JP2001317612A - Vibration damping control cam mechanism - Google Patents

Vibration damping control cam mechanism

Info

Publication number
JP2001317612A
JP2001317612A JP2000133230A JP2000133230A JP2001317612A JP 2001317612 A JP2001317612 A JP 2001317612A JP 2000133230 A JP2000133230 A JP 2000133230A JP 2000133230 A JP2000133230 A JP 2000133230A JP 2001317612 A JP2001317612 A JP 2001317612A
Authority
JP
Japan
Prior art keywords
cam
speed
vibration
acceleration
driven
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000133230A
Other languages
Japanese (ja)
Inventor
Masataka Tsurumi
正隆 鶴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyadic Systems Co Ltd
Original Assignee
Dyadic Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyadic Systems Co Ltd filed Critical Dyadic Systems Co Ltd
Priority to JP2000133230A priority Critical patent/JP2001317612A/en
Publication of JP2001317612A publication Critical patent/JP2001317612A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L2810/00Arrangements solving specific problems in relation with valve gears
    • F01L2810/03Reducing vibration

Abstract

PROBLEM TO BE SOLVED: To provide a vibration dumping technique including a design technique for a cam curve capable of realizing increase in speed of a mechanism for positioning a final movable part by using a cam mechanism with low rigidity of a machine and hard to increase speed. SOLUTION: An acceleration/deceleration time of the cam mechanism is set to a period of vibration of a primary vibration characteristic value of a system or a period thereof multiplied by an integer, and a point of inflection of command velocity is made to coincide with a primary node of the vibration of the system. A bad influence of the primary characteristic value is thereby removed and rigidity of the whole mechanism of a driven mechanism driven by a cam is increased, and the increase in speed is realized.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、産業機械等に広く
用いられているモータとカムとその従動機構との組み合
わせメカニズムにおいて、従動機構の目的とする働き
(回転運動、直進運動)以外の不要振動を抑えてメカニ
ズムの高速動作を実現するための制振技術に関するもの
である。
BACKGROUND OF THE INVENTION The present invention relates to a combination mechanism of a motor, a cam and its driven mechanism widely used in industrial machines and the like, which does not require any function other than the intended function of the driven mechanism (rotational motion, linear motion). The present invention relates to a vibration suppression technique for realizing a high-speed operation of a mechanism while suppressing vibration.

【0002】[0002]

【従来の技術】モータにより駆動されるカムによりその
従動機構を制御するタイプのメカニズムの高速化の試み
は、カム曲線による直線加減速やS字加減速曲線を用
い、従動機構部が有害振動を誘発しないように(制御不
能であった1次の固有値を励起させないように)可能な
かぎり衝撃を与えない範囲で変位速度の調整を行う方法
が一般的であった。
2. Description of the Related Art Attempts to increase the speed of a mechanism of a type in which a driven mechanism is controlled by a cam driven by a motor use a linear acceleration / deceleration curve or an S-shaped acceleration / deceleration curve based on a cam curve, and the driven mechanism generates harmful vibration. In general, a method of adjusting the displacement speed so as not to induce (in order not to excite the first-order eigenvalue which could not be controlled) so as not to give an impact as much as possible.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、これら
の従来技術は1次の固有値の処理を放置したものである
ために、カム曲線とカムの回転速度によって決まる加減
速時間を系の1次の振動固有値の影響の生じない範囲で
しか設定できなかったことにより、著しく限定された低
い動作速度性能しか実現できていない。
However, since these prior arts leave the processing of the primary eigenvalues unacceptable, the acceleration / deceleration time determined by the cam curve and the rotation speed of the cam is reduced by the primary vibration of the system. Since the setting can be performed only in a range where the influence of the eigenvalue does not occur, only a remarkably limited low operation speed performance can be realized.

【0004】本発明が解決しようとする課題は、モータ
により駆動されるカムによりその従動機構を制御するタ
イプのメカニズムの高速化が実現可能な制御技術を提供
することである。
An object of the present invention is to provide a control technique capable of realizing a high-speed mechanism of a type in which a driven mechanism is controlled by a cam driven by a motor.

