JP2001318399A - Photometric device for camera - Google Patents

Photometric device for camera

Info

Publication number
JP2001318399A
JP2001318399A JP2000135445A JP2000135445A JP2001318399A JP 2001318399 A JP2001318399 A JP 2001318399A JP 2000135445 A JP2000135445 A JP 2000135445A JP 2000135445 A JP2000135445 A JP 2000135445A JP 2001318399 A JP2001318399 A JP 2001318399A
Authority
JP
Japan
Prior art keywords
photometric
lens
camera
data
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000135445A
Other languages
Japanese (ja)
Other versions
JP4524852B2 (en
Inventor
Hiroshi Takeuchi
宏 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2000135445A priority Critical patent/JP4524852B2/en
Publication of JP2001318399A publication Critical patent/JP2001318399A/en
Application granted granted Critical
Publication of JP4524852B2 publication Critical patent/JP4524852B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exposure Control For Cameras (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a photometric device by which a photometric error due to the manufacturing error of a camera is highly accurately corrected. SOLUTION: A photometric arithmetic part 43 calculates the luminance of a field based on the lens data of an attached lens and a photometric data outputted by a photometric element 6. An individual data storing part 44 stores a data corresponding to a deviation from the design specification of a photometric optical system 40 at a manufacturing stage for each camera. A photometric correcting/calculating part 45 calculates a luminance correcting amount based on a lens data and an individual data by using an operation expression obtained by previously analyzing a relation between the deviation value and the luminance correcting amount and corrects the luminance of the field.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は撮影レンズを備えた
一眼レフカメラの測光装置に関し、特に、測光補正の方
法を改良したカメラの測光装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photometric device for a single-lens reflex camera provided with a photographic lens, and more particularly to a photometric device for a camera having an improved photometric correction method.

【0002】[0002]

【従来の技術】従来一眼レフカメラの測光装置として、
撮影レンズを通過した光束をファインダ光学系中に備え
た測光素子で測光して被写界輝度を算出する、所謂TT
L測光方式の測光装置が知られている。また測光素子の
受光部を複数領域に分割し、分割測光領域毎に測光を行
う分割測光方式の測光装置も知られている。このような
従来のTTL測光方式の測光装置では、撮影レンズの光
学特性、即ち開放F値、射出瞳位置(距離)、あるいは
分割測光領域の位置等の要因により、算出した被写界輝
度に誤差を生ずるため、撮影レンズの光学特性に応じて
分割測光領域毎に被写界輝度の補正を行っていた。また
撮影レンズから測光素子の間に介在する測光光学系の製
造誤差等のカメラ個別の要因によっても、被写界輝度に
誤差を生ずる。特開平11−249193号公報では測
光光学系の製造誤差等のカメラ個別要因による誤差を取
り除くための方法が開示されている。この方法によれ
ば、まず既知の輝度の被写体に対し開放F値の異なる少
なくとも2本の基準レンズを使いカメラボディ毎に測光
を行なって被写界輝度を算出し、既知の輝度と算出した
被写界輝度との誤差をボディ記憶部に記憶しておく。実
際に撮影レンズを装着した場合には、前記記憶された少
なくとも2つの輝度誤差データと装着された撮影レンズ
の開放F値から実際の輝度誤差量を推定してカメラ個別
の輝度補正を行う。
2. Description of the Related Art Conventionally, as a photometric device of a single-lens reflex camera,
A luminous flux that has passed through the taking lens is measured by a photometric element provided in a finder optical system to calculate the field brightness, so-called TT.
2. Description of the Related Art An L photometry type photometry device is known. Further, there is also known a photometric device of a divided photometric method in which a light receiving portion of a photometric element is divided into a plurality of regions and photometry is performed for each divided photometric region. In such a conventional TTL metering type photometric device, an error occurs in the calculated field brightness due to factors such as the optical characteristics of the taking lens, that is, the open F value, the exit pupil position (distance), or the position of the divided photometric region. Therefore, the field brightness is corrected for each divided photometry area according to the optical characteristics of the photographing lens. In addition, errors in the field brightness also occur due to individual factors of the camera such as a manufacturing error of the photometric optical system interposed between the photographing lens and the photometric element. Japanese Patent Application Laid-Open No. H11-249193 discloses a method for removing an error due to a camera-specific factor such as a manufacturing error of a photometric optical system. According to this method, first, a subject having a known luminance is subjected to photometry for each camera body using at least two reference lenses having different open F-numbers to calculate a field luminance, and the subject luminance calculated as the known luminance is calculated. An error from the scene brightness is stored in the body storage unit. When the photographing lens is actually mounted, the actual luminance error amount is estimated from the stored at least two pieces of luminance error data and the open F value of the mounted photographing lens, and the luminance of each camera is corrected.

【0003】[0003]

