JP2001318088A - Method of quantitative analysis for unstable reaction intermediate - Google Patents

Method of quantitative analysis for unstable reaction intermediate

Info

Publication number
JP2001318088A
JP2001318088A JP2000136101A JP2000136101A JP2001318088A JP 2001318088 A JP2001318088 A JP 2001318088A JP 2000136101 A JP2000136101 A JP 2000136101A JP 2000136101 A JP2000136101 A JP 2000136101A JP 2001318088 A JP2001318088 A JP 2001318088A
Authority
JP
Japan
Prior art keywords
unstable
reaction
quantification
concentration
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000136101A
Other languages
Japanese (ja)
Inventor
Hideaki Tsuneki
英昭 常木
Yoshiyuki Onda
義幸 恩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP2000136101A priority Critical patent/JP2001318088A/en
Publication of JP2001318088A publication Critical patent/JP2001318088A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of quantitative analysis for an unstable intermediate of which the standard substance does not exist. SOLUTION: When the factor of an atomic group is designated by f, a response from an analyzer by r, the number of unstable intermediates by M, a quantification function therefor by F(r), the number of known constituents by M, the number of samples of an analyzed reaction liquid by n, the concentration of a known constituent by c, the total sum of the concentrations of prepared constituents multiplied by the factors of the samples by C, and the number of times of analysis by m, unknown parameters of the quantification function F(r) are determined by a numerical calculation so as to minimize the value expressed by a number 1. This quantification function is used for quantification.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】何らかの反応によって生成し
た反応液の定量分析をする際に用いる分析方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an analysis method used for quantitative analysis of a reaction solution generated by a certain reaction.

【0002】[0002]

【従来の技術】不安定な物質の場合に定量分析の検量線
を作成するための標準品が手に入らないことがある。こ
のような場合、正確な定量分析を行うことは大変困難で
あった。
2. Description of the Related Art In the case of an unstable substance, a standard product for preparing a calibration curve for quantitative analysis may not be available. In such a case, it was very difficult to perform an accurate quantitative analysis.

【0003】[0003]

【発明が解決しようとする課題】本発明はこのような状
況を鑑みてなされたものであり、検量線を作成するため
の標準品がなくても検量線を作成して定量分析をする方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and a method for preparing a calibration curve and performing a quantitative analysis without a standard product for preparing the calibration curve is provided. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】次のような条件を満たす
場合、本発明の提供する方法によって検量線を作成する
ための標準品がなくても検量線を作成して定量分析をす
ることが可能になる。 1.反応する前の原料成分について、原子団収支が明ら
かになっている。 2.既知の成分については反応液の分析によってその濃
度を決定することができる。 3.未知成分の分析計の応答に他の物質の応答が含まれ
ていない。
When the following conditions are satisfied, it is possible to prepare a calibration curve and perform quantitative analysis by using the method provided by the present invention even if there is no standard product for preparing the calibration curve. Will be possible. 1. The atomic group balance has been clarified for the raw material components before the reaction. 2. The concentration of a known component can be determined by analyzing the reaction solution. 3. The response of the unknown component analyzer does not include the response of other substances.