【0005】本発明の基本的な技術は、特願2000−
118052および特願2000−120691に記載
の「速度を指令速度まで変化させるときの加速・減速制
御時間を振動固有値(周期)の整数倍に特定する」振動
抑制方法に立脚している。
The basic technology of the present invention is disclosed in Japanese Patent Application No. 2000-2000.
No. 118052 and Japanese Patent Application No. 2000-120691, which are based on the vibration suppression method of “specifying the acceleration / deceleration control time when changing the speed to the commanded speed to an integral multiple of the vibration natural value (period)”.

【0006】[0006]

【課題を解決するための手段】メカニズムの高速化を阻
害している最大要因は、代表的な例である台形指令速度
制御において、加減速時間を系の1次の振動固有値の影
響の生じない範囲でしか設定できなかったことにあるこ
とから、本発明においては加減速時間を系の1次の振動
固有値の振動周期あるいはその整数倍になるようにカム
曲線とカムの回転数を設定することによって、メカニズ
ムの加速度変曲点(指令速度の折曲り点)と系の1次の
振動の節を一致させることにより、系の1次固有値の悪
影響を取り除き、それによってメカニズムの高速化を実
現するものである。
The biggest factor that hinders the speeding up of the mechanism is that in a typical trapezoidal command speed control, the acceleration / deceleration time is not affected by the primary vibration eigenvalue of the system. In the present invention, the cam curve and the number of rotations of the cam are set so that the acceleration / deceleration time is equal to the vibration period of the primary vibration eigenvalue of the system or an integral multiple thereof. By matching the acceleration inflection point of the mechanism (the bending point of the commanded velocity) with the node of the primary vibration of the system, the adverse effect of the primary eigenvalue of the system is eliminated, thereby realizing a high-speed mechanism. Things.

【0007】本発明を適用すると、メカニズムの加速度
変曲点において指令速度と従動機構部の実速度との間に
速度差と系が持つ等価的なばねのポテンシャルエネルギ
が発生せず、従って、加速度変更にともなう衝撃力はゼ
ロとなり、制御不能な1次固有値に起因する有害振動の
発生を防ぐことが可能となり、結果サーボ系を高速動作
させることが可能となる。
When the present invention is applied, at the acceleration inflection point of the mechanism, the speed difference and the equivalent spring potential energy of the system do not occur between the commanded speed and the actual speed of the driven mechanism. The impact force accompanying the change becomes zero, and it is possible to prevent the occurrence of harmful vibrations due to uncontrollable primary eigenvalues, and as a result, it is possible to operate the servo system at high speed.

【0008】[0008]

【発明の実施の形態】図に従って具体的な実施の形態を
説明する。図1は本発明の1実施例であり、モータによ
り回転するカムを駆動し、カムの従動機構部が制御され
る一般的に世の中に存在する代表的なメカニズムであ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A specific embodiment will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention, which is a typical mechanism generally existing in the world in which a cam rotated by a motor is driven and a driven mechanism of the cam is controlled.

【0009】コントローラ1によってモータ2が回転さ
れ、モータにカップリング20を経由して接続されるカ
ム溝3-1を持つカム3が回転する。カム溝3−1には
カムフォロワ4が勘合している。従動レバー5は一端で
カムフォロワ4を保持し、他端に設けられた長穴5−1
で可動部7上に設けられたピン8を抱き、軸6の周りに
揺動する。最終可動部7はサイドを案内壁9によって案
内されて往復直線運動をする。
The motor 2 is rotated by the controller 1, and the cam 3 having the cam groove 3-1 connected to the motor via the coupling 20 is rotated. A cam follower 4 fits into the cam groove 3-1. The driven lever 5 holds the cam follower 4 at one end, and has an elongated hole 5-1 provided at the other end.
Hold the pin 8 provided on the movable portion 7 and swing around the shaft 6. The final movable part 7 is guided by the guide wall 9 on the side and makes a reciprocating linear movement.

【0010】本メカニズムにおいて制御したい対象は最
終可動部7の位置付けである。
The object to be controlled in this mechanism is the positioning of the final movable part 7.

【0011】然るに、本メカニズムは従動レバー5以降
において各種の遊びと構造材のばね性を持つ。
However, this mechanism has various play and the spring property of the structural material after the driven lever 5.

【0012】遊びの主要な個所は、カム溝3-1とカム
フォロワ4との間、従動レバー5と軸6の間、長穴5−
1とピン8との間および案内壁9と最終可動部7との間
である。これらはメカニズムの系全体の振動に対しては
等価的にばねとして働く。
The main points of play are between the cam groove 3-1 and the cam follower 4, between the driven lever 5 and the shaft 6, the slot 5
1 and between the pin 8 and between the guide wall 9 and the final movable part 7. These act equivalently as springs for the vibration of the whole system of the mechanism.