【発明が解決しようとする課題】特開平11−2491
93号公報では、カメラ個別の誤差要因(測光光学系の
製造誤差等)の影響を、最終的な算出結果である輝度誤
差量の形で記憶し、輝度誤差量がおおよそ撮影レンズの
開放F値に依存していることを仮定し被写界輝度の補正
を行う訳であるが、この方法ではカメラ個別の誤差要因
(測光光学系の製造誤差等)が輝度誤差に与える特性や
メカニズムについては考慮せずに大雑把な補正となって
いるため、輝度誤差の補正が不十分であった。また測光
光学系の個体差によって生じる被写界輝度の誤差量は、
撮影レンズ側の要因として撮影レンズの開放F値以外に
も、撮影レンズの射出瞳位置や、カメラボディ側の要因
も複雑に絡み合って変化するため、撮影レンズの開放F
値のみに関連させて輝度補正を行った場合、必ずしも十
分な精度で輝度補正が行うことができなかった。本発明
の課題は、被写界輝度の算出誤差を発生させるカメラ個
別測光光学系の誤差要因を適切に考慮して輝度補正を行
うことにより、カメラ個別の輝度算出誤差をより高精度
に補正を行なうことである。
Problems to be Solved by the Invention
In Japanese Patent No. 93, the influence of an error factor of each camera (such as a manufacturing error of a photometric optical system) is stored in the form of a luminance error amount which is a final calculation result. In this method, the correction of the field brightness is performed, assuming that it depends on the camera. However, this method takes into account the characteristics and mechanism that the error factors of the individual cameras (such as the manufacturing error of the photometric optical system) give to the brightness error. Since the correction was rough without performing the correction, the correction of the luminance error was insufficient. Also, the error amount of the field luminance caused by the individual difference of the photometric optical system is:
In addition to the F-number of the taking lens, factors such as the exit pupil position of the taking lens and the factors on the camera body side change intricately as factors on the taking lens side.
When the brightness correction was performed only in relation to the value, the brightness correction could not always be performed with sufficient accuracy. The object of the present invention is to correct the camera-specific luminance calculation error with higher accuracy by appropriately considering the error factor of the camera-specific photometric optical system that causes the calculation error of the field luminance. It is to do.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するため
に、請求項1の発明によるカメラの測光装置は、受光し
た光量に応じて測光データを出力する測光素子(6)
と、前記撮影レンズを透過した光を前記測光素子(6)
に導く測光光学系(40)と、前記撮影レンズの光学特
性を表すレンズデータを出力するレンズデータ出力部
(42)と、前記測光データと前記レンズデータに基づ
き、被写界輝度を算出する測光演算部(43)と、前記
測光光学系(40)の設計仕様からの偏差に関する情報
を、カメラ毎に個別データとして記憶する書き換え可能
な個別データ記憶部(44)と、前記個別データと前記
レンズデータに基づき、前記測光演算部(43)で演算
された被写界輝度にカメラ個別の輝度補正を加える測光
補正演算部(45)とを備えたことを特徴とする。請求
項2の発明は、請求項1に記載されたカメラの測光装置
において、前記測光補正演算部(45)は、前記測光光
学系(40)の設計仕様からの偏差量とそれに起因する
被写界輝度の誤差量との間の関係に基づいて輝度補正量
を算出することを特徴とする。請求項3の発明は、請求
項1に記載されたカメラの測光装置において、前記測光
光学系(40)の光軸は前記撮影レンズの光軸と所定角
度なすように設定されており、前記個別データは前記所
定角度からのカメラ個別の角度偏差に関するデータであ
ることを特徴とする。請求項4の発明は、請求項1に記
載されたカメラの測光装置において、前記レンズデータ
は撮影レンズの射出瞳の距離に関するデータを含むとと
もに、前記測光補正演算部(45)は、前記撮影レンズ
の射出瞳の距離が小さくなるほど、カメラ個別の輝度補
正の絶対量を大きくする演算を行なうことを特徴とす
る。
According to a first aspect of the present invention, there is provided a photometric device for a camera, which outputs photometric data in accordance with the amount of received light.
And transmitting the light transmitted through the photographing lens to the photometric element (6).
Optical system (40), a lens data output unit (42) for outputting lens data representing the optical characteristics of the photographic lens, and photometry for calculating the field brightness based on the photometric data and the lens data. An arithmetic unit (43); a rewritable individual data storage unit (44) for storing information relating to a deviation from the design specification of the photometric optical system (40) as individual data for each camera; A photometric correction operation unit (45) for applying a camera-specific luminance correction to the field luminance calculated by the photometric operation unit (43) based on the data. According to a second aspect of the present invention, in the photometric device for a camera according to the first aspect, the photometric correction calculation unit (45) includes a deviation amount from a design specification of the photometric optical system (40) and a subject resulting therefrom. The method is characterized in that the luminance correction amount is calculated based on the relationship between the field luminance error amount. According to a third aspect of the present invention, in the photometric device for a camera according to the first aspect, an optical axis of the photometric optical system (40) is set to be at a predetermined angle with an optical axis of the photographing lens. The data is data relating to an angular deviation of each camera from the predetermined angle. According to a fourth aspect of the present invention, in the photometric device for a camera according to the first aspect, the lens data includes data relating to a distance of an exit pupil of a photographic lens, and the photometric correction calculation unit (45) includes the photographic lens. The calculation is performed such that the smaller the distance of the exit pupil becomes, the larger the absolute amount of the luminance correction of each camera becomes.

【0005】[0005]