【0005】この条件を満たす場合、不安定反応中間体
について独立な反応前後で保存される原子団の数をN、
分析計からの応答をr、不安定中間体の個数をL、その
定量関数をF(r)、その原子団の力価をfn 他の既知
成分の数をM、その成分の原子団の力価をfk、分析す
る反応液検体数をn、その検体中の既知成分の濃度を
c、その検体の反応液仕込成分の濃度と原子団の力価の
積の総和をC、1検体の分析回数をmとした場合、i番
目の原子団について数2で表される値をiが1からNま
でについてそれぞれ最小にするように数値計算によって
未知の定量関数F(r)のパラメータを決定し、この定
量関数を用いて定量することができる。なおここでいう
原子団収支には分子全体すなわち質量収支や基ではなく
単なる元素種も含む。
When this condition is satisfied, the number of atomic groups conserved before and after the independent reaction of the unstable reaction intermediate is represented by N,
The response from the analyzer is r, the number of unstable intermediates is L, its quantification function is F (r), the titer of the atomic group is f n , the number of other known components is M, and the atomic group of the component is M titer f k of, n the reaction liquid specimen number to be analyzed, C, 1 the concentration of known components c, and the sum of the titers of the product of density and atomic groups of the reaction mixture charged component of the analyte in the sample Assuming that the number of times of analysis of the sample is m, the parameter of the unknown quantitative function F (r) is calculated by a numerical calculation so that the value represented by Equation 2 for the i-th atomic group is minimized for each of 1 to N. Can be determined and quantified using this quantification function. It should be noted that the atomic group balance referred to here includes not only the whole molecule, that is, the mass balance and the group but also simple element species.

【0006】[0006]

【数2】 (Equation 2)

【0007】具体的にエチレンカーボネート(EC)と
メタノール(MeOH)からジメチルカーボネートを合
成する場合を例にとって詳細に説明する。この反応では
目的生成物のDMC以外に、エチレングリコール(E
G)が生成し、これらは標準物質が入手できる既知物質
である。この他に中間体であるメチルヒドロキシエチル
カーボネート(MHC)やジヒドロキシエチルカーボネ
ート(DHC)が生成するが、これらは不安定で蒸留な
どによって分離精製して純粋な標準物質を得ることがで
きないため分析が困難である。
Specifically, a case where dimethyl carbonate is synthesized from ethylene carbonate (EC) and methanol (MeOH) will be described in detail as an example. In this reaction, in addition to the target product DMC, ethylene glycol (E
G), which are known substances for which reference materials are available. In addition, methyl hydroxyethyl carbonate (MHC) and dihydroxyethyl carbonate (DHC), which are intermediates, are produced, but they are unstable and cannot be separated and purified by distillation or the like to obtain a pure standard substance. Have difficulty.

【0008】しかし、原子団の含有量、質量については
反応前後で保存則が成立するので、これらの関係を利用
して未知のMHCやDHCの定量関数を求めることがで
きる。この反応では先ほどの説明におけるL=2(MH
CとDHC)、M=4(EC,MeOH,DMC,E
G)、N=4(CH3、C24、CO、質量)となる。
原子団としてはOHや単なる元素種C,H,Oもあり、
反応の前後で保存されるが、MHC,DHCについて他
の原子団と独立でないので用いない。検体数、分析の回
数は多いほど求められる定量関数の精度は良くなる。ま
た似通った組成ではなくできるだけ各成分濃度が異なる
反応液を調製することが好ましい。
However, since the conservation law is established before and after the reaction with respect to the content and mass of the atomic groups, a quantitative function of unknown MHC or DHC can be obtained by using these relationships. In this reaction, L = 2 (MH
C and DHC), M = 4 (EC, MeOH, DMC, E
G), N = 4 (CH 3 , C 2 H 4 , CO, mass).
There are also OH and mere elemental species C, H, O as atomic groups,
It is preserved before and after the reaction, but is not used because MHC and DHC are not independent of other atomic groups. The greater the number of samples and the number of analyzes, the better the accuracy of the quantification function to be obtained. In addition, it is preferable to prepare a reaction solution having a similar composition but different concentration of each component as much as possible.

【0009】定量関数は通常検量線と呼ばれるもので、
単なる比例関係、一次関数(切片を持つ)、折れ線その
他の関数であるが、比例関係や一次関数が良く用いられ
る。 比例関係では F(r)=m・r (m:比例定数) 一次関数では F(r)=m・r+n (m:傾き、
n:切片)と表される。
[0009] The quantitative function is usually called a calibration curve.
It is simply a proportional relationship, a linear function (having an intercept), a polygonal line, and other functions, but a proportional relationship and a linear function are often used. In a proportional relation, F (r) = m · r (m: proportional constant) In a linear function, F (r) = m · r + n (m: slope,
n: intercept).

