JP2001314849A - Vacuum distillation type waste liquid treatment apparatus - Google Patents
Vacuum distillation type waste liquid treatment apparatusInfo
- Publication number
- JP2001314849A JP2001314849A JP2000176115A JP2000176115A JP2001314849A JP 2001314849 A JP2001314849 A JP 2001314849A JP 2000176115 A JP2000176115 A JP 2000176115A JP 2000176115 A JP2000176115 A JP 2000176115A JP 2001314849 A JP2001314849 A JP 2001314849A
- Authority
- JP
- Japan
- Prior art keywords
- waste liquid
- floating
- vacuum
- distillation
- vacuum distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、各種の生産プロセスで
発生する廃液の処理に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of waste liquid generated in various production processes.
【0002】[0002]
【従来の技術】従来、各種の生産プロセスで発生する廃
液の処理方法の一つに真空蒸留方式が用いられている。
真空蒸留方式には下記の問題点がある。真空に排気する
ための真空系統の諸設備が必要で、設備費・保守費が高
くなる。装置は機密を保つために常に保守点検が必要で
ある。真空中では熱の伝達がスムーズにいかないため、
沸騰現象が使いにくく、大きい伝熱面積と大きい温度差
を必要とする。凝縮器の温度を低くするために、冷却装
置を必要とする。これらの問題があり、システム設備と
その付帯設備が大掛かりになり、設備費が高く・設備面
積も大きく・設備の維持管理や自動制御が複雑になる問
題があった。小型化が困難な上連続処理が出来ずにバッ
チ処理になり、そのバッチ処理時間が長くなり処理効率
が良いとは云えず廃液処理で使用出来る範囲が限られて
いた。これを工場内の生産設備のラインサイドに設置が
出来る小型で、連続処理を可能にする出願番号・特願平
11−376553・真空蒸留方式廃液処理を出願をし
た。この発明は従来より優れた効率で小型化が出来た
が、真空蒸留タンク(21)の廃液入り口に設けたノズ
ルから霧状に吹き出して、蒸発表面積を飛躍的に増大さ
せる真空蒸留方式廃液処理装置として設定し出願をし
た。このノズルから霧状に吹き出すために、廃液の粘性
が高い場合や廃液濃度が高くなるとノズルが詰まった
り、小型の設備で廃液の処理量を大きくしようとする
と、ノズルから入る霧状にできる量で制約があった。
又、水より比重が軽く浮上する成分の多い廃液は溜まっ
てくる傾向が出て、これらのために処理が可能な廃液の
種類に制約があった。特願平11−376553で小型
化をしたが、工場の生産設備の横にインラインで設置を
しようとすると、その空きスペースが非常に小さい所が
多くて、更に小型化することと、排出する廃液量が以外
に大きい工場もあり、蒸留効率を上げる必要が出てき
た。2. Description of the Related Art Conventionally, a vacuum distillation method has been used as one of methods for treating waste liquid generated in various production processes.
The vacuum distillation method has the following problems. Various equipment of a vacuum system for evacuating to a vacuum is required, which increases equipment and maintenance costs. The equipment requires constant maintenance to keep it confidential. Since heat transfer does not go smoothly in a vacuum,
The boiling phenomenon is difficult to use, requiring a large heat transfer area and a large temperature difference. In order to lower the condenser temperature, a cooling device is required. Due to these problems, the system equipment and its auxiliary equipment become large-scale, and the equipment cost is high, the equipment area is large, and the maintenance and automatic control of the equipment are complicated. It is difficult to reduce the size, and continuous processing cannot be performed, resulting in batch processing. The batch processing time is prolonged and the processing efficiency is not good, and the range of use in waste liquid processing is limited. We filed an application number, Japanese Patent Application No. Hei 11-376553, and a vacuum distillation type waste liquid treatment that can be installed on the line side of a production facility in a factory and that enables continuous processing. Although the present invention was able to reduce the size with higher efficiency than before, a vacuum distillation type waste liquid treatment apparatus which blows out mist from a nozzle provided at the waste liquid inlet of the vacuum distillation tank (21) to dramatically increase the evaporation surface area. We set as and filed. The nozzle is clogged when the viscosity of the waste liquid is high or the concentration of the waste liquid is high because the nozzle sprays out in the form of a mist. There were restrictions.
Further, waste liquid having a specific gravity lower than that of water and containing many components tends to accumulate, so that there are restrictions on the types of waste liquid that can be treated. Although the size was reduced in Japanese Patent Application No. Hei 11-376553, if the in-line installation was attempted next to the production equipment in the factory, the empty space was very small in many places. Some plants have large volumes besides the amount, and it is necessary to increase the distillation efficiency.
【0003】[0003]
【発明が解決しようとする課題】真空蒸留方式廃液処理
装置は、化学的処理のように薬品を使用しないので、処
理後に廃棄をするスラッジが非常に少なくなる特徴があ
る。又、薬品が混合しないので余分に増加するスラッジ
が無くなり、使用した廃液の老化した浮上廃液やスラッ
ジは、濾過や精製をしてリサイクルまで出来て廃棄物を
出さなくなる可能性を秘める廃液処理方法といえる。バ
ッチ処理を連続処理が出来るようにする。廃液処理効率
を更に上げて小型化をする。悪臭や装置の周囲温度を押
さえて、工場内の生産ラインサイド等何処でも自由に設
置出来るようにする。これに該当する特許を特願平11
−376553・真空蒸留方式廃液処理装置を出願済み
である。これをベースにして更に、バッチ処理でなく連
続処理が出来る。廃液を真空蒸留タンクに流入させるノ
ズルの吐出量を増やす。廃液処理能力を更に上げる。加
熱する熱効率を更に上げる。真空蒸留ガスの凝縮効率を
上げる。特願平11−376553では、十分で無かっ
た浮上廃液の連続回収をする。等の改良をしたものであ
る。The vacuum-distillation-type waste liquid treatment apparatus does not use chemicals unlike chemical treatment, and therefore has a feature that sludge to be discarded after treatment is extremely small. In addition, since there is no mixing of chemicals, there is no sludge that increases excessively. I can say. Enables continuous batch processing. Further increase wastewater treatment efficiency and reduce size. The odor and the ambient temperature of the equipment are suppressed, so that the equipment can be installed freely anywhere on the production line side of the factory. The corresponding patent is filed in Japanese Patent Application Hei 11
-376553-Vacuum distillation system waste liquid treatment device has been filed. Based on this, continuous processing can be performed instead of batch processing. Increase the discharge rate of the nozzle that allows the waste liquid to flow into the vacuum distillation tank. Further increase wastewater treatment capacity. Further increase the thermal efficiency of heating. Increase the efficiency of vacuum distillation gas condensation. In Japanese Patent Application No. 11-376553, continuous recovery of a floating waste liquid that was not sufficient was performed. And so on.
【0004】[0004]
【課題を解決するための手段】(図−1)は、本発明の
真空蒸留方式廃液処理装置の機能区分をし、ブロック化
した部分装置をまとめた全体ブロック経路図である。矢
印は部分装置間の配管内の流れを示す。廃液は、廃液挿
入装置(1)から真空蒸留装置(2)に特願平11−3
76553では小さい口径のノズルで霧状に入れたが、
大きい口径のノズルで液滴状にして吹き出す。ノズルの
吹き出し前に加熱器を設けて、廃液を加熱して液滴状に
吹き出す。真空蒸留装置(2)の下に溜まった廃液を廃
液循環装置(3)で繰り返し循環により、ノズルから液
滴を吹き出して循環をする。廃液循環装置(3)の経路
内に浮上ガス廃液分離回収装置(4)を設けて、浮上す
る蒸留ガスを分離し再循環をする槽と、浮上する浮上廃
液を分離回収する漕の作用区分をした2漕により連続的
に浮上廃液を取り出す。廃液循環装置(3)の経路内に
一体型浮上物廃液回収装置(6)を設けて、浮上する廃
液と蒸留ガスを分離して連続的に取り出す。浮上する蒸
留ガスは、真空蒸留装置(3)に溜まっている廃液の下
側に蒸留ガス循環ノズル(44)を設け、そのノズルか
らバブリングをさせながら循環して挿入をする。真空蒸
留装置(2)内で沈降するスラッジは、特願平11−3
76553に記載したスラッジ回収装置(8)で濃縮を
しながら下へ連続的に取りだす。真空吸引装置(9)
は、特願平11−376553に記した真空ポンプに脱
臭カラムを取り付けて大気開放をする。これにより、真
空蒸留方式廃液処理装置の蒸留性能を飛躍的に向上さ
せ、小型化し、熱効率を高め・廃液の性質に限定をされ
ず、少ない設備費・設置面積を少なくし連続処理を可能
にしたものである。特願平11−376553のように
排気口に、排気脱臭カラム・廃水口に凝縮水脱臭カラム
を設けて、作業環境を悪くせずに生産ラインサイドへの
設置する事も出来るようにしたものである。以下、装置
のブロック各部分の詳細について説明をする。FIG. 1 is an overall block diagram showing functional blocks of a vacuum distillation type waste liquid treatment apparatus according to the present invention, in which block units are grouped. Arrows indicate the flow in the pipe between the partial devices. The waste liquid is sent from the waste liquid insertion device (1) to the vacuum distillation device (2) in Japanese Patent Application No. 11-3.