【0013】直接ばねとして作用するのは、従動レバー
およびその他の係合部のねじれ・撓みである。
[0013] Acting directly as a spring is the torsion and flexure of the driven lever and other engaging parts.

【0014】これらのばね性を持つ部分は総合的に等価
ばね(ばね定数k)10として表せる。
These parts having spring properties can be expressed as an equivalent spring (spring constant k) 10 as a whole.

【0015】また、従動レバー5以降の従動機構のカム
3のラジアル方向の等価質量(W)11とすると、図1
のメカニズムは図2で示されるような等価質量11を等
価ばね10で支えカム3で等価質量部の位置付けをする
ばねと質量からなる振動系(等価モデル)で表すことが
できる。9’は等価ばね10のカム3の溝3−1との仮
想係合ポイントの仮想案内壁である。
Assuming that the equivalent mass (W) 11 in the radial direction of the cam 3 of the driven mechanism after the driven lever 5, FIG.
2 can be expressed by a vibration system (equivalent model) composed of a spring and a mass, which support the equivalent mass 11 by the equivalent spring 10 as shown in FIG. 9 'is a virtual guide wall of a virtual engagement point of the equivalent spring 10 with the groove 3-1 of the cam 3.

【0016】図3は、このようなメカニズムにおいて、
カム曲線に沿って最終可動部7を目標位置(指令位置)
に位置付けするときの目標速度(以下、指令速度と呼ぶ)
を一般的に使用される加・減速曲線(台形波状OAEF)
で示し、カム曲線がoaefgとなることをで示したも
のである。モータが一定速度で回転するときはカム溝3
−1の形状によってこの指令速度は作り出されるもので
ある。加減速曲線において、OA間は一定加速度で加速
され、AE間は加速度ゼロ、EF間は一定加速度で減速
される。当然のことながらカム曲線の0a間、ef間は
2次曲線となる。
FIG. 3 illustrates such a mechanism.
Move the final movable part 7 to the target position (command position) along the cam curve
Target speed when positioning at
Commonly used acceleration / deceleration curves (trapezoidal wavy OAEF)
And that the cam curve becomes oaefg. When the motor rotates at a constant speed, the cam groove 3
This command speed is created by the shape of -1. In the acceleration / deceleration curve, the acceleration during OA is accelerated at a constant acceleration, the acceleration during AE is zero, and the acceleration during EF is decelerated at a constant acceleration. Naturally, the cam curve is a quadratic curve between 0a and ef.

【0017】図3のような1次の振動モデルで表される
負荷系の挙動について図4を用いて説明する。カム3の
回転によりカムフォロワ4がこのような指令速度にて直
線変位すると等価質量11(最終可動部7)の直線運動の
速度は、初めにバネが縮み指令速度より遅くなり、ばね
内にポテンシャルエネルギを蓄積し、次に、この蓄積ポ
テンシャルエネルギを放出しつつばねは伸びはじめ、速
度は指令速度より速くなり、エネルギの放出とともに指
令速度に近づく。つまり点0〜点A〜点Bに至る仮想速
度曲線で示されるごとくに、指令速度を中心とした振動
的な速度変化を繰り返すことになる。またこのような等
価モデルで表される系の振動の周期Tと振幅Pは次式で
与えられることは良く知られている。
The behavior of the load system represented by the primary vibration model as shown in FIG. 3 will be described with reference to FIG. When the cam follower 4 is linearly displaced at such a command speed due to the rotation of the cam 3, the speed of the linear motion of the equivalent mass 11 (final movable portion 7) is initially reduced by the spring contraction, becomes lower than the command speed, and the potential energy in the spring is reduced. Then, the spring begins to expand while releasing this stored potential energy, the speed becomes faster than the commanded speed, and approaches the commanded speed with the release of energy. That is, as indicated by a virtual speed curve from the point 0 to the point A to the point B, an oscillating speed change centered on the command speed is repeated. It is well known that the oscillation period T and amplitude P of the system represented by such an equivalent model are given by the following equations.

