JP2001318300A - Catoptric system for optical antenna - Google Patents
Catoptric system for optical antennaInfo
- Publication number
- JP2001318300A JP2001318300A JP2000136062A JP2000136062A JP2001318300A JP 2001318300 A JP2001318300 A JP 2001318300A JP 2000136062 A JP2000136062 A JP 2000136062A JP 2000136062 A JP2000136062 A JP 2000136062A JP 2001318300 A JP2001318300 A JP 2001318300A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- adhesive
- lens barrel
- spider
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/181—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B17/00—Systems with reflecting surfaces, with or without refracting elements
- G02B17/02—Catoptric systems, e.g. image erecting and reversing system
- G02B17/06—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror
- G02B17/0605—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors
- G02B17/061—Catoptric systems, e.g. image erecting and reversing system using mirrors only, i.e. having only one curved mirror using two curved mirrors on-axis systems with at least one of the mirrors having a central aperture
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B23/00—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
- G02B23/02—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
- G02B23/06—Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Astronomy & Astrophysics (AREA)
- Lens Barrels (AREA)
- Lenses (AREA)
- Telescopes (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、特に高い結像性能
を必要とする人工衛星搭載用の望遠鏡光学系や宇宙空間
で光衛星間通信を行うための光アンテナ用反射光学系に
関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a telescope optical system mounted on an artificial satellite requiring particularly high imaging performance, and a reflection optical system for an optical antenna for performing optical inter-satellite communication in outer space. .
【0002】[0002]
【従来の技術】人工衛星に搭載することを目的とした望
遠鏡光学系では、小型軽量で高い結像性能が必要とされ
るため、多くの場合には反射光学系が採用されている。
また、宇宙空間で光衛星間通信を行うために必要な光ア
ンテナ用光学系でも、大口径にも拘わらず回折限界に近
い透過波面精度と小型軽量化が要求されるため、多くの
場合にはカセグレン型の反射光学系が採用されている。2. Description of the Related Art In a telescope optical system intended to be mounted on an artificial satellite, a small and light-weight and high imaging performance is required. Therefore, in many cases, a reflection optical system is employed.
In addition, even in optical systems for optical antennas required to perform optical inter-satellite communication in outer space, transmitted wavefront accuracy close to the diffraction limit and small size and light weight are required despite large diameter, so in many cases, A Cassegrain type reflection optical system is employed.
【0003】反射光学系は光学要素の位置ずれが結像性
能に影響を及ぼす敏感度が高いため、温度変化等による
フォーカス変動を補正するためのフォーカス調整機構が
必要となる場合が多い。しかしながら、このフォーカス
調整機構を設けることは構造を複雑とし、重量の増加に
もつながるため、省略することが可能であればその方が
好ましい。[0003] Since the reflection optical system has a high degree of sensitivity that the displacement of the optical element affects the imaging performance, a focus adjustment mechanism for correcting a focus variation due to a temperature change or the like is often required. However, the provision of the focus adjustment mechanism complicates the structure and leads to an increase in weight.
【0004】また、温度変化によるフォーカス変動等の
性能劣化を小さくするためには、熱膨張係数の小さい材
料を使用すればよいが、温度変化の大きい宇宙環境では
100度〔K〕に近い温度差が生ずる場合があり、鏡筒
やスパイダにインバやチタン合金等の熱膨張係数が小さ
い金属材料を使用した場合においても、許容以上の寸法
変化が避けられない。更に、打ち上げ時の強い振動環境
に晒される衛星搭載用光学系においては、金属材料は降
伏応力よりも小さい荷重しか加わらなくとも、μmレベ
ルの永久的な寸法変化が生じ、光学性能を劣化させるこ
とがある。In order to reduce performance deterioration such as focus change due to temperature change, a material having a small coefficient of thermal expansion may be used. However, in a space environment where a temperature change is large, a temperature difference close to 100 ° [K] is used. When a metal material having a small coefficient of thermal expansion, such as invar or a titanium alloy, is used for a lens barrel or a spider, a dimensional change exceeding an allowable range cannot be avoided. Furthermore, in optical systems for satellites that are exposed to a strong vibration environment during launch, even if a load smaller than the yield stress is applied to metallic materials, permanent dimensional changes on the order of μm will occur, degrading optical performance. There is.