In 76553, it was misted with a small-diameter nozzle,
Spray out droplets with a large-diameter nozzle. A heater is provided before the nozzle blows out, and the waste liquid is heated and blown out in the form of droplets. The waste liquid accumulated under the vacuum distillation device (2) is repeatedly circulated by the waste liquid circulation device (3), thereby discharging and circulating droplets from nozzles. A floating gas waste liquid separation / recovery device (4) is provided in the path of the waste liquid circulation device (3) to separate the recirculation of separated floating gas and a tank for separating and recovering the floating floating liquid. The floating waste liquid is continuously taken out by the two tanks. An integrated floating waste liquid recovery device (6) is provided in the path of the waste liquid circulation device (3), and the floating waste liquid and the distillation gas are separated and continuously taken out. Distilling gas that floats is provided with a distillation gas circulation nozzle (44) below the waste liquid stored in the vacuum distillation device (3), and is circulated and inserted from the nozzle while bubbling. Sludge settling in the vacuum distillation apparatus (2) is disclosed in Japanese Patent Application No. 11-3 / 1999.
It is continuously taken down while being concentrated by the sludge collecting device (8) described in 76553. Vacuum suction device (9)
Is mounted on a vacuum pump described in Japanese Patent Application No. 11-376553 and a deodorizing column is opened to the atmosphere. As a result, the distillation performance of the vacuum distillation type waste liquid treatment equipment has been dramatically improved, the size has been reduced, the thermal efficiency has been increased, the properties of the waste liquid have not been limited, and the facility processing has been reduced, the installation area has been reduced, and continuous processing has been enabled. Things. As in Japanese Patent Application No. Hei 11-376553, an exhaust port, an exhaust deodorizing column, and a condensed water deodorizing column at the wastewater port are provided so that they can be installed on the production line side without deteriorating the work environment. is there. Hereinafter, the details of each block of the apparatus will be described.
【0005】(図−2)のように廃液挿入装置(1)
は、廃液挿入ホッパー(11)に設けたバルブ1(1
2)を廃液フロート(13)で、廃液液面を一定にコン
トロールしながら連続的に挿入をする。これで、廃液上
澄みをを浮上ガス廃液分離回収装置(4)又は、一体型
浮上物廃液回収装置(6)・沈降したスラッジをスラッ
ジ回収装置(8)でそれぞれ連続的に取り出して減少す
る分を真空蒸留装置(2)内の廃液を液面レベルをコン
トロールしながら供給をし、連続的に真空蒸留方式廃液
処理装置が稼働出来る。[0005] As shown in FIG. 2, a waste liquid insertion device (1)
Is a valve 1 (1) provided in the waste liquid insertion hopper (11).
2) Insert continuously with the waste liquid float (13) while controlling the liquid level of the waste liquid constantly. Thus, the waste liquid supernatant is continuously taken out by the floating gas waste liquid separation / recovery device (4), or the integrated floating material waste liquid recovery device (6) and the sludge that has settled down by the sludge recovery device (8), and the amount of the reduced waste is reduced. The waste liquid in the vacuum distillation apparatus (2) is supplied while controlling the liquid level, and the vacuum distillation system waste liquid processing apparatus can be continuously operated.
【0006】(図−2)のように真空蒸留装置(2)の
廃液を真空蒸留タンク(21)に廃液を挿入するとき、
液滴ノズル(15)を設けて液滴状にしていれる。この
時、その液滴状の廃液が真空の回路に吸引をしないよう
にするために、遮断板(16)を設けて衝突をさせて蒸
留ガスと廃液を分離し、廃液を真空蒸留タンク(21)
の下部にためる。When the waste liquid of the vacuum distillation apparatus (2) is inserted into the vacuum distillation tank (21) as shown in FIG.
A droplet nozzle (15) is provided to form a droplet. At this time, in order to prevent the liquid waste in the form of droplets from being sucked into the vacuum circuit, a cut-off plate (16) is provided so that the waste liquid and the waste liquid are collided, and the waste liquid is separated from the vacuum distillation tank (21 )
To the bottom.
【0007】真空減圧をしていくと蒸気圧平衡に達して
蒸発を全くしなくなり、真空減圧過程でこの減圧変化が
蒸発を促進している。従来は、廃液液面からの蒸発によ
っていたので、その蒸発面積を大きくするために真空容
器の直径を大きくしていたので、設備が大きくなる要因
となっていた。この真空減圧変化を取り込むことで真空
蒸留性能を上げられる。この真空蒸発をしやすい減圧変
化プロセスを廃液処理装置に取り込むことと、廃液の真
空接触表面積を拡大するために、特願平11−3765
53では霧状にして蒸留効率を上げた。廃液の種類によ
っては、粘性の高い物・異物混入の多い物・異物混入サ
イズの大きな物等があり、全て霧状にするには無理があ
り処理が出来る廃液の種類に制約があった。その、霧状
にするためにノズルの口径0.3−1.5mmと小さく
していたので詰まりやすくノズルからの吐出量も限られ
て、処理能力を大きくする上でも制約となっていた。ノ
ズルの口径を大きくして、霧状よりもっと荒い液滴を使
用することでノズルの詰まりを防止して、色々な状態の
廃液に幅広く使用出来るようにするものである。液滴は
ノズルの口から吐出をするときに進行方向の垂直面に拡
がる。この拡がった廃液が平行か垂直の間に衝突をさせ
る障害物があれば、出来る液滴に多少の大小があるが問
題無く液滴化が出来る。(図−3)の液滴ノズル(1
5)に示す通り、スリット・金網・多数穴をあけたりし
た簡単なノズル形状のものを、平行障害物(18)や垂
直障害物(19)になるようにすれば良い。廃液の状態
によってノズル口径(17)大きくすることで霧が液滴
になりやすく、廃液の性質に応じたノズル形状やノズル
口径を自由に選択出来る物である。ノズルからの液滴吐
出による蒸留能力を試験した状態を下記に示す。ノズル
形状は、液滴ノズル(15)のノズル口径(17)が5
mmのスリットを選択し、50リットルの真空蒸留装置
に5,000ccの常温の水を真空蒸留をさせて凝縮液
が、1,000cc溜まる時間を比較した。 従来方法 15分12秒 特願平11−376553の霧状吐出 12分16秒 上記のスリット状液滴ノズルの液適吐出 11分48秒 その結果、液滴ノズルから吐出をする時間を測定しなか
ったが、早く吐出を完了した。その後は従来と同じ下か
ら液状に入れる液面蒸発によって出したものである。液
滴ノズルから吐出をすると蒸発効率が約20%程度あが
る。このことは、液滴ノズルから吐出をする極く短時間
に20%分が蒸留されることになり、その効率が非常に
高くなる。従って、液滴ノズルからの吐出を繰り返した
ら飛躍的な蒸留効率になる。従来の方法では効率を高め
るために、真空に接する表面積を大きくする工夫がされ
ているが、原理的に液面からの蒸留によっている。表面
積で見る限り液滴より霧状の方が短時間で1,000c
cの凝縮水がたまると思われたが、少しだけ液滴の方が
良い結果となった。これは、ノズルから液滴吐出をして
も真空蒸留タンク(21)で急激に減圧されるので、液
滴表面ばかりでなく吐出による減圧変化で液滴内部から
も減圧発泡も得られるために、表面積が大きくなる霧状
の蒸留性能より少し多い蒸留量となった。[0007] As the vacuum pressure is reduced, the vapor pressure equilibrium is reached and no evaporation occurs, and the change in the reduced pressure promotes the evaporation during the vacuum pressure reduction process. Conventionally, evaporation from the liquid surface of the waste liquid has been performed, and the diameter of the vacuum vessel has been increased in order to increase the evaporation area, which has been a factor of increasing the size of the equipment. The vacuum distillation performance can be improved by taking in the change in vacuum pressure. Japanese Patent Application No. 11-3765 discloses a process for changing the reduced pressure, which facilitates vacuum evaporation, into a waste liquid treatment apparatus and expanding the vacuum contact surface area of the waste liquid.
