JP2001309788A - Enzyme capable of splitting organosulfur compound and gene encoding the same - Google Patents

Enzyme capable of splitting organosulfur compound and gene encoding the same

Info

Publication number
JP2001309788A
JP2001309788A JP2000133900A JP2000133900A JP2001309788A JP 2001309788 A JP2001309788 A JP 2001309788A JP 2000133900 A JP2000133900 A JP 2000133900A JP 2000133900 A JP2000133900 A JP 2000133900A JP 2001309788 A JP2001309788 A JP 2001309788A
Authority
JP
Japan
Prior art keywords
ala
leu
val
gly
ser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000133900A
Other languages
Japanese (ja)
Inventor
Kenichi Koizumi
健一 小泉
Kazuaki Hirasawa
和明 平澤
Masanori Suzuki
正則 鈴木
Kenji Maruhashi
健司 丸橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC filed Critical Petroleum Energy Center PEC
Priority to JP2000133900A priority Critical patent/JP2001309788A/en
Publication of JP2001309788A publication Critical patent/JP2001309788A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a means for e.g. demulsification of wastewater or the like containing surfactant. SOLUTION: This means comprises utilizing an enzyme capable of splitting alkyl sulfates. The other objective gene encoding the above enzyme is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機硫黄化合物の
分解に関与する蛋白質及びそれをコードする遺伝子に関
するものである。本発明の蛋白質あるいは遺伝子を利用
することにより、石油等の化石燃料中に含まれる有機硫
黄化合物中の硫黄を遊離させることができるので、通常
石油・石炭等の化石燃料の燃焼により空気中に拡散する
と言われる硫黄を、化石燃料中から容易に除去すること
ができるようになる。また、本発明の蛋白質は、界面活
性効果を有するドデシル硫酸ナトリウム(以下、「SDS」
という)に代表されるアルキル硫酸を分解できるので、
排水等の脱乳化に利用することができる。
[0001] The present invention relates to a protein involved in the decomposition of an organic sulfur compound and a gene encoding the same. By utilizing the protein or gene of the present invention, sulfur in organic sulfur compounds contained in fossil fuels such as petroleum can be released. The so-called sulfur can be easily removed from the fossil fuel. Further, the protein of the present invention is sodium dodecyl sulfate having a surfactant effect (hereinafter, referred to as “SDS”).
Can decompose the alkyl sulfate represented by
It can be used for demulsification of wastewater and the like.

【0002】[0002]

【従来の技術】石油のような炭化水素燃料から硫黄を除
去する脱硫のための方法としては、アルカリ洗浄や溶剤
脱硫などの方法も知られているが、現在では水素化脱硫
が主流となっている。水素化脱硫は、石油留分中の硫黄
化合物を触媒の存在下で水素と反応させ、硫化水素とし
て除去して製品の低硫黄化を図る方法である。触媒とし
ては、アルミナを担体としてコバルト、モリブデン、ニ
ッケル、タングステン、などの金属触媒が使用される。
モリブデン担持アルミナ触媒の場合には、触媒性能を向
上させるために、通常コバルトやニッケルが助触媒とし
て加えられる。金属触媒を用いた水素化脱硫は、現在世
界中で広く使用されているきわめて完成度の高いプロセ
スであることは疑いのないことである。しかし、より厳
しい環境規制に対応した石油製品を作るためのプロセス
という観点からは、いくつかの問題点がある。以下にそ
の例を簡単に記載する。
2. Description of the Related Art As a method for desulfurization for removing sulfur from a hydrocarbon fuel such as petroleum, there are known methods such as alkali washing and solvent desulfurization. However, at present, hydrodesulfurization is mainly used. I have. Hydrodesulfurization is a method in which a sulfur compound in a petroleum fraction is reacted with hydrogen in the presence of a catalyst, and removed as hydrogen sulfide to reduce the sulfur content of the product. As the catalyst, a metal catalyst such as cobalt, molybdenum, nickel, and tungsten is used with alumina as a carrier.
In the case of a molybdenum-supported alumina catalyst, cobalt or nickel is usually added as a co-catalyst in order to improve the catalytic performance. There is no doubt that hydrodesulfurization using metal catalysts is an extremely complete process that is currently widely used worldwide. However, there are several issues in terms of the process for making petroleum products in compliance with stricter environmental regulations. The following is a brief description of an example.

【0003】化石燃料中の有機硫黄化合物を脱硫するた
めに、水素化脱硫法では高い反応温度や圧力を必要であ
り、環境に対する負荷が高い。最近になって、多大なエ
ネルギー消費が環境に及ぼす影響が明らかにされ、二酸
化炭素排出量の削減などの形で対応策が具体化されてき
た。産業界は、この規制に対して何らかの対策を練る必
要に迫られている。更に水素化脱硫法では、反応に水素
が必要なため、安全性の面で改良の余地があり、安全性
を高めるための設備投資や運転コストも必要であった。
[0003] In order to desulfurize organic sulfur compounds in fossil fuels, hydrodesulfurization requires a high reaction temperature and pressure, and thus has a high burden on the environment. More recently, the impact of significant energy consumption on the environment has been identified, and measures have been taken to reduce CO2 emissions. Industry has to take some action on this regulation. Further, in the hydrodesulfurization method, since hydrogen is required for the reaction, there is room for improvement in terms of safety, and capital investment and operation costs for enhancing safety are also required.

【0004】一方、生物が行う酵素反応は比較的穏和な
条件下で進行し、しかも酵素反応の速度自体は、化学触
媒を用いた反応の速度と遜色のないという特徴を有して
いる。さらに、生体内で起こる多種多様の生物反応に適
切に対応する必要があるため、非常に多くの種類の酵素
が存在し、それらの酵素は一般的に非常に高い基質特異
性を示すことが知られている。このような特徴は、微生
物を用いて化石燃料中に含まれる硫黄化合物中の硫黄の
除去を行ういわゆるバイオ脱硫反応においても活かされ
るものと期待されている(Monticello, D.J., Hydrocar
bon Processing39-45(1994)) 。
On the other hand, the enzymatic reaction performed by living organisms proceeds under relatively mild conditions, and the rate of the enzymatic reaction itself is not inferior to the rate of a reaction using a chemical catalyst. Furthermore, it is necessary to properly cope with a wide variety of biological reactions that occur in vivo, so that there are numerous types of enzymes, and these enzymes generally show very high substrate specificity. Have been. Such a feature is expected to be utilized in a so-called biodesulfurization reaction that removes sulfur in sulfur compounds contained in fossil fuels using microorganisms (Monticello, DJ, Hydrocar
bon Processing 39-45 (1994)).

【0005】細菌を用いて石油製品中に含まれる複素環
硫黄化合物から硫黄を除去する方法については、多数の
報告があるが、それらは環分解(C-C 結合切断)型反応
とC-S 結合切断型反応とに大別される。C-C 結合攻撃型
脱硫活性を有する細菌が知れている。これらの細菌は、
ジベンゾチオフェン(以下、「DBT」という)で代表さ
れる複素環式硫黄化合物中のC-C 結合の切断を行い、ベ
ンゼン環を分解し、その後の酸化反応カスケードによ
り、硫黄塩を放出するというタイプの代謝を行うもので
ある。更に、原油や石炭のみならず硫黄を含んだモデル
化合物を分解し、ヘテロ原子である硫黄を選択的に除去
して、硫酸塩や水酸化化合物を産生する微生物類が報告
されている。このタイプの反応は、その代謝産物の構造
から考えて、硫黄化合物中のC-S 結合を特異的に切断し
て、その結果硫黄を硫酸塩の形で遊離する反応であると
考えられる。
[0005] There have been many reports on the use of bacteria to remove sulfur from heterocyclic sulfur compounds contained in petroleum products. However, they have disclosed ring-cleavage (CC bond cleavage) type reactions and CS bond cleavage type reactions. They are roughly divided into Bacteria having CC bond attack type desulfurization activity are known. These bacteria are
Metabolism of the type that breaks the CC bond in a heterocyclic sulfur compound represented by dibenzothiophene (hereinafter referred to as “DBT”), decomposes the benzene ring, and releases a sulfur salt through the subsequent oxidation cascade. Is what you do. Furthermore, microorganisms that decompose not only crude oil and coal but also model compounds containing sulfur and selectively remove heteroatom sulfur to produce sulfates and hydroxylated compounds have been reported. This type of reaction is considered to be a reaction that specifically cleaves the CS bond in the sulfur compound and releases sulfur in the form of sulfate, in view of the structure of the metabolite.

【0006】C-S 結合切断型の脱硫反応を起こすことが
知らされている細菌で、そのDBT 分解反応に関与する酵
素活性をコードする遺伝子が同定され、その塩基配列が
決定されているのは、本発明者らの知る限りでは、ロド
コッカス(Rhodococcus) sp. IGTS8 株のdsz 遺伝子
(Denome, S., Oldfleld., C., Nash, L.J. and Young,
K.D. J.Bacteriol., 176:6707-6716, 1994; Piddingto
n, C.S., Kovacevich, B.R. and Rambosek, J. Appl. E
nviron. Microbiol., 61:468-475, 1995)とパエニバシ
ラス(Paenibacillus) sp.のtds遺伝子(特開平11-3419
87号公報)のみである。IGTS8 株によるDBT 分解反応
は、DBT からDBTスルホキシド(以下「DBTO」という)
を経てDBTスルホン(以下「DBTO2」という)への変換を
触媒するDszC、DBTO2 から2-(2'-ヒドロキシフェニル)
ベンゼンスルフィン酸への変換を触媒するDszAおよび2-
(2'-ヒドロキシフェニル)ベンゼンスルフィン酸から2-
ヒドロキシビフェニル(以下「2-HBP」という)への変
換を触媒するDszBの3つの酵素により触媒される(Deno
me, S., Oldfield., C., Nash, L.J. and Young, K.D.
J.Bacteriol., 176:6707-6716, 1994; Gray, K.A., Pog
rebinshy, O.S., Mrachko, G.T., Xi, L. Monticello,
D.J. and Squires, C.H. Nat Biotechnol., 14:1705-17
09, 1996; Oldfield, C., Pogrebinsky, O., Simmonds,
J., Olson, E.S.and Kulpa, C.F., Microbiology, 14
3:2961-2973, 1997)。それぞれ対応する遺伝子はdszA,
dszB, dszCと呼ばれている。DszCとDszAはモノオキシゲ
ナーゼで、両者ともその酸素添加反応にはNADH-FMNオキ
シドレダクターゼ活性の共存を必要とすることが知られ
ている(Gray, K.A., Pogrebinsky, O.S., Mrachko, G.
T.,Xi, L. Monticello, D.J. and Squires, C.H. Nat B
iotechnol., 14:1705-1709,1996; Xi, L. Squires, C.
H., Monticello, D.J. and Chids, J.D. Biochem. Biop
hys. Res Commun., 230:73-76, 1997) 。パエニバシラ
ス sp.のtds遺伝子は、ベンゾチオフェン(以下、「BT」
という)の分解能を有することや50℃以上の高温条件下
でC-S 結合特異的なDBT、BT分解活性を有する点でIGTS8
株の脱硫酵素Dszとは異なっている。
[0006] In a bacterium known to cause a CS bond-cleaving type desulfurization reaction, a gene encoding an enzyme activity involved in the DBT decomposition reaction has been identified and its nucleotide sequence determined. To the inventors' knowledge, the dsz gene of the Rhodococcus sp. IGTS8 strain (Denome, S., Oldfleld., C., Nash, LJ and Young,
KDJBacteriol., 176: 6707-6716, 1994; Piddingto
n, CS, Kovacevich, BR and Rambosek, J. Appl. E
nviron. Microbiol., 61: 468-475, 1995) and the tds gene of Paenibacillus sp.
No. 87). The degradation reaction of DBT by IGTS8 strain is from DBT to DBT sulfoxide (hereinafter “DBTO”).
DszC catalyzes the conversion to DBT sulfone (hereinafter referred to as “DBTO2”) via DBTO, 2- (2'-hydroxyphenyl) from DBTO2
DszA and 2- catalyze the conversion to benzenesulfinic acid
(2'-Hydroxyphenyl) benzenesulfinic acid to 2-
Catalyzed by three enzymes of DszB that catalyze the conversion to hydroxybiphenyl (hereinafter “2-HBP”) (Deno
me, S., Oldfield., C., Nash, LJ and Young, KD
J. Bacteriol., 176: 6707-6716, 1994; Gray, KA, Pog
rebinshy, OS, Mrachko, GT, Xi, L. Monticello,
DJ and Squires, CH Nat Biotechnol., 14: 1705-17
09, 1996; Oldfield, C., Pogrebinsky, O., Simmonds,
J., Olson, ESand Kulpa, CF, Microbiology, 14
3: 2961-2973, 1997). The corresponding genes are dszA,
They are called dszB and dszC. DszC and DszA are monooxygenases, both of which are known to require coexistence of NADH-FMN oxidoreductase activity for their oxygenation reactions (Gray, KA, Pogrebinsky, OS, Mrachko, G.
T., Xi, L. Monticello, DJ and Squires, CH Nat B
iotechnol., 14: 1705-1709, 1996; Xi, L. Squires, C.
H., Monticello, DJ and Chids, JD Biochem. Biop
hys. Res Commun., 230: 73-76, 1997). The tds gene of Paenibacillus sp. Is benzothiophene (hereinafter `` BT '').
IGTS8) because it has a DBT and BT decomposition activity specific to CS binding under high temperature conditions of 50 ° C or higher.
It is different from the strain's desulfurization enzyme Dsz.

【0007】軽油などの石油製品中には、アルキル硫酸
などの水素化脱硫で除去が比較的容易な硫黄化合物は含
まれていないが、環境への影響を極力小さくする将来の
省エネルギー型プロセスを考えたときに、現存する水素
化脱硫プロセスを代替えする事も想定される。その際に
は、複素環硫黄化合物だけでなく、直鎖の有機硫黄化合
物も含めて種々の有機硫黄化合物を脱硫する酵素を複合
的に利用する事も視野に入れておかなければならない。
多油種、或いは分留前の原油等に適用する事で、バイオ
プロセスの省エネルギー性をより一層生かすことが可能
である。
[0007] Petroleum products such as light oil do not contain sulfur compounds that are relatively easy to remove by hydrodesulfurization such as alkylsulfuric acid. However, a future energy-saving process for minimizing the impact on the environment will be considered. In such cases, it may be possible to replace existing hydrodesulfurization processes. At that time, it is necessary to consider the complex use of enzymes that desulfurize various organic sulfur compounds including not only heterocyclic sulfur compounds but also linear organic sulfur compounds.
By applying to multiple oil species or crude oil before fractionation, the energy saving of the bioprocess can be further utilized.

【0008】直鎖の有機硫黄化合物を分解する酵素及び
遺伝子としては、タウリンを分解し、亜硫酸イオンを生
成するエシェリキア・コリ(Esherichia coli)の酵素
及び遺伝子(Van der Ploeg, J. R., Weiss, M. A., Sal
ler, E., Nashimoto, H., Saito, N., Kertesz, M. A.,
Leisinger, T (1996) J. Bacteriol. 178(18), 5438-4
6)、脂肪族スルホン酸を分解するバシラス・サチリス
(Bacillus subtilis)、エシェリキア・コリ、シュー
ドモナス・エルジノーサ(Pseudomonas aeruginosa)、
シュードモナス・プチダ(Pseudomonas putida)の酵素
・遺伝子(van derPloeg,J. R., Iwanicka-Nowicka,R.,
Bykowski,T., Hryniewicz,M. and Leisinger,T. (1999)
J. Biol. Chem. 274, 29358-29365)、メタンスルホン
酸を分解し、亜硫酸イオンを生成するシュードモナス・
エルジノーサの酵素・遺伝子(Kertesz, M.A., Schmidt-
Larbig, K., Wuest, T. (1999) J. Bacteriol. 181, 14
64-1473)、シュードモナス・プチダのアルキル硫酸を分
解し、硫酸イオンを生成する酵素・遺伝子(Davison,
J., Brunel, F., Phanopoulos A., Prozzi, D., Terpst
ra, P. (1992) Gene 114(1), 12-24)など幾つか知られ
ているが、ロドコッカス属細菌など、化石燃料中の多環
有機硫黄化合物を分解する高い能力を持つ菌株ではこの
ような酵素或いは遺伝子は明らかにされていない。ロド
コッカス属細菌を宿主とする遺伝子組み換え菌は高い脱
硫能力を有することを、我々は明らかにしており、容易
にこの宿主に適用できる同種、或いは同属の菌株を起源
とする直鎖の有機硫黄化合物を分解する酵素及び遺伝子
はこれまでに知られていなかった。
[0008] As enzymes and genes for decomposing linear organic sulfur compounds, enzymes and genes of Escherichia coli (Esherichia coli) that decompose taurine and generate sulfite ions (Van der Ploeg, JR, Weiss, MA, Sal
ler, E., Nashimoto, H., Saito, N., Kertesz, MA,
Leisinger, T (1996) J. Bacteriol. 178 (18), 5438-4
6), Bacillus subtilis that decomposes aliphatic sulfonic acids, Escherichia coli, Pseudomonas aeruginosa,
Pseudomonas putida enzymes and genes (van derPloeg, JR, Iwanicka-Nowicka, R.,
Bykowski, T., Hryniewicz, M. and Leisinger, T. (1999)
J. Biol. Chem. 274, 29358-29365), which decomposes methanesulfonic acid to produce sulfite ions.
Elginosa enzymes and genes (Kertesz, MA, Schmidt-
Larbig, K., Wuest, T. (1999) J. Bacteriol. 181, 14
64-1473), an enzyme / gene that degrades the alkyl sulfate of Pseudomonas putida and generates sulfate ions (Davison,
J., Brunel, F., Phanopoulos A., Prozzi, D., Terpst
ra, P. (1992) Gene 114 (1), 12-24), and other strains with high ability to degrade polycyclic organic sulfur compounds in fossil fuels, such as Rhodococcus sp. No such enzyme or gene has been disclosed. We have shown that transgenic bacteria with Rhodococcus bacteria as the host have a high desulfurization capacity, and to obtain straight-chain organic sulfur compounds derived from the same species or strains of the same genus that can be easily applied to this host. Degrading enzymes and genes were not previously known.

