JP2001310263A - Super-abrasive grinding wheel - Google Patents

Super-abrasive grinding wheel

Info

Publication number
JP2001310263A
JP2001310263A JP2000125217A JP2000125217A JP2001310263A JP 2001310263 A JP2001310263 A JP 2001310263A JP 2000125217 A JP2000125217 A JP 2000125217A JP 2000125217 A JP2000125217 A JP 2000125217A JP 2001310263 A JP2001310263 A JP 2001310263A
Authority
JP
Japan
Prior art keywords
super
bond
abrasive
grinding
grinding wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000125217A
Other languages
Japanese (ja)
Inventor
Koichi Katsuura
紘一 勝浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIAKKU KK
Original Assignee
DAIAKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIAKKU KK filed Critical DAIAKKU KK
Priority to JP2000125217A priority Critical patent/JP2001310263A/en
Publication of JP2001310263A publication Critical patent/JP2001310263A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To realize improvement of sharpness and elongation of a service life of a tool by closely examining bond material for bonding super-abrasives in a super-abrasive tool for machining or grinding. SOLUTION: A cutting edge 2 is formed by sintering the super-abrasives on a base plate 1 made of an Al alloy, steel, or the like with using Al or its alloy as a parent body of holding bond material for the super-abrasives (diamond, boron nitride, boron carbide, boron carbonitride, and the like) with adding metallic element including Cu, Mg, Zn, Ti, and iron family elements (Fe, Ni, Co). For one example, Cu is added to Al-Al2O3 dispersion-strengthened material (SAP), and abrasive grain diamond is sintered at 500-600 deg.C. Since sintering temperature is low, thermal deterioration (oxidation, allotropic modification) is fully prevented, and improvement of sharpness and elongation of the service life of tool are realized as the grinding wheel for machining or grinding.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超砥粒(ダイヤモン
ド、窒化ホウソ、炭化ホウソ、窒炭化ホウソ等)を使用
した砥石車に係り、特に、切削用あるいは研削用等の砥
石車に好適な超砥粒保持材料(ボンド)を使用した超砥
粒工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grinding wheel using superabrasive grains (diamond, boron nitride, boron carbide, carbonation boron nitride, etc.), and more particularly to a grinding wheel suitable for a grinding wheel for cutting or grinding. The present invention relates to a superabrasive tool using an abrasive holding material (bond).

【0002】[0002]

【従来の技術】一般に、超砥粒を使用した工具の砥粒を
保持するボンド材料には、レジンボンド、ビトリファイ
ドボンド、メタルボンドの3種類がある。これらのボン
ドによる砥粒保持力は、ボンド材料の縦弾性係数(ヤン
グ率)により左右される。
2. Description of the Related Art Generally, there are three types of bond materials for holding abrasive grains of a tool using superabrasive grains: resin bond, vitrified bond and metal bond. The abrasive holding power of these bonds depends on the longitudinal elastic modulus (Young's modulus) of the bond material.

【0003】以下に、各ボンド材料のヤング率を示す。 レジンボンド=2.8〜3.5×10kg/mm ビトリファイドボンド=5.0〜8.0×10kg/m
メタルボンド(20%Sn−Cu Bronz)≒9.
7×10kg/mm
[0003] The following shows the Young's modulus of each bond material. Resin bond = 2.8 to 3.5 x 102kg / mm2  Vitrified bond = 5.0-8.0 × 102kg / m
m2  Metal bond (20% Sn-Cu Bronz) ≒ 9.
7 × 103kg / mm2

【0004】以上のとおり、超砥粒の保持力は、ボンド
により強弱の差が大きい。アルミニユムおよびその合金
のヤング率は、概略、6.3〜13.0×10kg/m
程度と、成分や析出する組織により範囲が広く、上
記ボンド材料をカバーし得るものである。
As described above, the holding power of superabrasive grains is
The difference in strength is large. Alminyum and its alloys
Is approximately 6.3 to 13.0 × 103kg / m
m2 The range is wide depending on the degree and composition and the structure to be precipitated.
It can cover the bond material.