At 53, the distillation efficiency was increased by atomization. Depending on the type of the waste liquid, there are a viscous substance, a substance with a large amount of foreign substances, a substance with a large foreign substance size, and the like. Since the diameter of the nozzle was reduced to 0.3-1.5 mm in order to form a mist, the nozzle was easily clogged, the discharge amount from the nozzle was limited, and there was a restriction in increasing the processing capacity. By increasing the diameter of the nozzle and using coarser droplets than the mist, the nozzle can be prevented from clogging, and can be widely used for waste liquid in various states. The droplet spreads on a vertical surface in the traveling direction when ejected from the nozzle opening. If there is an obstacle that causes the expanded waste liquid to collide between the parallel and vertical directions, the resulting droplets can be formed into droplets without any problem, although there are some sizes. (Fig. 3)
As shown in 5), a simple nozzle having a slit, a wire mesh, and a large number of holes may be used as the parallel obstacle (18) or the vertical obstacle (19). By increasing the nozzle diameter (17) depending on the state of the waste liquid, the mist tends to become droplets, and the nozzle shape and nozzle diameter can be freely selected according to the properties of the waste liquid. The state in which the distillation ability by discharging the droplet from the nozzle was tested is shown below. The nozzle shape is such that the nozzle diameter (17) of the droplet nozzle (15) is 5
A slit of mm was selected, and 5,000 cc of room temperature water was distilled under vacuum in a 50 liter vacuum distillation apparatus. Conventional method 15 minutes 12 seconds Mist discharge of Japanese Patent Application No. 11-376553 12 minutes 16 seconds Appropriate liquid discharge of the slit-shaped droplet nozzle 11 minutes 48 seconds As a result, the time for discharging from the droplet nozzle was not measured. However, the ejection was completed earlier. After that, it is produced by evaporating the liquid level into the liquid from below as in the prior art. Ejection from the droplet nozzle increases the evaporation efficiency by about 20%. This means that 20% of the liquid is discharged from the droplet nozzle in a very short time, and the efficiency is extremely high. Therefore, if the ejection from the droplet nozzle is repeated, the distillation efficiency will be remarkable. In the conventional method, in order to increase the efficiency, a device for increasing the surface area in contact with vacuum is devised, but in principle, distillation is performed from the liquid surface. In terms of surface area, mist is 1,000 c faster than droplets
Although it was thought that the condensed water of c accumulated, the result was slightly better for the droplets. This is because even if the droplet is discharged from the nozzle, the pressure is rapidly reduced in the vacuum distillation tank (21), so that the decompression bubbling is obtained not only from the surface of the droplet but also from the inside of the droplet due to a change in the reduced pressure due to the discharge. The distillation amount was slightly larger than the mist-like distillation performance in which the surface area was large.
【0008】飽和蒸気圧は、温度に依存をし温度が高い
ほど飽和蒸気圧が高くなり蒸発をしやすくなる。液滴ノ
ズル(15)から液滴状に吹き出す手前で、廃液の温度
を廃液加熱器(14)で加熱をしその液滴の温度を上げ
て置くと蒸留効率が向上する。廃液加熱器(14)は配
管パイプの周囲を保温材で囲い、配管と保温材のあいだ
に加熱源のヒーター・ガス・高温水蒸気を通して加熱を
する。廃液の種類や性質によって蒸留しやすい条件の温
度が取れるように廃液加熱器(14)の加熱する長さを
設定する物である。この場合、ガスや高温水蒸気のよう
な加熱気体を用いる時、液滴ノズル(15)に近い部分
を加熱気体の入り口にし垂直に上昇気流で加熱をして、
上側から放出すると無駄なく加熱効果が高く取れる。液
滴ノズル(15)から出る廃液の温度による蒸発効果を
グラフに現したものを(試験例−1)に示す。試験方法
は、50リットルの真空蒸留容器に30リットルの水道
水を入れて、試験用真空蒸留容器の周囲を電気ヒーター
で加熱をしたものと、液滴ノズル(15)のスリット方
式でノズル口径(17)5mmとし、ノズルの口元をパ
イプと保温材の間に空間を作りプロパンガスで加熱をし
ながら、1時間に凝縮器に溜まった水分量を測定した。
実際の設定した試験では水道水の流れる量とプロパンガ
スの加熱能力と電気ヒーターの加熱能力の関係で75度
が限界となり、それ以上上げることは困難であった。そ
の結果、常温以下の低い所では水分凝縮量が少なく、高
くなるに従い廃液加熱器(14)の加熱容量を非常に大
きくしなければ水道水の温度が上がらず、グラフで見た
勾配がきつめの、約35−60度に効率の良い所がある
のが解った。加熱温度を高くするに従い溜まる凝縮水量
のグラフがねてきて、加熱器が大きい容量がいり、尚か
つ加熱時間がながくなり、蒸留ガス温度も高くなって凝
縮がしにくくなるので返って全体の効率が悪くなる。
又、切削廃液の温度を70度まで上げて真空蒸留をして
みたところ、臭いが非常につよくなり、廃液は変色を起
こしたり部分的に固化したりして良好な液状を維持する
廃液処理になりにくかった。このことからも廃液の種類
によって適切な処理温度があり、高すぎる一方は問題が
あった。処理をする廃液の性質や濃度・粘性等が一定で
ないので、真空蒸留タンク(21)の下に溜めて真空蒸
留をする従来のバッチ処理では、不安定過ぎて一定の管
理巾でコントロールが出来ない場合が出てくる。このよ
うな場合でも、液滴ノズル(15)は液滴表面と内部発
泡からの蒸留が得られるので、ノズル口径(17)や衝
突をさせる障害物の形状で簡単に液滴吐出の状態を変え
たりしてコントロールする事が出来る。The saturated vapor pressure depends on the temperature, and the higher the temperature, the higher the saturated vapor pressure and the easier the vaporization. If the temperature of the waste liquid is heated by the waste liquid heater (14) to raise the temperature of the droplet before the droplet is blown out from the droplet nozzle (15), the distillation efficiency is improved. The waste liquid heater (14) surrounds the pipe with a heat insulating material, and heats the space between the pipe and the heat insulating material by passing a heater source gas, high-temperature steam, and the like. The heating length of the waste liquid heater (14) is set so as to obtain a temperature under conditions that facilitate distillation depending on the type and properties of the waste liquid. In this case, when a heating gas such as gas or high-temperature steam is used, a portion close to the droplet nozzle (15) is used as an inlet of the heating gas and is heated vertically by an ascending airflow.
When released from the upper side, a high heating effect can be obtained without waste. A graph showing the evaporation effect of the temperature of the waste liquid from the droplet nozzle (15) depending on the temperature is shown in (Test Example-1). The test method was as follows: 30 liters of tap water was placed in a 50 liter vacuum distillation vessel, and the periphery of the test vacuum distillation vessel was heated by an electric heater. 17) The space of the nozzle was set to 5 mm, a space was formed between the pipe and the heat insulating material, and the amount of water accumulated in the condenser in one hour was measured while heating with propane gas.
In an actually set test, the limit was 75 degrees due to the relationship between the amount of tap water flowing, the heating capacity of propane gas, and the heating capacity of the electric heater, and it was difficult to increase it further. As a result, the amount of water condensed is low in low places below room temperature, and as the temperature increases, the tap water temperature does not rise unless the heating capacity of the waste liquid heater (14) is made very large, and the gradient seen in the graph has a tight gradient. It was found that there was an efficient part at about 35-60 degrees. The graph of the amount of condensed water that accumulates as the heating temperature increases increases.The heater requires a larger capacity, the heating time is reduced, and the distillation gas temperature increases, making it difficult to condense. Gets worse.
In addition, when the temperature of the cutting waste liquid was raised to 70 ° C and vacuum distillation was performed, the smell became very strong, and the waste liquid was discolored or partially solidified to maintain a good liquid state. It was difficult. From this, there is an appropriate treatment temperature depending on the type of the waste liquid, and one which is too high has a problem. Since the properties, concentration, viscosity, etc. of the waste liquid to be treated are not constant, the conventional batch treatment in which the waste liquid is collected under a vacuum distillation tank (21) and vacuum distilled is too unstable to control with a fixed control width. The case comes out. Even in such a case, since the droplet nozzle (15) can obtain distillation from the droplet surface and internal foaming, the droplet discharge state can be easily changed by the nozzle diameter (17) or the shape of an obstacle to collide. Or control it.