【0009】加えて、アルキル硫酸のような構造をもつ
直鎖の有機硫黄化合物は一般に界面活性効果を持つ事が
知られている。一般家庭では歯磨き粉や洗剤など、産業
においては洗浄剤や乳化剤として、このような界面活性
剤がよく利用されており、排水として河川へ混入するこ
ともある。工場や廃水処理場などの閉鎖系では、アルコ
ール等の消泡剤を用いて化学的な脱乳化も可能である
が、自然界のような開放系では、このような方法が適さ
ないこともしばしばあり、在来の微生物により分解され
るのを待つか、バイオスティミュレーションと呼ばれる
在来の微生物の分解能力を高める方法が利用されてき
た。一方、油の流出による海洋汚染や土壌汚染の処理方
法として、バイオレメディエーションと呼ばれる、油の
分解能力が高い微生物を散布する方法が最近脚光を浴び
ている。また、油に加えて、油の分散の為に使用する界
面活性剤をも最終的に分解する菌は環境浄化に有用と考
えられている。石油中に含まれる複素環硫黄化合物を分
解する能力が高いロドコッカス属細菌はバイオレメディ
エーションへの適用も期待されているが、容易にこの宿
主に適用できる同種、或いは同属の菌株を起源とする、
界面活性剤の除去、すなわち直鎖のアルキル硫酸類を分
解する酵素及び遺伝子はこれまでに知られていない。
In addition, it is known that a linear organic sulfur compound having a structure such as alkyl sulfate generally has a surfactant effect. Such surfactants are often used in ordinary households as toothpastes and detergents, and in the industry as detergents and emulsifiers, and are sometimes mixed into rivers as wastewater. In a closed system such as a factory or a wastewater treatment plant, chemical demulsification can be performed using an antifoaming agent such as alcohol, but in an open system such as the natural world, such a method is often not suitable. A method of increasing the ability of conventional microorganisms to degrade, called biostimulation, has been used, waiting for the microorganisms to be degraded by native microorganisms. On the other hand, as a method for treating marine pollution and soil pollution due to oil spill, a method called bioremediation, which sprays microorganisms having a high oil decomposing ability, has recently attracted attention. Bacteria that finally degrade not only oil but also a surfactant used for dispersing the oil are considered useful for environmental purification. Rhodococcus bacteria with high ability to degrade heterocyclic sulfur compounds contained in petroleum are also expected to be applied to bioremediation, but they can be easily applied to this host, or originate from strains of the same species or the same genus.
Enzymes and genes that remove surfactants, ie, degrade linear alkyl sulfates, have not been previously known.

【0010】[0010]

【発明が解決しようとする課題】本発明の課題は、有機
硫黄化合物、特に直鎖の有機硫黄化合物を分解する遺伝
子を単離し、その構造(特に塩基配列)を特定し、ま
た、これらの遺伝子をそれが単離されたのとは異なる微
生物に導入し、有機硫黄化合物を分解する能力を賦与す
ることにより、新規な脱硫微生物を創製することであ
る。また、このような微生物を実際に有機硫黄化合物に
作用させて、硫黄を遊離させる方法を確立することであ
る。
SUMMARY OF THE INVENTION An object of the present invention is to isolate genes that decompose organic sulfur compounds, particularly linear organic sulfur compounds, to specify the structure (particularly the base sequence), Is to create a novel desulfurized microorganism by introducing it into a microorganism different from the one from which it was isolated and conferring the ability to degrade organic sulfur compounds. Another object of the present invention is to establish a method of releasing sulfur by causing such a microorganism to actually act on an organic sulfur compound.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記課題を
解決するために鋭意検討を重ねた結果、脱硫細菌 ロド
コッカス・エリスロポリス(Rhodococcus erythropoli
s) KA2-5-1株から有機硫黄化合物の分解に関与する遺
伝子群の単離に成功し、本発明を完成するに至った。即
ち、本発明の第一は、ABCトランスポーターを構成する
蛋白質をコードする遺伝子に関する。本発明の第二は、
アルキル硫酸分解能を有する蛋白質をコードする遺伝子
に関する。本発明の第三は、ABCトランスポーターを構
成する蛋白質に関する。本発明の第四は、アルキル硫酸
分解能を有する蛋白質に関する。
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have found that the desulfurized bacterium Rhodococcus erythropolis (Rhodococcus erythropoli) has been developed.
s) The genes involved in the decomposition of organic sulfur compounds were successfully isolated from the KA2-5-1 strain, and the present invention was completed. That is, the first aspect of the present invention relates to a gene encoding a protein constituting the ABC transporter. The second of the present invention is
The present invention relates to a gene encoding a protein having the ability to degrade alkyl sulfate. The third aspect of the present invention relates to a protein constituting the ABC transporter. A fourth aspect of the present invention relates to a protein having alkylsulfate degradability.

【0012】[0012]

【発明の実施の形態】以下、本発明を詳細に説明する。 (1)遺伝子 本発明の遺伝子には、以下の第一の遺伝子から第五の遺
伝子が含まれる。以下、各遺伝子ごとに説明する。 第一の遺伝子 第一の遺伝子は、配列番号2記載のアミノ酸配列により
表される蛋白質、または、配列番号2記載のアミノ酸配
列において1若しくは複数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列により表され、かつ配列
番号2記載のアミノ酸配列により表される蛋白質と同様
の機能を有する蛋白質をコードする遺伝子である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. (1) Genes The genes of the present invention include the following first to fifth genes. Hereinafter, each gene will be described. First gene The first gene is a protein represented by the amino acid sequence of SEQ ID NO: 2, or an amino acid sequence in which one or more amino acids have been deleted, substituted or added in the amino acid sequence of SEQ ID NO: 2. And a gene encoding a protein having the same function as the protein represented by the amino acid sequence of SEQ ID NO: 2.

【0013】配列番号2記載のアミノ酸配列により表さ
れる蛋白質は、ABCトランスポーターを構成する基質結
合蛋白質であると推定される。従って、上記の「同様の
機能を有する」とは、ABCトランスポーターを構成する
基質結合蛋白質としての機能を有するということを意味
する。ある蛋白質が、ABCトランスポーターを構成する
基質結合蛋白質としての機能を有するかどうかは、その
蛋白質をコードするDNAを、他のABCトランスポーター構
成蛋白質をコードする遺伝子(即ち、第二、第三、第四
の遺伝子)と共に適当な宿主に導入し、その宿主におい
てABCトランスポーターによる物質の輸送が行われてい
るかどうかを調べることにより、判断することができ
る。或いはグラム陽性菌からグラム陰性菌まで幅広く適
用できるpK18mobsacB等のベクター(Justin A.C.Powell
& John A.c.Archer"Molecular chracterisation of a R
hodococcus ohp operon"Antonie van Leeuwenhoek 74:1
75-188,1998)を用いて接合伝達により当該遺伝子を破壊
し、ABCトランスポーターによる物質の輸送が損なわれ
たかどうかを調べることにより判断することができる。
[0013] The protein represented by the amino acid sequence of SEQ ID NO: 2 is presumed to be a substrate binding protein constituting the ABC transporter. Therefore, “having the same function” as described above means having a function as a substrate binding protein constituting an ABC transporter. Whether a protein has a function as a substrate binding protein constituting an ABC transporter is determined by converting a DNA encoding the protein into a gene encoding another ABC transporter protein (that is, a second, a third, or a third protein). Together with the fourth gene) into an appropriate host, and checking whether or not the substance is being transported by the ABC transporter in that host. Alternatively, vectors such as pK18mobsacB that can be widely used from gram-positive bacteria to gram-negative bacteria (Justin ACPowell
& John AcArcher "Molecular chracterisation of a R
hodococcus ohp operon "Antonie van Leeuwenhoek 74: 1
75-188, 1998), the gene can be disrupted by conjugative transfer, and it can be determined by examining whether the substance transport by the ABC transporter has been impaired.

【0014】第一の遺伝子のうち、配列番号2記載のア
ミノ酸配列により表される蛋白質をコードする遺伝子
は、本明細書の実施例に記載された方法により得ること
ができる。また、この遺伝子の塩基配列は、配列番号1
に示すように、既に決定されているので、これらの配列
を基に適当なプライマーを合成し、たとえば、ロドコッ
カス・エリスロポリス KA2-5-1株から調製されたDNA を
鋳型としてPCR を行うことによっても得ることができ
る。なお、ロドコッカス・エリスロポリス KA2-5-1株
は、工業技術院生命工学工業技術研究所にFERM P-16277
として寄託されている(寄託日:平成9年6月17日)。
Among the first genes, the gene encoding the protein represented by the amino acid sequence shown in SEQ ID NO: 2 can be obtained by the method described in Examples of the present specification. The nucleotide sequence of this gene is as shown in SEQ ID NO: 1.
As shown in (1), appropriate primers are synthesized based on these sequences and, for example, PCR is performed using DNA prepared from Rhodococcus erythropolis strain KA2-5-1 as a template. Can also be obtained. Rhodococcus erythropolis KA2-5-1 strain was transferred to FERM P-16277
(Deposit date: June 17, 1997).

【0015】配列番号2記載のアミノ酸配列において1
若しくは複数個のアミノ酸が欠失、置換若しくは付加さ
れたアミノ酸配列をコードする遺伝子は、本願の出願時
において常用される技術、例えば、部位特異的変異誘発
法(Zoller et al., NucleicAcids Res. 10 6487-6500,
1982)により配列番号2記載のアミノ酸配列により表
される蛋白質をコードする遺伝子を改変することにより
得ることができる。また、このような遺伝子は、配列番
号2記載のアミノ酸配列または配列番号1記載の塩基配
列に基づき適当なプローブまたはプライマーを作製し、
これを用いてロドコッカス・エリスロポリスKA2-5-1株
以外の微生物等から単離してくることもできる。このよ
うな遺伝子の単離源とする微生物等としては、例えば、
ロドコッカス・ロドクロウス(Rhodococcus rhodochrou
s) IGTS8株 (ATCC 53968) 、マイコバクテリウム (Myco
bacterium) 属G3株(FERM P-16105)(特開平10-24379
1)、コリネバクテリウム(Corynebacterium) 属 SY-1株
(Ohmori, T., Monna,L., Saiki, Y. and Kodama,T. App
l.Environ. Microbiol., 58,911-915, 1992)等を挙げる
ことができる。
In the amino acid sequence of SEQ ID NO: 2,
Alternatively, a gene encoding an amino acid sequence in which a plurality of amino acids have been deleted, substituted or added can be obtained by a technique commonly used at the time of filing the present application, for example, site-directed mutagenesis (Zoller et al., Nucleic Acids Res. 6487-6500,
1982) by modifying the gene encoding the protein represented by the amino acid sequence of SEQ ID NO: 2. In addition, such a gene prepares an appropriate probe or primer based on the amino acid sequence of SEQ ID NO: 2 or the nucleotide sequence of SEQ ID NO: 1,
Using this, it can be isolated from microorganisms other than Rhodococcus erythropolis strain KA2-5-1. Examples of microorganisms and the like from which such genes are isolated include, for example,
Rhodococcus rhodochrou
s) IGTS8 strain (ATCC 53968), Mycobacterium (Mycobacterium
bacterium) genus G3 strain (FERM P-16105) (JP-A-10-24379)
1), Corynebacterium genus SY-1 strain
(Ohmori, T., Monna, L., Saiki, Y. and Kodama, T. App
l. Environ. Microbiol., 58, 911-915, 1992).

【0016】第一の遺伝子は、ABCトランスポーター構
成蛋白質をコードするので、この遺伝子を宿主に導入す
ることにより、その宿主に新たな物質の取り込み能力、
或いは排出能力を付与することができる。
Since the first gene encodes an ABC transporter-constituting protein, by introducing this gene into a host, the ability to take up a new substance into the host,
Alternatively, a discharge capacity can be provided.

【0017】 第二の遺伝子 第二の遺伝子は、配列番号4記載のアミノ酸配列により
表される蛋白質、または、配列番号4記載のアミノ酸配
列において1若しくは複数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列により表され、かつ配列
番号4記載のアミノ酸配列により表される蛋白質と同様
の機能を有する蛋白質をコードする遺伝子である。
Second Gene The second gene is a protein represented by the amino acid sequence of SEQ ID NO: 4, or one or more amino acids in the amino acid sequence of SEQ ID NO: 4 are deleted, substituted or added. And a gene encoding a protein having the same function as the protein represented by the amino acid sequence set forth in SEQ ID NO: 4.

【0018】配列番号4記載のアミノ酸配列により表さ
れる蛋白質は、ABCトランスポーターを構成する透過酵
素であると推定される。従って、上記の「同様の機能を
有する」とは、ABCトランスポーターを構成する透過酵
素としての機能を有するということを意味する。ある蛋
白質が、ABCトランスポーターを構成する透過酵素とし
ての機能を有するかどうかは、その蛋白質をコードする
DNAを、他のABCトランスポーター構成蛋白質をコードす
る遺伝子(即ち、第一、第三、第四の遺伝子)と共に適
当な宿主に導入し、その宿主においてABCトランスポー
タによる物質の輸送が行われているかどうかを調べるこ
とにより、判断することができる。或いは当該遺伝子を
破壊し、ABCトランスポーターによる物質の輸送が損な
われたかどうかを調べることにより判断することができ
る。第二の遺伝子は、第一の遺伝子と同様の方法で生産
することができ、また、同様の用途に利用することがで
きる。
The protein represented by the amino acid sequence of SEQ ID NO: 4 is presumed to be a permease that constitutes the ABC transporter. Therefore, “having the same function” as described above means having a function as a permease constituting the ABC transporter. Whether a protein has a function as a permease that constitutes the ABC transporter is encoded by the protein
DNA is introduced into an appropriate host together with genes encoding other ABC transporter-constituting proteins (ie, first, third, and fourth genes), and the substance is transported by the ABC transporter in the host. It can be determined by examining whether the Alternatively, it can be determined by disrupting the gene and examining whether the transport of the substance by the ABC transporter has been impaired. The second gene can be produced in the same manner as the first gene, and can be used for the same purpose.

【0019】 第三の遺伝子 第三の遺伝子は、配列番号6記載のアミノ酸配列により
表される蛋白質、または、配列番号6記載のアミノ酸配
列において1若しくは複数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列により表され、かつ配列
番号6記載のアミノ酸配列により表される蛋白質と同様
の機能を有する蛋白質をコードする遺伝子である。
Third Gene The third gene is a protein represented by the amino acid sequence of SEQ ID NO: 6, or the amino acid sequence of SEQ ID NO: 6 in which one or more amino acids are deleted, substituted, or added. And a gene encoding a protein having the same function as the protein represented by the amino acid sequence set forth in SEQ ID NO: 6.

【0020】配列番号6記載のアミノ酸配列により表さ
れる蛋白質は、ABCトランスポーターを構成する透過酵
素であると推定される。従って、上記の「同様の機能を
有する」とは、ABCトランスポーターを構成する透過酵
素としての機能を有するということを意味する。ある蛋
白質が、ABCトランスポーターを構成する透過酵素とし
ての機能を有するかどうかは、その蛋白質をコードする
DNAを、他のABCトランスポーター構成蛋白質をコードす
る遺伝子(即ち、第一、第二、第四の遺伝子)と共に適
当な宿主に導入し、その宿主においてABCトランスポー
タによる物質の輸送が行われているかどうかを調べるこ
とにより、判断することができる。或いは当該遺伝子を
破壊し、ABCトランスポーターによる物質の輸送が損な
われたかどうかを調べることにより判断することができ
る。第三の遺伝子は、第一の遺伝子と同様の方法で生産
することができ、また、同様の用途に利用することがで
きる。
The protein represented by the amino acid sequence of SEQ ID NO: 6 is presumed to be a permease that constitutes the ABC transporter. Therefore, “having the same function” as described above means having a function as a permease constituting the ABC transporter. Whether a protein has a function as a permease that constitutes the ABC transporter is encoded by the protein
DNA is introduced into an appropriate host together with genes encoding other ABC transporter-constituting proteins (ie, first, second, and fourth genes), and the substance is transported by the ABC transporter in the host. It can be determined by examining whether the Alternatively, it can be determined by disrupting the gene and examining whether the transport of the substance by the ABC transporter has been impaired. The third gene can be produced in the same manner as the first gene, and can be used for similar uses.

【0021】 第四の遺伝子 第四の遺伝子は、配列番号8記載のアミノ酸配列により
表される蛋白質、または、配列番号8記載のアミノ酸配
列において1若しくは複数個のアミノ酸が欠失、置換若
しくは付加されたアミノ酸配列により表され、かつ配列
番号8記載のアミノ酸配列により表される蛋白質と同様
の機能を有する蛋白質をコードする遺伝子である。
Fourth Gene The fourth gene is a protein represented by the amino acid sequence of SEQ ID NO: 8, or one or more amino acids in the amino acid sequence of SEQ ID NO: 8 are deleted, substituted or added. And a gene encoding a protein having the same function as the protein represented by the amino acid sequence set forth in SEQ ID NO: 8.

【0022】配列番号8記載のアミノ酸配列により表さ
れる蛋白質は、ABCトランスポーターを構成するATP結合
蛋白質であると推定される。従って、上記の「同様の機
能を有する」とは、ABCトランスポーターを構成するATP
結合蛋白質としての機能を有するということを意味す
る。ある蛋白質が、ABCトランスポーターを構成するATP
結合蛋白質としての機能を有するかどうかは、その蛋白
質をコードするDNAを、他のABCトランスポーター構成蛋
白質をコードする遺伝子(即ち、第一、第二、第三の遺
伝子)と共に適当な宿主に導入し、その宿主においてAB
Cトランスポータによる物質の輸送が行われているかど
うかを調べることにより、判断することができる。或い
は当該遺伝子を破壊し、ABCトランスポーターによる物
質の輸送が損なわれたかどうかを調べることにより判断
することができる。第四の遺伝子は、第一の遺伝子と同
様の方法で生産することができ、また、同様の用途に利
用することができる。
The protein represented by the amino acid sequence of SEQ ID NO: 8 is presumed to be an ATP-binding protein constituting an ABC transporter. Therefore, the above “having the same function” means that ATP constituting the ABC transporter
It means that it has a function as a binding protein. ATP is a component of ABC transporter
Whether a protein has a function as a binding protein is determined by introducing a DNA encoding the protein into an appropriate host together with genes encoding other ABC transporter-constituting proteins (ie, first, second, and third genes). In the host
The determination can be made by checking whether or not the substance is transported by the C transporter. Alternatively, it can be determined by disrupting the gene and examining whether the transport of the substance by the ABC transporter has been impaired. The fourth gene can be produced in the same manner as the first gene, and can be used for the same purpose.