【0005】この問題を解決するために、例えば特開平
7−239442号公報では、全ての構成要素を熱膨張
係数の小さい同一の脆性材料により構成するミラー光学
装置が開示されている。In order to solve this problem, for example, Japanese Patent Laid-Open No. 7-239442 discloses a mirror optical device in which all the constituent elements are made of the same brittle material having a small coefficient of thermal expansion.
【0006】[0006]
【発明が解決しようとする課題】しかしながら上述の特
開平7−239442号公報においては、非常に軽量に
も拘わらず大きな温度変化や強い振動に晒されても高い
光学性能を維持できる光学系を達成しているが、副鏡を
支持するための3本の支柱が独立しているため、光軸調
整や支柱の接合が非常に難しいという問題があり、生産
性が良くない。特に、ガラスのような脆性材料はボルト
やピンで直接に接合することは危険であるが、接着剤だ
けでは位置決めした状態を維持したまま支柱を接着硬化
させることは困難である。However, in the above-mentioned Japanese Patent Application Laid-Open No. Hei 7-239442, an optical system which can maintain high optical performance even when exposed to a large temperature change and strong vibration despite its extremely light weight is achieved. However, since the three columns for supporting the secondary mirror are independent, there is a problem that it is very difficult to adjust the optical axis and join the columns, resulting in poor productivity. In particular, it is dangerous to directly join a brittle material such as glass with bolts or pins, but it is difficult to bond and harden the column with the adhesive alone while maintaining the positioned state.
【0007】本発明の目的は、上述の問題点を解消し、
温度変化が大きくとも高精度な構造を維持できる光アン
テナ用反射光学系を提供することにある。An object of the present invention is to solve the above-mentioned problems,
An object of the present invention is to provide a reflection optical system for an optical antenna that can maintain a highly accurate structure even when a temperature change is large.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するため
の本発明に係る光アンテナ用反射光学系は、主鏡と、該
主鏡に対向する副鏡と、該副鏡を支持するためのスパイ
ダと、前記主鏡とスパイダの間に介在し前記主鏡に対す
る前記副鏡の相対位置を維持するための鏡筒とから成る
反射光学系において、前記主鏡、前記副鏡、前記スパイ
ダ、前記鏡筒を熱膨張係数が5×10-6〔/K〕以下の
脆性材料により構成し、前記主鏡と鏡筒、前記鏡筒とス
パイダ、前記スパイダと副鏡をそれぞれ平面部の接着に
より結合したことを特徴とする。According to the present invention, there is provided a reflection optical system for an optical antenna, comprising: a primary mirror; a secondary mirror facing the primary mirror; and a support mirror for supporting the secondary mirror. In a reflection optical system including a spider and a lens barrel interposed between the primary mirror and the spider for maintaining a relative position of the secondary mirror with respect to the primary mirror, the primary mirror, the secondary mirror, the spider, The lens barrel is made of a brittle material having a coefficient of thermal expansion of 5 × 10 −6 [/ K] or less, and the main mirror and the lens barrel, the lens barrel and the spider, and the spider and the sub-mirror are respectively bonded by bonding flat portions. It is characterized by having done.
【0009】[0009]
【発明の実施の形態】本発明を図示の実施例に基づいて
詳細に説明する。図1は本実施例における反射光学系の
断面図を示しており、図2は図1のA−A断面図を示し
ている。熱膨張係数が5×10-8〔/K〕以下のガラス
セラミックス(ゼロデュア:ショット社製)から成る主
鏡1に対し、同材料の鏡筒2のフランジ部2aが接着に
より固定され、鏡筒2の他端のフランジ部2bには、3
本の支柱を有し熱膨張係数が5×10-8〔/K〕以下
で、紫外線を透過するチタニウム珪酸ガラス(ULE:
コーニング社製)から成るスパイダ3が接着により取り
付けられている。このスパイダ3の中央平面部には、主
鏡1、鏡筒2と同様の材質のガラスセラミックスから成
る口径50mmの双曲面に近い非球面鏡から成る副鏡4
が接着により配置されている。そして、全体としてF値
が約6のカセグレン型望遠鏡が構成されている。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to the illustrated embodiment. FIG. 1 is a cross-sectional view of the reflection optical system in the present embodiment, and FIG. 2 is a cross-sectional view taken along line AA of FIG. A flange portion 2a of a lens barrel 2 made of the same material is fixed to a main mirror 1 made of glass ceramics (Zerodur: manufactured by Shot Co., Ltd.) having a coefficient of thermal expansion of 5 × 10 −8 [/ K] or less. 2 has a flange portion 2b at the other end.