【発明の実施の形態】以下、図面などを参照して、本発
明の実施形態をあげ、さらに詳細に説明する。 (測光装置の構成)図1は、本発明によるカメラの測光
装置の実施形態を示したブロック図である。この実施形
態の測光装置が適用されるカメラは、測光光学系40
と、測光素子6と、測光演算部43と、レンズデータ出
力部42と、個別データ記憶部44と、測光補正演算部
45などを備えている。測光光学系40は測光素子6と
撮影レンズ1の間に配置された光学系である。測光素子
6は、複数に分割された測光領域を有し、各分割測光領
域の受光量に応じた測光データを出力する素子である。
レンズデータ出力部42は、撮影レンズの光学特性を表
すレンズデータを出力する。個別データ記憶部44に
は、後述するカメラ個別に測光光学系40の設計仕様か
らの偏差量に関連するデータが格納される。測光演算部
43は、測光素子6が出力する測光データとレンズデー
タ出力部42が出力するレンズデータから被写界輝度を
算出する部分である。測光補正演算部45は、個別デー
タ記憶部44から入力される個別データとレンズデータ
出力部42が出力するレンズデータとにより、被写界輝
度をカメラボディ毎に個別補正するための輝度補正値を
算出し、該輝度補正値に基づき測光演算部43が算出し
た被写界輝度を補正する部分である。このようにして得
られた被写界輝度に基づき、カメラは周知のごとく適正
露出値を決定し、さらにシャッター値と絞り値に決定し
撮影動作の制御を行う。図2は、本発明を一眼レフカメ
ラの測光装置に適用した場合の基本構成を示す図であ
る。交換レンズ構体10がカメラボディ20に装着さ
れ、交換レンズ構体10には、撮影レンズ1、レンズマ
イコン11、レンズROM12が内蔵されており、カメ
ラボディ20には、クイックリターンミラー2、コンデ
ンサレンズ9、スクリーン3、ペンタプリズム4、測光
レンズ5、測光素子6、接眼レンズ7、ボディマイコン
21、ボディROM22、EEPROM23が備えられ
ている。撮影レンズ1から測光素子6に至るまでに配置
されているクイックリターンミラー2、コンデンサレン
ズ9、スクリーン3、ペンタプリズム4、測光レンズ5
等の光学部材が、図1の測光光学系40に相当する。ま
たレンズマイコン11とレンズROM12が図1のレン
ズデータ出力部42に相当し、EEPROM23が図1
の個別データ記憶部44に相当する。またボディマイコ
ン21とボディROM22が図1の測光演算部43およ
び測光演算部45に相当する。レンズマイコン11とボ
ディマイコン21はコネクタ8を介してお互いに情報を
やりとりする。(測光光学系の構成)図3は測光光学系
40、測光素子6の具体的構成を示した構成図である。
測光素子6と測光レンズ5は、撮影レンズ1や接眼レン
ズ7の光軸からはずれた位置に置かれている。ここでは
もっとも一般的な例として、接眼レンズ7の上方に測光
レンズ5と測光素子6が置かれているとして説明する。
測光光学系の光軸13(測光レンズ5の光軸)は撮影レ
ンズ1の光軸14とスクリーン3上で所定角度(以後測
光光学系のにらみ角と呼ぶ)をなして交わるように設計
されている。従って測光素子6はスクリーン3を斜めか
らにらむように見ていることになる。上記所定角度(に
らみ角)は測光光学系の設計仕様として定められた値に
設定されている。被写体からの光は撮影レンズ1を通
り、クイックリターンミラー2でファインダ側に反射さ
れ、スクリーン3の裏面に設けられたフレネルレンズか
らなるコンデンサレンズ9を通過した後、フィルム面と
等価な位置に置かれたスクリーン3に一旦結像する。ス
クリーン3を通過し、拡散された光束の一部は、ペンタ
プリズム4で折り曲げられ、接眼レンズ7を通して、撮
影者の眼に入る。またスクリーン3を通過、拡散された
光束の一部は測光レンズ5で集光され、測光素子6上に
再結像する。図4は測光素子6の受光部を示した図であ
る。測光素子6の受光部はSPD(シリコンフォトダイ
オード)がいくつかに分割(図4では5分割)されてお
り、被写界を分割してそれぞれの領域を測光できるよう
になっている。すなわち光学的には測光素子6の受光部
の分割形状が測光レンズ5によりスクリーン3上の画面
に重畳される構成になっており、画面上を複数の分割測
光領域に分割して測光することが可能になるわけであ
る。スクリーン3で拡散された光束は、測光レンズ5で
集光され測光素子6上にスクリーン3で一旦結像した像
を再度結像させる。測光素子6上の分割測光領域におい
て、この像の照度に応じた光電流がSPDに生じ、この
電流を対数圧縮、増幅などをおこない、ボディマイコン
21内のA/DコンバータでA/D変換する。ボディマ
イコン21内ではこれにガンマ補正、レベル補正などの
演算をおこなうことで、測光素子6上の各分割測光領域
の照度に対応する測光データを得る。図5はスクリーン
3により拡散される光の拡散特性(拡散光の角度と拡散
光の相対的強度の関係)を示した図である。図5の実線
は、撮影レンズを装着した場合にスクリーン3により拡
散される光の拡散特性の一例を示したものである。装着
した撮影レンズ1の開放F値、射出瞳位置、分割測光領
域の位置に応じて、スクリーン3に入射する光の入射角
度特性が変化するため、それに応じてスクリーン3によ
り拡散される光の拡散特性も、開放F値、射出瞳位置、
分割測光領域の位置等によって変化する。測光素子6が
受光する光量は、スクリーン3に入射したすべての光が
色々な方向に拡散されたもののうち、測光レンズ5の方
向に拡散された成分の和となる。したがって、測光素子
6の受光する光量およびそれに応じた測光データは、同
一輝度の被写界をみたときでも、分割測光領域、スクリ
ーンの拡散度、撮影レンズの開放F値、射出瞳位置、測
光光学系のにらみ角などが複雑に関係して変化する。測
光データから被写界輝度を正確に算出するには、上記変
化を適切に考慮して輝度補正することが必要である。 (測光演算部の実施例)分割された測光領域毎に得られ
た測光データは、上述したように、撮影レンズ1の開放
F値、射出瞳位置、スクリーン3の拡散度、測光光学系
40のにらみ角、分割測光領域の位置などの要因の影響
をうけている。測光演算部43ではこれらの要因の影響
を除去した被写界輝度を算出する。測光演算部43を構
成するボディROM22には、レンズデータと測光デー
タ等から被写界輝度を算出するための予め導出された演
算式が記憶されており、ボディマイコン21はこの演算
式に基づき被写界輝度を算出する。測光演算部43によ
る被写界輝度の算出方法の一例を説明する。まずカメラ
ボディの機種毎に、量産品と同一な構成状態の測光光学
系と測光素子6を備えた基準カメラボディを用意する。
この基準カメラボディにおいて測光光学系の構成要素は
製造バラツキの中心的なものを用い、また各構成要素の
調整は調整公差の中心付近に調整されている。この基準
カメラボディの測光光学系の仕様が多少図面上の設計値
からずれていたとしても、この基準カメラボディの測光
光学系の仕様が設計仕様であると考えることができる。
即ちここで言う測光光学系の設計仕様とは、基準となる
被写体輝度を導出するために使用する測光光学系の仕様
であり、測光光学系の基準仕様ということもできる。次
に複数種類の撮影レンズをこの基準カメラボディに装着
し、既知の輝度の被写体(輝度箱など)に対して、測光
素子6の分割測光領域毎に測光データを取り、該測光デ
ータを所定の関係式に基づき被写界輝度に変換する。た
この時測光素子6への入射光光量は装着レンズの絞りの
大きさ(開放F値)により制限されるため、まず開放F
値に応じて被写界輝度を補正する。また測光素子6の受
光量は前述したようにスクリーン3により拡散される光
の拡散特性にも影響を受けるので、拡散特性に影響を与
える撮影レンズの開放F値、射出瞳距離などの光学特性
に応じて被写界輝度を補正する必要がある。以下のよう
にしてこの補正は行われる。まず算出した被写界輝度の
既知の輝度に対する誤差量を求める。次にこの誤差量と
装着した撮影レンズのレンズデータ(開放F値、射出瞳
位置、焦点距離など)との対応関係をニューロ手法等に
より解析し、任意のレンズデータに対して輝度誤差量を
算出する演算式を導出しておく。このようにして基準カ
メラボディに対して得られた輝度誤差量演算式を、カメ
ラボディ20内のボディマイコンのROM22にプログ
ラムとして記憶しておく。実際にカメラボディ20に交
換レンズ構体10が装着された場合には、まずボディマ
イコン21は、測光データとレンズマイコン11との通
信により得られた開放F値に基づき被写界輝度を算出す
る。次にレンズデータと上記輝度誤差量演算式を用いて
輝度誤差量を算出し、その誤差量により被写界輝度を補
正する。以上が測光データに基づく被写界輝度の算出の
一例であり、図1の測光演算部43で行われる処理であ
る。 (測光補正演算部の実施例)以上のような処理を行なう
ことにより、測光素子6が出力する測光データから被写
界輝度を算出するのであるが、この被写界輝度は個々の
カメラボディが基準カメラボディと全く同じ構成である
という前提のもとに算出される被写界輝度である。実際
には個々のカメラボディの測光光学系には製造誤差や調
整誤差による個体差が生じている。例えば、クイックリ
ターンミラー2の角度の調整誤差、スクリーン3の拡散
度やコンデンサレンズ9の焦点距離の製造バラツキ、ペ
ンタプリズムの頂角の製造バラツキ、測光レンズ5の焦
点距離の誤差、スクリーン3に対する測光光学系のにら
み角の調整誤差、測光素子6の位置調整誤差等である。
このようにカメラボディ毎に測光光学系の構成状態が基
準カメラボディの測光光学系の構成状態(設計仕様)か
らずれていると、上記前提のもとに図1の測光演算部4
3で算出した被写界輝度と実際の被写界輝度との間に誤
差が発生してしまう。ここで測光光学系の設計仕様と
は、具体的には測光光学系のにらみ角の設計値、測光光
学系を構成する部品の基準寸法、測光光学系を構成する
部材の仕様(スクリーンの拡散度、測光光学系の透過
率)等、測光光学系の基準となる特性を表す仕様であ
る。被写界輝度の誤差発生メカニズムについて、被写界
輝度に与える影響度が大きい測光光学系のにらみ角の要
因を例に取って説明する。図3において測光レンズ5の
光軸13と撮影レンズ1の光軸14とのなす角度(にら
み角)をαとする。光軸14は測光光学系40が設計仕
様通り(設計値あるいは調整誤差の中心値)の場合の光
軸位置を示している。次に撮影レンズ1の光軸14が角
度θずれ、光軸14‘になったと仮定する。撮影レンズ
1の光軸14’と測光レンズ5の光軸13とのなす角度
はαからθだけ変化する。このにらみ角のずれθはペン
タプリズム4の形状の製造ばらつき、クイックリターン
ミラー2の傾きの調整誤差、測光レンズ5および測光素
子6の位置調整誤差、カメラボディ部品の寸法のばらつ
きなどによって生じる。測光レンズで集光される光の量
はにらみ角度αに依存するので、これがθ変化すると前
述したように測光レンズ5の方向に拡散する光の量が変
化する。スクリーン3による拡散光の拡散特性を図5の
実線に示すようなものとした場合、角度αと角度α+θ
における光の拡散量の変化は急激であり、結果として測
光光学系のにらみ角のずれが測光素子6の受光量ひいて
は算出される被写界輝度に大きな影響を与えることにな
る。例えばスクリーン3の拡散度が高くかつ開放F値が
明るい場合には、総合的にスクリーン3から拡散する光
の拡散特性は、図5の破線に示すような比較的広い拡散
特性になり、にらみ角のずれに対する光の拡散量の変化
は緩やかである。しかしながら、最近はファインダを明
るくするため、スクリーン3の拡散度を低く設定する傾
向にあり、このように拡散度の低いスクリーンを開放F
値の大きい暗いレンズと組み合わせた場合には、スクリ
ーン3から拡散する光の拡散特性は急峻な特性となる。
従って測光光学系のにらみ角のずれに対する光の拡散量
の変化は急激となり、結果的に算出される被写界輝度の
個体差が無視できない量となってしまうことになる。図
3ではスクリーン3の中央の領域について示したが、周
辺の領域においても同様に拡散する光の量が変化する。
また拡散する光の変化量は領域毎に異なる。測光補正演
算部45では測光演算部43により算出された被写界輝
度に対し、上述した測光光学系の個体差による輝度算出
誤差をカメラ個別に補正を行なう。本発明ではこの個体
毎の輝度補正量を算出する演算式を、予めカメラボディ
20内のボディROM22に記憶させる。また測光光学
系40の設計仕様からの偏差量を、この偏差量に対応す
る個別データとして書き換え可能なEEPROM23な
どの記憶装置に記憶させるようにし、カメラボディ20
の組み立て調整時にカメラ個別に書き換える。輝度補正
量を算出する演算式は以下の特性を備える。 分割測光領域に応じて輝度補正量の変化度合いを変え
る。これは分割測光領域に位置に応じて拡散光の拡散特
性が異なるからである。 1/Poが大きくなると補正量は大きくなる。(Po
は撮影レンズの射出瞳距離) したがってPoが小さく
なると補正量は大きくなる。これは射出瞳距離が短くな
るほど、スクリーン周辺部へ入射する光の入射角度がき
つくなり、拡散特性の裾野部分の光を測光に使用するこ
とになるからである。 撮影レンズの開放F値が大きくなる(暗くなる)と補
正量は大きくなる。これは開放F値が暗くなるほど、拡
散光の拡散特性が急峻になるからである。これらの、
、の特性は、カメラボディ毎の測光素子の受光量の
変化が、測光レンズ5の光軸13と撮影レンズ1の光軸
14とのなす角度(にらみ角)のずれによって主に生じ
ると仮定することで導かれる。 上記の特徴を持たせた演算式の例として以下のような演
算が考えられる。
Embodiments of the present invention will now be described in further detail with reference to the drawings. (Configuration of Photometric Device) FIG. 1 is a block diagram showing an embodiment of a photometric device for a camera according to the present invention. A camera to which the photometric device of this embodiment is applied includes a photometric optical system 40.
, A photometry element 6, a photometry calculation unit 43, a lens data output unit 42, an individual data storage unit 44, a photometry correction calculation unit 45, and the like. The photometric optical system 40 is an optical system arranged between the photometric element 6 and the taking lens 1. The photometric element 6 is an element having a plurality of divided photometric areas and outputting photometric data according to the amount of light received in each divided photometric area.
The lens data output unit 42 outputs lens data representing the optical characteristics of the taking lens. The individual data storage unit 44 stores data relating to the deviation amount from the design specification of the photometric optical system 40 for each camera described later. The photometric calculation unit 43 is a unit that calculates the field brightness from the photometric data output by the photometric element 6 and the lens data output by the lens data output unit 42. The photometric correction calculation unit 45 uses the individual data input from the individual data storage unit 44 and the lens data output by the lens data output unit 42 to generate a luminance correction value for individually correcting the field luminance for each camera body. This is a part that calculates and corrects the field luminance calculated by the photometry calculation unit 43 based on the luminance correction value. On the basis of the field luminance thus obtained, the camera determines an appropriate exposure value as is well known, and further determines a shutter value and an aperture value to control the photographing operation. FIG. 2 is a diagram showing a basic configuration when the present invention is applied to a photometric device of a single-lens reflex camera. An interchangeable lens structure 10 is mounted on a camera body 20. The interchangeable lens structure 10 includes a photographing lens 1, a lens microcomputer 11, and a lens ROM 12. The camera body 20 includes a quick return mirror 2, a condenser lens 9, A screen 3, a pentaprism 4, a photometric lens 5, a photometric element 6, an eyepiece 7, a body microcomputer 21, a body ROM 22, and an EEPROM 23 are provided. Quick return mirror 2, condenser lens 9, screen 3, pentaprism 4, photometric lens 5 disposed from the taking lens 1 to the photometric element 6
