battery
JP2002216757A (en) Nonaqueous secondary battery
JP2001202997A (en) Cylindrical lithium-ion battery
JP4974404B2 (en) Non-aqueous secondary battery
JP2001210326A (en) Nonaqueous electrolytic solution secondary battery
JP2006344395A (en) Cathode for lithium secondary battery and utilization and manufacturing method of the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807