Titanium silicate glass (ULE: having a number of columns and having a coefficient of thermal expansion of 5 × 10 −8 [/ K] or less and transmitting ultraviolet rays.
A spider 3 made of Corning Inc.) is attached by bonding. On the central plane portion of the spider 3, a sub-mirror 4 made of a glass-ceramic made of the same material as the main mirror 1 and the lens barrel 2 and made of an aspherical mirror close to a hyperboloid of 50 mm in diameter.
Are arranged by bonding. A Cassegrain telescope having an F value of about 6 is configured as a whole.
【0010】また、主鏡1、副鏡4は球面収差及び軸外
収差を補正するために、高次の非球面係数が加えられて
おり、更には可視近赤外波長城での反射率を高めるため
に、表面に銀反射膜が蒸着されている。また、主鏡1の
前面はミラー部1bとされ、その中央に中央孔1cが形
成されている。The primary mirror 1 and the secondary mirror 4 are added with higher order aspherical coefficients in order to correct spherical aberration and off-axis aberration. A silver reflective film has been deposited on the surface to enhance it. The front surface of the primary mirror 1 is a mirror portion 1b, and a central hole 1c is formed in the center.
【0011】遠方の光源から届いた光束は主鏡1のミラ
ー部1bで反射集光され、副鏡4で再度反射した後に、
主鏡1の中央孔1cを通過して図示しない検出器面等に
結像する。A light beam arriving from a distant light source is reflected and condensed by the mirror portion 1b of the primary mirror 1, and after being reflected again by the secondary mirror 4,
The light passes through the central hole 1c of the primary mirror 1 and forms an image on a detector surface (not shown).
【0012】主鏡1は温度による曲率や面精度の変化が
最小になるように熱膨張係数を選択した材料による口径
300mmの放物面に近い非球面鏡であり、背面の肉抜
きにより約70%の軽量化が施されている。主鏡1を支
えるベース部1aの外周の平面部には、図2に示すよう
に30゜毎の12個所に接着剤注入用溝5が設けられて
いる。この接着剤注入用溝5は深さが数10μmの浅い
溝であり、研削及びエッチングにより形成され、接着剤
を加圧して注入するための注入口5aと、接着剤を真空
吸引するための吸引口5b、接着溝5cが設けられてい
る。接着剤は窪んだ接着溝5cのみに溜まるため、主鏡
1のベース部1aと鏡筒2のフランジ部2aとの接触面
には、接着剤層の層厚が介在することはない。鏡筒2の
材料には主鏡1と同様のガラスセラミックを使用するこ
とにより、軌道上の温度変化による主鏡1と副鏡4の間
隔変化を1ミクロン以下に抑えている。The primary mirror 1 is an aspherical mirror close to a parabolic surface having a diameter of 300 mm and made of a material whose coefficient of thermal expansion is selected so that changes in curvature and surface accuracy due to temperature are minimized. The weight has been reduced. As shown in FIG. 2, adhesive injection grooves 5 are provided at twelve locations at intervals of 30 ° on the outer surface of the base 1 a supporting the main mirror 1. The groove 5 for injecting the adhesive is a shallow groove having a depth of several tens of μm, formed by grinding and etching, and an inlet 5a for injecting the adhesive by pressing, and a suction for sucking the adhesive in vacuum. An opening 5b and an adhesive groove 5c are provided. Since the adhesive is accumulated only in the recessed adhesive groove 5c, the thickness of the adhesive layer does not intervene on the contact surface between the base 1a of the main mirror 1 and the flange 2a of the lens barrel 2. By using the same glass ceramic as the material of the main mirror 1 as the material of the lens barrel 2, a change in the distance between the main mirror 1 and the sub mirror 4 due to a temperature change on the orbit is suppressed to 1 micron or less.