【0009】液滴ノズル(15)の吐出分離や特願平1
1−376553と同じスラッジ回収装置(8)の加熱
器による濃縮で沈降するスラッジは回収されるが、蒸留
ガスと比重の小さい浮上廃液が上昇をする。この浮上廃
液を(図−4)の廃液循環装置(3)ように廃液液面よ
り上から廃液循環ポンプ(33)に接続をする配管部ま
で、フード傾斜(32)をさせたフード(31)で捕集
をし廃液循環ポンプ(33)で吸引をする。この時、廃
液液面の廃液フロート(13)はフード(31)の少し
下と廃液循環ポンプ(33)の入り口の高さの間でコン
トロールをさせて、浮上廃液が上昇をして濃度の高い上
側から廃液循環ポンプ(33)で吸い込むようにする。
この浮上廃液を浮上ガス廃液分離回収装置(4)か一体
型浮上物分離回収装置(6)で分離回収しながら、分離
後の廃液をバルブ1(12)と廃液加熱器(14)の間
の配管に接続をして、液滴ノズル(15)から吐出し循
環をさせる。循環をさせることにより同じ廃液が液滴で
真空蒸留する回数が増え効率が上がる。廃液処理後の浮
上廃液とスラッジ除去された量だけ廃液挿入装置(1)
から自動的に供給され、処理される廃液の性質や濃度・
粘性が変化をしてもノズル口径(17)や平行障害物
(18)・垂直障害物(19)の選択で無関係に操業が
出来る。相違してくるのは処理速度が変わるだけで済
み、遅くなったら廃液循環ポンプ(33)の能力を上げ
て、廃液の循環回数を増すことで簡単に早くすることが
出来る。循環による真空蒸発の能力をグラフにして(試
験例−2)に示す。試験方法は、真空蒸留タンク(2
1)の容積50リットルに30リットルの水道水を入
れ、循環ポンプの能力1分当たり2リットル・廃液加熱
器(23)をガス加熱をして配管出口の温度を50度に
なるようにガスの火力を調整した。蒸留量は凝縮して溜
まった凝縮液の量を測った。その結果、30リットルの
水を循環して真空蒸留をすると、始めの30リットルが
徐々に減少をするので徐々に処理量が低下をすると予想
をした。結果は2リットルの循環ポンプが30リットル
分を15分で一巡をすることになり、その一巡当たり平
均4.1リットルの真空蒸留がほぼ一定量の処理量にな
った。(試験例−1)での液滴ノズルからの蒸留量が約
1.4リットルに較べて大きくなっているのは、液滴が
1回出て後は下に溜まった液面からの蒸留と、連続的に
液滴を吐出をしていることの差であり、液滴による吐出
が非常に良い蒸留効率になっている。これは、液滴ノズ
ル(15)を通過する水量で蒸留出来る量が決まり、通
過する水量が一定なら処理が出来る量が一定となること
を示している。即ち、循環の回数を多くして液滴ノズル
((15)の通過量が増えれば比例して蒸留量が増大す
る結果を示している。当然、真空蒸留タンク(21)の
真空度を一定に保持することは必要である。その真空度
が維持出来る範囲なら真空蒸留タンクは直径を大きくす
る必要がなくなり小さくすることが出来る。真空度を維
持するために大きな真空ポンプ容量にすれば、真空蒸留
タンクの容積は極端に小さくすることも可能である。[0009] Discharge separation of the droplet nozzle (15) and Japanese Patent Application No.
The sludge settled by concentration by the heater of the same sludge collection device (8) as that of 1-376553 is collected, but the floating waste liquid having a small specific gravity relative to the distillation gas rises. The hood (31) having the hood inclined (32) from above the waste liquid level to a pipe portion connected to the waste liquid circulation pump (33) as in the waste liquid circulation device (3) of FIG. 4 (FIG. 4). , And aspirate with a waste liquid circulation pump (33). At this time, the waste liquid float (13) on the surface of the waste liquid is controlled between slightly below the hood (31) and the height of the inlet of the waste liquid circulation pump (33), so that the floating waste liquid rises and has a high concentration. The liquid is sucked from the upper side by the waste liquid circulation pump (33).
While separating and recovering the floating waste liquid by the floating gas waste liquid separation and recovery device (4) or the integrated floating material separation and recovery device (6), the separated waste liquid is separated between the valve 1 (12) and the waste liquid heater (14). It is connected to a pipe and discharged from the droplet nozzle (15) to circulate. By circulating, the number of times the same waste liquid is vacuum-distilled as droplets increases, and the efficiency increases. Waste liquid insertion device (1) for the amount of floating waste liquid and sludge removed after waste liquid treatment
And concentration of waste liquid that is automatically supplied from
Even if the viscosity changes, the operation can be performed irrespective of the selection of the nozzle diameter (17) and the parallel obstacle (18) / vertical obstacle (19). The only difference is that the processing speed is changed. If the processing speed becomes slower, the capacity of the waste liquid circulation pump (33) is increased to increase the number of times the waste liquid is circulated. The capacity of vacuum evaporation by circulation is shown in a graph (Test Example-2). The test method was a vacuum distillation tank (2
30 liters of tap water is put into 50 liters volume of 1), and the circulating pump capacity is 2 liters per minute. The waste liquid heater (23) is heated with gas so that the temperature at the pipe outlet becomes 50 degrees. The firepower was adjusted. The amount of distillation was measured by measuring the amount of condensate that had condensed and accumulated. As a result, when circulating 30 liters of water and performing vacuum distillation, it was expected that the throughput would gradually decrease because the first 30 liters would gradually decrease. The result is that the 2 liter circulation pump makes one cycle of 30 liters in 15 minutes, and an average of 4.1 liters of vacuum distillation per cycle has resulted in an almost constant throughput. The reason why the amount of distillation from the droplet nozzle in (Test Example-1) is larger than about 1.4 liters is that the droplet comes out once, and after that, it is distilled from the liquid level collected below. This is the difference between continuous discharge of droplets, and discharge by droplets has very good distillation efficiency. This indicates that the amount that can be distilled is determined by the amount of water that passes through the droplet nozzle (15), and that the amount that can be treated is constant if the amount of water that passes is constant. In other words, the results show that the distillation amount increases in proportion to the number of circulations and the passage amount of the droplet nozzle ((15) increases.) Naturally, the degree of vacuum of the vacuum distillation tank (21) is kept constant. If the degree of vacuum can be maintained, the diameter of the vacuum distillation tank can be reduced without having to increase the diameter.If a large vacuum pump capacity is used to maintain the degree of vacuum, vacuum distillation can be performed. The volume of the tank can be extremely small.
【0010】従来の真空蒸留タンクは、真空度が固定さ
れると周囲を加熱して廃液温度を上げることが、蒸留効
率を上げることに繋がっていた。従って、廃液全体の温
度を上げるために大きな熱源と熱量が必要になってい
た。特願平11−376553では、廃液全体を加熱す
る加熱器とスラッジ回収装置(5)に加熱器を設けた。
液滴ノズル(15)の入り口に廃液加熱器(14)を設
けることで、真空蒸留タンク全体を加熱する必要が無く
なり、スラッジ回収装置(8)の加熱器と液滴の蒸留効
果で十分な真空蒸留効率が得られるようになり、必要な
部分熱源で済むようになった。その結果、加熱に要する
熱エネルギーは約20−30%で済むようになった。こ
とにスラッジ回収装置(8)にガス等の気体を用いた加
熱にすると、その加熱の上昇気流を真空蒸留タンク(2
1)の周囲加熱に活用して17%まで下げることが出来
た。加熱をする部分が2カ所にしたために温度を必要と
する以外の部分では、比較的低温になり真空蒸留した蒸
留ガス温度も低下をし凝縮効率もよくなった。In a conventional vacuum distillation tank, when the degree of vacuum is fixed, heating the surroundings to increase the waste liquid temperature has led to an increase in the distillation efficiency. Therefore, a large heat source and a large amount of heat are required to raise the temperature of the entire waste liquid. In Japanese Patent Application No. 11-376553, a heater for heating the entire waste liquid and a heater for the sludge collecting device (5) are provided.
By providing a waste liquid heater (14) at the entrance of the droplet nozzle (15), it is not necessary to heat the entire vacuum distillation tank, and a sufficient vacuum is provided by the heater of the sludge recovery device (8) and the effect of droplet distillation. Distillation efficiency is now available, requiring only the necessary partial heat source. As a result, the heat energy required for heating has been reduced to about 20-30%. In particular, when the sludge recovery device (8) is heated by using a gas such as a gas, the rising airflow of the heating is transferred to the vacuum distillation tank (2).
It was possible to reduce to 17% by utilizing the surrounding heating of 1). Except for the need for temperature because of two heating parts, the temperature was relatively low, the temperature of the vacuum-distilled gas was reduced, and the condensation efficiency was improved.