【0005】超砥粒の保持力は、弾性範囲の応力であ
り、フックの法則により算出することができる。また、
締め代は次式より求められる。 〔ボンドの熱膨張係数−超砥粒の熱膨張係数〕×〔材料
の再結晶温度−室温〕=σ(抱き力)×l(砥粒径)/
E(ヤング率)
[0005] The holding power of superabrasive grains is a stress in an elastic range and can be calculated by Hooke's law. Also,
The interference is calculated by the following formula. [Coefficient of thermal expansion of bond-Coefficient of thermal expansion of superabrasive particles] × [Recrystallization temperature of material−Room temperature] = σ (embracing force) × 1 (abrasive particle size) /
E (Young's modulus)

【0006】[0006]

【発明が解決しようとする課題】超砥粒による切削また
は研削は、例えば、被切削体(被研削)体の切削(研
削)条件に対応する切削(研削)抵坑に耐える超砥粒の
保持力を有することが必要条件である。
The cutting or grinding with superabrasive grains is performed, for example, by holding superabrasive grains that can withstand cutting (grinding) shafts corresponding to the cutting (grinding) conditions of the object to be cut (grinding). Having power is a prerequisite.

【0007】レジンボンドのように保持力が小さいボン
ドでは、単位超砥粒の負荷重を小さくするために、高集
中度の、細粒の超砥粒を使用するため、面粗度の微細な
仕上げ研削に使用され、単位超砥粒の負荷重の大きい、
低速高荷重の場合は、保持応力の大きいメタルボンドが
使用される。
[0007] In the case of a bond having a small holding force, such as a resin bond, in order to reduce the load of a unit superabrasive, a highly concentrated, fine superabrasive is used. Used for finish grinding, heavy load of unit super abrasive,
In the case of low speed and high load, a metal bond having a large holding stress is used.

【0008】メタルボンドとして多用されるBronz
ボンドは、単位超砥粒の負荷重が大きく、(被切削体−
超砥粒切刃)の接触応力は過大となり、切刃は熱摩耗
し、(被切削体−切刃)の接触面積が増大し、応力は減
少し、切味を失う。したがって、砥石の“目出し”研磨
を、再三再四行なうことが必要である。
Bronz often used as a metal bond
The bond has a large load on the unit superabrasive grains.
The contact stress of the superabrasive cutting edge becomes excessive, the cutting edge is thermally worn, the contact area of the (cutting object-cutting edge) increases, the stress decreases, and the sharpness is lost. Therefore, it is necessary to repeat the "finding" polishing of the grinding wheel.

【0009】本発明の課題は、上記問題点を解消するた
めになされたもので、超砥粒砥石車において、ボンド材
料を選別し、超砥粒の酸化反応が不活性な温度範囲で焼
結することにより、超砥粒工具の切味向上と、長寿命化
を実現することである。
An object of the present invention is to solve the above problems. In a superabrasive grinding wheel, a bond material is selected and sintered in a temperature range in which the oxidation reaction of the superabrasive is inactive. By doing so, the sharpness of the superabrasive tool is improved and the life of the tool is extended.

【0010】[0010]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、超砥粒としてダイヤモンドを使用した場
合、超砥粒ダイヤモンドの酸化反応に、金属元素との拡
散反応の不活性の温度範囲で、超砥粒ダイヤモンドと保
持金属焼結体ボンドの工夫を種々試みた結果、Al、A
l−Al(通称SAP)、あるいは、これらの金
属の母体の強化のために、Cu、Zn、Mg、Ti等の
添加による析出相の強化と、鉄族金属元素の分散強化を
おこない、ボンドの開発を行なつた。
In order to solve the above-mentioned problems, the present invention relates to a method of using diamond as a super-abrasive, in which the oxidation reaction of the super-abrasive diamond has an inactive diffusion reaction with a metal element. As a result of various attempts at devising a superabrasive diamond and a holding metal sintered body bond in the temperature range, Al, A
l-Al 2 O 3 (called SAP), or, for enhanced maternal these metals, done Cu, Zn, Mg, and strengthening of the precipitation phase by the addition of Ti or the like, the dispersion strengthening of the iron group metal element , Developed a bond.