And the like correspond to the photometric optical system 40 in FIG. The lens microcomputer 11 and the lens ROM 12 correspond to the lens data output unit 42 in FIG.
Corresponds to the individual data storage unit 44. Further, the body microcomputer 21 and the body ROM 22 correspond to the photometry calculation unit 43 and the photometry calculation unit 45 in FIG. The lens microcomputer 11 and the body microcomputer 21 exchange information with each other via the connector 8. (Configuration of Photometric Optical System) FIG. 3 is a configuration diagram showing a specific configuration of the photometric optical system 40 and the photometric element 6.
The photometric element 6 and the photometric lens 5 are located at positions off the optical axis of the taking lens 1 and the eyepiece 7. Here, as the most general example, the description will be made on the assumption that the photometric lens 5 and the photometric element 6 are placed above the eyepiece 7.
The optical axis 13 of the photometric optical system (the optical axis of the photometric lens 5) is designed to intersect with the optical axis 14 of the photographing lens 1 on the screen 3 at a predetermined angle (hereinafter referred to as the glare angle of the photometric optical system). I have. Therefore, the photometric element 6 looks at the screen 3 obliquely. The predetermined angle (glare angle) is set to a value determined as a design specification of the photometric optical system. Light from the subject passes through the taking lens 1, is reflected by the quick return mirror 2 toward the finder side, passes through a condenser lens 9 formed of a Fresnel lens provided on the back surface of the screen 3, and is then placed at a position equivalent to the film surface. An image is formed on the screen 3 once. A part of the light beam that has passed through the screen 3 and diffused is bent by the pentaprism 4 and enters the eye of the photographer through the eyepiece 7. A part of the light beam that has passed and diffused through the screen 3 is condensed by the photometric lens 5 and re-images on the photometric element 6. FIG. 4 is a diagram showing a light receiving section of the photometric element 6. The light receiving portion of the photometric element 6 is divided into several SPDs (silicon photodiodes) (in FIG. 4, divided into five), so that the object field can be divided and each area can be photometrically measured. That is, optically, the divided shape of the light receiving portion of the photometric element 6 is configured to be superimposed on the screen on the screen 3 by the photometric lens 5, and the screen can be divided into a plurality of divided photometric areas to perform photometry. It is possible. The light beam diffused by the screen 3 is condensed by the photometric lens 5 and forms an image once formed by the screen 3 on the photometric element 6 again. In the divided photometry area on the photometry element 6, a photocurrent corresponding to the illuminance of the image is generated in the SPD, the current is logarithmically compressed, amplified, and the like, and A / D converted by the A / D converter in the body microcomputer 21. . By performing calculations such as gamma correction and level correction in the body microcomputer 21, photometric data corresponding to the illuminance of each divided photometric area on the photometric element 6 is obtained. FIG. 5 is a diagram showing the diffusion characteristics of light diffused by the screen 3 (the relationship between the angle of the diffused light and the relative intensity of the diffused light). The solid line in FIG. 5 shows an example of the diffusion characteristics of light diffused by the screen 3 when the photographing lens is attached. The incident angle characteristic of the light incident on the screen 3 changes according to the open F value of the mounted photographing lens 1, the exit pupil position, and the position of the divided photometry area, and accordingly, the diffusion of the light diffused by the screen 3. The characteristics are also the open F value, the exit pupil position,
It changes depending on the position of the divided photometry area and the like. The amount of light received by the photometric element 6 is the sum of components diffused in the direction of the photometric lens 5 among all the light incident on the screen 3 diffused in various directions. Therefore, the amount of light received by the photometric element 6 and the photometric data corresponding to the photometric data include the divided photometric area, the degree of diffusion of the screen, the open F value of the taking lens, the exit pupil position, The glare angle of the system changes in a complicated manner. In order to accurately calculate the field luminance from the photometric data, it is necessary to correct the luminance in consideration of the above change. (Embodiment of the photometric calculation unit) As described above, the photometric data obtained for each of the divided photometric areas includes the open F value of the photographing lens 1, the exit pupil position, the degree of diffusion of the screen 3, and the It is affected by factors such as the glare angle and the position of the divided photometry area. The photometric calculation unit 43 calculates the field luminance from which the influence of these factors has been removed. The body ROM 22 that constitutes the photometry calculation unit 43 stores a calculation formula derived in advance for calculating the field luminance from the lens data and the photometry data, and the body microcomputer 21 performs processing based on the calculation formula. Calculate the field brightness. An example of a method of calculating the field luminance by the photometric calculation unit 43 will be described. First, a reference camera body including a photometric optical system and a photometric element 6 having the same configuration state as that of a mass-produced product is prepared for each camera body model.
In this reference camera body, the components of the photometric optical system use those that are central to manufacturing variations, and the adjustment of each component is adjusted to the vicinity of the center of the adjustment tolerance. Even if the specifications of the photometric optical system of the reference camera body slightly deviate from the design values on the drawing, the specifications of the photometric optical system of the reference camera body can be considered to be the design specifications.
That is, the design specification of the photometric optical system referred to here is the specification of the photometric optical system used to derive the reference subject luminance, and can also be referred to as the reference specification of the photometric optical system. Next, a plurality of types of photographing lenses are mounted on the reference camera body, photometric data is taken for each of the divided photometric areas of the photometric element 6 for a subject having a known luminance (such as a luminance box), and the photometric data is stored in a predetermined manner. The luminance is converted into the field luminance based on the relational expression. At this time, the amount of light incident on the photometric element 6 is limited by the size of the aperture of the attached lens (open F value).