【0023】 第五の遺伝子 第五の遺伝子は、配列番号10記載のアミノ酸配列によ
り表される蛋白質、または、配列番号10記載のアミノ
酸配列において1若しくは複数個のアミノ酸が欠失、置
換若しくは付加されたアミノ酸配列により表され、かつ
配列番号10記載のアミノ酸配列により表される蛋白質
と同様の機能を有する蛋白質をコードする遺伝子であ
る。
Fifth Gene The fifth gene is a protein represented by the amino acid sequence of SEQ ID NO: 10, or the amino acid sequence of SEQ ID NO: 10 in which one or more amino acids are deleted, substituted, or added. And a gene encoding a protein having the same function as the protein represented by the amino acid sequence of SEQ ID NO: 10 and represented by the following amino acid sequence.

【0024】配列番号10記載のアミノ酸配列により表
される蛋白質は、アルキル硫酸を分解することができ
る。従って、上記の「同様の機能を有する」とは、アル
キル硫酸を分解する機能を有するということを意味す
る。ある蛋白質が、アルキル硫酸を分解する機能を有す
るかどうかは、例えば、その蛋白質をコードする遺伝子
を微生物に導入し、その微生物について実施例9や実施
例10記載の実験を行うことにより判断することができ
る。
The protein represented by the amino acid sequence of SEQ ID NO: 10 can degrade alkyl sulfate. Therefore, “having the same function” as described above means having the function of decomposing alkyl sulfate. Whether a protein has the function of degrading alkyl sulfate can be determined, for example, by introducing a gene encoding the protein into a microorganism and performing the experiments described in Examples 9 and 10 on the microorganism. Can be.

【0025】第五の遺伝子は、第一の遺伝子と同様の方
法により生産することができる。第五の遺伝子を導入す
ることにより、SDSに対する耐性を付与することがで
き、また、SDSを硫黄源として利用できない微生物に対
し、その利用性を付与できる。従って、この遺伝子は、
微生物にこれらの性質を付与するために利用することが
できる。
The fifth gene can be produced by a method similar to that for the first gene. By introducing the fifth gene, resistance to SDS can be imparted, and its utility can be imparted to microorganisms that cannot use SDS as a sulfur source. Therefore, this gene
It can be used to impart these properties to microorganisms.

【0026】(2)蛋白質 本発明の蛋白質は、配列番号2、4、6、8または10
記載のアミノ酸配列により表される蛋白質、及び配列番
号2、4、6、8または10記載のアミノ酸配列におい
て1若しくは複数個のアミノ酸が欠失、置換若しくは付
加されたアミノ酸配列により表され、かつ配列番号2、
4、6、8または10記載のアミノ酸配列により表され
る蛋白質と同様の機能を有する蛋白質を包含する。
(2) Protein The protein of the present invention has SEQ ID NO: 2, 4, 6, 8 or 10
A protein represented by the amino acid sequence of any one of SEQ ID NOs: 2, 4, 6, 8, or 10, wherein the protein is represented by an amino acid sequence in which one or more amino acids are deleted, substituted, or added; Number 2,
Includes proteins having the same function as the protein represented by the amino acid sequence of 4, 6, 8 or 10.

【0027】本発明の蛋白質は、上述の本発明の遺伝子
を含む適当な発現ベクターを作製し、そのベクターを適
当な宿主細胞に導入し、その宿主細胞を培養することに
より生産することができる。発現ベクターは、本発明の
遺伝子を含むDNA 断片を、公知のベクターに挿入するこ
とにより作製することができる。DNA 断片を挿入するベ
クターは、形質転換する宿主に応じて決めればよく、宿
主として大腸菌を使用するのであれば、以下のようなベ
クターを使用するのが好ましい。強力なプロモーターと
して、例えば、lac 、lacUV5、trp 、tac 、trc 、λp
L、T7、rrnB、などを含むpUR 系、pGEX系、pUC 系、pET
系、pT7 系、pBluescript 系、pKK 系、pBS 系、pBC
系、pCAL系などのベクターを使用するのが好ましい。形
質転換体の宿主とする細胞は、植物細胞や動物細胞など
であってもよいが、大腸菌などの微生物が好ましい。代
表的な菌株としては、Sambrook等の成書Molecular Clon
ingLaboratory Mannual 2nd ed.に記載されている、71/
18 、BB4 、BHB2668 、BHB2690 、BL21(DE3) 、BNNl02
(C600hflA)、C-1a、C600(BNN93) 、CES200、CES201、CJ
236 、CSH18 、DH1 、DH5 、DH5 α、DP50supF、ED865
4、ED8767、HB101 、HMS174、JM101 、JM105 、JM107
、JM109 、JM110 、K802、KK2186、LE392 、LG90、M52
19 、MBM7014.5 、MC1061、MM294 、MV1184、MV1193、M
Z-1、NM531 、NM538 、NM539 、Q358、Q359、R594、RB7
91 、RR1 、SMR10 、TAP90 、TG1 、TG2 、XL1-Blue、X
S101 、XS127 、Y1089 、Y1090hsdR 、YK537 などが挙
げられる。
The protein of the present invention can be produced by preparing an appropriate expression vector containing the above-described gene of the present invention, introducing the vector into an appropriate host cell, and culturing the host cell. An expression vector can be prepared by inserting a DNA fragment containing the gene of the present invention into a known vector. The vector into which the DNA fragment is inserted may be determined according to the host to be transformed, and if Escherichia coli is used as the host, the following vectors are preferably used. As strong promoters, for example, lac, lacUV5, trp, tac, trc, λp
PUR, pGEX, pUC, pET including L, T7, rrnB, etc.
System, pT7 system, pBluescript system, pKK system, pBS system, pBC
It is preferable to use a vector such as a pCAL system. Cells used as hosts for the transformants may be plant cells or animal cells, but microorganisms such as Escherichia coli are preferred. Representative strains include those described in Sambrook et al.
ingLaboratory Mannual 2nd ed., 71 /
18, BB4, BHB2668, BHB2690, BL21 (DE3), BNN102
(C600hflA), C-1a, C600 (BNN93), CES200, CES201, CJ
236, CSH18, DH1, DH5, DH5α, DP50supF, ED865
4, ED8767, HB101, HMS174, JM101, JM105, JM107
, JM109, JM110, K802, KK2186, LE392, LG90, M52
19, MBM7014.5, MC1061, MM294, MV1184, MV1193, M
Z-1, NM531, NM538, NM539, Q358, Q359, R594, RB7
91, RR1, SMR10, TAP90, TG1, TG2, XL1-Blue, X
S101, XS127, Y1089, Y1090hsdR, YK537 and the like.

【0028】[0028]

【実施例】以下、本発明を実施例により具体的に説明す
る。実施例中の遺伝子操作に関連した実験は、主にMani
atisらの成書(Sambrook,J.,Fritsch, E., F. andMania
tis, T. 1989. Molecular Cloning. A LaboratoryManua
l. 2nd. Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, NY.)に詳述されている方法に従って行
った。
The present invention will be described below in more detail with reference to examples. Experiments related to genetic engineering in the examples were mainly
atis et al. (Sambrook, J., Fritsch, E., F. and Mania
tis, T. 1989. Molecular Cloning. A LaboratoryManua
l. 2nd. Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, NY.).

【0029】〔実施例1〕有機硫黄化合物分解酵素のス
クリーニング 唯一の硫黄源としてDBT、ジメチルスルホキシド(以下
「DMSO」という)、2-アミノエタンスルホン酸(タウリ
ン)、或いは、メチオニン、システイン、硫酸ナトリウ
ムを終濃度0.14mMになるように、基本培地200mLに加え
て、あらかじめ同条件で培養しておいた脱硫細菌ロドコ
ッカス・エリスロポリスKA2-5-1株(以下、単に「KA2-5
-1株」という)の種菌を1%接種、対数増殖後期まで培養
した。いずれの硫黄源を用いても、分光光度計で測定し
た培養液の濁度(測定波長660nm)は4〜6を示し、生育が
良好である事が示された。
Example 1 Screening of Organosulfur Compound Degrading Enzyme DBT, dimethyl sulfoxide (hereinafter referred to as "DMSO"), 2-aminoethanesulfonic acid (taurine), or methionine, cysteine, sodium sulfate as sole sulfur sources Was added to 200 mL of the basic medium to a final concentration of 0.14 mM, and the desulfurized bacterium Rhodococcus erythropolis strain KA2-5-1 (hereinafter simply referred to as “KA2-5
-1 strain), and cultured until late logarithmic growth. Regardless of which sulfur source was used, the turbidity (measuring wavelength 660 nm) of the culture solution measured with a spectrophotometer was 4 to 6, indicating that the growth was good.

【0030】基本培地は、特開平 11-181446号「脱硫活
性微生物の製造方法」に記載の組成を用いた。培養液は
リン酸緩衝液で洗浄後、同緩衝液に懸濁して反応菌体液
とした。これに終濃度150ppmになる様にDBTを加えて、3
0℃2時間振盪反応して、休止菌体法によるDBT分解試験
を行った。反応液は塩酸を加えて酸性条件にした後に酢
酸エチルで抽出して測定試料とし、ガスクロマトグラフ
ィーで分析、KA2-5-1株のDBT脱硫産物である2-HBPの生
成量を定量した。
As the basal medium, the composition described in JP-A-11-181446, "Method for producing desulfurizing active microorganism" was used. The culture solution was washed with a phosphate buffer and then suspended in the same buffer to obtain a reaction bacterial cell solution. Add DBT to this to a final concentration of 150ppm, and add 3
After a shaking reaction at 0 ° C. for 2 hours, a DBT degradation test was performed by a resting cell method. The reaction solution was adjusted to acidic conditions by adding hydrochloric acid and extracted with ethyl acetate to prepare a measurement sample, which was then analyzed by gas chromatography to quantify the amount of 2-HBP, a DBT desulfurization product of strain KA2-5-1.

【0031】硫黄源がメチオニン、システイン、或いは
硫酸ナトリウムの場合は、DBT分解活性はほとんど認め
られなかったが、硫黄源がDMSO或いは2-アミノエタンス
ルホン酸の場合には、この活性が認められた。更に、硫
黄源がDBTの場合には高い活性(硫黄源がDMSO或いは2-ア
ミノエタンスルホン酸の場合の約2倍)が認められた。
When the sulfur source was methionine, cysteine or sodium sulfate, almost no DBT decomposition activity was observed, but when the sulfur source was DMSO or 2-aminoethanesulfonic acid, this activity was observed. . Furthermore, when the sulfur source was DBT, high activity (about twice as high as when the sulfur source was DMSO or 2-aminoethanesulfonic acid) was observed.

【0032】上記の各種硫黄源を用いて培養した菌体を
湿菌体1gあたり100mMリン緩衝液(pH7.0)2mlに懸濁
し、超音波破砕したのち遠心分離(14,000×g、4℃、2
0分)し、遠心上清に含まれる蛋白質を2次元電気泳動法
で解析した。1次元目はpH4?pH7の固定化pH勾配を有す
るゲルを用いて、尿素存在下等電点電気泳動を行った。
2次元目は、1次元電気泳動後のゲルに対して90度方向に
Laemliの系によるSDS電気泳動を行った。ゲル中の蛋白
質及は銀染色法で可視化した。
The cells cultured using the above-mentioned various sulfur sources were suspended in 2 ml of 100 mM phosphorus buffer (pH 7.0) per 1 g of wet cells, sonicated, and then centrifuged (14,000 × g, 4 ° C., Two
0 minutes), and the proteins contained in the centrifuged supernatant were analyzed by two-dimensional electrophoresis. The first dimension is pH4? Using a gel having an immobilized pH gradient of pH 7, isoelectric focusing was performed in the presence of urea.
The second dimension is at 90 degrees to the gel after one-dimensional electrophoresis.
SDS electrophoresis was performed with the Laemli system. The proteins in the gel were visualized by silver staining.

【0033】また、2次元電気泳動像における脱硫酵素
のスポットをイムノプロット法で解析した。イムノブロ
ッテイングには、脱硫酵素において抗原性が高いと予想
される配列を元に調製した合成ペプチドを抗原として調
製した抗DszAウサギポリクローナル抗体、抗DszBウサギ
ポリクローナル抗体、抗DszCウサギポリクローナル抗
体、或いは脱硫菌KA2-5-1株より精製したDszDを抗原と
して調製した抗DszDウサギポリクローナル抗体を用い
た。
Further, spots of desulfurization enzymes in the two-dimensional electrophoresis image were analyzed by an immunoplot method. In immunoblotting, an anti-DszA rabbit polyclonal antibody, an anti-DszB rabbit polyclonal antibody, an anti-DszC rabbit polyclonal antibody prepared using a synthetic peptide prepared based on a sequence expected to have high antigenicity in desulfurase as an antigen, or desulfurization An anti-DszD rabbit polyclonal antibody prepared using DszD purified from the strain KA2-5-1 as an antigen was used.

【0034】2次元電気泳動の結果を図1に示す。図中の
a、b、c、dはそれぞれDBT、DMSO、メチオニン、硫酸ナ
トリウムを硫黄源として培養した場合の電気泳動像を示
す。また、b-1、b-2、b-3、b-4はそれぞれ抗DszA抗体、
抗DszB抗体、抗DszC抗体、抗DszD抗体を用いた場合のイ
ムノブロッティングの結果を示す。
FIG. 1 shows the results of two-dimensional electrophoresis. In the figure
a, b, c, and d show electrophoretic images when cultured using DBT, DMSO, methionine, and sodium sulfate as sulfur sources, respectively. Also, b-1, b-2, b-3, b-4 are anti-DszA antibodies,
The results of immunoblotting when using anti-DszB antibody, anti-DszC antibody, and anti-DszD antibody are shown.

【0035】硫黄源によって大きさや濃さが変化するス
ポットを四角で囲み、SDS電気泳動による移動度が等し
いスポットをグルーピングした。2-アミノエタンスルホ
ン酸を硫黄源とした場合の2次元電気泳動像は図に示さ
なかったが、四角で囲みグルーピングしたスポットの大
きさや濃さの傾向は、DMSOの場合と一致した。システイ
ンを硫黄源とした場合の2次元電気泳動像も図に示さな
かったが、四角で囲みグルーピングしたスポットの大き
さや濃さの傾向は、硫酸ナトリウムの場合と一致した。
2次元電気泳動により硫黄源によって明らかに変化が認
められるスポット群を8群見出した。イムノブロッティ
ングの結果から、グループ1を脱硫酵素DszA、グループ2
を脱硫酵素DszB、グループ3を脱硫酵素DszC、グループ6
を脱硫酵素DszDと同定した。グループ4及びグループ5
は、DBT、DMSO或いは2-アミノエタンスルホン酸を硫黄
源として培養、すなわち脱硫活性が発現する条件下にお
いて、明瞭なスポットとして認められた。それに対し
て、硫黄源がメチオニン、システイン、或いは硫酸ナト
リウムなどの脱硫活性が無い、或いは極めて低い条件下
ではこれらのスポット群は認められなかった。グループ
1〜グループ3のスポット群、すなわちDszA,DszBそしてD
szCにおいても、この傾向は全く同じであった。グルー
プ6(DszDと同定)及びグループ7は、DBTを硫黄源として
培養、すなわち脱硫活性が高い条件下において、大きく
濃厚なスポットとして認められた。また、グループ1〜5
における傾向とは異なり、硫黄源がメチオニン、システ
イン、或いは硫酸ナトリウムなどの脱硫活性が無い、或
いは極めて低い条件下でもこれらのスポット群は認めら
れた。グループ8はメチオニンを硫黄源として培養した
場合にのみ濃厚で大きくなる傾向が認められた。メチオ
ニンにより誘導されるスポットと考えられる。
The spots whose size and density varied depending on the sulfur source were surrounded by a square, and spots having the same mobility by SDS electrophoresis were grouped. Although the two-dimensional electrophoresis image when 2-aminoethanesulfonic acid was used as the sulfur source was not shown in the figure, the tendency of the size and the density of the grouped spots surrounded by squares coincided with the case of DMSO. Although the two-dimensional electrophoresis image when cysteine was used as the sulfur source was not shown in the figure, the size and the density tendency of the spots grouped by boxes were consistent with those of sodium sulfate.
By two-dimensional electrophoresis, eight groups of spots, which were clearly changed by the sulfur source, were found. From the results of immunoblotting, group 1 was converted to desulfurization enzyme DszA, group 2
Desulfurase DszB, Group 3 Desulfurase DszC, Group 6
Was identified as desulfurization enzyme DszD. Group 4 and Group 5
Was observed as a clear spot under culture using DBT, DMSO or 2-aminoethanesulfonic acid as a sulfur source, that is, under conditions where desulfurization activity was exhibited. On the other hand, these spot groups were not observed under conditions where the sulfur source did not have desulfurization activity such as methionine, cysteine, or sodium sulfate, or was extremely low. group
1 to group 3 spot groups, namely DszA, DszB and D
This tendency was exactly the same for szC. Group 6 (identified as DszD) and Group 7 were observed as large and dense spots under culture using DBT as a sulfur source, that is, under conditions with high desulfurization activity. Also, groups 1-5
Contrary to the tendency, these spot groups were observed even under conditions in which the sulfur source had no or very low desulfurization activity such as methionine, cysteine, or sodium sulfate. Group 8 showed a tendency to become rich and large only when cultured using methionine as a sulfur source. It is considered a spot induced by methionine.

【0036】脱硫菌KA2-5-1株において硫黄源によって
大きさや濃さが変化するスポットのSDS存在下における
分子量、及び尿素存在下における等電点を表1に示す。D
szA、DszB、DszC及びDszDに加え、グループ4、グループ
5及びグループ7として示したスポット群も、DBT、或い
は他の有機硫黄化合物の代謝に関わると推察された。
Table 1 shows the molecular weight in the presence of SDS, and the isoelectric point in the presence of urea, of spots whose size and density change depending on the sulfur source in the desulfurizing bacterium strain KA2-5-1. D
Group 4, group in addition to szA, DszB, DszC and DszD
The spot groups shown as 5 and group 7 were also presumed to be involved in the metabolism of DBT or other organic sulfur compounds.