【0011】本発明の一例は、Al−Alの分
散強化合金SAP(Sintered Alumini
um Powder Product)を母体とし、超
砥粒の保持力を向上し、焼結温度が500〜600℃に
おいて、Alと拡散係数の大きい金属元素を添加し、焼
結体の強度アップとボンドのヤング率アップによる超砥
粒の保持力の向上を計り、加えて、超砥粒の熱変質を完
全に防止した切削性・研削性の良好な超砥粒工具であ
る。
One example of the present invention is a dispersion strengthened alloy SAP (Sintered Aluminum) of Al-Al 2 O 3.
um Powder Product) as a base material, to improve the holding power of superabrasive grains, and to add a metal element having a large diffusion coefficient with Al at a sintering temperature of 500 to 600 ° C to increase the strength of the sintered body and the bonding Young It is a super-abrasive tool with good cutting and grinding properties that improves the holding power of super-abrasive grains by increasing the rate and, in addition, completely prevents thermal deterioration of the super-abrasive grains.

【0012】また、Al−Alの分散強化合金
(Al=5〜20wt%)のSAPを主体とした
焼結体に超砥粒の保持力を増強するため、ボンドの耐摩
耗性を向上するために、Cu:0〜40wt%、Zn:
1〜50wt%、Mg:15〜30wt%、Ti:0〜
5wt%、の単体あるいは複数元素を添加することもあ
る。
Further, in order to enhance the holding power of super-abrasive grains in a sintered body mainly composed of SAP of a dispersion strengthened alloy of Al-Al 2 O 3 (Al 2 O 3 = 5 to 20 wt%), the bond resistance is increased. In order to improve abrasion, Cu: 0 to 40 wt%, Zn:
1 to 50 wt%, Mg: 15 to 30 wt%, Ti: 0 to 0
In some cases, 5 wt% of a single element or a plurality of elements may be added.

【0013】さらに、分散強化の助長のために、鉄族元
素を10〜30volm%添加し、(鉄族粉体−鉄族粉
体)間距離を約0.02mmとして、ロウ接強度をma
xとし、ボンド強度、耐磨耗性の向上を図ることもでき
る。
Further, in order to promote dispersion strengthening, an iron group element is added in an amount of 10 to 30 vol%, the distance between (iron group powder-iron group powder) is set to about 0.02 mm, and the brazing strength is ma.
It is also possible to improve bond strength and abrasion resistance by setting x.

【0014】(Al−Fe)は、FeAl、FeA
l、FeAl 、FeAl、FeAl、等の
金属間化合物を作製すると、非常に脆性となるが、しか
し、当アルミニユム合金の焼結温度は500〜600℃
と低温なため、また、固相焼結あるいは液相介在焼結の
ために、反応速度も遅く、極度の脆弱材料とはならず、
ボンドの強度、耐摩耗性、超砥粒の保持力の向上とな
る。
(Al-Fe) is Fe 2 Al, FeA
1, intermetallic compounds such as FeAl 2 , Fe 2 Al 5 , FeAl 3 become very brittle when produced, but the sintering temperature of the aluminum alloy is 500 to 600 ° C.
Because of the low temperature, and because of solid phase sintering or liquid phase interposition sintering, the reaction rate is slow and it does not become an extremely brittle material,
It improves bond strength, abrasion resistance, and holding power of superabrasive grains.

【0015】[0015]

【発明の実施の形態】以下に、本発明の実施の形態を、
超砥粒を焼結した場合を例にして説明する。なお、図1
〜2は、本発明の超砥粒砥石車の側面図で、図1は切削
用、図2は研削用のものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below.
The case where superabrasive grains are sintered will be described as an example. FIG.
2 are side views of the superabrasive grinding wheel of the present invention, wherein FIG. 1 is for cutting and FIG. 2 is for grinding.