The field brightness is corrected according to the value. The amount of light received by the photometric element 6 is also affected by the diffusion characteristics of the light diffused by the screen 3 as described above, so that the optical characteristics such as the open F value of the taking lens and the exit pupil distance that affect the diffusion characteristics are affected. It is necessary to correct the field luminance accordingly. This correction is performed as follows. First, an error amount of the calculated field luminance with respect to the known luminance is obtained. Next, the correspondence between the error amount and the lens data of the mounted photographing lens (open F value, exit pupil position, focal length, etc.) is analyzed by a neuro-technique or the like, and the luminance error amount is calculated for arbitrary lens data. An operation expression to be performed is derived. The luminance error amount calculation formula obtained for the reference camera body in this way is stored as a program in the ROM 22 of the body microcomputer in the camera body 20. When the interchangeable lens structure 10 is actually mounted on the camera body 20, the body microcomputer 21 first calculates the field brightness based on the photometric data and the open F value obtained by communication with the lens microcomputer 11. Next, a luminance error amount is calculated using the lens data and the above-described luminance error amount calculation expression, and the field luminance is corrected based on the error amount. The above is an example of the calculation of the field luminance based on the photometric data, which is the process performed by the photometric calculation unit 43 in FIG. (Embodiment of Photometric Correction Computing Unit) By performing the above-described processing, the field luminance is calculated from the photometric data output from the photometric element 6. The field luminance is determined by the individual camera bodies. This is the field luminance calculated on the assumption that the configuration is exactly the same as that of the reference camera body. Actually, individual differences due to manufacturing errors and adjustment errors occur in the photometric optical system of each camera body. For example, errors in adjusting the angle of the quick return mirror 2, manufacturing variations in the diffusivity of the screen 3 and the focal length of the condenser lens 9, manufacturing variations in the apex angle of the pentaprism, errors in the focal length of the photometric lens 5, and photometry for the screen 3. The error includes a glare angle adjustment error of the optical system, a position adjustment error of the photometric element 6, and the like.
As described above, if the configuration state of the photometric optical system of each camera body deviates from the configuration state (design specification) of the photometric optical system of the reference camera body, the photometric calculation unit 4 of FIG.
An error occurs between the field luminance calculated in step 3 and the actual field luminance. Here, the design specifications of the photometric optical system are, specifically, the design value of the glancing angle of the photometric optical system, the reference dimensions of the components constituting the photometric optical system, the specifications of the members constituting the photometric optical system (the diffusion degree of the screen). , The transmittance of the photometric optical system, etc.). An error generation mechanism of the field luminance will be described by taking as an example a factor of the glare angle of the photometric optical system which has a large influence on the field luminance. In FIG. 3, the angle (glare angle) between the optical axis 13 of the photometric lens 5 and the optical axis 14 of the photographing lens 1 is represented by α. The optical axis 14 indicates the optical axis position when the photometric optical system 40 is in accordance with the design specification (design value or center value of adjustment error). Next, it is assumed that the optical axis 14 of the photographing lens 1 is shifted by the angle θ and becomes the optical axis 14 ′. The angle between the optical axis 14 'of the taking lens 1 and the optical axis 13 of the photometric lens 5 changes from α by θ. Is caused by manufacturing variations in the shape of the pentaprism 4, errors in adjusting the inclination of the quick return mirror 2, errors in adjusting the positions of the photometric lens 5 and the photometric element 6, and variations in dimensions of camera body parts. Since the amount of light condensed by the photometric lens depends on the glancing angle α, if this changes by θ, the amount of light diffused in the direction of the photometric lens 5 changes as described above. When the diffusion characteristic of the diffused light by the screen 3 is as shown by the solid line in FIG. 5, the angle α and the angle α + θ
The change in the amount of diffusion of light is sharp, and as a result, the shift in the glancing angle of the photometric optical system has a great effect on the amount of light received by the photometric element 6 and thus on the calculated field luminance. For example, when the diffusion degree of the screen 3 is high and the open F value is bright, the diffusion characteristic of the light diffused from the screen 3 comprehensively becomes a relatively wide diffusion characteristic as shown by a broken line in FIG. The change in the amount of light diffusion with respect to the deviation is gradual. However, recently, in order to brighten the viewfinder, the diffusion degree of the screen 3 has been set to be low.
When combined with a dark lens having a large value, the diffusion characteristic of light diffused from the screen 3 becomes steep.
Therefore, the change in the amount of light diffusion with respect to the shift of the glare angle of the photometric optical system becomes sharp, and the individual difference of the calculated field luminance becomes a nonnegligible amount. Although FIG. 3 shows the central region of the screen 3, the amount of light diffused similarly changes in the peripheral region.
Also, the amount of change in the diffused light differs for each region. The photometry correction calculation unit 45 corrects the brightness calculation error due to the individual difference of the photometry optical system for each camera with respect to the field brightness calculated by the photometry calculation unit 43. In the present invention, the arithmetic expression for calculating the luminance correction amount for each individual is stored in the body ROM 22 in the camera body 20 in advance. The deviation from the design specification of the photometric optical system 40 is stored in a rewritable storage device such as the EEPROM 23 as individual data corresponding to the deviation.
Rewrite individually for each camera when assembling and adjusting. The arithmetic expression for calculating the luminance correction amount has the following characteristics. The degree of change of the luminance correction amount is changed according to the divided photometry area. This is because the diffusion characteristics of the diffused light differ depending on the position in the divided photometry area. As 1 / Po increases, the correction amount increases. (Po
Is the exit pupil distance of the photographing lens. Therefore, as Po decreases, the correction amount increases. This is because, as the exit pupil distance becomes shorter, the angle of incidence of light entering the peripheral portion of the screen becomes steeper, and light at the foot of the diffusion characteristic is used for photometry. As the open F-number of the taking lens increases (darkens), the correction amount increases. This is because the darker the open F value, the steeper the diffusion characteristic of the diffused light. these,
Are assumed that the change in the amount of light received by the photometric element for each camera body is mainly caused by a shift in the angle (glare angle) between the optical axis 13 of the photometric lens 5 and the optical axis 14 of the photographic lens 1. Guided by that. The following calculation can be considered as an example of a calculation expression having the above characteristics.