【0011】(図−5)の浮上ガス廃液分離回収装置
(4)は廃液循環ポンプ(33)を出た循環廃液を、廃
液流量調整弁(34)を通して浮上ガス分離器(41)
内のガス浮上邪魔板(42)に衝突をさせて、廃液内で
発生する蒸留ガスを分離浮上させる。分離した蒸留ガス
を上部から流量調整弁1(43)を通して、蒸留ガス循
環ノズル(44)から真空蒸留タンク(21)内廃液の
下側から入れる。その蒸留ガスが真空蒸留タンク(2
1)内の溜まった廃液をバブリングをするので、浮上を
促進することが出来る。蒸留ガス循環ノズル(44)の
口径があまり小さいとバブリングの泡が小さくなって浮
上をしにくくなり、逆にあまり大きいと大きな泡となっ
てバブリング効果が期待できなくなる。このバブリング
によい適切な泡の大きさは、廃液の性質で出てくる速度
や量で一概に特定することが困難であるので、廃液が排
出する蒸留ガスによってノズルの口径や設置する数を選
択しなければならない。更に、廃液流量調整弁(43)
で廃液ガスの流量を調整して適切な泡の状態にするもの
である。蒸留ガスの分離が終わった循環廃液は、流量調
整弁2(46)を通して浮上廃液分離器(47)内の浮
上廃液邪魔板(48)に衝突と上下に流れる方向性を取
って廃液の浮上を促進して浮上廃液分離器(43)の上
方に集める。残った廃液の循環への経路は、廃液循環パ
イプ(49)でバルブ1(12)と廃液加熱器(14)
の間に入れて循環をさせる。流量調整弁1(43)と流
量調整弁2(46)は、廃液によって出る蒸留ガス量が
一定にならないので、蒸留ガス循環ノズル(44)と浮
上廃液分離器(47)へ縦貫させる廃液の量を調整する
ものである。この場合、蒸留ガス循環ノズル(44)に
廃液が混入しても、又循環するだけで問題とならない。
浮上廃液分離器(47)の浮上した廃液は、浮上廃液回
収器(50)で回収をして取り出す。従来の浮上廃液の
回収は液面を一定にしてオーバーフローさせたり、スポ
ンジに吸収をさせたり、ベルトの回転でかき集めてい
た。浮上廃液回収器(50)の浮上廃液の回収方法は、
(図6)浮上廃液分離器(47)の上を勾配を付けた蓋
の勾配ホッパー(51)を取り付け、その上にホッパー
ネック(52)と落差タンク(53)を取り付けたもの
である。最初に落差タンク(53)の上部まで廃液で満
たすと、上部に空洞部(54)の有無に関わらず落差に
よる差圧を生じる。空洞部(54)が大きくなると落差
タンク(53)に溜まる浮上廃液の量が少なくなるの
で、出来るだけ小さいか,ない方が良い。浮上廃液回収
器(50)の上面の広い面積に拡がっている浮上廃液
が、勾配ホッパー(51)で上面の広い面積を絞り込ま
れてホッパーネック(52)に集積されて来て、この集
積をされた浮上廃液が落差タンク内に溜まってくる。こ
の溜まった廃液を取り出すために、落差タンク(53)
を専用容器にして交換をしてもよいが、連続運転をする
ために(図7)の様にバルブで取り出せるようにする。
まず、バルブ4(55)、バルブ5(56)を開けて、
バルブ6(57)、バルブ7(57)を閉じた状態で、
廃液循環を開始する。次に浮上廃液回収器(50)が廃
液で一杯になつたらバルブ5(56)を閉じて静置をす
ると、自然に浮上廃液と置換をして溜まって来る。ここ
では、何かの人為的な力を用いずに静かに自然置換をす
るのが良かった。浮上廃液回収器(50)に溜まった浮
上廃液は、バルブ4(55)を締めてバルブ6(57)
を開き真空開放をした上で、バルブ7(58)を開いて
浮上廃液回収容器(59)に落とし込む。この浮上廃液
の取り出し操作をしている間は、浮上廃液分離器(4
7)の上に浮上廃液が溜まるだけで問題は無く連続運転
が出来る。非常に浮上廃液の量が多い場合は、浮上廃液
回収器(50)を並列に2セット設けて交互に切り換え
れば、問題なく連続運転が出来る。The floating gas waste liquid separation / recovery device (4) shown in FIG. 5 receives the circulating waste liquid discharged from the waste liquid circulation pump (33) through the waste liquid flow rate regulating valve (34) and rises to the floating gas separator (41).
The distillation gas generated in the waste liquid is separated and floated by colliding with the gas floating baffle plate (42) in the inside. The separated distillation gas is passed through the flow control valve 1 (43) from the upper part, and is introduced into the vacuum distillation tank (21) from below the waste liquid through the distillation gas circulation nozzle (44). The distillation gas is supplied to a vacuum distillation tank (2
1) Bubbling of the accumulated waste liquid in 1) can promote floating. If the diameter of the distillation gas circulation nozzle (44) is too small, bubbling bubbles become small and it becomes difficult to float, while if too large, bubbling becomes large and the bubbling effect cannot be expected. Since it is difficult to specify the appropriate bubble size suitable for bubbling based on the speed and volume of the waste liquid, select the nozzle diameter and the number of nozzles to be installed depending on the distillation gas discharged from the waste liquid. Must. Further, a waste liquid flow control valve (43)
Is used to adjust the flow rate of the waste gas so as to obtain an appropriate foam state. The circulating waste liquid after the separation of the distillation gas collides with the floating waste liquid baffle plate (48) in the floating waste liquid separator (47) through the flow rate control valve 2 (46) and takes the direction of flowing up and down to flow the waste liquid. Accelerate and collect above the flotation waste liquid separator (43). The route to the circulation of the remaining waste liquid is provided by a waste liquid circulation pipe (49) and a valve 1 (12) and a waste liquid heater (14).
Put in between and circulate. The flow control valve 1 (43) and the flow control valve 2 (46) use the amount of the waste liquid that flows vertically to the distillation gas circulation nozzle (44) and the floating waste liquid separator (47) because the amount of the distilled gas discharged by the waste liquid is not constant. Is to adjust. In this case, even if the waste liquid is mixed into the distillation gas circulation nozzle (44), it does not pose a problem only by circulation.
The waste liquid that floats from the floating waste liquid separator (47) is collected and taken out by the floating waste liquid collector (50). In the prior art, the recovery of the floating waste liquid has been carried out by making the liquid level constant, causing the liquid to overflow, absorbing the liquid with a sponge, or rotating the belt. The floating waste liquid recovery method of the floating waste liquid recovery device (50) is as follows.
(FIG. 6) A gradient hopper (51) with a sloped lid is mounted on the floating waste liquid separator (47), and a hopper neck (52) and a drop tank (53) are mounted thereon. First, when the upper part of the head tank (53) is filled with the waste liquid, a pressure difference due to the head is generated regardless of the presence or absence of the hollow part (54) at the upper part. The larger the cavity (54), the smaller the amount of floating waste liquid accumulated in the drop tank (53). The floating waste liquid spreading over a wide area on the upper surface of the floating waste liquid recovery device (50) is narrowed down by the gradient hopper (51) on the large area on the upper surface, and is accumulated on the hopper neck (52). The floating waste liquid accumulates in the head tank. To remove the accumulated waste liquid, a drop tank (53)
May be replaced with a special container, but it can be taken out with a valve as shown in FIG. 7 for continuous operation.
First, open valve 4 (55) and valve 5 (56)
With the valve 6 (57) and the valve 7 (57) closed,
Start waste liquid circulation. Next, when the floating waste liquid collecting device (50) is full of the waste liquid, the valve 5 (56) is closed and allowed to stand still. Here, it was good to do a natural replacement quietly without using any artificial force. The floating waste liquid collected in the floating waste liquid collecting device (50) closes the valve 4 (55) and the valve 6 (57).
And release the vacuum, then open the valve 7 (58) and drop it into the floating waste liquid collecting container (59). During the operation of taking out the floating waste liquid, the floating waste liquid separator (4)
7) Continuous operation is possible without any problem just by collecting floating waste liquid. When the amount of floating waste liquid is very large, continuous operation can be performed without any problem by providing two sets of floating waste liquid collectors (50) in parallel and switching them alternately.