【0037】[0037]

【表1】 [Table 1]

【0038】〔実施例2〕有機硫黄化合物分解酵素と推
定される38kDの蛋白質の部分アミノ酸配列 硫黄源による制御を受けるスポット群グループ5は、実
施例1で見出したスポット群の中で最も発現量が多く、
有機硫黄化合物分解酵素である可能性が高いと考えられ
た。実施例1に記載の方法に従って、ジベンゾチオフェ
ンを唯一の硫黄源として培養した脱硫細菌 KA2-5-1株か
ら調製した無細胞抽出物(0.5mg)の2次元電気泳動を行っ
た。2次元電気泳動後のスポットはウエスタンプロット
法を用いてゲルからPVDF膜に転写し、クーマシーブリリ
アントブルー染色液で膜上の蛋白質成分を可視化し、脱
色後にグループ5に相当するスポットが転写された膜を
それぞれ切り抜いた。
Example 2 Partial amino acid sequence of a 38 kD protein presumed to be an organic sulfur compound-degrading enzyme The spot group 5 controlled by a sulfur source is the most expressed amount among the spot groups found in Example 1. Many,
It was considered that there is a high possibility that the enzyme is an organic sulfur compound degrading enzyme. According to the method described in Example 1, two-dimensional electrophoresis of a cell-free extract (0.5 mg) prepared from desulfurized bacterium strain KA2-5-1 cultured with dibenzothiophene as the sole sulfur source was performed. The spots after the two-dimensional electrophoresis were transferred from the gel to the PVDF membrane using Western blotting, the protein components on the membrane were visualized with Coomassie brilliant blue staining solution, and spots corresponding to group 5 were transferred after decolorization. Each membrane was cut out.

【0039】2次元電気泳動において等電点の異なるグ
ループ5の3つのスポットのうち、大きく濃厚なスポット
2つを中性側からスポット1、スポット2とし、それぞれ
のN末端配列を解析した。 スポット1 NH2-SITELERVTQTPEQIYAAGGIT スポット2 NH2-SITELERVTQ (アミノ酸は一文字記号により示してある。)
Among the three spots of group 5 having different isoelectric points in two-dimensional electrophoresis, a large and dense spot
The two were designated as spot 1 and spot 2 from the neutral side, and their N-terminal sequences were analyzed. Spot 1 NH 2 -SITELERVTQTPEQIYAAGGIT Spot 2 NH 2 -SITELERVTQ (amino acids are indicated by single letter symbols.)

【0040】両者の配列は全く同一であり、等電点が異
なるものの、同じアミノ酸配列からなる同一の蛋白質由
来のスポット群と断定した。このように等電点が異なる
理由は明らかでないが、蛋白質に対して等電点に変化を
及ぼすような修飾がなされていると考えられる。硫黄化
合物の代謝に関わる蛋白質だけが、等電点の違う複数の
スポットを生じることは興味深い。蛋白質が修飾を受け
ているならば、これは酵素活性の調節などの重要な役割
を担っていると思われる。
Although both sequences were completely identical and had different isoelectric points, they were determined to be spot groups derived from the same protein having the same amino acid sequence. Although the reason why the isoelectric points are different is not clear, it is considered that the protein is modified so as to change the isoelectric point. It is interesting that only proteins involved in the metabolism of sulfur compounds produce multiple spots with different isoelectric points. If the protein is modified, it may play important roles such as regulating enzyme activity.

【0041】切り取ったPVDF膜を岩松ら(「極微量蛋白
質の系統的なサンプル処理方法」岩松明彦,細胞工学 Vo
l.16 No.2 269-281 , 1997)に従って、還元アルキル化
の後lysyl endopeptidase、trypsinで処理し内部ペプチ
ドを単離、それぞれのアミノ酸配列を決定した。 内部配列1 -QGDAQHVTNY- 内部配列2 -GDASEF- 内部配列3 -VTLAGAVP- (アミノ酸は一文字記号により示してある。)
The cut PVDF membrane was applied to Iwamatsu et al. (“Systematic sample processing method for trace proteins”, Akihiko Iwamatsu, Cell Engineering Vo.
According to l.16 No.2 269-281, 1997), the resulting peptide was treated with lysyl endopeptidase and trypsin after reductive alkylation, the internal peptide was isolated, and the amino acid sequence of each peptide was determined. Internal sequence 1 -QGDAQHVTNY- Internal sequence 2 -GDASEF- Internal sequence 3 -VTLAGAVP- (amino acids are indicated by single letter symbols.)

【0042】〔実施例3〕有機硫黄化合物分解酵素と推
定される38kDの蛋白質をコードする遺伝子断片のクロー
ニング 実施例2に記載の脱硫細菌KA2-5-1株において、有機硫黄
化合物分解酵素と推測される38kDの蛋白質の部分アミノ
酸配列をもとに以下に示すようなPCR用プライマーを作
製した。 センスプライマー1 5'- CCNGARCARATHTAYGC -3' アンチセンスプライマー1 5'- TGYTGNGCRTCNCCYTG -3' これらのセンスプライマーとアンチセンスプライマーを
用いて、KA2-5-1株から抽出したDNA を鋳型としてPCR
を行った。DNAの調製は以下のように行った。
Example 3 Cloning of a Gene Fragment Encoding a 38 kD Protein Presumed to be an Organosulfur Compound Degrading Enzyme In the desulfurized bacterium KA2-5-1 described in Example 2, it is assumed to be an organic sulfur compound degrading enzyme. Based on the partial amino acid sequence of the 38 kD protein to be prepared, the following PCR primers were prepared. Sense primer 1 5'-CCNGARCARATHTAYGC-3 'Antisense primer 15'-TGYTGNGCRTCNCCYTG-3' Using these sense primers and antisense primers, PCR was performed using DNA extracted from KA2-5-1 strain as a template.
Was done. Preparation of DNA was performed as follows.

【0043】DBT を含む実施例1に記載の基本培地で30
℃で40時間培養したKA2-5-1株の菌体を11mlのB1緩衝液
(50mM EDTA, 50mM Tris-HCl, 0.5% Triton X-100, 0.2
mg/mlRNaseA, pH8.0)に懸濁させた。この懸濁液に、10
0mg/mlのリゾチーム溶液を300μlと20mg/mlのProteinas
e K溶液を500μl 添加して、37℃で1時間反応させた。
反応液に4mlのB2緩衝液(800mM GuHCl, 20% Tween-20,
pH 5.5 )を添加、攪拌混合して、55℃で30分間反応さ
せ、5秒間ミキサーで攪拌して、菌体反応液を調製し
た。陰イオン交換樹脂が充填されたQIAGEN GENOMIC-TIP
500/G(QIAGEN社製)カラムを10mlのQBT緩衝液(750mM
NaCl, 50mM MOPS, 15% ethanol, 0.15% Triton X-100,p
H7.0 )で平衡化して、菌体反応液をカラムに注入し
た。カラムを30mlのQC緩衝液(1.0M NaCl, 50mM MOPS,
15% ethanol, pH7.0)で洗浄したのち、15mlのQF緩衝液
(1.25M NaCl, 50mM Tris-HCl, 15% ethanol, pH 8.5)
でゲノムDNA 溶液を溶出した。ゲノムDNA 溶液に10.5ml
のイソプロパノールを添加してDNAを沈殿させたのち、
ガラス棒で巻きとり回収した。回収したDNA を100μl
のTE緩衝液(10mM Tris-HCl,1mM EDTA, pH8.0)に溶解
してゲノムDNA 溶液を調製した。
In the basal medium described in Example 1 containing DBT,
The cells of the KA2-5-1 strain cultured at 40 ° C for 40 hours were mixed with 11 ml of B1 buffer (50 mM EDTA, 50 mM Tris-HCl, 0.5% Triton X-100, 0.2%
mg / ml RNaseA, pH 8.0). Add 10 to this suspension
300 μl of 0 mg / ml lysozyme solution and 20 mg / ml of Proteinas
500 μl of the eK solution was added and reacted at 37 ° C. for 1 hour.
Add 4 ml of B2 buffer (800 mM GuHCl, 20% Tween-20,
pH 5.5), stirred and mixed, reacted at 55 ° C. for 30 minutes, and stirred with a mixer for 5 seconds to prepare a cell reaction solution. QIAGEN GENOMIC-TIP filled with anion exchange resin
Use a 500 / G (QIAGEN) column with 10 ml of QBT buffer (750 mM
NaCl, 50mM MOPS, 15% ethanol, 0.15% Triton X-100, p
H7.0), and the cell reaction solution was injected into the column. Use 30 ml of QC buffer (1.0 M NaCl, 50 mM MOPS,
After washing with 15% ethanol, pH 7.0), 15 ml of QF buffer (1.25 M NaCl, 50 mM Tris-HCl, 15% ethanol, pH 8.5)
Eluted the genomic DNA solution. 10.5 ml in genomic DNA solution
After precipitating the DNA by adding isopropanol,
It was wound up with a glass rod and collected. 100 μl of recovered DNA
Was dissolved in a TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to prepare a genomic DNA solution.

【0044】調製したKA2-5-1株DNA を鋳型として用い
て行ったPCR の条件は以下の通りである。 反応液組成: 50mM KCl 1.5mM MgCl2 各0.2mM dNTP Mixture 1 μM センスプライマー 1 μM アンチセンスプライマー 200ng 鋳型DNA 2.5U Taq DNA polymerase アニーリング温度:46℃から60℃までの間で 2℃間隔で温度を変えてPCR を行っ た。 PCR サイクル: 94℃ 2min 1回 94℃ 1min ↓ 46-60℃ 1min この間を30回繰り返し 72℃ 3min ↑ 72℃ 7min 1回 DNA 増幅機:RobocyclerTMGRADIENT96 温度サイクラー(STRATAGENE社製)
The conditions of PCR performed using the prepared KA2-5-1 strain DNA as a template are as follows. Reaction solution composition: 50 mM KCl 1.5 mM MgCl2 0.2 mM each dNTP Mixture 1 μM Sense primer 1 μM Antisense primer 200 ng Template DNA 2.5 U Taq DNA polymerase Annealing temperature: Change the temperature from 46 ° C to 60 ° C at 2 ° C intervals PCR was performed. PCR cycle: 94 ° C 2min once 94 ° C 1min ↓ 46-60 ° C 1min Repeat this process 30 times 72 ° C 3min ↑ 72 ° C 7min 1 time DNA amplifier: RobocyclerTMGRADIENT96 Temperature cycler (manufactured by STRATAGENE)

【0045】上記の条件でPCR を行った結果、アニーリ
ング温度が46〜54℃の時、約500bpの増幅フラグメント
を与えることが確認された。この500bp のPCR 産物を、
pCR-Script SK(+)ベクターを用いて大腸菌 JM109株にク
ローン化した。この配列から予想されるアミノ酸配列
は、実施例2に記載のKA2-5-1株において、有機硫黄化
合物分解酵素と推測される38kDの蛋白質のN末端アミノ
酸配列及び内部配列3と一致した。
As a result of performing PCR under the above conditions, it was confirmed that when the annealing temperature was 46 to 54 ° C., an amplified fragment of about 500 bp was obtained. This 500 bp PCR product is
It was cloned into E. coli strain JM109 using pCR-Script SK (+) vector. The amino acid sequence deduced from this sequence was identical to the N-terminal amino acid sequence and internal sequence 3 of the 38 kD protein estimated to be an organic sulfur compound-degrading enzyme in the KA2-5-1 strain described in Example 2.

【0046】本実施例で明らかにした KA2-5-1株におい
て有機硫黄化合物分解酵素と推定される38kDの蛋白質の
部分遺伝子配列、及び実施例2に記載の脱硫細菌 KA2-5-
1株において、有機硫黄化合物分解酵素と推定される38k
Dの蛋白質の部分アミノ酸配列をもとに以下に示すよう
なPCR用プライマーを作製した。 センスプライマー2 5'- TACGCTGCCGGCGGAAT -3' アンチセンスプライマー2 5'- AAYTCNGANGCRTCNCC -3'
The partial gene sequence of a 38 kD protein estimated to be an organic sulfur compound-degrading enzyme in the strain KA2-5-1 identified in this example, and the desulfurized bacterium KA2-5- described in Example 2
In one strain, 38k estimated to be an organic sulfur compound-degrading enzyme
Based on the partial amino acid sequence of the protein D, PCR primers as shown below were prepared. Sense primer 2 5'- TACGCTGCCGGCGGAAT -3 'Antisense primer 25'- AAYTCNGANGCRTCNCC -3'

【0047】これらのセンスプライマーとアンチセンス
プライマーを用いて、上述方法でPCR を行った結果、ア
ニーリング温度が46〜60℃の時、約900bp の増幅フラグ
メントを与えることが確認された。この900bp のPCR 産
物を、pCR-Script SK(+)ベクターを用いて大腸菌 JM109
株にクローン化した。この配列から予想されるアミノ酸
配列は、実施例2に記載のKA2-5-1株において、有機硫
黄化合物分解酵素と推測される38kDの蛋白質のN末端ア
ミノ酸配列、内部配列1、内部配列2及び内部配列3と一
致した。
As a result of performing PCR by the above method using these sense primer and antisense primer, it was confirmed that when the annealing temperature was 46 to 60 ° C., an amplified fragment of about 900 bp was obtained. This 900 bp PCR product was transformed into E. coli JM109 using pCR-Script SK (+) vector.
Cloned into the strain. The amino acid sequence predicted from this sequence is, in the KA2-5-1 strain described in Example 2, the N-terminal amino acid sequence of the 38 kD protein predicted to be an organic sulfur compound degrading enzyme, internal sequence 1, internal sequence 2, and It matched internal sequence 3.

【0048】〔実施例4〕KA2-5-1株、全DNAライブラリ
ーの作製 全DNA の調製方法は上記のPCR に鋳型として用いたDNA
の調製方法と同じである。 ライブラリーの作製方法 KA2-5-1株の全DNA ライブラリーは以下のようにして作
製した。KA2-5-1株の全DNA 標品約 2μg を0.1 ユニッ
トのSau3AIで各々20分、30分、40分消化した後、消化物
をフェノール−クロロホルムで抽出しエタノール沈殿に
より回収した後、遠心後得られたDNA 断片を8ユニット
の子ウシ小腸由来のアルカリ性ホスファターゼで、37℃
60分間処理することにより脱リン酸化を行った。アルカ
リ性ホスファターゼ処理後フェノール−クロロホルム処
理によりDNA を抽出し、エタノール沈殿によりこれを回
収した。得られたDNA 断片約 0.2μg をλDASHI/BamHI
アーム約2μg と2ユニットのT4DNA リガーゼ存在下に
4℃18時間反応させた。反応混合物をGigapack III XL
packaging Extract(STRATAGENE社)と反応させることに
よりin vitroパッケージングを行い、ファージライブラ
リーを作製した。パッケージング後のファージ液の力価
は 1.5×106 pfu であった。
Example 4 Preparation of KA2-5-1 Strain, Total DNA Library The method for preparing the total DNA was as follows:
It is the same as the preparation method. Library preparation method A total DNA library of the KA2-5-1 strain was prepared as follows. Approximately 2 μg of the total DNA sample of the KA2-5-1 strain was digested with 0.1 unit of Sau3AI for 20 minutes, 30 minutes, and 40 minutes, respectively, and the digest was extracted with phenol-chloroform, collected by ethanol precipitation, and centrifuged. The obtained DNA fragment was treated with 8 units of alkaline phosphatase derived from calf small intestine at 37 ° C.
Dephosphorylation was performed by treating for 60 minutes. After alkaline phosphatase treatment, DNA was extracted by phenol-chloroform treatment and recovered by ethanol precipitation. About 0.2 μg of the obtained DNA fragment was added to λDASHI / BamHI
The reaction was carried out at 4 ° C. for 18 hours in the presence of about 2 μg of the arm and 2 units of T4 DNA ligase. Gigapack III XL
In vitro packaging was performed by reacting with packaging Extract (STRATAGENE) to prepare a phage library. The titer of the phage solution after packaging was 1.5 × 10 6 pfu.

【0049】〔実施例5〕有機硫黄化合物分解酵素と推
定される38kDの蛋白質をコードする遺伝子断片のスクリ
ーニング ファージライブラリーのスクリーニングを行うためのDN
A プローブは以下のようにして作製した。実施例3に記
載の900bp のPCR 産物を、pCR-Script SK(+)ベクターを
用いて大腸菌 JM109株にクローン化した遺伝子断片を鋳
型としてランダムプライム法(マルチプライム法)によ
りジオキシゲニン(DIG)で標識されたDSZAプローブを調
製した。DIG 標識プローブの調製法は、Boehringer Man
nheim 社のプロトコールに従った。DIG 標識プローブの
調製方法を以下に示す。
Example 5 Screening of a Gene Fragment Encoding a 38 kD Protein Presumed to be an Organosulfur Compound Degrading Enzyme DN for Screening a Phage Library
The A probe was prepared as follows. The 900 bp PCR product described in Example 3 was labeled with dioxygenin (DIG) by the random prime method (multiprime method) using the gene fragment cloned into the Escherichia coli JM109 strain using the pCR-Script SK (+) vector as a template. The prepared DSZA probe was prepared. The method for preparing DIG-labeled probes is described in Boehringer Man
The nheim protocol was followed. The method for preparing a DIG-labeled probe is described below.