【0018】T=(k/m)0.5 P=C1sin ωt+C2cos ωt (ここに、kはばね定数、mは質量、ωは角速度、C1
C2は定数)
T = (k / m) 0.5 P = C1 sin ωt + C2cos ωt (where k is a spring constant, m is mass, ω is angular velocity, C1
C2 is a constant)

【0019】次に、図4の点Aにて速度指令を一定速度
になるように折り曲げる、つまりA点まで一定加速度で
直線加速していた加速度をゼロとすると、系の実速度は
A〜Cで表される振動波形となると容易に想定される。
Next, if the speed command is bent at a point A in FIG. 4 so as to have a constant speed, that is, if the acceleration linearly accelerated at a constant acceleration up to the point A is set to zero, the actual speed of the system is A to C. It is easily assumed that a vibration waveform represented by

【0020】ところが系の実速度の振動の節のうち、ば
ねのポテンシャルエネルギがゼロとなる(実速度が指令
速度にある)節と点Aを一致させると点A以降の実速度
は図5の直線A〜C〜Dで表されるごとく振動のない状
態となる。
However, when the node A where the potential energy of the spring becomes zero (the actual speed is at the command speed) and the node A coincide with the node of the vibration of the actual speed of the system, the actual speed after the point A is as shown in FIG. As shown by the straight lines A to C to D, there is no vibration.

【0021】この様子を図6を用いて説明する。A、
G、H点は一定速度Vcに切り替える切替えポイントと
する。図6よりG、H点で切り替えた場合(実位置は指
令位置近辺にあるが)速度差=Vh−Vcはゼロではな
く、ばねのポテンシャルエネルギもゼロではない。点A
での切り替えの場合だけその速度差およびばねのポテン
シャルエネルギはゼロとなる。この速度差とばねのポテ
ンシャルエネルギが等価モデルの等価ばねを励振させる
衝撃力となる。従って、唯一、点Aにおける切替えが衝
撃力を発生させない条件となる。系の1次固有値の振動
の節以外の切替えポイントは存在しないことになる。図
6はスタートから点Aに達する時間つまり加速時間Tu
pと系の振動の固有値T1との大きさによりばねに作用
する衝撃力の有無を図式的に表したものである。
This will be described with reference to FIG. A,
Points G and H are switching points for switching to the constant speed Vc. According to FIG. 6, when switching is performed at points G and H (the actual position is near the command position), the speed difference = Vh-Vc is not zero, and the potential energy of the spring is not zero. Point A
The speed difference and the potential energy of the spring become zero only in the case of the switching at. This speed difference and the potential energy of the spring become the impact force that excites the equivalent spring of the equivalent model. Therefore, the only condition is that the switching at the point A does not generate an impact force. There will be no switching points other than nodes of oscillation of the primary eigenvalue of the system. FIG. 6 shows the time from the start to the point A, that is, the acceleration time Tu.
The presence or absence of an impact force acting on the spring is schematically represented by the magnitude of p and the natural value T1 of the vibration of the system.

【0022】図7は、図6で示した3つの加速度の切替
えポイントの場合、衝撃力により以降の系の実速度がど
のように変化するかを示したものである。
FIG. 7 shows how the actual speed of the subsequent system changes due to the impact force at the three acceleration switching points shown in FIG.

【0023】以上の説明から、切り替えポイントの選定
は図4,5,6からも容易に推定可能のように振動の節
を選択すればよく、振動の1次の固有値の整数倍とすれ
ば良いことがわかる
From the above description, the selection of the switching point may be made by selecting a node of the vibration so that it can be easily estimated from FIGS. 4, 5, and 6, and may be set to an integral multiple of the primary eigenvalue of the vibration. Understand

【0024】また、減速時についても加速時とまったく
同様な動作原理がなりたつことは容易に理解できること
であり、説明は省略する。
Further, it is easy to understand that the operation principle at the time of deceleration is exactly the same as that at the time of acceleration, and a description thereof will be omitted.

【0025】切替えポイントとして振動の節(振動の1
次の固有値の整数倍)を選択するためには、メカニズム
の振動系の固有値を測定し、使用するモータの回転数に
合わせてカム曲線を決定する。
As a switching point, a node of vibration (1 of vibration)
In order to select the next eigenvalue (an integral multiple of the eigenvalue), the eigenvalue of the vibration system of the mechanism is measured, and the cam curve is determined according to the rotation speed of the motor to be used.