【0012】(図−6)一体型浮上物分離回収装置
(6)は、廃液循環ポンプ(33)を出て廃液流量調整
弁(34)を通した廃液を、浮上物分離器(61)内の
浮上物邪魔板(62)に衝突をさせて、浮上物即ち浮上
廃液と蒸留ガスを浮上させる。浮上分離済みの廃液は、
残廃液循環パイプ(63)で、バルブ1(12)と廃液
加熱器(14)の間に接続をして、液滴ノズル(15)
から繰り返して循環をさせる。浮上物分離器(61)の
上に溜まってくる浮上物は、浮上廃液回収器(50)の
入り口に取り付けたバルブ8(67)を開いて溜める。
この時、この系内が全て真空のために、蒸留ガスがバブ
リングを兼ねて浮上廃液と一緒に上昇をしてくる。浮上
廃液回収器(50)のみの場合は、その真空蒸留ガスが
溜まって液面が低くなってくるので分離をしても浮上廃
液を取り出せなくなる。浮上廃液回収器(50)の上の
出口にバルブ9(68)と蒸留ガス回収器(64)を設
けると、蒸留ガスのバブリングにより浮上廃液の分離を
促進できるが、蒸留ガスの量が以外に大量に出たりして
て浮上廃液の液面は変動してしまう。これをコントロー
ルするために大流量調整弁(65)で大量の蒸留ガスを
逃がして液面レベルを安定させ、並列に取り付けた小流
量調整弁(66)を蒸留ガス回収器(64)内の浮上物
フロート(69)で液面のコントロールをする。蒸留ガ
スは、蒸留ガス循環ノズル(44)から真空蒸留タンク
(21)の廃液の下にに戻してバブリングをさせて、真
空蒸留タンク(21)内の廃液分離を促進させながら循
環をさせる。廃液循環ポンプ(33)の動作の始めは、
バルブ8(67)とバルブ9(68)とバルブ10(7
0)を開放して廃液と真空蒸留ガスをを循環させる。次
に大流量調整弁(65)を絞ってくると蒸留ガス回収器
(64)内の液面が蒸留ガスで下がってきたところで止
めて、小流量調整弁(66)で浮上物フロート(69)
により液面レベルを一定に自動調節をする。バブリング
をしているので時間と共に浮上廃液が、浮上物フロート
(69)の下から浮上廃液回収器(50)に溜まってく
る。この浮上廃液を取り出すときに、バルブ10(7
0)とバルブ8(67)を止め、バルブ11(71)を
開いて真空解除をし、そのままバルブ12(72)を開
いて浮上廃液回収器(58)に落とし込む。取り出しが
終了したら、バルブ11(71)とバルブ12(72)
を閉じてバルブ10(70)を開いて真空にし、その後
バルブ8(67)を開いて動作をさせる。この間、浮上
物は浮上物分離器(61)の上に溜まるだけで真空蒸留
方式廃液処理装置は止める必要がなく連続動作が出来
る。浮上物が非常に多く溜まる場合で長い時間浮上廃液
の取り出しに使えない時は、同じ装置を二重で並列に設
けて交互に切り換えすればよい。(FIG. 6) The integrated floating material separation / recovery device (6) removes the waste liquid that has passed through the waste liquid circulation pump (33) and passed through the waste liquid flow control valve (34) into the floating material separator (61). The floating object baffle (62) is caused to collide with the floating object, that is, the floating waste liquid and the distillation gas. The waste liquid that has been separated by flotation is
By connecting the residual liquid circulation pipe (63) between the valve 1 (12) and the waste liquid heater (14), the droplet nozzle (15)
Cycle repeatedly from. The floating material that has accumulated on the floating material separator (61) is accumulated by opening the valve 8 (67) attached to the entrance of the floating waste liquid collecting device (50).
At this time, since the inside of the system is entirely vacuum, the distillation gas rises together with the floating waste liquid, also serving as bubbling. In the case of only the floating waste liquid collecting device (50), the vacuum distillation gas is accumulated and the liquid level becomes low, so that even if separation is performed, the floating waste liquid cannot be taken out. If the valve 9 (68) and the distillation gas recovery device (64) are provided at the outlet above the floating waste liquid recovery device (50), the separation of the floating waste liquid can be promoted by bubbling of the distillation gas. The liquid level of the floating waste liquid fluctuates due to the large amount of the liquid. In order to control this, a large amount of distillation gas is released by the large flow control valve (65) to stabilize the liquid level, and the small flow control valve (66) attached in parallel is floated in the distillation gas recovery unit (64). The liquid level is controlled by the object float (69). The distillation gas is returned from the distillation gas circulation nozzle (44) to a position below the waste liquid in the vacuum distillation tank (21) and bubbling is performed to circulate while promoting the separation of the waste liquid in the vacuum distillation tank (21). At the beginning of the operation of the waste liquid circulation pump (33),
Valve 8 (67), valve 9 (68), and valve 10 (7
0) is opened to circulate waste liquid and vacuum distillation gas. Next, when the large flow control valve (65) is squeezed, the liquid level in the distillation gas recovery unit (64) is stopped when the liquid level is lowered by the distillation gas, and the float (69) is floated by the small flow control valve (66).
Automatically adjusts the liquid level to a constant. Due to the bubbling, the floating waste liquid accumulates in the floating waste liquid collector (50) from below the floating float (69) with time. When removing the floating waste liquid, the valve 10 (7
0) and the valve 8 (67) are stopped, the valve 11 (71) is opened to release the vacuum, and the valve 12 (72) is opened and dropped into the floating waste liquid collecting device (58). When the removal is completed, the valve 11 (71) and the valve 12 (72)
Is closed and the valve 10 (70) is opened to create a vacuum, and then the valve 8 (67) is opened for operation. During this time, the suspended matter only accumulates on the suspended matter separator (61), and the vacuum distillation type waste liquid treatment apparatus does not need to be stopped, and can be continuously operated. When a large amount of floating material is accumulated and cannot be used for taking out the floating waste liquid for a long time, the same device may be provided in parallel in double and alternately switched.
【0013】浮上方式の違いによる浮上分離の早さを試
験した。真空蒸留タンク(21)に30リットルの水
に、0.5リットルの油をホモジナイザーで強制攪拌混
合をし、その分離性能を調査した。油分が浮上に要した
時間で比較をした。 分離させる機械的攪拌 65分 比重が近いと攪拌の流れにのって油分が巡回をしてしま
って時間が掛かった。 重力による自然分離 58分 蒸留ガスバブリング分離 38分 早めに上に集まって来るがバブリングの攪拌を鎮めて完
全に分離をさせる静置時間が必要になった。 (図−9)によるヘッド圧分離 28分 (図−9)によるヘッド圧分離+蒸留ガスバブリング分離 19分 機械的に攪拌分離をする方法が色々あるが、(図−9)
のように落差タンク(53)の高さによる落差の圧を取
った方法が優れている。落差即ち高さが大きいほど分離
性がよくなる。この落差に真空蒸留方式故に出来るバブ
リングが入れば更に分離効率が良くなるものである。浮
上ガス廃液分離回収装置(5)は落差の圧による分離、
一体型浮上物分離回収装置(6)は落差の圧による分離
と蒸留ガスのバブリング分離を用いたものである。The speed of levitation separation due to the difference in levitation method was tested. 0.5 liter of oil was mixed with 30 liters of water in a vacuum distillation tank (21) by forced stirring with a homogenizer, and the separation performance was investigated. The comparison was based on the time required for the oil to float. Mechanical stirring for separation 65 minutes When the specific gravity was close, the oil circulated along the flow of stirring and took a long time. Spontaneous separation by gravity 58 minutes Distillation gas bubbling separation 38 minutes It gathered earlier, but it was necessary to let the stirring of the bubbling calm down and complete the separation completely. Head pressure separation by (Fig. 9) 28 minutes Head pressure separation by (Fig. 9) + distillation gas bubbling separation 19 minutes There are various methods of mechanically stirring and separating (Fig. 9).
The method of taking the pressure of the drop due to the height of the drop tank (53) is excellent. The greater the head, ie, the height, the better the separation. If bubbling generated by the vacuum distillation method enters this head, the separation efficiency is further improved. Floating gas waste liquid separation and recovery device (5) separates by head pressure,
The integrated floating material separation and recovery device (6) uses separation by head pressure and bubbling separation of distillation gas.
【0014】スラッジ取り出し室から比重の大きい沈降
物は、特願平11−376553でのようにスラッジ回
収装置(8)で更に廃液温度を上げて濃縮をし、連続的
に取り出すことが出来る。The sediment with a large specific gravity can be continuously removed from the sludge removal chamber by further increasing the temperature of the waste liquid in the sludge recovery device (8) as in Japanese Patent Application No. 11-376553.
【0015】蒸留ガスは、特願平11−376553と
同じくエヤードライヤー(95)で凝縮をさせて、凝縮
液を連続的に取り出すものである。The distillation gas is condensed by an air dryer (95) as in Japanese Patent Application No. 11-376553, and the condensate is continuously taken out.
【0016】凝縮後の蒸留ガスは、真空吸引装置(9)
に入り特願平11−376553と同じく真空ポンプで
吸引後、脱臭カラムで脱臭して大気へ放出をする。The condensed distillation gas is supplied to a vacuum suction device (9).
As in Japanese Patent Application No. 11-376553, suction is performed by a vacuum pump, then deodorized by a deodorizing column, and released to the atmosphere.