【0013】スパイダ3と鏡筒2の接着には、結合面で
あるフランジ部3a、2bは両者共に面精度が1μmP
V以内の平面になるように光学研磨され、結合面全面に
エポキシ系接着剤を塗布して接着硬化させる。このエポ
キシ系接着剤も真空中でのガス放出が非常に小さいもの
を選択している。For bonding the spider 3 and the lens barrel 2, both the flanges 3a and 2b, which are bonding surfaces, have a surface accuracy of 1 μmP.
The surface is optically polished so as to have a flat surface within V, and an epoxy-based adhesive is applied to the entire bonding surface, and the surface is bonded and hardened. This epoxy adhesive is selected to have a very small outgassing in vacuum.
【0014】また、副鏡4とスパイダ3の結合面は、両
者共に面精度が1μmPV以内の平面になるように光学
研磨され、結合面全面に紫外線硬化型接着剤を塗布して
紫外線を照射することにより接着硬化させている。この
紫外線硬化型接着剤は硬化時に副鏡4のミラー面の歪み
を生じさせず、かつ真空中でのガス放出が非常に小さい
ものを選択している。The joint surface of the secondary mirror 4 and the spider 3 is optically polished so that both surfaces have a surface accuracy of 1 μmPV or less, and an ultraviolet curing adhesive is applied to the entire joint surface and irradiated with ultraviolet rays. In this way, the adhesive is cured. This UV-curable adhesive is selected so as not to cause distortion of the mirror surface of the sub-mirror 4 at the time of curing, and to release gas very little in a vacuum.
【0015】主鏡1、鏡筒2、スパイダ3、副鏡4の研
磨面以外の全ての表面は、エッチングにより潜傷が除去
され、構造体としての十分な強度が確保されている。All surfaces other than the polished surfaces of the primary mirror 1, the lens barrel 2, the spider 3, and the secondary mirror 4 have their latent scratches removed by etching, and the structure has sufficient strength.
【0016】そして、副鏡4、スパイダ3及び鏡筒2の
結合が完了した後に、干渉計で透過波面を確認しながら
主鏡1と鏡筒2のアライメント微調整を行い、透過波面
が最良となった状態で主鏡1と鏡筒2を結合する。主鏡
1と鏡筒2の結合には、面精度が1μmPV以内の平面
になるように光学研磨した前述の主鏡1のベース部1a
と鏡筒2のフランジ部2aを使用している。以上の構成
により望遠鏡光学系全体としての透過波面精度が、λ/
20rms以下という非常に高い結像性能を達成するこ
とができる。After the coupling of the sub-mirror 4, the spider 3, and the lens barrel 2 is completed, fine adjustment of the alignment between the main mirror 1 and the lens barrel 2 is performed while confirming the transmitted wave front with an interferometer. Then, the primary mirror 1 and the lens barrel 2 are connected. The base part 1a of the above-mentioned main mirror 1 optically polished so that the surface accuracy becomes a plane within 1 μmPV is used for coupling the main mirror 1 and the lens barrel 2.
And the flange 2a of the lens barrel 2. With the above configuration, the transmitted wavefront accuracy of the entire telescope optical system is λ /
Very high imaging performance of 20 rms or less can be achieved.
【0017】また、光学系が本実施例よりも小型の場合
や、要求される結像性能がそれほど高くない場合には、
主鏡1、副鏡4、スパイダ3の構成材料としてガラスセ
ラミックスやチタニウム珪酸ガラスの代りに、合成石英
やセラミック材料を使用することも可能である。If the optical system is smaller than this embodiment or if the required imaging performance is not so high,
As a constituent material of the primary mirror 1, the secondary mirror 4, and the spider 3, it is possible to use synthetic quartz or a ceramic material instead of glass ceramics or titanium silicate glass.
【0018】本実施例においては、主鏡1と鏡筒2の結
合を最後に行う手順になっているため、主鏡1に接着剤
注入用溝5を形成しているが、組立調整の手順によって
は、別の結合部に同様の接着剤注入溝5を形成すること
も可能である。ただし、何れの場合においても、最後に
結合する部分に接着剤注入用溝5aを形成することが必
要である。In the present embodiment, since the procedure for joining the main mirror 1 and the lens barrel 2 is performed last, the groove 5 for injecting the adhesive is formed in the main mirror 1. Depending on the case, it is also possible to form a similar adhesive injection groove 5 in another joint. However, in any case, it is necessary to form the groove 5a for injecting the adhesive at the last part to be joined.