【0050】得られたPCR 産物1μg (5μl )を沸騰
した熱湯中で10分間熱変性させ、塩を含んだ氷上で冷却
した。得られた変性DNA 溶液に、10μl のヘキサヌクレ
オチド混合液(0.5M Tris-HCl, 0.1M MgCl2, 1mM Dithi
oerythriol, 2mg/ml BSA, 3.143mg/ml Random Primer,
pH7.2)、10μl のdNTP標識混合液(1mM dATP, 1mM dCT
P, 1mM dGTP, 0.65mM dTTP, 0.35mM DIG-dUTP, pH7.5
)、70μl の滅菌蒸留水及び5μl のKlenow酵素(10u
nits )を添加して、37℃で18時間反応させた。反応液
に、5μl の0.5M EDTA 溶液を添加して反応を停止させ
た。次に5μl の8M LiCl と275 μl 冷エタノール(−
20℃)を添加して、−80℃で30分間放置したのち、15,0
00rpm で30分間遠心を行い、DNA を沈殿させた。沈殿し
たDNA を冷70%(w/v) エタノールで洗浄後、吸引乾燥し
たのち、50μl のTE緩衝液に溶解して、DIG 標識プロー
ブを調製した。
1 μg (5 μl) of the obtained PCR product was heat denatured in boiling water for 10 minutes and cooled on ice containing salt. To the obtained denatured DNA solution, add 10 μl of a hexanucleotide mixture (0.5 M Tris-HCl, 0.1 M MgCl2, 1 mM
oerythriol, 2mg / ml BSA, 3.143mg / ml Random Primer,
pH 7.2), 10 μl dNTP labeling mixture (1 mM dATP, 1 mM dCT
P, 1mM dGTP, 0.65mM dTTP, 0.35mM DIG-dUTP, pH7.5
), 70 μl of sterile distilled water and 5 μl of Klenow enzyme (10 u
nits) and reacted at 37 ° C. for 18 hours. The reaction was stopped by adding 5 μl of a 0.5 M EDTA solution to the reaction solution. Next, 5 μl of 8 M LiCl and 275 μl of cold ethanol (−
20 ° C) and left at -80 ° C for 30 minutes.
Centrifugation was performed at 00 rpm for 30 minutes to precipitate DNA. The precipitated DNA was washed with cold 70% (w / v) ethanol, dried by suction, and dissolved in 50 μl of TE buffer to prepare a DIG-labeled probe.

【0051】有機硫黄化合物分解酵素と推定される38kD
の蛋白質をコードする遺伝子断片のスクリーニングは上
述の方法で調製したDIG 標識プローブを用い、Hybond N
+ メンブレンに転写されたプラークに対するプラークハ
イブリダイゼーションにより行った。ハイブリダイズす
るクローンの検出にはDIG-ELISA (Boehringer Mannhei
m)を用いた。ゲノムライブラリーより約2000個のファー
ジプラークをDIG 標識プローブを用いてスクリーニング
したところ、 4個の陽性プラークが検出された。この 4
個のプラークについて単プラーク分離を行い、再度プラ
ークハイブリダイゼーションを行った結果、 4個の陽性
プラークが確認された。検出されたDIG標識プローブ陽
性プラークを用いてファージクローンを調製し、それら
のクローンからQIAGEN Lambda キットを用いてファージ
DNA を抽出した。 4個の陽性プラークを用いて調製した
ファージDNA をXbaI 、SacI、NotI 、KpnIで切断し、図
2に示す制限酵素地図を作成した。
38 kD estimated to be an organic sulfur compound-degrading enzyme
Screening of the gene fragment encoding the protein of the above, using the DIG-labeled probe prepared by the method described above, Hybond N
+ Performed by plaque hybridization to plaques transferred to the membrane. For detection of hybridizing clones, DIG-ELISA (Boehringer Mannhei
m) was used. When about 2,000 phage plaques were screened from the genomic library using a DIG-labeled probe, four positive plaques were detected. This 4
Single plaques were separated from each plaque, and plaque hybridization was performed again. As a result, four positive plaques were confirmed. Phage clones were prepared using the DIG-labeled probe-positive plaques detected, and phage clones were prepared from those clones using the QIAGEN Lambda kit.
DNA was extracted. The phage DNA prepared using the four positive plaques was cut with XbaI, SacI, NotI, and KpnI.
A restriction map shown in Fig. 2 was created.

【0052】さらに、これら 4種のファージDNA をSac
I、またはXbaIとKpnIを用いて消化して得られたDNA 断
片についてDIG 標識プローブを用いたサザーンブロット
分析を行ったところ、No.1とNo.2クローンでは、約8.5k
b のSacI断片あるいは約10kbのXbaI-KpnI断片にハイブ
リダイズすることが確認された。これらの制限酵素地図
およびサザーンブロット分析の結果から、No.1とNo.2ク
ローンには、有機硫黄化合物分解酵素と推定される38kD
の蛋白質をコードする遺伝子断片の全長を含むと推察さ
れた。また、No.4のファージDNA については組換えが起
こった為に制限酵素地図が一致しなかったものと考えら
れた。
Further, these four types of phage DNAs were
When a DNA fragment obtained by digestion with I or XbaI and KpnI was subjected to Southern blot analysis using a DIG-labeled probe, No. 1 and No. 2 clones
It was confirmed to hybridize to the SacI fragment of b or the XbaI-KpnI fragment of about 10 kb. From the results of these restriction enzyme maps and Southern blot analysis, No. 1 and No. 2 clones contained a 38 kD
It was presumed to include the full length of the gene fragment encoding the protein. Also, it was considered that the restriction map of the phage DNA of No. 4 did not match due to recombination.

【0053】〔実施例6〕有機硫黄化合物分解酵素と推
定される38kDの蛋白質をコードする遺伝子断片の解析 KA2-5-1株由来の有機硫黄化合物分解酵素と推定される3
8kDの蛋白質をコードするDNA 断片の塩基配列を決定す
るために、約8.5kb のSacI断片をpBluescriptII KS(+)
を用いて大腸菌 JM109株にクローン化した。このプラス
ミドに対してGPS-1 Genomic Priming System (BioLabs
社) を用いて、DNAシーケンシング用のプライマー配列
をランダムに挿入し、約8.5kb のSacI断片全長の塩基配
列を解析した。具体的には、約8.5kb のSacI断片をpBlu
escript II KS(+)を用いて大腸菌 JM109株にクローン化
したプラスミドDNA0.1μgに対して、トランスポゾンTn7
L及びTN7Rを有し、かつ両トランスポゾン間にカナマイ
シン耐性遺伝子及びDNAシーケンシングプライマー配列
を有するpGPS1 Donor プラスミドDNA0.02μgを加えて、
Tns ABC Transposese によりトランスポゾンTn7L及びTN
7R間のDNAをランダムに挿入し、大腸菌 JM109株にクロ
ーン化した。このクローンのシークェンシング反応はTh
ermo Sequenase(Amersham)を用いて行い、ALFred(Pharm
acia) により塩基配列を決定した。得られた塩基配列デ
ータは、GENETYX-MAC/ATSQ v3.0 およびGENETYX-MAC v
8.0を用いて解析した。
Example 6 Analysis of a Gene Fragment Encoding a 38 kD Protein Presumed to be an Organosulfur Compound Degrading Enzyme Presumed to be an Organosulfur Compound Degrading Enzyme Derived from KA2-5-1 Strain
To determine the nucleotide sequence of the DNA fragment encoding the 8 kD protein, an approximately 8.5 kb SacI fragment was ligated with pBluescriptII KS (+)
And cloned into E. coli JM109 strain. For this plasmid, use the GPS-1 Genomic Priming System (BioLabs
), A primer sequence for DNA sequencing was randomly inserted, and the full-length nucleotide sequence of the SacI fragment of about 8.5 kb was analyzed. Specifically, an approximately 8.5 kb SacI fragment was
Using 0.1 μg of plasmid DNA cloned into E. coli JM109 strain using escript II KS (+), transposon Tn7
Add 0.02 μg of pGPS1 Donor plasmid DNA having L and TN7R, and having a kanamycin resistance gene and a DNA sequencing primer sequence between both transposons,
Transposons Tn7L and TN by Tns ABC Transpose
The DNA between the 7Rs was inserted randomly and cloned into E. coli JM109. The sequencing reaction of this clone is Th
ermo Sequenase (Amersham), ALFred (Pharm
acia). The obtained nucleotide sequence data was obtained using GENETYX-MAC / ATSQ v3.0 and GENETYX-MAC v
Analysis was performed using 8.0.

【0054】決定された配列中のORF を探索した結果、
8.5kb の挿入DNA の中央部分に 200b以上の長さのORFが
5個見つかった(図2)。これらのORF を5'側からORF 1,
2, 3, 4, 5と命名した。この他にORF5の3'端側に180bの
短いORFの存在を確認した。ORF 1, 2, 3, 4, 5は、各々
563個、319個、284個、566個、324個のアミノ酸をコー
ドする。ORF 2の翻訳終止コドンTGA とORF 3 の翻訳開
始コドンATG は、部分的に重なって5'-ATGA-3'という配
列になっており、有機硫黄化合物である2-アミノエタン
スルホン酸の代謝に関与するtauB遺伝子の終止コドンと
tauC遺伝子の開始コドンの重なりやtauC遺伝子の終止コ
ドンとtauD遺伝子の開始コドンの重なりと同様の構成を
していることが確認された。上述の遺伝子にコードされ
るTauBとTauCはタウリンの膜透過に関与するABCトラン
スポーター、TauDはタウリンの酸化に関与するαケトグ
ルタル酸要求ジオキシゲナーゼであり、大腸菌において
硫黄制限下に発現する遺伝子群で、タウリンの資化に関
わる事が明らかにされているtauオペロンに3者ともコー
ドされている。(Eichhorn, E., van der Ploeg,J. R.,
Kertesz, M. A., Leisinger, T. (1997) J. Biol. Che
m. 272(37), 23031-23036. およびVan der Ploeg, J.
R., Iwanicka-Nowicka, R., Kertesz, M. A., Leisinge
r, T., Hyniewicz, M.M. (1997). J. Bacteriol. 179(2
4), 7671-7678. 参照)
As a result of searching for ORF in the determined sequence,
An ORF with a length of 200b or more is placed at the center of the 8.5kb inserted DNA.
Five were found (Figure 2). These ORFs are ORF 1,
Named 2, 3, 4, 5 In addition, the presence of a short ORF of 180b was confirmed at the 3 'end of ORF5. ORF 1, 2, 3, 4, 5 are each
It encodes 563, 319, 284, 566 and 324 amino acids. The translation termination codon TGA of ORF 2 and the translation initiation codon ATG of ORF 3 partially overlap to form the sequence 5'-ATGA-3 ', With the stop codon of the tauB gene involved
It was confirmed that they had the same configuration as the overlap of the start codon of the tauC gene and the overlap of the stop codon of the tauC gene and the start codon of the tauD gene. TauB and TauC encoded by the above-described genes are ABC transporters involved in taurine membrane permeation, and TauD is an α-ketoglutarate-requiring dioxygenase involved in taurine oxidation, and is a group of genes expressed in E. coli under sulfur limitation. All three are coded for the tau operon, which has been shown to be involved in the utilization of taurine. (Eichhorn, E., van der Ploeg, JR,
Kertesz, MA, Leisinger, T. (1997) J. Biol. Che
m. 272 (37), 23031-23036. and Van der Ploeg, J.
R., Iwanicka-Nowicka, R., Kertesz, MA, Leisinge
r, T., Hyniewicz, MM (1997) .J. Bacteriol. 179 (2
4), 7671-7678.)

【0055】また、このような重なりは、脱硫菌として
最も良く研究されているロドコッカス・エリスロポリス
IGTS8 のdsz オペロン(Piddington C. S., Kovacevich
B. R., Rambosek J. (1995) Applied and Environmenta
l Microbiol. 61, 468-475.参照)及び発明者らのグルー
プで分離したパエニバシラス sp. A11-2 株の脱硫遺伝
子tdsオペロン(特開平11-341987号公報)でも確認されて
いる。いずれの遺伝子も有機硫黄化合物の分解遺伝子で
あり、硫黄化合物による発現制御を受けることが明らか
にされている。このような遺伝子配列の重なりは有機硫
黄化合物分解遺伝子の1つの特徴とも言える。
Further, such overlap is most likely to occur with Rhodococcus erythropolis, which is best studied as a desulfurizing bacterium.
IGTS8 dsz operon (Piddington CS, Kovacevich
BR, Rambosek J. (1995) Applied and Environmenta
l, Microbiol. 61, 468-475.) and the desulfurization gene tds operon of Paenibacillus sp. A11-2 strain isolated by the group of the present inventors (JP-A-11-341987). Both genes are genes for decomposing organic sulfur compounds, and it has been clarified that their expression is controlled by sulfur compounds. Such overlap of gene sequences can be said to be one feature of the organic sulfur compound decomposition gene.

【0056】これらのORF についてインターネットを通
じて、米国National Center for Biotechnology Inform
ation(http://www.ncbi.nlm.nih.gov/)のサーバーにア
クセスし、データベースnrに対して、検索プログラムBl
astpを用いて相同性検索を行った。ORF1にコードされる
アミノ酸配列に対して相同性の高い上位20ヶの既知配列
のうち15ヶは、ABCトランスポーターを構成する基質結
合蛋白質、あるいはそれと推測される蛋白質であった。
また、その他の4ヶはヘム結合蛋白質、あるいはその前
駆体であり、残りの1ヶはジペプチド結合蛋白質であっ
た。ORF2にコードされるアミノ酸配列に対して相同性の
高い上位20ヶの既知配列は、すべてABCトランスポータ
ーを構成する透過酵素、あるいはそれと推測される蛋白
質であった。ORF3にコードされるアミノ酸配列に対して
相同性の高い上位20ヶの既知配列も、すべてABCトラン
スポーターを構成する透過酵素、あるいはそれと推測さ
れる蛋白質であった。ORF4にコードされるアミノ酸配列
に対して相同性の高い上位20ヶの既知配列のうち18ヶ
は、ABCトランスポーターを構成するATP結合蛋白質、あ
るいはそれと推測される蛋白質であった。また、その他
の2ヶは胞子形成蛋白質であった。
About these ORFs through the Internet, the US National Center for Biotechnology Inform
server (http://www.ncbi.nlm.nih.gov/) and search database Bl against database nr
A homology search was performed using astp. Fifteen of the top 20 known sequences highly homologous to the amino acid sequence encoded by ORF1 were substrate-binding proteins constituting ABC transporters or proteins presumed to be those.
The other four were heme-binding proteins or their precursors, and the other one was a dipeptide-binding protein. The top 20 known sequences with high homology to the amino acid sequence encoded by ORF2 were all permeases constituting ABC transporters or proteins presumed to be the same. The top 20 known sequences highly homologous to the amino acid sequence encoded by ORF3 were all permeases constituting ABC transporters or proteins presumed to be the same. Eighteen of the top 20 known sequences highly homologous to the amino acid sequence encoded by ORF4 were ATP-binding proteins constituting ABC transporters or proteins presumed to be ATP-binding proteins. The other two were spore-forming proteins.

【0057】ABCトランスポーターは、ATPの加水分解に
よって得られるエネルギーを駆動力として物質を輸送す
る膜ATPaseである。ATP結合部位(ATP-binding cassett
e)をもち、輸送する分子または有機イオンのサイズが大
きい事が特徴である。その基質特異性も極めて幅広く、
イオンからペプチドにまたがる。ATP結合部位の1次構造
はトランスポーターの種類や生物種を越えて良く保存さ
れていて、WalkerのモチーフA(G-X-X-G-X-G-K-S/T)及び
B(L/I/F-L/I-X-D-E/D)を例外なく含む(Walkerら,EMBO
J., 1, 945-951 (1982), Higginsら,Annu. Rev. Cell
Biol., 8, 67-113 (1992)参照)。本発明におけるORF4も
このWalkerのモチーフを含んでいる。
The ABC transporter is a membrane ATPase that transports a substance by using energy obtained by hydrolysis of ATP as a driving force. ATP-binding cassett
e) is characterized in that the size of the molecule or organic ion to be transported is large. Its substrate specificity is extremely wide,
It spans from ions to peptides. The primary structure of the ATP binding site is well conserved across transporter types and species, including Walker motif A (GXXGXGKS / T) and
B (L / I / FL / IXDE / D) without exception (Walker et al., EMBO
J., 1, 945-951 (1982), Higgins et al., Annu. Rev. Cell.
Biol., 8, 67-113 (1992)). ORF4 in the present invention also contains this Walker motif.

【0058】ORF1、ORF2、ORF3及びORF4のアミノ酸配列
は、植物の腫瘍に特異的に発現されるアグロピン(agrop
ine)の代謝に関わっているABCトランスポーター(AgaA、
AgaB、AgaC及びAgaD)、或いは同様に発現されるマンノ
ピン(mannopine) の代謝に関わるABCトランスポーター
(MoaA、MoaB、MoaC及びMoaD)に対して共通して相同性が
認められた。ORF1とAgaA、或いはMoaAのアミノ酸配列の
相同性はそれぞれ27.2%であった。ORF2とAgaBのアミノ
酸配列の相同性は36.9%、ORF2とMoaBのアミノ酸配列の
相同性は34.4%であった。ORF3とAgaCのアミノ酸配列の
相同性は31.9%、ORF3とMoaCのアミノ酸配列の相同性は3
4.1%であった。ORF4とAgaDのアミノ酸配列の相同性は4
4.1%、ORF4とMoaDのアミノ酸配列の相同性は44.6%であ
った。以上の結果は、ORF1、ORF2、ORF3及びORF4から構
成される蛋白質群がABCトランスポーターであることを
示唆する。
The amino acid sequence of ORF1, ORF2, ORF3 and ORF4 is determined by agropin (agrop) which is specifically expressed in plant tumors.
ABC transporters (AgaA,
ABC transporters involved in the metabolism of mangapine (AgaB, AgaC and AgaD), or similarly expressed mannopine
(MoaA, MoaB, MoaC and MoaD). The homology between the amino acid sequences of ORF1 and AgaA or MoaA was 27.2%, respectively. The homology between the amino acid sequences of ORF2 and AgaB was 36.9%, and the homology between the amino acid sequences of ORF2 and MoaB was 34.4%. The amino acid sequence homology between ORF3 and AgaC is 31.9%, and the amino acid sequence homology between ORF3 and MoaC is 3
It was 4.1%. The amino acid sequence homology between ORF4 and AgaD is 4
The homology between the amino acid sequences of ORF4 and MoaD was 4.1% and 44.6%. The above results suggest that a group of proteins composed of ORF1, ORF2, ORF3 and ORF4 are ABC transporters.