【0017】[0017]
【作用】廃液挿入装置(1)で処理済みの蒸留ガス・浮
上廃液・沈降スラッジにより減少する分だけ、自動的に
調節をしながら補充をする。この補充をする時に、廃液
を廃液加熱器(14)で加熱をし液滴ノズル(15)か
ら液滴状にして、真空蒸留装置(2)に挿入をする。真
空蒸留タンク(21)に溜まった廃液を、フード(3
1)・廃液循環ポンプ(33)・浮上ガス分離器(4
1)・浮上廃液分離器(47)の順序で流し、浮上廃液
回収器(50)で浮上廃液を連続的に回収をする。浮上
ガス分離器(41)で出る蒸留ガスは蒸留ガス循環ノズ
ル(44)からバブリングをさせながら、真空蒸留タン
ク(21)に戻して循環をさせる。浮上廃液分離器(4
7)で分離をしない廃液は、バルブ1(12)と廃液加
熱器(14)の間に入れて再循環をさせる。真空蒸留タ
ンク(21)で沈降をするスラッジは、スラッジ回収装
置(8)で濃縮しながら回収をする。蒸留ガスはエヤー
ドライヤー(95)で凝縮し、凝縮水は再利用するか放
流をし、残りのガス分は脱臭カラムで脱臭をして大気へ
放出をする。これらの一連の動作を休むこと無く、連続
的に廃液処理が出来るものである。廃液を液滴状にして
真空容器に挿入し、挿入した廃液を循環をさせて繰り返
し液滴状にして蒸留効率をあげ、加熱は液滴吐出部とス
ラッジ回収部の2カ所に集中をして熱効率を上げた。同
時に連続処理をし更に小型化をして、悪臭を消して工場
内のラインサイドでの廃液処理を可能にしたものであ
る。The replenisher automatically adjusts and replenishes the amount reduced by the distillation gas, floating waste liquid, and settling sludge that has been treated by the waste liquid insertion device (1). At the time of this replenishment, the waste liquid is heated by a waste liquid heater (14) to form droplets from a droplet nozzle (15) and inserted into a vacuum distillation device (2). The waste liquid collected in the vacuum distillation tank (21) is discharged into a hood (3
1) ・ Waste liquid circulation pump (33) ・ Floating gas separator (4)
1) Flowing in the order of the floating waste liquid separator (47), and the floating waste liquid is continuously collected by the floating waste liquid collector (50). The distillation gas discharged from the floating gas separator (41) is returned to the vacuum distillation tank (21) for circulation while bubbling from the distillation gas circulation nozzle (44). Floating waste liquid separator (4
The waste liquid not separated in step 7) is put between the valve 1 (12) and the waste liquid heater (14) for recirculation. The sludge settling in the vacuum distillation tank (21) is recovered while being concentrated in the sludge recovery device (8). Distilled gas is condensed by an air drier (95), and the condensed water is reused or discharged, and the remaining gas is deodorized in a deodorizing column and released to the atmosphere. The waste liquid can be continuously processed without stopping the series of operations. The waste liquid is formed into droplets and inserted into the vacuum vessel, and the inserted waste liquid is circulated to repeatedly form droplets to increase the distillation efficiency. Heating is concentrated at two locations: the droplet discharge section and the sludge recovery section. Increased thermal efficiency. At the same time, continuous treatment is performed to further reduce the size, eliminate odors, and enable waste liquid treatment at the line side in the factory.
【0018】[0018]
【試験例】以下、真空蒸留の基礎的試験を行った。[Test Example] A basic test of vacuum distillation was performed below.
【試験例−1】 [Test Example-1]
【試験例−2】 [Test Example-2]
【0020】[0020]
【実施例】以下、本発明の実施例について説明をする。 (従来例) 従来の事例 廃液 :金属切削油 廃液処理重量 :1,000キログラム 真空容器 :直径2,000*長さ414ミリメートル :容積 約1.3リューベ 設置面積 :約12平方メートル 処理時間 :1バッチ当たり3.0時間 スラッジ中の残留水分 :12.8% 平均脱水速度 :時間当たり133キログラム :13.3%・時間・キログラム当たり 使用電力 :30キロワット (実施例−1) 特願平11−376553の事例 廃液 :金属切削油(従来例と同じ廃液) 廃液処理重量 :1,000キログラム 真空容器 :直径390*長さ600ミリメートル :容積 約0.7リューベ 設置面積 :約3.0平方メートル 処理時間 :2.5時間 スラッジ中の残留水分 :9.7% 真空蒸留タンクの下に溜まった廃液 5.8% スラッジ回収装置(8)で濃縮後に取り出し回 収した廃液である。 平均脱水速度 :時間当たり375キログラム :48.2%・時間・キログラム当たり 使用電力 :11キロワット (実施例−2) 本発明の事例 廃液 :金属切削油(従来例と同じ廃液) 廃液処理重量 :1,000キログラム 真空容器 :直径350*長さ450ミリメートル :容積 約0.43リューベ 設置面積 :約2.0平方メートル 処理時間 :1.45時間 スラッジ中の残留水分 :9.0% 真空蒸留タンクのしたに溜まった廃液 廃液の量が循環することが出来なくなった残り の廃液である。 :4.9% スラッジ回収器で加熱状態で流出する限界の粘 性となったので蒸留を止めて排出した処理済み の廃液である。。 平均脱水速度 :約680キログラム :87.4%・時間・キログラム当たり 使用電力 :5.2キロワット 始めに液滴で廃液を挿人し真空蒸留タンクに、約0.1
5リューベ廃液が溜まってから循環をさせて連続操業を
して、1,000キログラム挿入後は循環操業だけで処
理をしたものである。循環出来なくなった後は、スラッ
ジ回収装置で濃縮をして回収をした。従って連続操業
は、約0.7リューベ分で、後は始めの溜まり分と循環
が出来なくなった残りの処理となる結果である。Embodiments of the present invention will be described below. (Conventional example) Conventional example Waste liquid: metal cutting oil Waste liquid treatment weight: 1,000 kg Vacuum container: diameter 2,000 * length 414 mm: volume: about 1.3 lube Installation area: about 12 square meters Processing time: one batch 3.0 hours per hour Residual moisture in sludge: 12.8% Average dehydration rate: 133 kilograms / hour: 13.3% / hour / kg Power consumption: 30 kilowatts (Example-1) Japanese Patent Application No. Hei 11-376553. Wastewater: Metal cutting oil (same wastewater as the conventional example) Wastewater treatment weight: 1,000 kg Vacuum container: Diameter 390 * Length 600 mm: Volume: Approximately 0.7 Lube Installation area: Approximately 3.0 square meters Processing time: 2.5 hours Residual water in sludge: 9.7% Waste liquid collected under vacuum distillation tank 5.8% Slurry Kai taken out after concentrating the recovery device (8) is a yield waste liquid. Average dehydration rate: 375 kilograms per hour: 48.2% / hour per kilogram Power consumption: 11 kilowatts (Example-2) Example of the present invention Wastewater: Metal cutting oil (same wastewater as the conventional example) Wastewater treatment weight: 1 2,000 kg Vacuum container: 350 mm in diameter * 450 mm in length: volume: about 0.43 Lübé Installation area: about 2.0 square meters Processing time: 1.45 hours Residual moisture in sludge: 9.0% Vacuum distillation tank Waste liquid remaining in the waste liquid The remaining amount of waste liquid that cannot be circulated. : 4.9% This is a treated waste liquid discharged after the distillation was stopped due to the limit viscosity of the sludge recovery device, which was discharged in a heated state. . Average dehydration rate: about 680 kilograms: 87.4% / hour / kg Power consumption: 5.2 kilowatts First, insert waste liquid with droplets and insert it into a vacuum distillation tank at about 0.1.
After 5 Lübé waste liquids are accumulated, they are circulated for continuous operation, and after insertion of 1,000 kg, they are treated only by circulation operation. After the circulation was no longer possible, it was concentrated and recovered by a sludge recovery device. Therefore, the continuous operation is a result of about 0.7 lube, and the remaining pool and the remaining processing that can no longer circulate.
【0021】[0021]
【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を生じる。小
型で連続処理が出来悪臭も無く、薬剤を使用しないので
薬剤の管理もなく、設備の管理も簡単なので、工場内の
生産設備ラインサイドに設置が出来るようになった。こ
のラインサイドに設置が出来るようになったことは、工
場の外へ有害な廃水が出なくなり環境にも効果が大きい
ものである。Since the present invention is configured as described above, it produces the following effects. Since it is small, it can be continuously processed, has no bad smell, and does not use chemicals, there is no chemical management and equipment management is easy, so it can be installed on the production equipment line side in the factory. The fact that this system can be installed on the line side has a great effect on the environment because no harmful wastewater flows out of the factory.
【図1】本発明の各部装置の全体とその流れ図である。FIG. 1 is an overall view of each unit of the present invention and its flow chart.