【0019】また、この望遠鏡光学系の結像面付近に光
束を再び平行にするためのコリメータを配置することに
より、高精度な光衛星間通信用の光アンテナ光学系或い
はコヒーレントレーザーレーダー用光学系を得ることも
可能である。By arranging a collimator near the image plane of the telescope optical system to re-parallel the light beam, a highly accurate optical antenna optical system for optical inter-satellite communication or an optical system for a coherent laser radar is provided. It is also possible to get
【0020】[0020]
【発明の効果】以上説明したように本発明に係る光アン
テナ用反射光学系は、高い結像性能を必要とする望遠鏡
光学系や光衛星間通信用の光アンテナ光学系において、
フォーカス調整機構を不要とし、しかも生産性の高い光
学系を高精度に得ることができる。As described above, the reflection optical system for an optical antenna according to the present invention can be used in a telescope optical system requiring high imaging performance or an optical antenna optical system for optical inter-satellite communication.
The focus adjustment mechanism is not required, and an optical system with high productivity can be obtained with high accuracy.
【図1】実施例の構成図である。FIG. 1 is a configuration diagram of an embodiment.
【図2】図1のA−A線断面図である。FIG. 2 is a sectional view taken along line AA of FIG.
1 主鏡 2 鏡筒 3 スパイダ 4 副鏡 5 接着剤注入用溝 DESCRIPTION OF SYMBOLS 1 Primary mirror 2 Lens barrel 3 Spider 4 Secondary mirror 5 Adhesive injection groove
Claims (3)
鏡を支持するためのスパイダと、前記主鏡とスパイダの
間に介在し前記主鏡に対する前記副鏡の相対位置を維持
するための鏡筒とから成る反射光学系において、前記主
鏡、前記副鏡、前記スパイダ、前記鏡筒を熱膨張係数が
5×10-6〔/K〕以下の脆性材料により構成し、前記
主鏡と鏡筒、前記鏡筒とスパイダ、前記スパイダと副鏡
をそれぞれ平面部の接着により結合したことを特徴とす
る光アンテナ用反射光学系。1. A primary mirror, a secondary mirror facing the primary mirror, a spider for supporting the secondary mirror, and a relative position of the secondary mirror interposed between the primary mirror and the spider with respect to the primary mirror. In the reflection optical system including the lens barrel for maintaining the following, the primary mirror, the secondary mirror, the spider, and the lens barrel are made of a brittle material having a thermal expansion coefficient of 5 × 10 −6 [/ K] or less. A reflection optical system for an optical antenna, wherein the main mirror and the lens barrel, the lens barrel and the spider, and the spider and the sub-mirror are respectively bonded by bonding flat portions.
前記スパイダと副鏡の前記平面部の接着の少なくとも1
個所は、何れかの前記平面部に接着剤を注入するための
溝を設け、接着時に前記接着剤の層厚により前記主鏡と
前記副鏡の間隔に変化が生じないようにした請求項1に
記載の光アンテナ用反射光学系。2. The main mirror and a lens barrel, the lens barrel and a spider,
At least one of the bonding between the spider and the flat portion of the secondary mirror
2. The method according to claim 1, wherein a groove for injecting an adhesive is provided in any one of the flat portions so that a gap between the primary mirror and the secondary mirror does not change due to a layer thickness of the adhesive during bonding. 3. The reflection optical system for an optical antenna according to 1.
に記載の光アンテナ用反射光学系。3. The plurality of grooves at one location.