【0010】得られた分析値から数値計算でこの定量関
数のパラメータを求めるには、通常の表計算ソフトウエ
ア、数式処理ソフトウエアなどが使用でき、FORTR
ANなどのプログラム言語で計算プログラムを作成して
も良い。
In order to obtain the parameters of this quantitative function by numerical calculation from the obtained analysis values, ordinary spreadsheet software, mathematical formula processing software and the like can be used.
The calculation program may be created in a programming language such as AN.

【0011】[0011]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

【発明の効果】従来では分析困難であった不安定中間体
の分析が可能になり、反応解析、プロセス設計などが効
率的に進められる。
The present invention makes it possible to analyze unstable intermediates, which has been difficult to analyze in the past, so that reaction analysis, process design, and the like can be efficiently performed.

【0012】[0012]

【実施例】以下実施例によって本発明を詳細に説明する
が本発明はこれによって限定されるものではない。 (実施例1)強塩基性アニオン交換樹脂(三菱化学製ダ
イアイオンPA308)を用いEC/MeOH/EGの
組成を6種変化させた原料組成の反応を40℃で24時
間行い、6種の検体を得、高速液体クロマトグラフで分
析した。1検体は2回分析を行った。m=2,n=6と
なる。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto. (Example 1) Using a strongly basic anion exchange resin (Diaion PA308 manufactured by Mitsubishi Chemical Corporation), a reaction of a raw material composition in which the composition of EC / MeOH / EG was changed by 6 kinds was performed at 40 ° C for 24 hours, and 6 kinds of specimens were obtained. And analyzed by high performance liquid chromatography. One sample was analyzed twice. m = 2 and n = 6.

【0013】分析条件は、カラム:水系GPCカラム
(旭化成製 ASAHIPAK GS-310H)、溶離液:水、検出
器:RI、サンプル希釈率1/100、サンプル打ち込
み量10μlである。
The analysis conditions were as follows: column: water-based GPC column (ASAHIPAK GS-310H manufactured by Asahi Kasei), eluent: water, detector: RI, sample dilution ratio 1/100, and sample injection volume 10 μl.

【0014】原子団の力価をモルで表現すると、各成分
1分子中に含まれる原子団の数となる。
When the potency of an atomic group is expressed in mole, it is the number of atomic groups contained in one molecule of each component.

【0015】すなわち表1のようになる。(質量と元素
種についても示した)
That is, Table 1 is obtained. (The mass and element type are also shown.)

【0016】[0016]

【表1】 [Table 1]

【0017】濃度の単位は質量分率とする。その場合、
各成分1g中の含有量になるので、原子団の力価は質量
以外分子量で除して表2のようになる。(計算に用いな
いOH以下は省略)
The unit of the concentration is a mass fraction. In that case,
Since the content is 1 g of each component, the titer of the atomic group is divided by the molecular weight other than the mass, as shown in Table 2. (OH and OH not used for calculation are omitted.)

【0018】[0018]

【表2】 [Table 2]

【0019】仕込み組成と仕込み濃度と表2に示した原
子団力価の積の和(C)を表3に示す。
Table 3 shows the sum (C) of the product of the charged composition, the charged concentration, and the atomic group potency shown in Table 2.

【0020】[0020]

【表3】 [Table 3]

【0021】6種の検体を2回ずつ分析した結果(未知
資料のピーク面積 すなわち分析計の応答r)と既知成
分の濃度(c)と原子団の力価(fk)の積の総和を表
4に示す。
The total of the product of the results of two analyzes of each of the six specimens (peak area of unknown data, ie, the response r of the analyzer), the concentration of the known component (c), and the titer of the atomic group (f k ) was calculated. It is shown in Table 4.