【0026】コントローラ1はモータ3パワードライブ
と回転数制御を行う。
The controller 1 controls the motor 3 power drive and the rotation speed.

【0027】以上の実施例ではカムの回転軸に対して垂
直な面に溝カムが設けられている例で説明してきたが、
カムは直線的に動くものであっても、また円筒溝カムで
あっても、その従動機構が振動する系であれば上述の考
え方が適用されることは明白である。
In the above embodiment, the example in which the groove cam is provided on the surface perpendicular to the rotation axis of the cam has been described.
It is obvious that the above concept is applied to a cam that moves linearly or a cylindrical groove cam as long as the driven mechanism vibrates.

【0028】[0028]

【発明の効果】以上説明したように本発明によれば、系
の1次固有値の悪影響を、あらゆる振動系に対して完全
に取り除くことが可能となり,低剛性機械の少振動駆動
が可能となり、加減速時間の短縮効果によりメカニズム
の高速化が実現できる。また、メカニズムを高剛性化す
ればするほど固有値が高くなり、従って加減速時間も短
縮でき、更にメカニズムを高速化できることとなる。、
As described above, according to the present invention, it is possible to completely remove the adverse effect of the primary eigenvalue of the system from all vibration systems, and to drive a low-rigidity machine with less vibration. The mechanism can be speeded up by the effect of shortening the acceleration / deceleration time. In addition, the higher the rigidity of the mechanism, the higher the eigenvalue, so that the acceleration / deceleration time can be shortened and the speed of the mechanism can be further increased. ,

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の1実施例でモータにより回転するカム
を駆動し、カムの従動機構部が制御される代表的なメカ
ニズム
FIG. 1 is a typical mechanism in which a cam rotated by a motor is driven and a driven mechanism of the cam is controlled in one embodiment of the present invention.

【図2】図1の従動レバー以降を等価回路にて表現した
概念図
FIG. 2 is a conceptual diagram showing an equivalent circuit after the driven lever in FIG. 1;

【図3】実施例メカニズムにおける目標カム曲線と、そ
のカム曲線に沿って最終可動部7を目標位置に位置付け
するときの指令速度(一般的に使用される加・減速曲線
(台形波状) )を示す図
FIG. 3 shows a target cam curve in the mechanism of the embodiment and a command speed (a commonly used acceleration / deceleration curve) for positioning the final movable portion 7 at a target position along the cam curve.
(Trapezoidal wavy))

【図4】本発明を適用しないで加速度を切替えた場合の
系の実速度と指令速度と加速度切替え点の関係の概念図
FIG. 4 is a conceptual diagram of a relationship between an actual speed, a commanded speed, and an acceleration switching point of a system when the acceleration is switched without applying the present invention.

【図5】本発明を適用した場合の系の実速度と指令速度
と加速度切替え点の関係を示す図
FIG. 5 is a diagram showing a relationship between an actual speed, a command speed, and an acceleration switching point of a system when the present invention is applied;

【図6】スタートから点Aに達する時間すなわち加速時
間Tupと系の振動の固有値T1との大きさによりばね
に作用する衝撃力の有無を図式的に表した図
FIG. 6 is a diagram schematically showing the presence or absence of an impact force acting on a spring depending on the time from the start to the point A, that is, the acceleration time Tup and the magnitude of the eigenvalue T1 of the vibration of the system.

【図7】加速度切替え点と振動の状態を示す図FIG. 7 is a diagram showing an acceleration switching point and a state of vibration.

【符号の説明】[Explanation of symbols]

1 コントローラ 2 モータ 3 カム 3−1 カム溝 4 カムフォロワ 5 従動レバー 5−1 長穴 6 軸 7 最終可動部 8 ピン 9 案内壁 9’ 仮想案内壁 10 等価ばね 11 等価質量 20 カップリング DESCRIPTION OF SYMBOLS 1 Controller 2 Motor 3 Cam 3-1 Cam groove 4 Cam follower 5 Follower lever 5-1 Slot 6 Axis 7 Last movable part 8 Pin 9 Guide wall 9 'Virtual guide wall 10 Equivalent spring 11 Equivalent mass 20 Coupling