3. The reflection optical system for an optical antenna according to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000136062A JP2001318300A (en) | 2000-05-09 | 2000-05-09 | Catoptric system for optical antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000136062A JP2001318300A (en) | 2000-05-09 | 2000-05-09 | Catoptric system for optical antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001318300A true JP2001318300A (en) | 2001-11-16 |
Family
ID=18644061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000136062A Pending JP2001318300A (en) | 2000-05-09 | 2000-05-09 | Catoptric system for optical antenna |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001318300A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009169123A (en) * | 2008-01-17 | 2009-07-30 | Ricoh Co Ltd | Miller, optical scanner, and image forming device |
CN101771188A (en) * | 2009-12-31 | 2010-07-07 | 中国科学院紫金山天文台 | Pair surface self-adaption focusing method for radio telescope |
CN107144935A (en) * | 2017-06-16 | 2017-09-08 | 中国科学院西安光学精密机械研究所 | Primary and secondary mirror support of high resonant frequency of micro-deformation |
CN110346046A (en) * | 2019-07-15 | 2019-10-18 | 中国科学院合肥物质科学研究院 | A kind of stellar radiation meter automatic focusing method and radiometer system round the clock |
WO2024168727A1 (en) * | 2023-02-16 | 2024-08-22 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Imaging lens assembly, camera module, and imaging device |
-
2000
- 2000-05-09 JP JP2000136062A patent/JP2001318300A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009169123A (en) * | 2008-01-17 | 2009-07-30 | Ricoh Co Ltd | Miller, optical scanner, and image forming device |
CN101771188A (en) * | 2009-12-31 | 2010-07-07 | 中国科学院紫金山天文台 | Pair surface self-adaption focusing method for radio telescope |
CN101771188B (en) * | 2009-12-31 | 2013-08-21 | 中国科学院紫金山天文台 | Pair surface self-adaption focusing method for radio telescope |
CN107144935A (en) * | 2017-06-16 | 2017-09-08 | 中国科学院西安光学精密机械研究所 | Primary and secondary mirror support of high resonant frequency of micro-deformation |
CN107144935B (en) * | 2017-06-16 | 2022-12-23 | 中国科学院西安光学精密机械研究所 | Primary and secondary mirror support of high resonant frequency of micro-deformation |
CN110346046A (en) * | 2019-07-15 | 2019-10-18 | 中国科学院合肥物质科学研究院 | A kind of stellar radiation meter automatic focusing method and radiometer system round the clock |
WO2024168727A1 (en) * | 2023-02-16 | 2024-08-22 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Imaging lens assembly, camera module, and imaging device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5760979A (en) | Reflecting optical apparatus | |
US10732378B2 (en) | Mounting optical elements in optical systems | |
US6229657B1 (en) | Assembly of optical element and mount | |
US6776006B2 (en) | Method to avoid striae in EUV lithography mirrors | |
US20130100426A1 (en) | Method for producing facet mirrors and projection exposure apparatus | |
US20210382289A1 (en) | Reflective mastersurface primary mirror, auxiliary mirror, and telescope system | |
JP2016508626A (en) | Monolithic optical component with integrated flexure | |
JP2000235151A (en) | Method for correcting optical wave aberration in optical system, and optical system and microscope manufactured based on it | |
CN114740581B (en) | Zero-expansion temperature point adjusting device for optical reference cavity | |
JP2001318300A (en) | Catoptric system for optical antenna | |
JPH11326742A (en) | Active mirror | |
JP2013216785A (en) | Mounting structure for optical component, wavelength-selective device, and method for manufacturing mounting structure for optical device | |
JP4313675B2 (en) | Mirrors, optical imaging systems, and their use | |
WO2009126546A1 (en) | High-precision monolithic optical assemblies and methods for fabrication and alignment thereof | |
US10534165B1 (en) | Athermal cassegrain telescope | |
US4836666A (en) | Compensation for primary reflector wavefront error | |
Chan et al. | Preserving accurate figures in coating and bonding mirrors for lightweight x-ray telescopes | |
Kaneda et al. | Development of lightweight SiC mirrors for the space infrared telescope for cosmology and astrophysics (SPICA) mission | |
Bingham | Optical designs with large metal mirrors | |
MacEwen | Separation of functions as an approach to development of large space telescope mirrors | |
US20220091366A1 (en) | Stemmed optical mirrors for low mounting induced distortion due to mechanical stress | |
JP2006154628A (en) | Optical module | |
Ansbro | A new membrane mirror for infrared telescopes | |
JPH0996757A (en) | Optical path deflection device | |
Ghigo et al. | Field corrector for the Ultraviolet Italian Sky Surveyor on the International Space Station (UVISS): ion beam figuring and application of the multilayer filters |