【0059】ORF5にコードされるアミノ酸配列に対して
相同性の認められる13ヶの既知配列のうち12ヶは、αケ
トグルタル酸要求ジオキシゲナーゼに分類されるジオキ
シゲナーゼであった。残りの1つは、ジオキシゲナーゼ
と推測されている配列であった。ORF5にコードされるア
ミノ酸配列はエシェリキア・コリで同定されているタウ
リン資化遺伝子にコードされるαケトグルタル酸要求ジ
オキシゲナーゼTauD(Van der Ploeg, J. R., Weiss, M.
A., Saller, E., Nashimoto, H., Saito, N.,Kertesz,
M. A., Leisinger, T (1996) J. Bacteriol. 178(18),
5438-46)と34.3%の相同性を示した。更に、シュードモ
ナス・プチダ S-313株において硫酸エステルの脱硫遺伝
子にコードされるαケトグルタル酸要求ジオキシゲナー
ゼAtsKと53.5%の相同性を示した。AtsKはalkylsulfatas
eと推測されており、それはアクセッションナンバーAAD
31784に示されるアミノ酸配列情報とアクセッションナ
ンバーAF126201に示される遺伝子配列情報に報告されて
いる。ORF5のアミノ酸配列に対して相同性が最も高い2
種のアミノ酸配列は、いずれも有機硫黄化合物分解酵素
のものである。この事実から、実施例1から実施例5に記
載の有機硫黄化合物分解酵素と推定される38kDの蛋白
質、すなわち本実施例におけるORF5が有機硫黄化合物分
解酵素であることが強く示唆される。
Twelve of the thirteen known sequences having homology to the amino acid sequence encoded by ORF5 were dioxygenases classified as α-ketoglutarate-requiring dioxygenase. The other one was a putative dioxygenase sequence. The amino acid sequence encoded by ORF5 is α-ketoglutarate-requiring dioxygenase TauD encoded by a taurine utilization gene identified in Escherichia coli (Van der Ploeg, JR, Weiss, M.
A., Saller, E., Nashimoto, H., Saito, N., Kertesz,
MA, Leisinger, T (1996) J. Bacteriol. 178 (18),
5438-46) and 34.3% homology. Furthermore, in Pseudomonas putida strain S-313, it showed 53.5% homology to α-ketoglutarate-requiring dioxygenase AtsK encoded by the sulfate ester desulfurization gene. AtsK is an alkylsulfatas
supposed to be e, accession number AAD
It is reported in the amino acid sequence information shown in 31784 and the gene sequence information shown in accession number AF126201. Highest homology to ORF5 amino acid sequence 2
The amino acid sequences of all species are those of organic sulfur compound degrading enzymes. This fact strongly suggests that the 38 kD protein estimated to be the organic sulfur compound degrading enzyme described in Examples 1 to 5, ie, ORF5 in this example, is an organic sulfur compound degrading enzyme.

【0060】また、ORF5は、植物の腫瘍に特異的に発現
されるアグロピン(agropine)やマンノピン(mannopine)
の代謝酵素と相同性を認めなかったが、αケトグルタル
酸要求ジオキシゲナーゼTauDをコードする遺伝子配列の
上流にABCトランスポーター配列が認められること、更
にαケトグルタル酸要求ジオキシゲナーゼAtsKをコード
する硫酸エステルの脱硫遺伝子にABCトランスポーター
配列が認められることなどから、ORF1、ORF2、ORF3、OR
F4及びORF5はオペロンを構成しており、ORF1、ORF2、OR
F3及びORF4から構成されるABCトランスポーターはORF5
の基質、或いは反応生成物を輸送するトランスポーター
であることが強く示唆された。
ORF5 is an agropine or mannopine which is specifically expressed in plant tumors.
Although no homology with the metabolic enzyme of α was observed, the ABC transporter sequence was found upstream of the gene sequence encoding α-ketoglutarate-required dioxygenase TauD, and the sulfate ester encoding α-ketoglutarate-required dioxygenase AtsK was also found. ORF1, ORF2, ORF3, ORF
F4 and ORF5 constitute an operon, ORF1, ORF2, ORF
The ABC transporter composed of F3 and ORF4 is ORF5
It was strongly suggested that this is a transporter that transports a substrate or a reaction product.

【0061】〔実施例7〕有機硫黄化合物分解酵素と推
定される38kDの蛋白質を発現するプラスミドの調製 ロドコッカス・ロドクラス(Rhodococcus rodochrous)
IFO3338株より抽出精製したプラスミドpRC4をClaI消化
し平滑化したものと、宝酒造(株)より入手したベクター
pHSG298をStuIで消化し脱リン酸化処理したものとをラ
イゲーションし、ロドコッカス-大腸菌シャトルベクタ
ーpRHK1を構築した(図3)。
Example 7 Preparation of a Plasmid Expressing a 38 kD Protein Presumed to be an Organosulfur Compound Degrading Enzyme Rhodococcus rodochrous
Plasmid pRC4 extracted and purified from IFO3338 strain, digested with ClaI and blunted, and vector obtained from Takara Shuzo Co., Ltd.
pHSG298 was digested with StuI and dephosphorylated, and ligated to construct a Rhodococcus-E. coli shuttle vector pRHK1 (FIG. 3).

【0062】KA2-5-1株からプラークハイブリダイゼー
ション法によりジベンゾチオフェン分解遺伝子dszABCを
含む約11kbのDNA断片をクローン化した。これをPvuIで
消化して生成した約4.5kbのDNA断片を平滑化し、pBlues
criptIIKS(+)のSmaIサイトに組み込み、プラスミドpBKP
PおよびpBKPPRを構築した。pBKPPおよびpBKPPRをEcoRI
およびXbaIで消化し、シャトルベクターpRHK1のEcoRI-X
baI消化物とライゲーションし、分解遺伝子を含むプラ
スミドpRKPPおよびpRKPPRを構築した(図4)。
An approximately 11 kb DNA fragment containing the dibenzothiophene degradation gene dszABC was cloned from the KA2-5-1 strain by plaque hybridization. This was digested with PvuI, the resulting 4.5 kb DNA fragment was blunted, and pBlues
Insert into the SmaI site of criptIIKS (+) and insert the plasmid pBKP
P and pBKPPR were constructed. EcoRI for pBKPP and pBKPPR
Digested with XbaI and EcoRI-X of shuttle vector pRHK1
Ligation was performed with the baI digest to construct plasmids pRKPP and pRKPPR containing the degradation gene (FIG. 4).

【0063】KA2-5-1株からpBluescript II KS(+)を用
いて大腸菌 JM109株にクローン化した有機硫黄化合物分
解酵素と推定される38kDの蛋白質をコードする遺伝子を
制限酵素SacIIにより消化、自己ライゲーションする事
で、ORF1、ORF2、ORF3をコードする遺伝子と及びORF4を
コードする遺伝子の一部を除き、更にSmaIで消化し、pR
KPPのDraI-SnaBI消化物とライゲーションし、有機硫黄
化合物分解酵素と推定されるORF5に対応する蛋白質をコ
ードする遺伝子を含むプラスミドpRKI5を構築した(図
5)。このプラスミドは、DBT分解遺伝子dszを発現するプ
ロモーターを含み、かつDBT分解遺酵素群Dszをコードす
る配列を含まず、ORF5に対応する遺伝子をプロモーター
下流に配置するプラスミドで、ORF5に対応する蛋白質を
発現することができる。
A gene encoding a 38 kD protein, which is presumed to be an organic sulfur compound-degrading enzyme, cloned from E. coli JM109 strain from KA2-5-1 strain using pBluescript II KS (+) was digested with the restriction enzyme SacII. By ligation, the genes encoding ORF1, ORF2, ORF3 and a part of the gene encoding ORF4 were removed, digested with SmaI, and pR
Ligation was performed with the DraI-SnaBI digest of KPP to construct a plasmid pRKI5 containing a gene encoding a protein corresponding to ORF5, which is presumed to be an organic sulfur compound-degrading enzyme (Fig.
Five). This plasmid contains a promoter that expresses the DBT-degrading gene dsz, and does not contain a sequence encoding the DBT-degrading enzyme group Dsz, and is a plasmid that arranges a gene corresponding to ORF5 downstream of the promoter. Can be expressed.

【0064】〔実施例8〕 ORF5に対応する蛋白質を発
現する遺伝子の導入 500ml容三角フラスコに入った滅菌済みのLB培地100mlに
ロドコッカス・エリスロポリス(Rhodococcus erythrop
olis) KA2-5-1株を植菌し、30℃で24時間培養した。得
られた培養液を4℃、10,000rpm、10分遠心分離し、沈殿
を滅菌水にて2回洗浄し、測定波長660nmでの濁度が40に
なるように10%グリセロール水溶液に懸濁した。
Example 8 Introduction of Gene Expressing a Protein Corresponding to ORF5 Rhodococcus erythropolis (Rhodococcus erythropolis) was placed in 100 ml of sterilized LB medium in a 500 ml Erlenmeyer flask.
olis) The KA2-5-1 strain was inoculated and cultured at 30 ° C. for 24 hours. The obtained culture solution was centrifuged at 4 ° C. and 10,000 rpm for 10 minutes, and the precipitate was washed twice with sterilized water and suspended in a 10% glycerol aqueous solution so that the turbidity at the measurement wavelength of 660 nm became 40. .

【0065】該懸濁液80μlにpRKI5あるいはpRHK1遺伝
子溶液1μlを添加し、Biorad社ジーンパルサーIIを用い
て25μF、400Ω、1.5kV/cmの条件で処理した。処理液に
SOC培地0.42mlを添加し、30℃、3時間培養を行った。得
られた培養液をカナマイシン硫酸塩100mg/lおよび寒天
末15 g/lを含むLB培地(LBAK培地)に塗末し、30℃、48
時間培養した。LBAK培地においてコロニーを形成した菌
を再度新鮮なLBAK培地に画線することによって菌体を純
化し、pRKI5/KA2-5-1株あるいはpRHK1/KA2-5-1株とし
た。
1 μl of the pRKI5 or pRHK1 gene solution was added to 80 μl of the suspension, and the suspension was treated with Generader II (Biorad) at 25 μF, 400 Ω, 1.5 kV / cm. For processing solution
0.42 ml of SOC medium was added, and the cells were cultured at 30 ° C. for 3 hours. The obtained culture solution was spread on an LB medium (LBAK medium) containing 100 mg / l of kanamycin sulfate and 15 g / l of agar powder, and was applied at 30 ° C and 48 ° C.
Cultured for hours. Bacteria that formed colonies in the LBAK medium were streaked again on fresh LBAK medium to purify the cells to obtain pRKI5 / KA2-5-1 strain or pRHK1 / KA2-5-1 strain.

【0066】pRKI5/KA2-5-1株あるいはpRHK1/KA2-5-1株
はDenis-Laroseらの方法(Appl.Environ.Microbiol.63:2
915-2919(1997))に従ってプラスミドDNAを菌体より抽
出、精製し、制限酵素の切断パターンから、それぞれpR
KI5あるいはpRHK1により形質転換されていることを確認
した。また、ジベンゾチオフェンを唯一の硫黄源として
培養したpRKI5/KA2-5-1株より無細胞抽出液を調製し、S
DS電気泳動を行って、38kDに相当するバンドが増加して
いることを確認した。
The pRKI5 / KA2-5-1 strain or the pRHK1 / KA2-5-1 strain was prepared by the method of Denis-Larose et al. (Appl. Environ. Microbiol. 63: 2
915-2919 (1997)), plasmid DNA was extracted from the cells, purified, and the pR
Transformation with KI5 or pRHK1 was confirmed. Also, a cell-free extract was prepared from pRKI5 / KA2-5-1 strain cultured with dibenzothiophene as the sole sulfur source, and S
By performing DS electrophoresis, it was confirmed that the band corresponding to 38 kD had increased.

【0067】〔実施例9〕 pRKI5/KA2-5-1株及びpRHK1
/KA2-5-1株のドデシル硫酸ナトリウム分解性 0.14mM DBT(N,N-ジメチルホルムアミド溶液)及び0.1
〜0.5mMのSDSを含むA培地(Izumi Yら、Applied and Env
ironmental Microbiology, 223-226 (1994))2mlに、1白
菌耳量のpRKI5/KA2-5-1株あるいはpRHK1/KA2-5-1株を植
菌し、30℃で120時間培養した。得られた培養液の660nm
における吸光度(OD660)を測定した結果を表2に示す。
Example 9 pRKI5 / KA2-5-1 strain and pRHK1
Sodium dodecyl sulfate degradability of strain / KA2-5-1 0.14 mM DBT (N, N-dimethylformamide solution) and 0.1
A medium containing ~ 0.5 mM SDS (Izumi Y et al., Applied and Env
Ironmental Microbiology, 223-226 (1994)) was inoculated with one white ear of pRKI5 / KA2-5-1 strain or pRHK1 / KA2-5-1 strain and cultured at 30 ° C. for 120 hours. 660 nm of the obtained culture solution
Table 2 shows the results of measurement of the absorbance (OD660) of the sample.

【0068】[0068]

【表2】 [Table 2]

【0069】pRHK1/KA2-5-1株は0.3mM以上のSDS濃度で
は生育しない。それに対して、pRKI5/KA2-5-1株は0.4mM
以上のSDS濃度では生育しないものの、0.3mMでは生育す
ることが分かる。高濃度で生育できないのは、SDSの持
つ界面活性効果が菌体に対して毒性を示すためである
が、pRKI5/KA2-5-1株は38kDの有機硫黄化合物分解酵素
を大量に発現する能力を有するため、それを分解する速
度が格段に速く、その毒性を容易に弱めることが出来
る。それに対して、非遺伝子組み換え体、あるいは当該
遺伝子を含まないベクターのみを組み換えた菌体では、
上述の活性が微弱であるために、この毒性、すなわち培
養液の界面活性を下げることが出来ず、0.3mMのSDS存在
下では生育できない。
The pRHK1 / KA2-5-1 strain does not grow at an SDS concentration of 0.3 mM or more. In contrast, the pRKI5 / KA2-5-1 strain was 0.4 mM
Although it does not grow at the above SDS concentration, it can be seen that it grows at 0.3 mM. The growth at high concentrations is not possible because the surface-active effect of SDS is toxic to bacterial cells, but the pRKI5 / KA2-5-1 strain has the ability to express large amounts of a 38 kD organic sulfur compound degrading enzyme. , The decomposition speed is remarkably fast, and its toxicity can be easily reduced. On the other hand, in non-genetically modified cells, or in cells that have only been modified with a vector that does not contain the gene,
Since the above-mentioned activity is weak, this toxicity, that is, the surface activity of the culture solution cannot be reduced, and the cells cannot grow in the presence of 0.3 mM SDS.

【0070】pRKI5/KA2-5-1株が発現するこの酵素がア
ルキル鎖に作用するならば、生成物にも鎖長の短いアル
キル硫酸が残るため界面活性が下がらず、その毒性を弱
めることが出来ずに菌株は生育することは出来ないはず
である。pRKI5/KA2-5-1株が0.3mMのSDS存在下、良好に
生育出来ることから、この酵素はアルキル鎖ではなく、
末端の硫酸基に直接作用すると言える。硫黄源による制
御を受ける38kDの蛋白質がSDSに代表されるアルキル硫
酸の分解に関わることは明らかである。
If this enzyme expressed by the pRKI5 / KA2-5-1 strain acts on the alkyl chain, the product will remain with an alkyl sulfate having a short chain length, so that the surface activity does not decrease and the toxicity can be reduced. Without it, the strain should not be able to grow. Since the pRKI5 / KA2-5-1 strain can grow well in the presence of 0.3 mM SDS, this enzyme is not an alkyl chain,
It can be said that it acts directly on the terminal sulfate group. It is clear that a 38 kD protein controlled by sulfur source is involved in the degradation of alkyl sulfate represented by SDS.

【0071】〔実施例10〕 SDSの硫黄源としての利
用 0.2mMのSDSを含むA培地(Izumi Yら、Applied and Envir
onmental Microbiology, 223-226 (1994))2mlに、1白菌
耳量のpRKI5/KA2-5-1株あるいはpRHK1/KA2-5-1株を植菌
し、30℃で培養した。120時間後の培養液の吸光度(660n
m)は、pRKI5/KA2-5-1株で4.63、pRHK1/KA2-5-1株で0.21
であった。この結果から、KA2-5-1株はSDSを単一の硫黄
源として利用し生育できることは明らかである。また、
pRKI5を形質転換した遺伝子組み換え菌の方が生育が良
好なことから、硫黄源による制御を受ける38kDの蛋白質
がSDSに代表されるアルキル硫酸の分解に関わることは
明らかである。
Example 10 Use of SDS as Sulfur Source A medium containing 0.2 mM SDS (Izumi Y et al., Applied and Envir.
onmental Microbiology, 223-226 (1994)), inoculated with one white ear of pRKI5 / KA2-5-1 strain or pRHK1 / KA2-5-1 strain, and cultured at 30 ° C. Absorbance of culture solution after 120 hours (660 n
m) is 4.63 for pRKI5 / KA2-5-1 strain, 0.21 for pRHK1 / KA2-5-1 strain
Met. From these results, it is clear that the KA2-5-1 strain can grow using SDS as a single sulfur source. Also,
Since the growth of the transgenic bacterium transformed with pRKI5 is better, it is clear that the 38 kD protein controlled by the sulfur source is involved in the degradation of alkyl sulfate represented by SDS.

【0072】[0072]

【発明の効果】本発明は、ABCトランスポーターを構成
する蛋白質をコードする新規な遺伝子及びアルキル硫酸
類を分解する酵素をコードする新規な遺伝子を提供す
る。これらの遺伝子を導入することにより、新規な脱硫
微生物を創製することができる。
Industrial Applicability The present invention provides a novel gene encoding a protein constituting the ABC transporter and a novel gene encoding an enzyme that degrades alkyl sulfates. By introducing these genes, new desulfurized microorganisms can be created.