【0016】これらの図に示すように、本発明の超砥粒
砥石車は、鋼製またはアルミニウム合金製等の金属製の
基板1の円周端部に、ダイヤモンド、窒化ホウソ、炭化
ホウソ、窒炭化ホウソ等のうち、いずれかの超砥粒と、
ボンド材料とを焼結して切刃2が形成されている。
As shown in these figures, the super-abrasive grinding wheel of the present invention comprises diamond, boron nitride, boron carbide, nitrogen carbide on the circumferential end of a metal substrate 1 made of steel or aluminum alloy or the like. Of carbonized borax, etc., any super abrasive,
The cutting blade 2 is formed by sintering the bonding material.

【0017】この超砥粒を保持するボンド材料には、A
l−Al分散強化合金(通称SAP:Sint
ered Aluminium Powder Pro
duct)を母体として用い、さらに、焼結温度500
〜600℃において、Alとの拡散係数の高い金属元素
を添加し、焼結体強度の向上と、焼結温度の低下を図っ
たもので、これにより、超砥粒の熱変質が完全に防止さ
れた切味の良好な、長寿命の工具が得られた。
The bond material holding the superabrasive grains includes A
l-Al 2 O 3 dispersion strengthened alloy (commonly known as SAP: Sint
ered Aluminum Powder Pro
duct) as a matrix, and a sintering temperature of 500
A metal element having a high diffusion coefficient with Al at up to 600 ° C is added to improve the strength of the sintered body and lower the sintering temperature, thereby completely preventing the thermal deterioration of the superabrasive grains. Thus, a long-lasting tool having good sharpness was obtained.

【0018】Al−Al、あるいは、Al−A
の分散強化合金に添加する金属元素として
は、Cu:0〜40wt%、Mg:15〜30wt%、
Zn:10〜50wt%、Ti:0〜5wt%、鉄族元
素(Fe、Ni、Co):10〜30volm% のう
ちの、単体元素あるいは複数の元素を混入するのが好適
である。これらの金属元素を添加した焼結合金をボンド
としたものは、自性作用に優れ、切刃の新陳代謝を促進
するために、切味をコンスタントに維持することが可能
である。
Al—Al 2 O 3 or Al—A
The metal element to be added to the dispersion strengthened alloys of l 2 O 3, Cu: 0~40wt %, Mg: 15~30wt%,
It is preferable to mix a single element or a plurality of elements among Zn: 10 to 50 wt%, Ti: 0 to 5 wt%, and iron group elements (Fe, Ni, Co): 10 to 30 volm%. Bonds made of a sintered alloy to which these metal elements are added have excellent self-action and can maintain a constant sharpness in order to promote metabolism of the cutting edge.

【0019】ここで、同一超砥粒条件で作製された、B
ronz系メタルボンド砥石車と、アルミニユム合金系
砥石車とによる試験例を説明する。試験は、60mmφ
×4mmW砥石で、回転数=3600rpm、送り速度
=50mm/min、切込み探さ=4.0mmで実施
し、被切削体にはソーダーガラスを使用した。
Here, B produced under the same superabrasive grain conditions,
Test examples using a ronz-based metal bond grinding wheel and an aluminum alloy-based grinding wheel will be described. The test is 60mmφ
The test was performed with a 4 mmW grinding wheel at a rotation speed of 3600 rpm, a feed speed of 50 mm / min, and a depth of cut of 4.0 mm. Soda glass was used as the object to be cut.

【0020】切削後の面粗度は、(Bronzボンド)
/(アルミニユムボンド)≒2xμ/xμと、粗度は微
細となつている。理由は、アルミニユムボンド砥石では
超砥粒の欠損や脱落が、殆どなかった(ほぼ0%)から
である。
The surface roughness after cutting is (Bronz bond)
/ (Aluminum bond) ≒ 2 × μ / xμ, and the roughness is fine. The reason is that in the case of the aluminum bond grindstone, the superabrasive grains hardly lost or fell off (almost 0%).