【0006】[0006]

【数1】 (Equation 1)

【0007】ここで S[i]:各分割測光領域における輝度補正量 θ:EEPROMなど書き換え可能な記憶装置に記録さ
れる調整値 K[i]:分割測光領域ごと輝度補正の効き程度を規定す
る係数 Po:撮影レンズの射出瞳の距離 AV:撮影レンズの開放F値の底√2の対数 A,B,C,D : 正の定数 i:分割測光領域の領域を示す番号。この例では1〜
5。 θが上述の角度のずれ量を示す値で、書き換え可能な記
憶装置に記録され、カメラボディ個体毎の特性を代表す
る個別データである。K[i]は分割測光領域毎にこの補
正の必要な度合いが異なるので、この領域毎に異なるこ
の係数を掛けている。接眼レンズ7の上方に測光レンズ
5と測光素子6を配置しているような場合は、撮影画面
の下側に対応する分割測光領域のほうがカメラボディ毎
の拡散光量の変化が大きい。そのため、K[i]の値も撮
影画面下側に対応する分割測光領域が大きな値となる。
撮影画面上側に対応する分割測光領域に対してはK[i]
は小さな値となるものもあるので、状況に応じてこの補
正を省略しても良い。Po、AVは通信されたレンズデ
ータから算出される。A、B、C、Dの値は各種レンズ
を取り付けた上で、実験によりにらみ角度と測光演算部
によって算出される被写界輝度の誤差量との関係を解析
し、数式1により演算される誤差量との差が最小になる
ように定めておく。にらみ角のずれ量θの値は、カメラ
の組み立て調整時にコリメータ等の測定により求め、カ
メラボディ毎に異なる値を調整値としてEEPROMな
どに書きこむ。あるいは所定の基準レンズと所定の被写
界輝度のもとで、にらみ角のずれ量θと算出される被写
界輝度の関係を表す対応テーブルを実験的に求めてお
き、所定被写界輝度に対して該基準レンズと個別カメラ
ボディを組み合わせた時の算出される被写界輝度を求
め、該被写界輝度から前記対応テーブルを逆引きしてに
らみ角のずれ量θを求めるようにしてもよい。この時使
用するレンズは数が多いほど、統計的に正しいθの値を
得ることが出来るが、調整の手間が増えるので、両者の
兼ね合いをみてレンズの数を決めればよい。数式1で求
めた輝度補正量を用いて、最終的な被写界輝度は数式2
で求められる。
Here, S [i]: luminance correction amount in each divided photometry area θ: adjustment value recorded in a rewritable storage device such as an EEPROM K [i]: defines the degree of effectiveness of luminance correction for each divided photometry area Coefficient Po: distance of exit pupil of photographing lens AV: logarithm of base 開放 2 of open F value of photographing lens A, B, C, D: positive constant i: number indicating area of divided photometric area. In this example,
5. θ is a value indicating the above-mentioned angle shift amount, which is recorded in a rewritable storage device and is individual data representing characteristics of each camera body individual. Since K [i] requires a different degree of this correction for each divided photometry area, the coefficient is different for each area. When the photometric lens 5 and the photometric element 6 are arranged above the eyepiece 7, the change in the amount of diffused light for each camera body is larger in the divided photometric area corresponding to the lower side of the shooting screen. Therefore, the value of K [i] also becomes large in the divided photometry area corresponding to the lower side of the shooting screen.
K [i] for the divided photometry area corresponding to the upper side of the shooting screen
May be small, this correction may be omitted according to the situation. Po and AV are calculated from the transmitted lens data. The values of A, B, C, and D are calculated by Equation 1 after attaching various lenses, analyzing the relationship between the glancing angle and the error amount of the field luminance calculated by the photometric calculation unit through experiments. It is determined that the difference from the error amount is minimized. The value of the glancing angle shift amount θ is obtained by measurement with a collimator or the like at the time of assembling and adjusting the camera, and a value different for each camera body is written as an adjustment value in an EEPROM or the like. Alternatively, based on a predetermined reference lens and a predetermined field luminance, a correspondence table representing the relationship between the shift amount of the glare angle θ and the calculated field luminance is experimentally obtained, and the predetermined field luminance is determined. In order to obtain the calculated field luminance when the reference lens and the individual camera body are combined, the correspondence table is reversely looked up from the field luminance to obtain the shift amount θ of the glare angle. Is also good. At this time, the larger the number of lenses used, the more statistically correct the value of θ can be obtained. However, since the adjustment work is increased, the number of lenses may be determined in consideration of the balance between the two. Using the luminance correction amount obtained by Expression 1, the final field luminance is calculated by Expression 2
Is required.