【0022】[0022]

【表4】 [Table 4]

【0023】定量関数としては一次関数を用いた。従っ
て未知のパラメータは傾きと切片になる。表3,4の値
を用い、各原子団について数2の値を最小にするように
連立させ、数式処理ソフトウエアを用い、levenb
erg−Marquardt法を適用してDHC、MH
Cの傾き(m)と切片(n)を求めた。 計算の結果 mMHC=1.002E-6 nMHC=-5.224E-4 mDHC=9.587E-7
DHC=-2.268E-4となった。この値を用い、MHC、
DHC濃度を算出し、これに力価を乗じて和をとったも
のを既知成分の分析から算出した値と比較し、表5に示
した。
A linear function was used as the quantitative function. Thus, the unknown parameters are slopes and intercepts. Using the values in Tables 3 and 4, simultaneous for each atomic group so as to minimize the value of Equation 2 and using mathematical processing software, evenb
erg-Marquardt method to apply DHC, MH
The slope (m) and intercept (n) of C were determined. Calculation result m MHC = 1.002E-6 n MHC = -5.224E-4 m DHC = 9.587E-7
n DHC = -2.268E-4. Using this value, MHC,
The DHC concentration was calculated, the result was multiplied by the titer, and the sum was compared with the value calculated from the analysis of the known components, and the results are shown in Table 5.

【0024】[0024]

【表5】 [Table 5]

【0025】求められたパラメータ(m,n)を用いて
分析値の応答(r)から算出した濃度(F(r))を基
に計算した値と既知成分から算出した値とは表に示すよ
うにきわめて良く一致しており、この方法で定量分析が
精度良く行えることがわかる。
The value calculated based on the concentration (F (r)) calculated from the response (r) of the analysis value using the determined parameters (m, n) and the value calculated from the known component are shown in the table. Thus, it is clear that the quantitative analysis can be performed with high accuracy by this method.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】標準物質を得ることが困難な不安定反応中
間体を定量分析する方法であって、不安定反応中間体に
ついて独立な反応前後で保存される原子団の数をN、分
析計からの応答をr、不安定中間体の個数をL、その定
量関数をF(r)、その原子団の力価をfn 他の既知成
分の数をM、その成分の原子団の力価をfk、分析する
反応液検体数をn、その検体中の既知成分の濃度をc、
その検体の反応液仕込成分の濃度と原子団の力価の積の
総和をC、1検体の分析回数をmとした場合、i番目の
原子団について数1で表される値をiが1からNまでに
ついてそれぞれ最小にするように数値計算によって未知
の定量関数F(r)のパラメータを決定し、この定量関
数を用いて定量することを特徴とする不安定反応中間体
を定量分析する方法。 【数1】
1. A method for quantitatively analyzing an unstable reaction intermediate in which it is difficult to obtain a standard substance, wherein the number of atomic groups stored before and after an independent reaction of the unstable reaction intermediate is N, , The number of unstable intermediates is L, the quantification function is F (r), the titer of the group is f n , the number of other known components is M, the force of the group of the component is The value is f k , the number of reaction solution samples to be analyzed is n, the concentration of a known component in the sample is c,
Assuming that the total sum of the product of the concentration of the components charged in the reaction solution of the sample and the titer of the atomic group is C, and the number of times of analysis of the sample is m, the value represented by Formula 1 for the i-th atomic group is 1 A parameter of an unknown quantification function F (r) is determined by numerical calculation so as to minimize each of the steps from N to N, and quantification is performed using this quantification function. . (Equation 1)
【請求項2】該不安定中間体がエチレンカーボネートと
メタノールとのエステル交換反応の不安定中間体である
メチルヒドロキシエチルカーボネートとジヒドロキシエ
チルカーボネートであることを特徴とする請求項1記載
の定量分析方法
2. The method according to claim 1, wherein said unstable intermediates are methylhydroxyethyl carbonate and dihydroxyethyl carbonate, which are unstable intermediates in a transesterification reaction between ethylene carbonate and methanol.
【請求項3】該分析計が高速液体クロマトグラフである
ことを特徴とする請求項1ないし2記載の定量分析方法
3. The method according to claim 1, wherein said analyzer is a high performance liquid chromatograph.
JP2000136101A 2000-05-09 2000-05-09 Method of quantitative analysis for unstable reaction intermediate Pending JP2001318088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000136101A JP2001318088A (en) 2000-05-09 2000-05-09 Method of quantitative analysis for unstable reaction intermediate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000136101A JP2001318088A (en) 2000-05-09 2000-05-09 Method of quantitative analysis for unstable reaction intermediate