【0021】高温の焼結は、超砥粒の熱損耗が進行し、
砥石の切味を害し、加えて砥粒の保持力を悪化し、切刃
の欠損脱落の原因となる。ダイヤモンドは、一般に60
0℃以下の温度では化学的に安定で変質することはな
い。Al系ボンドの焼結はこの温度以下の範囲で行なう
ために、ダイヤモンドの品質や、表面状況の変化がな
く、切削(研削)性を害することがないために、切味の
良好な製品を常に求めることが可能である。
High-temperature sintering causes heat loss of the superabrasive grains,
It impairs the sharpness of the whetstone and, in addition, deteriorates the holding power of the abrasive grains, causing the cutting edge to be chipped and dropped. Diamond is generally 60
At a temperature of 0 ° C. or less, it is chemically stable and does not deteriorate. Since the sintering of the Al-based bond is performed within the range below this temperature, there is no change in the quality and surface condition of the diamond and the cutting (grinding) property is not impaired. It is possible to ask.

【0022】以上のように、本発明例によれば、超砥粒
としてダイヤモンドを使用した場合、ダイヤモンド砥粒
が酸素(0)共存の状態でも、また、熱エネルギーの
付与を受けても、C(ダイヤモンド)+0=C
、C(ダイヤモンド)+CO =2CO、の反応
は不活性のために、ダイヤモンドは、酸化(燃焼)、同
素変態もなく、原石状態の表面状態を維持し、切味の良
好性を保つ。
As described above, according to the present invention, the super-abrasive
When using diamond as the diamond abrasive
Is oxygen (02) In the state of coexistence,
Even if given, C (diamond) + 02= C
O2, C (diamond) + CO 2= 2CO, reaction
Due to inertness, diamond is oxidized (combusted)
There is no elementary transformation and the surface condition of the rough stone is maintained, and the sharpness is good
Keep liking.

【0023】また、ダイヤモンド(超砥粒)と、アルミ
ニユムまたはその合金(ボンド材料)との間には、アル
ミニユムまたはその合金の焼結温度の範囲(500〜6
00℃)では、拡散による切刃の損耗もなく、切削(研
削)性の抜群なダイヤモンド砥石車となる。
In addition, between the diamond (super-abrasive) and aluminum or its alloy (bond material), the sintering temperature range of aluminum or its alloy (500 to 6).
(00 ° C.), there is no wear of the cutting blade due to diffusion, and the diamond wheel has excellent cutting (grinding) properties.

【0024】[0024]

【発明の効果】上記のとおり、本発明によれば、切削用
あるいは研削用砥石車において、アルミニユムまたはア
ルミニユム合金ボンドを使用し、超砥粒を焼結すること
により、砥石の切削性や研削性が、従来のボンドに比較
して格段に向上し、長寿命、切味の良好さなどにおい
て、他の追従を許さない。
As described above, according to the present invention, in a grinding wheel for cutting or grinding, sintering of super-abrasive grains using aluminum or an aluminum alloy bond makes it possible to cut or grind the grinding wheel. However, it is significantly improved as compared with the conventional bond, and does not allow other follow-up in long life, good sharpness, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す側面図である。FIG. 1 is a side view showing an embodiment of the present invention.

【図2】本発明の他の実施形態を示す側面図である。FIG. 2 is a side view showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 基板 2 超砥粒焼結体切刃 1 Substrate 2 Super abrasive grain cutting blade