【0008】[0008]

【数2】 (Equation 2)

【0009】ここで Bv[i]:各分割測光領域の被写界輝度 G[i]:測光演算部43で求めた被写界輝度 S[i]:輝度補正量 i:分割測光領域の領域を表す番号。この例では1〜
5。 図6は、本発明によるカメラの測光装置の測光演算ルー
チンを示すフローチャートである。本実施形態の測光演
算ルーチンは、前述した測光演算部43と測光補正演算
部45の演算を行うものであり、ボディマイコン21で
行われる。S101において、ボディマイコン21は、
測光素子6から、測光データを読み込む。S102にお
いて、ボディマイコン21は、交換レンズ構体10に内
蔵されたレンズマイコン11からレンズデータを読み込
む。この中には、この後の演算に使用する撮影レンズの
F値、射出瞳の大きさ/距離、焦点距離などのデータも
含まれている。S103において、ボディマイコン21
は、測光データとレンズデータを用いてニューロ演算な
どにより測光分割領域毎の被写界輝度G[i]を算出す
る。S104において、ボディマイコン21は、EEP
ROM23から測光光学系F40のにらみ角のずれ量θ
に対応した個別データを読み込む。S105において、
ボディマイコン21は、個別データとレンズデータから
輝度補正量S[i]を算出し、被写界輝度G[i]に加えて
補正し、最終的な被写界輝度Bv[i]を得る。 (変形形態)本発明は以上説明した実施形態に限定され
ることなく、種々の変形や変更が可能である。カメラ個
体毎の特性を代表する個別データは、測光光学系40の
にらみ角度のずれ量θに限定されるものでなく、例えば
スクリーン3面上における撮影光軸14と測光光軸13
との位置的なずれ量でもいいし、撮影画面に対する分割
測光領域の位置的なずれ量、スクリーン3をプラスチッ
ク成形品で構成した場合の金型キャビティ別の拡散度の
設計値からのずれ量などのデータでもよい。また測光光
学系40のにらみ角度のずれ量θに関連する個別データ
としては、例えばペンタプリズム4の寸法誤差、頂角の
誤差、クイックリーターンミラー2の角度調整誤差等を
直接測定して記憶させてもよい。また個別データは1種
類に限定されるものでなく、測光光学系のにらみ角度の
ずれ量と撮影画面に対する分割測光領域の位置のずれ量
などの複数種類のデータを同時に使用してもよい。また
輝度補正演算部45による輝度補正量の演算式は数式1
に限定されることなく、測光光学系40の設計仕様から
の偏差量と輝度補正量との間の特性関係を表す演算式で
あればよく、理論的または実験的に求めることができ
る。また本発明によるカメラの測光装置は測光光学系4
0のカメラ個別バラツキを補正するものであるから、交
換レンズ方式のカメラに限らず、撮影光学系1を介して
測光を行う方式の測光装置であれば撮影レンズ一体型の
カメラにも適用が可能である。
Here, Bv [i]: field luminance of each divided photometry area G [i]: field luminance obtained by the photometry calculation unit 43 S [i]: luminance correction amount i: area of the divided photometry area A number representing. In this example,
5. FIG. 6 is a flowchart showing a photometric calculation routine of the photometric device for a camera according to the present invention. The photometric calculation routine according to the present embodiment performs the calculations of the photometric calculation unit 43 and the photometry correction calculation unit 45, and is performed by the body microcomputer 21. In S101, the body microcomputer 21
The photometric data is read from the photometric element 6. In S102, the body microcomputer 21 reads the lens data from the lens microcomputer 11 built in the interchangeable lens structure 10. This also includes data such as the F-number of the photographing lens, the size / distance of the exit pupil, and the focal length, which are used in subsequent calculations. In S103, the body microcomputer 21
Calculates the field luminance G [i] for each photometric divided region by neuro-operation using the photometric data and the lens data. In step S104, the body microcomputer 21
The deviation amount θ of the glare angle of the photometric optical system F40 from the ROM 23
Read the individual data corresponding to. In S105,
The body microcomputer 21 calculates the luminance correction amount S [i] from the individual data and the lens data, corrects it in addition to the field luminance G [i], and obtains the final field luminance Bv [i]. (Modifications) The present invention is not limited to the embodiments described above, and various modifications and changes are possible. The individual data representing the characteristics of each camera is not limited to the amount of deviation θ of the glancing angle of the photometric optical system 40. For example, the photographing optical axis 14 and the photometric optical axis 13 on the screen 3
And the positional deviation of the divided photometry area with respect to the photographing screen, and the deviation from the design value of the diffusivity for each mold cavity when the screen 3 is made of a plastic molded product. Data may be used. As individual data relating to the amount of deviation θ of the glare angle of the photometric optical system 40, for example, a dimensional error of the pentaprism 4, an apex angle error, an angle adjustment error of the quick return mirror 2, and the like are directly measured and stored. You may. Further, the individual data is not limited to one type, and a plurality of types of data such as the amount of deviation of the glare angle of the photometric optical system and the amount of deviation of the position of the divided photometric region with respect to the shooting screen may be used simultaneously. The calculation formula of the brightness correction amount by the brightness correction calculation unit 45 is as follows:
However, the present invention is not limited to this, and may be an arithmetic expression representing the characteristic relationship between the deviation from the design specification of the photometric optical system 40 and the luminance correction amount, and can be obtained theoretically or experimentally. The photometric device of the camera according to the present invention is a photometric optical system 4.
Since the correction of individual camera variations of 0 is performed, the present invention can be applied not only to a camera of an interchangeable lens system but also to a camera with a built-in photographic lens as long as it is a photometric device that performs photometry via the photographic optical system 1. It is.

【0010】[0010]

【発明の効果】以上説明したように、本発明によれば、
カメラの測光光学系の設計仕様からのカメラ個別の偏差
量を測定し、予め測光光学系の特性や誤差発生メカニズ
ムを考慮して定めた偏差量と輝度誤差量との関係から輝
度補正量を求める構成としたため、カメラ毎に製造誤差
を考慮して被写界輝度を個別補正することができ、従来
に比較してよりきめ細かな補正が可能になり、高精度な
被写界輝度の算出が可能になる。
As described above, according to the present invention,
Measure the deviation amount of each camera from the design specifications of the photometric optical system of the camera, and calculate the luminance correction amount from the relationship between the deviation amount and the luminance error amount which are determined in advance in consideration of the characteristics of the photometric optical system and the error generation mechanism. With this configuration, the field brightness can be individually corrected in consideration of manufacturing errors for each camera, enabling more fine-grained correction compared to the past, enabling highly accurate calculation of the field brightness become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるカメラの測光装置の実施形態を示
したブロック図である。
FIG. 1 is a block diagram showing an embodiment of a photometric device for a camera according to the present invention.

【図2】カメラの測光装置の概略を示す構成図である。FIG. 2 is a configuration diagram schematically showing a photometric device of the camera.

【図3】測光光学系の基本構成を示す図である。FIG. 3 is a diagram showing a basic configuration of a photometric optical system.

【図4】測光素子の分割形状を示す図である。FIG. 4 is a diagram showing a divided shape of a photometric element.

【図5】スクリーンにより拡散された光の拡散特性を示
す図である。
FIG. 5 is a diagram showing diffusion characteristics of light diffused by a screen.

【図6】本発明によるカメラの測光装置の実施形態の測
光演算ルーチンを示すフローチャートである。
FIG. 6 is a flowchart illustrating a photometry calculation routine of the embodiment of the camera photometry device according to the present invention.