Publications (1)

Publication Number Publication Date
JP2001318088A true JP2001318088A (en) 2001-11-16

Family

ID=18644097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000136101A Pending JP2001318088A (en) 2000-05-09 2000-05-09 Method of quantitative analysis for unstable reaction intermediate

Country Status (1)

Country Link
JP (1) JP2001318088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519892A (en) * 2008-05-06 2011-07-14 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Process for the preparation of alkanediols and dialkyl carbonates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011519892A (en) * 2008-05-06 2011-07-14 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Process for the preparation of alkanediols and dialkyl carbonates

Similar Documents

Publication Publication Date Title
Beale et al. Review of recent developments in GC–MS approaches to metabolomics-based research
Vogl Characterisation of reference materials by isotope dilution mass spectrometry
Noctor et al. A comparative study of amino acid measurement in leaf extracts by gas chromatography-time of flight-mass spectrometry and high performance liquid chromatography with fluorescence detection
Rösch et al. Picogram per liter quantification of pyrethroid and organophosphate insecticides in surface waters: a result of large enrichment with liquid–liquid extraction and gas chromatography coupled to mass spectrometry using atmospheric pressure chemical ionization
Kirchner et al. Possibilities and limitations of quadrupole mass spectrometric detector in fast gas chromatography
JP4159987B2 (en) Method for phosphorus quantification
Beavis Chemical mass of carbon in proteins
Nixon et al. Comparison of tunable bandpass reaction cell inductively coupled plasma mass spectrometry with conventional inductively coupled plasma mass spectrometry for the determination of heavy metals in whole blood and urine
Galimov et al. Isotope ratio mass spectrometry: δ13C and δ15 N analysis for tracing the origin of illicit drugs
JP3012685B2 (en) Method and apparatus for analyzing amino acids in biological fluid
JP2001318088A (en) Method of quantitative analysis for unstable reaction intermediate
Bart Polymer additive analysis at the limits
Janák et al. Quantitative analysis using gas chromatography with atomic emission detection
Velikonja Bolta et al. Gas chromatographic determination of formaldehyde in air using solid-phase microextraction sampling
JP2006292652A (en) Gas chromatograph device
González-Rubio et al. Supramolecular solvents for making comprehensive liquid-liquid microextraction in multiclass screening methods for drugs of abuse in urine based on liquid chromatography-high resolution mass spectrometry
Stojanovska et al. Presumptive analysis of 4-methylmethcathinone (mephedrone) using desorption electrospray ionisation-mass spectrometry (DESI-MS)
JP4878998B2 (en) Analysis method of stable isotope concentration
WO2005010506A1 (en) Method for measuring isotope concentration
JP5084428B2 (en) Amino acid analysis method
Himmel et al. Determination of formaldehyde release from wood-based panels using SPME-GC-FAIMS
Williams et al. Matrix-assisted laser desorption ionization mass spectrometry as a complement to internal protein sequencing
CN105717061A (en) Quantitative determination method of diborane in diborane mixed gas
Siekmann Reference methods for total cholesterol and total glycerol
Snow From Detector to Decision, Part III: Fundamentals of Calibration in Gas Chromatography