【図2】廃液挿入装置の経路図である。FIG. 2 is a path diagram of a waste liquid insertion device.
【図3】液滴ノズルの断面形状図である。FIG. 3 is a sectional view of a droplet nozzle.
【図4】廃液循環装置の経路図である。FIG. 4 is a path diagram of a waste liquid circulation device.
【図5】浮上ガス廃液分離回収装置の経路図である。FIG. 5 is a path diagram of a floating gas waste liquid separation and recovery device.
【図6】廃液浮上の動作図である。FIG. 6 is an operation diagram of floating a waste liquid.
【図7】浮上廃液回収器の経路図である。FIG. 7 is a path diagram of a floating waste liquid collecting device.
【図8】一体型浮上物分離回収装置の経路図であるFIG. 8 is a path diagram of the integrated floating object separation and recovery device.
1 廃液挿入装置 11 廃液ホッパー 12 バルブ1 13 廃液フロート 14 廃液加熱器 15 液滴ノズル 16 遮断板 17 ノズル口径 18 平行障害物 19 垂直障害物 2 真空蒸留装置 21 真空蒸留タンク 3 廃液循環装置 31 フード 32 フード傾斜 33 廃液循環ポンプ 34 廃液流量調整弁 4 浮上ガス廃液分離回収装置 41 浮上ガス分離器 42 ガス浮上邪魔板 43 流量調整弁1 44 蒸留ガス循環ノズル 45 廃液残 46 流量調整弁2 47 浮上廃液分離器 48 浮上廃液邪魔板 49 廃液循環パイプ 50 浮上廃液回収器 51 勾配ホッパー 52 ホッパーネック 53 落差タンク 54 空洞部 55 バルブ4 56 バルブ5 57 バルブ6 58 バルブ7 59 浮上廃液回収容器 6 一体型浮上物分離回収装置 61 浮上物分離器 62 浮上物邪魔板 63 残廃液循環パイプ 64 蒸留ガス回収器 65 大流量調整弁 66 小流量調整弁 67 バルブ8 68 バルブ9 69 浮上物フロート 70 バルブ10 71 バルブ11 72 バルブ12 8 スラッジ回収装置 9 真空吸引装置 95 エヤードライヤー DESCRIPTION OF SYMBOLS 1 Waste liquid insertion apparatus 11 Waste liquid hopper 12 Valve 1 13 Waste liquid float 14 Waste liquid heater 15 Droplet nozzle 16 Shut-off plate 17 Nozzle diameter 18 Parallel obstacle 19 Vertical obstacle 2 Vacuum distillation apparatus 21 Vacuum distillation tank 3 Waste liquid circulation apparatus 31 Food 32 Hood inclination 33 Waste liquid circulation pump 34 Waste liquid flow control valve 4 Floating gas waste liquid separation and recovery device 41 Floating gas separator 42 Gas floating baffle 43 Flow control valve 1 44 Distillation gas circulation nozzle 45 Waste liquid residue 46 Flow control valve 2 47 Floating waste liquid separation Container 48 Floating waste liquid baffle plate 49 Waste liquid circulation pipe 50 Floating waste liquid collector 51 Gradient hopper 52 Hopper neck 53 Drop tank 54 Cavity 55 Valve 4 56 Valve 5 57 Valve 6 58 Valve 7 59 Floating waste liquid recovery container 6 Integrated floating material separation Recovery device 61 Floating material separator 62 Floating material baffle plate 63 Waste liquid circulation pipe 64 Distilled gas recovery device 65 Large flow control valve 66 Small flow control valve 67 Valve 8 68 Valve 9 69 Floating material float 70 Valve 10 71 Valve 11 72 Valve 12 8 Sludge recovery device 9 Vacuum suction Equipment 95 Air dryer
Claims (9)
液滴ノズル(15)を設けた真空蒸留方式廃液処理装
置。1. A vacuum-distillation-type waste liquid treatment apparatus provided with a droplet nozzle (15) at a waste liquid inlet of a vacuum distillation tank (21).
の間の配管部に廃液加熱器(14)を設けた真空蒸留方
式廃液処理装置。2. A droplet nozzle (15) and a valve (12).
A vacuum-distillation-type waste liquid treatment apparatus provided with a waste liquid heater (14) in a pipe section between the two.
廃液を、液滴ノズル(15)へ再循環をする廃液循環ポ
ンプ(33)を設けた真空蒸留方式廃液処理装置。3. A vacuum distillation type waste liquid treatment apparatus provided with a waste liquid circulation pump (33) for recirculating waste liquid collected under a vacuum distillation tank (21) to a droplet nozzle (15).
浮上ガス分離器(41)と浮上廃液分離器(47)を設
けた真空蒸留方式廃液処理装置。4. A vacuum distillation type waste liquid treatment apparatus provided with a floating gas separator (41) and a floating waste liquid separator (47) in a circulation path of a waste liquid circulation pump (33).
浮上物分離器(61)を設けた真空蒸留方式廃液処理装
置。5. A vacuum-distillation-type waste liquid treatment apparatus provided with a float separator (61) in a circulation path of a waste liquid circulation pump (33).
液回収器(50)を設けた真空蒸留方式廃液処理装置。6. A vacuum distillation type waste liquid treatment apparatus provided with a floating waste liquid recovery device (50) incorporating a differential pressure tank (55).
(61)の上部に接続をして、蒸留ガス循環ノズル(4
4)を真空蒸留タンク(21)に設けた真空蒸留方式廃
液処理装置。7. A distillation gas circulation nozzle (4) connected to the upper part of a floating gas separator (41) or a floating material separator (61).
4) A vacuum distillation type waste liquid treatment apparatus provided with 4) in a vacuum distillation tank (21).
ド(31)を設け、その傾斜をする範囲で調節をする廃
液フロート(13)を取り付けて、廃液循環ポンプ(3
3)に接続をした真空蒸留方式廃液処理装置。8. An inclined hood (31) is provided in the vacuum distillation tank (21), and a waste liquid float (13) for adjusting the inclination of the hood (31) is attached thereto.
Vacuum distillation type waste liquid treatment device connected to 3).
回収装置(8)の2カ所に設けた真空蒸留方式廃液処理
装置。9. A vacuum-distillation-type waste liquid treatment apparatus provided with two heating sources, a waste liquid heater (14) and a sludge recovery device (8).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000176115A JP2001314849A (en) | 2000-05-09 | 2000-05-09 | Vacuum distillation type waste liquid treatment apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000176115A JP2001314849A (en) | 2000-05-09 | 2000-05-09 | Vacuum distillation type waste liquid treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001314849A true JP2001314849A (en) | 2001-11-13 |
Family
ID=18677878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000176115A Pending JP2001314849A (en) | 2000-05-09 | 2000-05-09 | Vacuum distillation type waste liquid treatment apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001314849A (en) |
-
2000
- 2000-05-09 JP JP2000176115A patent/JP2001314849A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2876863A (en) | Treatment of aqueous wastes containing hydrocarbons | |
US1866193A (en) | Purification of furnace or other gases | |
US4304570A (en) | Method of separation of sulfur from a scrubbing liquid | |
US5484534A (en) | Energy conserving method of water treatment | |
US4686049A (en) | Method and apparatus for reprocessing aqueous, oily and greasy cleaning solutions | |
KR101690065B1 (en) | Apparatus for removing pollutant in evaporated concentrating system | |
JP2007285251A (en) | Drain recovery processing device | |
JP2003504177A (en) | Steam control system | |
JP2010005519A (en) | Floatation separation apparatus | |
JP5497873B2 (en) | Levitation separator | |
JP2006175428A (en) | Mist removal structure in high speed rotary evaporating device, and method for treating oil-containing waste water using the same | |
US5203970A (en) | Method for water degasification and distillation | |
KR101904156B1 (en) | Vacuum evaporation apparatus with function of removing the scale and bubble | |
CA2349872C (en) | Method and apparatus for removing foaming contaminants from hydrocarbon processing solvents | |
JP2001314849A (en) | Vacuum distillation type waste liquid treatment apparatus | |
JPS5925630B2 (en) | Equipment for treating contaminated liquids | |
US5370792A (en) | Apparatus for removing wax particles from circulating water from spray booths | |
US3347755A (en) | Temperature controlled convective distillation and vapor evacuation | |
JP2968086B2 (en) | Odor removal device for water-soluble cutting oil | |
KR200179033Y1 (en) | Waste water evaporation concentration plant having function washing | |
US3963513A (en) | Process and apparatus for treatment of cane sugar juice | |
JP2003181204A (en) | Apparatus for recovering fat and oil separated by oil water separation | |
US6080273A (en) | Method and device for treating liquids by partial evaporation | |
JP4215584B2 (en) | Oil / water separator | |
US4543165A (en) | Product separation and recovery system |