【0073】[0073]

【配列表】 SEQUENCE LISTING <110> PETROLEUM ENERGY CENTER <120> YUHKIIOUKAGOUBUTSU WO BUNKAI SURU KOUSO OYOBI IDENNSHI <130> P00-0203 <160> 10 <170> PatentIn Ver. 2.0 <210> 1 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (1070)..(2758) <400> 1 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc ccagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagc atg tcg gaa 1078 Met Ser Glu 1 cga cac tct ttc cca ttc tcg caa gcg tgt gcc ctg aga gtg cac agc 1126 Arg His Ser Phe Pro Phe Ser Gln Ala Cys Ala Leu Arg Val His Ser 5 10 15 tgc gca cct att acg aag ggc aac acc tcc gtg aac tcg tct ctt tcg 1174 Cys Ala Pro Ile Thr Lys Gly Asn Thr Ser Val Asn Ser Ser Leu Ser 20 25 30 35 acg gcc ggt ctc gac cgc cgt gcc ttc ttc cgt ggc agt gcg atc gcc 1222 Thr Ala Gly Leu Asp Arg Arg Ala Phe Phe Arg Gly Ser Ala Ile Ala 40 45 50 gca ttc gcc atc ttc ggt agc ggc tca ctg gcc gcg tgc tcc tct gca 1270 Ala Phe Ala Ile Phe Gly Ser Gly Ser Leu Ala Ala Cys Ser Ser Ala 55 60 65 gtc ggc gaa caa cgc tcg gac gca ggt gaa tca gtt gag ccg gtt cga 1318 Val Gly Glu Gln Arg Ser Asp Ala Gly Glu Ser Val Glu Pro Val Arg 70 75 80 ggt ggg acg ctc aca ctg gcg ata ccg gac gac gtc agc cct gcg gca 1366 Gly Gly Thr Leu Thr Leu Ala Ile Pro Asp Asp Val Ser Pro Ala Ala 85 90 95 ctt ttg acc agc acc acc gtt gcc ggt gtc acg ata tcc ggg ctc gtg 1414 Leu Leu Thr Ser Thr Thr Val Ala Gly Val Thr Ile Ser Gly Leu Val 100 105 110 115 tac gag acc ctg acc cgc tat cca ctc gat tcg gta gtg cca cag cca 1462 Tyr Glu Thr Leu Thr Arg Tyr Pro Leu Asp Ser Val Val Pro Gln Pro 120 125 130 gtt ctg gcc aag gcc tgg aag ctg tcc gac gac ggg ctg acg ctc acg 1510 Val Leu Ala Lys Ala Trp Lys Leu Ser Asp Asp Gly Leu Thr Leu Thr 135 140 145 ctc aat ctg cgc gat gac gtc acc ttc cac tcc ggc cgg cgc ttc acc 1558 Leu Asn Leu Arg Asp Asp Val Thr Phe His Ser Gly Arg Arg Phe Thr 150 155 160 tcc gct gat gcg gag ttc tcg ctg cgc acc tat gcg gac ccg aaa ttc 1606 Ser Ala Asp Ala Glu Phe Ser Leu Arg Thr Tyr Ala Asp Pro Lys Phe 165 170 175 tcg gcc cag ctc agg agt act gcg gcc gcc atc acc ggc ttc gac tct 1654 Ser Ala Gln Leu Arg Ser Thr Ala Ala Ala Ile Thr Gly Phe Asp Ser 180 185 190 195 tcg gat ccc aat acg ctg gtt ctc acc ctc gca cac cga acc ggg aac 1702 Ser Asp Pro Asn Thr Leu Val Leu Thr Leu Ala His Arg Thr Gly Asn 200 205 210 atc ttc gat ctt ctc gat cta gcg ccg atc ttc gac ccc gaa acg ttc 1750 Ile Phe Asp Leu Leu Asp Leu Ala Pro Ile Phe Asp Pro Glu Thr Phe 215 220 225 gac aag gcg gtg acc ggt gaa tcc ttc gtt ggt acg ggc cct ttc gta 1798 Asp Lys Ala Val Thr Gly Glu Ser Phe Val Gly Thr Gly Pro Phe Val 230 235 240 ttc acc tca cgc acc ccg aac agt tcc atc tcc ttc gat cgg aac ccg 1846 Phe Thr Ser Arg Thr Pro Asn Ser Ser Ile Ser Phe Asp Arg Asn Pro 245 250 255 aac tac tgg gtc gcc gag cgg ccg tac ctc gat cac gtg gaa gcg cgg 1894 Asn Tyr Trp Val Ala Glu Arg Pro Tyr Leu Asp His Val Glu Ala Arg 260 265 270 275 atc gtt ccg gac gcc caa gcg cgc ctg aca tcg ctg aag tcc gga cag 1942 Ile Val Pro Asp Ala Gln Ala Arg Leu Thr Ser Leu Lys Ser Gly Gln 280 285 290 gtc tct ctt gtt gct ccg gcg tcg ttg ccc ttc cgt gac tca cag aac 1990 Val Ser Leu Val Ala Pro Ala Ser Leu Pro Phe Arg Asp Ser Gln Asn 295 300 305 ttg acc aag acc agc ggg ttc gtg aca acc tcg atc gag ggt gcg gaa 2038 Leu Thr Lys Thr Ser Gly Phe Val Thr Thr Ser Ile Glu Gly Ala Glu 310 315 320 cta cag ata tac ctg ggc aca aat gtc acc gcc gac ggg ctg acc gat 2086 Leu Gln Ile Tyr Leu Gly Thr Asn Val Thr Ala Asp Gly Leu Thr Asp 325 330 335 gtg cgg gca cga aag gcg ttg gcc tac gcg atc gat cgt gac cgc atc 2134 Val Arg Ala Arg Lys Ala Leu Ala Tyr Ala Ile Asp Arg Asp Arg Ile 340 345 350 355 atc agt gag gtg tat cgc gat acg ggg tat gcg gtc aat ctg ccg tgg 2182 Ile Ser Glu Val Tyr Arg Asp Thr Gly Tyr Ala Val Asn Leu Pro Trp 360 365 370 ccg aag tcg tcg ccc gcc tac gac gct gcc aag aac gcg acc tac act 2230 Pro Lys Ser Ser Pro Ala Tyr Asp Ala Ala Lys Asn Ala Thr Tyr Thr 375 380 385 cgc gat gtc gac aag gcg cgc gcc ctg gtc ggc gat ctg ggt gca ctg 2278 Arg Asp Val Asp Lys Ala Arg Ala Leu Val Gly Asp Leu Gly Ala Leu 390 395 400 ccg acc att ccg ttg acc tac aca gga gcg agc ccg gat ttc gaa gcc 2326 Pro Thr Ile Pro Leu Thr Tyr Thr Gly Ala Ser Pro Asp Phe Glu Ala 405 410 415 gcc gcg cag atc gtg cag gcc aat ctc gcc gag gca ggg atc cgc gtc 2374 Ala Ala Gln Ile Val Gln Ala Asn Leu Ala Glu Ala Gly Ile Arg Val 420 425 430 435 gaa ttg gat cct gtc gag gca tcc atc ttc gtc aag cag ttg atc ggc 2422 Glu Leu Asp Pro Val Glu Ala Ser Ile Phe Val Lys Gln Leu Ile Gly 440 445 450 gct gag ttc aaa gga ctt tgg ctg acc aat cac act ttt gcg caa tat 2470 Ala Glu Phe Lys Gly Leu Trp Leu Thr Asn His Thr Phe Ala Gln Tyr 455 460 465 gtt ccg tca acc ctg acg gtc agc gcc tac ccg ttc aac gct gca cac 2518 Val Pro Ser Thr Leu Thr Val Ser Ala Tyr Pro Phe Asn Ala Ala His 470 475 480 aat gcc tcg aag ttc agt tcg ccg gcg tat tcc gcc gca gcg gag ggt 2566 Asn Ala Ser Lys Phe Ser Ser Pro Ala Tyr Ser Ala Ala Ala Glu Gly 485 490 495 gcg tgg cag gtt ccc gac ggt tcg agc gat gag gca aag aaa ctg tat 2614 Ala Trp Gln Val Pro Asp Gly Ser Ser Asp Glu Ala Lys Lys Leu Tyr 500 505 510 515 gcc gaa ttg ggc acg caa ctg ttg aac gag ttg ttc ttg atc gag atc 2662 Ala Glu Leu Gly Thr Gln Leu Leu Asn Glu Leu Phe Leu Ile Glu Ile 520 525 530 ggt gtt gtc gtg ccg cag gta tcg gcg gcc gag acc gtt cgt ggt ctg 2710 Gly Val Val Val Pro Gln Val Ser Ala Ala Glu Thr Val Arg Gly Leu 535 540 545 gcc tgg aca aag ggt cgc cag cca caa ttc gcc aac aca ttc ctg gcg 2758 Ala Trp Thr Lys Gly Arg Gln Pro Gln Phe Ala Asn Thr Phe Leu Ala 550 555 560 taggggattc gatgattcgt tacattgcgg ggcgactacc gtcggcggtg gtggttctct 2818 tcctcgcgtc gatattgatc ttctcggtga tgcgtctggt gcctggcgac cccgcgttgg 2878 ctctcgccgg ccccgatgca actccggaag cgattgcagc cattcgtcat tcgctcggtc 2938 tcgacaggtc gattcccgcg cagtacctga cctggatcgg cgacgtactg acattggatc 2998 tcgggcgttc gttcgttctc ggcggccaga tttccgatct ggtgctggcg gggttgggga 3058 acaccgcagt tctggcggga agtgcgttgc tgctggccgt cgtgttgagt ctggtgctca 3118 gtgttgcggt ggtggtgtgg ccgaagaaat ggctgacctc ggtggtgaac cttctcaaca 3178 ctctctcggt tgctctgccc aacttcgtga ccggtgtcct cctggttctc gtcttcgcgg 3238 tgctgattcc ggttctgcca tccggtggtg ttccaccagg tgggtatctc gctcgtcccg 3298 acatcacgtt ccagtacctg ctgctgccgt cactgtgcct cgcacttcct gtcgcggccg 3358 ctctcaccag gttcctgtcc gaagcgctgc gcaccgagat ggcgcagcag tacgtgatca 3418 ccgctcgcgc agccggtgtg ccacggtgga acttggttac acgcagtgca ttacgcaatg 3478 cactgccaac tatgctcacc gtgctcggaa ttcagaccgg gcaccttctc ggcggagccg 3538 tactggttga ggcgatcttt gcctggcctg gcatcggcca attgatcgag cagggaatcg 3598 gtcggcggga ttacccggtg gtgcaggtgc tgctcctgct gtcggtcacg atcttcgttc 3658 tgatccaact tctgaccgac atcgtgcatg cctacctcga cccacgaatc agaatcggag 3718 ggcagcaatg acggtggccg atcagtctgt tgacgaaagg gttcggcgat ctcgtcctgt 3778 gcgcgctgct ctgacgcacg gtcaggggtt ggcgggtgtg ttgatcctgg tggtcatcgc 3838 agtagcggga attgctgctc cactgttgac tcactacggg cccaacgagc agatcgaggg 3898 tgcaaatctg ttgggggcca gtgcacagca ctggttcgga acagatcagg tcaaccgtga 3958 cgtcttcgcc cgttctcttt acggaatccg gatcaacctt gtcatcgtgc tcgtcgcggt 4018 gccagcgggc gcgatcatcg gttcgctcgc aggcctggtg tcgagtatca attcggtggc 4078 agatgtcatc gcacagcgga tcttcgatgt gattcttgcc ttcccgctgt tgattctggc 4138 gatcacgttg gtcgcgatca cggggccggg agtagcgccg gtgatcgcgg tgatcgtggc 4198 tgctgaaata cccttgttcg ggcgcctggt gcgaacgacg gtgttgaagg tgcgcgaact 4258 cccgttcgtg gagtcggccg aggtaatcgg tgcggggcgg tggtgggtac tgcgtaagca 4318 tgtgctgccc aacgccgtag aaccgctggg tgtgcagatt gcgctctcca tgtcggttgc 4378 ggtgttcgcc gaaagtgcga tgagttttct cggaatcggc gtgcgcccgc cggatccgtc 4438 tctcggttcg atcatcgcgg gcgccattcc gaacctcgat gccaatccgg cctacgcgat 4498 cggacctttg gtgatcgtct cggcgttggt cctgagcttc ctgctgatcg cccagggact 4558 gggcaaggcc cgccgaatct gaaattgcca ccgccaccac cacttcaagg acgtagtcat 4618 gaatgcaaca cccgcacagg cagttctcgc catccgggat ctggtgatcg agttcgatgc 4678 cgacggttcc cgtggctcgt cgacaactgt ggtcgaccac gtcaacctcg aattgggttt 4738 cggtgagata ttggcgttgg tcggcgagtc cggatccggt aagtcgttga ccgcacgcgc 4798 tgttctcggg ttgttaccgg acggcgcgca ggcccgcggg ttgatccaac tcggtggcca 4858 gcaggtgctc ggtgccgacg aggcgacgct caatcaattg cgggggactc gggccgcgat 4918 ggttttccag gagcctcaga ctgcactgaa tccagtgcag aaggtgggtt ggcagatcgc 4978 gcaggcgctg cgggcacacg gcaagatctc gcgtgccgac gccagagttc gcgcaatcaa 5038 tcttctacgg atggtggaga ttccggaacc ggagcgtcgg gtcgactggt atccgcatca 5098 actctcgggt ggacagaagc agcgggttgt catcgcgctg gcgttgtcgg gttctcctga 5158 tttactcatc gccgacgaac cgactactgc gctcgacgtc accgtgcagg ccgagattct 5218 gcaactcctg cgtaatctgc gtgatcgttc gggcactgca atactgctca tcacacacaa 5278 catgggtgtc gttgcggaca tcgcagatcg cgtgctggtg atgcgatcgg gcagggtcgt 5338 cgagcagcag tccgttttcg atctctttgc gacgccgcgt gagtcgtaca cacaggcttt 5398 gcttgcggcc gtgccacgtc tgccggaggt cgaccagccg aagcctgtgg ttgctctggt 5458 cgatagcgaa ggcgacgcgc aagtcccgcc gatcctgcgg ttcgacgcgg cctccatcgt 5518 gtacccggcg aggctgggca acagagagtt tcgtgcggtc gatcaggtga gcctgacggt 5578 tcaggccggc gaggttgtcg gactggtcgg tgaatcggga tcagggaaga caactctcgg 5638 ccgggctgcg ctcggtgtta tcagggccag tagcggcatc gttgctttcg acggaaccga 5698 tctcggaaag atctccgccg cgaatcttcg gggcatccgc aagggaatgg ccttgattca 5758 tcaggaccct gcggcatctc tcgatccgcg tcggacggtc ggacaaagcg tcggcgagcc 5818 actcgaagtc catcgctttg ccaccggagc cctgctgcga aaccgggtgg gggagttact 5878 cgaatcagtt cgcctaccga agtcttttgc tcaccgggca ccaggagaac tttccggtgg 5938 tcaacgccag cgtgttgcgc tggcccgagc acttgccctc ggaccgagac tgctggtggc 5998 cgatgagccg accagcgctc tggatgtttc cgtccaagcc gatgttcttt cactctttgc 6058 cgatctcagg gaggaataca acttcgcatg tctgttcatc agccacgatc ttgcagtcgt 6118 caatcaggta gccgaccggg tagcggtact tcgcagcggg gagttggtcg aagagggccc 6178 cgctgcagag gtattcagct cgccacggca ggactacaca caacagttgg ttgccgcggt 6238 gcctgttcca gatccgcgtc gtcagcgcgc cgggcgggaa cgggaatcac tggttcccga 6298 cctgactgtt gccgtttgac ccgtctcgac atcgaacagc attaccacca cctcaacctt 6358 ttgcagactc ataggagctt gacatgtcca tcaccgaact cgaacgcgtc actcagaccc 6418 cggagcagat ctacgctgcc ggcggaatca ctgtccacaa ggtcggtgag ctgatcggcg 6478 cccgcatcga cggcgtacac ctctctgggg atctgtccga agagaccgcc tacgcgatca 6538 actatgcgct ggcagcgcac aaggttgtgt tcttccgtgg gcagcagcat ctcgacgaca 6598 cgtcgcagta cgaattcgcc ggaaccctcg gcagccagac caccacgcat cccactctca 6658 agtccaagga caacaagctg ttggtgctcg acggcgctgc cagcagctgg cacaccgacg 6718 tcactttcat cgatcgcatc ccgaaggcat cgatcctgcg cgcgaccaca attcctgagt 6778 acggcggagc caccacgtgg gcgtctacca cggctgcgta caaccaactg ccgcattcgc 6838 tcaaggtatt ggtcgagaat ctgcgcgctg tccacaccaa tgcatacgac tacgccgaga 6898 ttatcgacaa ggtgaagcaa ggcgacgctc agcgcgtgac gaactactcc gaattcactc 6958 gcgaaatcta cgagacggag catccggtgg ttcgggtcca tcctgcgaca ggggagaaga 7018 ctctgcttct cggtcacttc gtcaaggagt tcgtcggact gaagccgtcg gagtcggttg 7078 ctctctacca gcttctgcag gcacgaatca tcaagttgga aaacaccgtt cggtggtcat 7138 gggctcccgg tgatctggcg atctgggaca accaggcaac ccagcattac gggatttccg 7198 attacgggac acaggcgcgc agcgtgcatc gcgtgacgtt ggccggtgac gttcccgtcg 7258 acgtccacgg tgagcagagc cgcatcatca agggcgatgc atccgagttc tcgatcgttg 7318 cagacatcga ccggcttccc ggctttgccg caaactgatc agtcctgctg cgggtgatcc 7378 ggcgggaaca tctgtcccca tgagtgattg catgctcggc acgtccattc cggggtgtcc 7438 ggtcccacga cgcagcctgt tccggcgagc cacggtaggt gatcgaatgg atggaccggc 7498 atccccgggg aacactgagc ggttctgtgt gcaccgcaga gtgggcacga cggatttttc 7558 gccagcatgt agtcgatgaa gttggtgtgc ccggacgtgg ccatccttcc ggtgcatttg 7618 cggcacagga cggctgggta gtcgtcacca ggttcagcct gcctgaagat ccgtgatgcg 7678 gaatgaaagt gaaggcgatc