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アルミニユムまたはその合金ボンドによ
り、超砥粒を保持することを特徴とする超砥粒砥石車。
1. A super-abrasive grinding wheel characterized in that super-abrasive grains are held by Alminyum or an alloy bond thereof.
【請求項2】 前記ボンドとして、Al−Al
に、Cu:0〜40wt%、Mg:15〜30wt%、
Zn:10〜50wt%、Ti:0〜5wt%、鉄族元
素(Fe、Ni、Co):10〜30volm% のう
ちの、単体元素あるいは複数の元素を混入した粉末を用
い、前記超砥粒とともに焼結してなる請求項1に記載の
超砥粒砥石車。
2. The method according to claim 1, wherein the bond is Al—Al 2 O 3
In addition, Cu: 0 to 40 wt%, Mg: 15 to 30 wt%,
Zn: 10 to 50% by weight, Ti: 0 to 5% by weight, iron group element (Fe, Ni, Co): 10 to 30% by volume. The super-abrasive grinding wheel according to claim 1, wherein the super-abrasive wheel is sintered together.
JP2000125217A 2000-04-26 2000-04-26 Super-abrasive grinding wheel Pending JP2001310263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000125217A JP2001310263A (en) 2000-04-26 2000-04-26 Super-abrasive grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000125217A JP2001310263A (en) 2000-04-26 2000-04-26 Super-abrasive grinding wheel

Publications (1)

Publication Number Publication Date
JP2001310263A true JP2001310263A (en) 2001-11-06

Family

ID=18635206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000125217A Pending JP2001310263A (en) 2000-04-26 2000-04-26 Super-abrasive grinding wheel

Country Status (1)

Country Link
JP (1) JP2001310263A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451148C (en) * 2005-03-07 2009-01-14 东北轻合金有限责任公司 Hub alloy made of aluminium alloy and its making method
CN105856085A (en) * 2016-03-30 2016-08-17 东北大学 Method for preparing grinding disc with boron carbide
CN106041760A (en) * 2016-06-06 2016-10-26 郑州磨料磨具磨削研究所有限公司 Self-sharpening diamond grinding wheel and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100451148C (en) * 2005-03-07 2009-01-14 东北轻合金有限责任公司 Hub alloy made of aluminium alloy and its making method
CN105856085A (en) * 2016-03-30 2016-08-17 东北大学 Method for preparing grinding disc with boron carbide
CN106041760A (en) * 2016-06-06 2016-10-26 郑州磨料磨具磨削研究所有限公司 Self-sharpening diamond grinding wheel and preparation method thereof

Similar Documents

Publication Publication Date Title
Artini et al. Diamond–metal interfaces in cutting tools: a review
US8882868B2 (en) Abrasive slicing tool for electronics industry
JP5905721B2 (en) Cubic boron nitride compact
AU680951B2 (en) Improved metal bond and metal abrasive articles
JP5226522B2 (en) Cubic boron nitride compact
US9156137B2 (en) Copper based binder for the fabrication of diamond tools
JPH09194978A (en) Superhard composite member and its production
KR20100065348A (en) Ultrahard diamond composites
TW396090B (en) Stiffly bonded thin abrasive wheel
Qi et al. Vacuum brazing diamond grits with Cu-based or Ni-based filler metal
JP2001310263A (en) Super-abrasive grinding wheel
GB2130604A (en) High density boron nitride-containing sintered body for cutting tool and a method of producing the same
KR20130014826A (en) Diamond tool with excellent hardness and durability of abrasion and methof of manufacturing the same
EP1664365B1 (en) Boron coated abrasives
JP3513547B2 (en) Grinding stone for polishing single crystal diamond or diamond sintered body and polishing method thereof
JPH08229825A (en) Super-abrasive grain grinding wheel, and manufacture thereof
JP3751160B2 (en) Hard material abrasive grain densification structure
JPH08243926A (en) Super abrasive grain grinding wheel and its manufacture
JPS6331538B2 (en)
CN110331399B (en) Method for inhibiting decomposition of cBN particles in chromium-containing nickel-based alloy-cBN composite coating prepared by laser cladding
JP4187287B2 (en) Metal bond grinding wheel
US20050145067A1 (en) Infiltrated cobalt attachment ring for a CBN sintered body and its fabrication process
JP5239060B2 (en) CBN sintered compact tool that suppresses damage at the edge boundary
CN105436507A (en) Method for preparing diamond saw blade
JPH09111390A (en) Titanium-carbonitride-base alloy