【符号の説明】[Explanation of symbols]

1 撮影レンズ 5 測光レンズ 6 測光素子 11 レンズマイコン 12 レンズROM 21 ボディマイコン 22 ボディROM 23 EEPROM 40 測光光学系 42 レンズデータ出力部 43 測光演算部 44 個別データ記憶部 45 測光補正演算部 Reference Signs List 1 shooting lens 5 photometric lens 6 photometric element 11 lens microcomputer 12 lens ROM 21 body microcomputer 22 body ROM 23 EEPROM 40 photometric optical system 42 lens data output unit 43 photometric calculation unit 44 individual data storage unit 45 photometric correction calculation unit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】撮影レンズを透過した被写界からの光を測
光して被写界輝度を算出するカメラの測光装置におい
て、受光した光量に応じて測光データを出力する測光素
子と、前記撮影レンズを透過した光を前記測光素子に導
く測光光学系と、前記撮影レンズの光学特性を表すレン
ズデータを出力するレンズデータ出力部と、前記測光デ
ータと前記レンズデータに基づき、被写界輝度を算出す
る測光演算部と、前記測光光学系の設計仕様からの偏差
に関する情報を、カメラ毎に個別データとして記憶する
書き換え可能な個別データ記憶部と、前記個別データと
前記レンズデータに基づき、前記測光演算部で演算され
た被写界輝度にカメラ個別の輝度補正を加える測光補正
演算部と、を備えたことを特徴とするカメラの測光装
置。
1. A photometric device for a camera for measuring the brightness of an object scene by measuring light from the scene transmitted through a photographing lens, wherein a photometric element for outputting photometric data according to the amount of received light; A photometric optical system that guides light transmitted through the lens to the photometric element, a lens data output unit that outputs lens data representing the optical characteristics of the photographing lens, and a field brightness based on the photometric data and the lens data. A photometric calculation unit for calculating; a rewritable individual data storage unit for storing information relating to deviations from the design specifications of the photometric optical system as individual data for each camera; and the photometry based on the individual data and the lens data. A photometric correction device for a camera, comprising: a photometric correction operation unit that applies a camera-specific luminance correction to the field luminance calculated by the arithmetic unit.
【請求項2】請求項1に記載されたカメラの測光装置に
おいて、前記測光補正演算部は、前記測光光学系の設計
仕様からの偏差量とそれに帰因する被写界輝度の誤差量
との間の関係に基づいて輝度補正量を算出することを特
徴とするカメラの測光装置。
2. A photometric device for a camera according to claim 1, wherein said photometric correction calculation unit calculates a difference between a deviation from a design specification of said photometric optical system and an error of subject field luminance resulting from the deviation. A photometric device for a camera, which calculates a luminance correction amount based on a relationship between the two.
【請求項3】請求項1に記載されたカメラの測光装置に
おいて、前記測光光学系の光軸は前記撮影レンズの光軸
と所定角度なすように設定されており、前記個別データ
は前記所定角度からのカメラ個別の角度偏差に関するデ
ータであることを特徴とするカメラの測光装置。
3. A photometric device for a camera according to claim 1, wherein an optical axis of said photometric optical system is set at a predetermined angle with an optical axis of said photographing lens, and said individual data is said predetermined angle. A photometric device for a camera, characterized in that the data is data on an angular deviation of each camera from the camera.
【請求項4】請求項1に記載されたカメラの測光装置に
おいて、前記レンズデータは撮影レンズの射出瞳の距離
に関するデータを含むとともに、前記測光補正演算部
は、前記撮影レンズの射出瞳の距離が小さくなるほど、
カメラ個別の輝度補正の絶対量を大きくする演算を行な
うことを特徴とするカメラの測光装置。
4. A photometric device for a camera according to claim 1, wherein said lens data includes data relating to a distance of an exit pupil of a photographic lens, and said photometric correction calculation section includes a distance of an exit pupil of said photographic lens. Is smaller,
A photometric device for a camera, which performs an operation to increase the absolute amount of luminance correction for each camera.
JP2000135445A 2000-05-09 2000-05-09 Camera photometric device Expired - Lifetime JP4524852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000135445A JP4524852B2 (en) 2000-05-09 2000-05-09 Camera photometric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000135445A JP4524852B2 (en) 2000-05-09 2000-05-09 Camera photometric device

Publications (2)

Publication Number Publication Date
JP2001318399A true JP2001318399A (en) 2001-11-16
JP4524852B2 JP4524852B2 (en) 2010-08-18

Family

ID=18643519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000135445A Expired - Lifetime JP4524852B2 (en) 2000-05-09 2000-05-09 Camera photometric device

Country Status (1)

Country Link
JP (1) JP4524852B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163862A (en) * 2005-12-14 2007-06-28 Nikon Corp Photometric device and camera
JP2011039293A (en) * 2009-08-11 2011-02-24 Nikon Corp Photometric device and imaging apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527712U (en) * 1991-09-13 1993-04-09 株式会社ニコン Data selectable board
JP2000056374A (en) * 1998-08-03 2000-02-25 Fuji Photo Film Co Ltd Camera

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100523A (en) * 1987-10-14 1989-04-18 Minolta Camera Co Ltd Photometer for lens interchangeable camera
JPH11249193A (en) * 1998-03-06 1999-09-17 Nikon Corp Photometry device for camera

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527712U (en) * 1991-09-13 1993-04-09 株式会社ニコン Data selectable board
JP2000056374A (en) * 1998-08-03 2000-02-25 Fuji Photo Film Co Ltd Camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007163862A (en) * 2005-12-14 2007-06-28 Nikon Corp Photometric device and camera
JP2011039293A (en) * 2009-08-11 2011-02-24 Nikon Corp Photometric device and imaging apparatus

Also Published As

Publication number Publication date
JP4524852B2 (en) 2010-08-18

Similar Documents

Publication Publication Date Title
US6275659B1 (en) Method and apparatus for controlling exposure of camera
US5012268A (en) Exposure control device for interchangeable lens camera
JP2006317595A (en) Optical apparatus and its control method
JP3829698B2 (en) Digital cameras and interchangeable lenses
JP2526933B2 (en) camera
JPH01285925A (en) Camera
JP4547739B2 (en) Flash control device
JP4524852B2 (en) Camera photometric device
JPH0876187A (en) Photometry device for camera
JP5763415B2 (en) Photometric device for interchangeable lens camera
JPH11249193A (en) Photometry device for camera
JP2915927B2 (en) Camera and its attachment lens
JP3217489B2 (en) Camera exposure calculation device
JP4547083B2 (en) Photometric device
JP3699524B2 (en) TTL exposure control device for interchangeable lens camera
JPH04215631A (en) Split photometric device for camera
JP2001228503A (en) Photometry device
JP4495331B2 (en) Photometric device
JP2663862B2 (en) Camera photometer
JP4514202B2 (en) Interchangeable lens, camera body and camera system
JP4489265B2 (en) Photometric device
JP3045808B2 (en) Exposure control device for single-lens reflex camera
JPH04323506A (en) Camera with built-in length measurement device
JPH10307317A (en) Focusing glass and camera
JPH11125848A (en) Automatic light control device for camera

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4524852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term