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 モータ、前記モータによって駆動される
カム、前記カムによって所定の変位動作をするカムフォ
ロア以降の従動機構からなり、前記従動機構の位置変位
動作において速度をを指令速度まで変化させるときの加
速・減速制御時間を前記従動機構の振動の1次固有値の
周期t1あるいはその整数倍になるようにカム曲線によ
って特定し、前記従動機構の振動を抑制して、前記従動
機構の高速動作を可能としたことを特徴とするメカニズ
ム。
1. A motor driven by a motor, a cam driven by the motor, and a driven mechanism subsequent to a cam follower that performs a predetermined displacement operation by the cam. The acceleration / deceleration control time is specified by a cam curve so as to be a period t1 of the primary eigenvalue of the vibration of the driven mechanism or an integral multiple thereof, thereby suppressing the vibration of the driven mechanism and enabling the driven mechanism to operate at high speed. A mechanism characterized by:
JP2000133230A 2000-05-02 2000-05-02 Vibration damping control cam mechanism Withdrawn JP2001317612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133230A JP2001317612A (en) 2000-05-02 2000-05-02 Vibration damping control cam mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133230A JP2001317612A (en) 2000-05-02 2000-05-02 Vibration damping control cam mechanism

Publications (1)

Publication Number Publication Date
JP2001317612A true JP2001317612A (en) 2001-11-16

Family

ID=18641762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133230A Withdrawn JP2001317612A (en) 2000-05-02 2000-05-02 Vibration damping control cam mechanism

Country Status (1)

Country Link
JP (1) JP2001317612A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210010A (en) * 2009-03-10 2010-09-24 Nippon Telegr & Teleph Corp <Ntt> Pseudo-inner force sense generating device
WO2016170907A1 (en) * 2015-04-21 2016-10-27 アルプス電気株式会社 Sense of force-generating apparatus
CN111030412A (en) * 2019-12-04 2020-04-17 瑞声科技(新加坡)有限公司 Vibration waveform design method and vibration motor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010210010A (en) * 2009-03-10 2010-09-24 Nippon Telegr & Teleph Corp <Ntt> Pseudo-inner force sense generating device
WO2016170907A1 (en) * 2015-04-21 2016-10-27 アルプス電気株式会社 Sense of force-generating apparatus
JPWO2016170907A1 (en) * 2015-04-21 2018-02-15 アルプス電気株式会社 Force generation device
US10389220B2 (en) 2015-04-21 2019-08-20 Alps Alpine Co., Ltd. Force sense generator
CN111030412A (en) * 2019-12-04 2020-04-17 瑞声科技(新加坡)有限公司 Vibration waveform design method and vibration motor

Similar Documents

Publication Publication Date Title
Meckl et al. Optimized s-curve motion profiles for minimum residual vibration
JP4980386B2 (en) Active electromagnetic damping system for spindle motor
US11349413B2 (en) Method for closed-loop motion control for an ultrasonic motor
EP0401018A2 (en) Ultra-precise positioning system
JP2001317612A (en) Vibration damping control cam mechanism
EP2074397A2 (en) Coupled mems structure for motion amplification
Meckl et al. Achieving fast motions in semiconductor manufacturing machinery
Nakagawa et al. Nonlinear dynamic analysis of traveling wave-type ultrasonic motors
JP5834628B2 (en) Actuator control method and actuator control apparatus
JP2001309678A (en) Drive control method for servomotor and control device
JP6091316B2 (en) Speed control mechanism of vibration type drive device, vibration type drive device, electronic apparatus, and speed control method
JP7286453B2 (en) CONTROL DEVICE, VIBRATION ACTUATOR, IMAGING DEVICE, AND CONTROL METHOD
WO2008072307A1 (en) Balance correction device and method
JP4415631B2 (en) Control device
Necsulescu et al. Investigation on the efficiency of acceleration feedback in servomechanism with friction
JP2005103739A5 (en)
Crassidis et al. A Slewing Motor-Beam System With Coulomb Friction Including Experimental Results
JP4840987B2 (en) Positioning control device for equipment related to electronic component mounting
JP6484961B2 (en) Drive device, lens barrel
Kim et al. Voice coil motor nano stage with an eddy current damper
JPH09103094A (en) Method for gently starting, stopping or changing speed of stepping motor
WO2023238329A1 (en) Motor control device and machinery
JP4491401B2 (en) Motor driving circuit and motor driving method
JP3670892B2 (en) Control device for parallel mechanism
JP2670370B2 (en) Ultrasonic motor controller

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703