gctgctgttg aactttcgca acggcatcgg tgagctgcaa 7738 cctgtgcagt tgccccgctc gttcatcaac gttcgggcgt gggcagctgt ggacgtcgga 7798 tccagcgtgt cgatgtcgcc gaagtagtgc gcatagtgtg actggccggc cgtgagaatc 7858 cggtcggcca gtgcgtcgtc gaccggccca ggatccgtgg gaaacgtgat ggaccatcgt 7918 tgttcgagtt ctggaacggt gggcaaaccg tggagttcgt acgggcgttc atcgacttcc 7978 atccgcgacg tgccgtcgaa gggcgcagcc acggtctcga tgcagagcag cgtgcgagga 8038 gtggtgtcga gaacagtgat cagcaggtcg ccgatggcca tctttccgcg catgatccag 8098 ggatcgacac gggcacgggg ttcgagaaac gcgaccacgg catcgagcca cggcgtgccg 8158 agtgcgatga atacgtgctg accggagctc 8188 <210> 2 <211> 563 <212> PRT <213> Rhodococcus erythropolis <400> 2 Met Ser Glu Arg His Ser Phe Pro Phe Ser Gln Ala Cys Ala Leu Arg 1 5 10 15 Val His Ser Cys Ala Pro Ile Thr Lys Gly Asn Thr Ser Val Asn Ser 20 25 30 Ser Leu Ser Thr Ala Gly Leu Asp Arg Arg Ala Phe Phe Arg Gly Ser 35 40 45 Ala Ile Ala Ala Phe Ala Ile Phe Gly Ser Gly Ser Leu Ala Ala Cys 50 55 60 Ser Ser Ala Val Gly Glu Gln Arg Ser Asp Ala Gly Glu Ser Val Glu 65 70 75 80 Pro Val Arg Gly Gly Thr Leu Thr Leu Ala Ile Pro Asp Asp Val Ser 85 90 95 Pro Ala Ala Leu Leu Thr Ser Thr Thr Val Ala Gly Val Thr Ile Ser 100 105 110 Gly Leu Val Tyr Glu Thr Leu Thr Arg Tyr Pro Leu Asp Ser Val Val 115 120 125 Pro Gln Pro Val Leu Ala Lys Ala Trp Lys Leu Ser Asp Asp Gly Leu 130 135 140 Thr Leu Thr Leu Asn Leu Arg Asp Asp Val Thr Phe His Ser Gly Arg 145 150 155 160 Arg Phe Thr Ser Ala Asp Ala Glu Phe Ser Leu Arg Thr Tyr Ala Asp 165 170 175 Pro Lys Phe Ser Ala Gln Leu Arg Ser Thr Ala Ala Ala Ile Thr Gly 180 185 190 Phe Asp Ser Ser Asp Pro Asn Thr Leu Val Leu Thr Leu Ala His Arg 195 200 205 Thr Gly Asn Ile Phe Asp Leu Leu Asp Leu Ala Pro Ile Phe Asp Pro 210 215 220 Glu Thr Phe Asp Lys Ala Val Thr Gly Glu Ser Phe Val Gly Thr Gly 225 230 235 240 Pro Phe Val Phe Thr Ser Arg Thr Pro Asn Ser Ser Ile Ser Phe Asp 245 250 255 Arg Asn Pro Asn Tyr Trp Val Ala Glu Arg Pro Tyr Leu Asp His Val 260 265 270 Glu Ala Arg Ile Val Pro Asp Ala Gln Ala Arg Leu Thr Ser Leu Lys 275 280 285 Ser Gly Gln Val Ser Leu Val Ala Pro Ala Ser Leu Pro Phe Arg Asp 290 295 300 Ser Gln Asn Leu Thr Lys Thr Ser Gly Phe Val Thr Thr Ser Ile Glu 305 310 315 320 Gly Ala Glu Leu Gln Ile Tyr Leu Gly Thr Asn Val Thr Ala Asp Gly 325 330 335 Leu Thr Asp Val Arg Ala Arg Lys Ala Leu Ala Tyr Ala Ile Asp Arg 340 345 350 Asp Arg Ile Ile Ser Glu Val Tyr Arg Asp Thr Gly Tyr Ala Val Asn 355 360 365 Leu Pro Trp Pro Lys Ser Ser Pro Ala Tyr Asp Ala Ala Lys Asn Ala 370 375 380 Thr Tyr Thr Arg Asp Val Asp Lys Ala Arg Ala Leu Val Gly Asp Leu 385 390 395 400 Gly Ala Leu Pro Thr Ile Pro Leu Thr Tyr Thr Gly Ala Ser Pro Asp 405 410 415 Phe Glu Ala Ala Ala Gln Ile Val Gln Ala Asn Leu Ala Glu Ala Gly 420 425 430 Ile Arg Val Glu Leu Asp Pro Val Glu Ala Ser Ile Phe Val Lys Gln 435 440 445 Leu Ile Gly Ala Glu Phe Lys Gly Leu Trp Leu Thr Asn His Thr Phe 450 455 460 Ala Gln Tyr Val Pro Ser Thr Leu Thr Val Ser Ala Tyr Pro Phe Asn 465 470 475 480 Ala Ala His Asn Ala Ser Lys Phe Ser Ser Pro Ala Tyr Ser Ala Ala 485 490 495 Ala Glu Gly Ala Trp Gln Val Pro Asp Gly Ser Ser Asp Glu Ala Lys 500 505 510 Lys Leu Tyr Ala Glu Leu Gly Thr Gln Leu Leu Asn Glu Leu Phe Leu 515 520 525 Ile Glu Ile Gly Val Val Val Pro Gln Val Ser Ala Ala Glu Thr Val 530 535 540 Arg Gly Leu Ala Trp Thr Lys Gly Arg Gln Pro Gln Phe Ala Asn Thr 545 550 555 560 Phe Leu Ala <210> 3 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (2770)..(3726) <400> 3 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc ccagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggcgtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcg atg att cgt tac att gcg ggg cga cta ccg tcg gcg gtg gtg 2811 Met Ile Arg Tyr Ile Ala Gly Arg Leu Pro Ser Ala Val Val 1 5 10 gtt ctc ttc ctc gcg tcg ata ttg atc ttc tcg gtg atg cgt ctg gtg 2859 Val Leu Phe Leu Ala Ser Ile Leu Ile Phe Ser Val Met Arg Leu Val 15 20 25 30 cct ggc gac ccc gcg ttg gct ctc gcc ggc ccc gat gca act ccg gaa 2907 Pro Gly Asp Pro Ala Leu Ala Leu Ala Gly Pro Asp Ala Thr Pro Glu 35 40 45 gcg att gca gcc att cgt cat tcg ctc ggt ctc gac agg tcg att ccc 2955 Ala Ile Ala Ala Ile Arg His Ser Leu Gly Leu Asp Arg Ser Ile Pro 50 55 60 gcg cag tac ctg acc tgg atc ggc gac gta ctg aca ttg gat ctc ggg 3003 Ala Gln Tyr Leu Thr Trp Ile Gly Asp Val Leu Thr Leu Asp Leu Gly 65 70 75 cgt tcg ttc gtt ctc ggc ggc cag att tcc gat ctg gtg ctg gcg ggg 3051 Arg Ser Phe Val Leu Gly Gly Gln Ile Ser Asp Leu Val Leu Ala Gly 80 85 90 ttg ggg aac acc gca gtt ctg gcg gga agt gcg ttg ctg ctg gcc gtc 3099 Leu Gly Asn Thr Ala Val Leu Ala Gly Ser Ala Leu Leu Leu Ala Val 95 100 105 110 gtg ttg agt ctg gtg ctc agt gtt gcg gtg gtg gtg tgg ccg aag aaa 3147 Val Leu Ser Leu Val Leu Ser Val Ala Val Val Val Trp Pro Lys Lys 115 120 125 tgg ctg acc tcg gtg gtg aac ctt ctc aac act ctc tcg gtt gct ctg 3195 Trp Leu Thr Ser Val Val Asn Leu Leu Asn Thr Leu Ser Val Ala Leu 130 135 140 ccc aac ttc gtg acc ggt gtc ctc ctg gtt ctc gtc ttc gcg gtg ctg 3243 Pro Asn Phe Val Thr Gly Val Leu Leu Val Leu Val Phe Ala Val Leu 145 150 155 att ccg gtt ctg cca tcc ggt ggt gtt cca cca ggt ggg tat ctc gct 3291 Ile Pro Val Leu Pro Ser Gly Gly Val Pro Pro Gly Gly Tyr Leu Ala 160 165 170 cgt ccc gac atc acg ttc cag tac ctg ctg ctg ccg tca ctg tgc ctc 3339 Arg Pro Asp Ile Thr Phe Gln Tyr Leu Leu Leu Pro Ser Leu Cys Leu 175 180 185 190 gca ctt cct gtc gcg gcc gct ctc acc agg ttc ctg tcc gaa gcg ctg 3387 Ala Leu Pro Val Ala Ala Ala Leu Thr Arg Phe Leu Ser Glu Ala Leu 195 200 205 cgc acc gag atg gcg cag cag tac gtg atc acc gct cgc gca gcc ggt 3435 Arg Thr Glu Met Ala Gln Gln Tyr Val Ile Thr Ala Arg Ala Ala Gly 210 215 220 gtg cca cgg tgg aac ttg gtt aca cgc agt gca tta cgc aat gca ctg 3483 Val Pro Arg Trp Asn Leu Val Thr Arg Ser Ala Leu Arg Asn Ala Leu 225 230 235 cca act atg ctc acc gtg ctc gga att cag acc ggg cac ctt ctc ggc 3531 Pro Thr Met Leu Thr Val Leu Gly Ile Gln Thr Gly His Leu Leu Gly 240 245 250 gga gcc gta ctg gtt gag gcg atc ttt gcc tgg cct ggc atc ggc caa 3579 Gly Ala Val Leu Val Glu Ala Ile Phe Ala Trp Pro Gly Ile Gly Gln 255 260 265 270 ttg atc gag cag gga atc ggt cgg cgg gat tac ccg gtg gtg cag gtg 3627 Leu Ile Glu Gln Gly Ile Gly Arg Arg Asp Tyr Pro Val Val Gln Val 275 280 285 ctg ctc ctg ctg tcg gtc acg atc ttc gtt ctg atc caa ctt ctg acc 3675 Leu Leu Leu Leu Ser Val Thr Ile Phe Val Leu Ile Gln Leu Leu Thr 290 295 300 gac atc gtg cat gcc tac ctc gac cca cga atc aga atc gga ggg cag 3723 Asp Ile Val His Ala Tyr Leu Asp Pro Arg Ile Arg Ile Gly Gly Gln 305 310 315 caa tgacggtggc cgatcagtct gttgacgaaa gggttcggcg atctcgtcct 3776 Gln gtgcgcgctg ctctgacgca cggtcagggg ttggcgggtg tgttgatcct ggtggtcatc 3836 gcagtagcgg gaattgctgc tccactgttg actcactacg ggcccaacga gcagatcgag 3896 ggtgcaaatc tgttgggggc cagtgcacag cactggttcg gaacagatca ggtcaaccgt 3956 gacgtcttcg cccgttctct ttacggaatc cggatcaacc ttgtcatcgt gctcgtcgcg 4016 gtgccagcgg gcgcgatcat cggttcgctc gcaggcctgg tgtcgagtat caattcggtg 4076 gcagatgtca tcgcacagcg gatcttcgat gtgattcttg ccttcccgct gttgattctg 4136 gcgatcacgt tggtcgcgat cacggggccg ggagtagcgc cggtgatcgc ggtgatcgtg 4196 gctgctgaaa tacccttgtt cgggcgcctg gtgcgaacga cggtgttgaa ggtgcgcgaa 4256 ctcccgttcg tggagtcggc cgaggtaatc ggtgcggggc ggtggtgggt actgcgtaag 4316 catgtgctgc ccaacgccgt agaaccgctg ggtgtgcaga ttgcgctctc catgtcggtt 4376 gcggtgttcg ccgaaagtgc gatgagtttt ctcggaatcg gcgtgcgccc gccggatccg 4436 tctctcggtt cgatcatcgc gggcgccatt ccgaacctcg atgccaatcc ggcctacgcg 4496 atcggacctt tggtgatcgt ctcggcgttg gtcctgagct tcctgctgat cgcccaggga 4556 ctgggcaagg cccgccgaat ctgaaattgc caccgccacc accacttcaa ggacgtagtc 4616 atgaatgcaa cacccgcaca ggcagttctc gccatccggg atctggtgat cgagttcgat 4676 gccgacggtt cccgtggctc gtcgacaact gtggtcgacc acgtcaacct cgaattgggt 4736 ttcggtgaga tattggcgtt ggtcggcgag tccggatccg gtaagtcgtt gaccgcacgc 4796 gctgttctcg ggttgttacc ggacggcgcg caggcccgcg ggttgatcca actcggtggc 4856 cagcaggtgc tcggtgccga cgaggcgacg ctcaatcaat tgcgggggac tcgggccgcg 4916 atggttttcc aggagcctca gactgcactg aatccagtgc agaaggtggg ttggcagatc 4976 gcgcaggcgc tgcgggcaca cggcaagatc tcgcgtgccg acgccagagt tcgcgcaatc 5036 aatcttctac ggatggtgga gattccggaa ccggagcgtc gggtcgactg gtatccgcat 5096 caactctcgg gtggacagaa gcagcgggtt gtcatcgcgc tggcgttgtc gggttctcct 5156 gatttactca tcgccgacga accgactact gcgctcgacg tcaccgtgca ggccgagatt 5216 ctgcaactcc tgcgtaatct gcgtgatcgt tcgggcactg caatactgct catcacacac 5276 aacatgggtg tcgttgcgga catcgcagat cgcgtgctgg tgatgcgatc gggcagggtc 5336 gtcgagcagc agtccgtttt cgatctcttt gcgacgccgc gtgagtcgta cacacaggct 5396 ttgcttgcgg ccgtgccacg tctgccggag gtcgaccagc cgaagcctgt ggttgctctg 5456 gtcgatagcg aaggcgacgc gcaagtcccg ccgatcctgc ggttcgacgc ggcctccatc 5516 gtgtacccgg cgaggctggg caacagagag tttcgtgcgg tcgatcaggt gagcctgacg 5576 gttcaggccg gcgaggttgt cggactggtc ggtgaatcgg gatcagggaa gacaactctc 5636 ggccgggctg cgctcggtgt tatcagggcc agtagcggca tcgttgcttt cgacggaacc 5696 gatctcggaa agatctccgc cgcgaatctt cggggcatcc gcaagggaat ggccttgatt 5756 catcaggacc ctgcggcatc tctcgatccg cgtcggacgg tcggacaaag cgtcggcgag 5816 ccactcgaag tccatcgctt tgccaccgga gccctgctgc gaaaccgggt gggggagtta 5876 ctcgaatcag ttcgcctacc gaagtctttt gctcaccggg caccaggaga actttccggt 5936 ggtcaacgcc agcgtgttgc gctggcccga gcacttgccc tcggaccgag actgctggtg 5996 gccgatgagc cgaccagcgc tctggatgtt tccgtccaag ccgatgttct ttcactcttt 6056 gccgatctca gggaggaata caacttcgca tgtctgttca tcagccacga tcttgcagtc 6116 gtcaatcagg tagccgaccg ggtagcggta cttcgcagcg gggagttggt cgaagagggc 6176 cccgctgcag aggtattcag ctcgccacgg caggactaca cacaacagtt ggttgccgcg 6236 gtgcctgttc cagatccgcg tcgtcagcgc gccgggcggg aacgggaatc actggttccc 6296 gacctgactg ttgccgtttg acccgtctcg acatcgaaca gcattaccac cacctcaacc 6356 ttttgcagac tcataggagc ttgacatgtc catcaccgaa ctcgaacgcg tcactcagac 6416 cccggagcag atctacgctg ccggcggaat cactgtccac aaggtcggtg agctgatcgg 6476 cgcccgcatc gacggcgtac acctctctgg ggatctgtcc gaagagaccg cctacgcgat 6536 caactatgcg ctggcagcgc acaaggttgt gttcttccgt gggcagcagc atctcgacga 6596 cacgtcgcag tacgaattcg ccggaaccct cggcagccag accaccacgc atcccactct 6656 caagtccaag gacaacaagc tgttggtgct cgacggcgct gccagcagct ggcacaccga 6716 cgtcactttc atcgatcgca tcccgaaggc atcgatcctg cgcgcgacca caattcctga 6776 gtacggcgga gccaccacgt gggcgtctac cacggctgcg tacaaccaac tgccgcattc 6836 gctcaaggta ttggtcgaga atctgcgcgc tgtccacacc aatgcatacg actacgccga 6896 gattatcgac aaggtgaagc aaggcgacgc tcagcgcgtg acgaactact ccgaattcac 6956 tcgcgaaatc tacgagacgg agcatccggt ggttcgggtc catcctgcga caggggagaa 7016 gactctgctt ctcggtcact tcgtcaagga gttcgtcgga ctgaagccgt cggagtcggt 7076 tgctctctac cagcttctgc aggcacgaat catcaagttg gaaaacaccg ttcggtggtc 7136 atgggctccc ggtgatctgg cgatctggga caaccaggca acccagcatt acgggatttc 7196 cgattacggg acacaggcgc gcagcgtgca tcgcgtgacg ttggccggtg acgttcccgt 7256 cgacgtccac ggtgagcaga gccgcatcat caagggcgat gcatccgagt tctcgatcgt 7316 tgcagacatc gaccggcttc ccggctttgc cgcaaactga tcagtcctgc tgcgggtgat 7376 ccggcgggaa catctgtccc catgagtgat tgcatgctcg gcacgtccat tccggggtgt 7436 ccggtcccac gacgcagcct gttccggcga gccacggtag gtgatcgaat ggatggaccg 7496 gcatccccgg ggaacactga gcggttctgt gtgcaccgca gagtgggcac gacggatttt 7556 tcgccagcat gtagtcgatg aagttggtgt gcccggacgt ggccatcctt ccggtgcatt 7616 tgcggcacag gacggctggg tagtcgtcac caggttcagc ctgcctgaag atccgtgatg 7676 cggaatgaaa gtgaaggcga tcgctgctgt tgaactttcg caacggcatc ggtgagctgc 7736 aacctgtgca gttgccccgc tcgttcatca acgttcgggc gtgggcagct gtggacgtcg 7796 gatccagcgt gtcgatgtcg ccgaagtagt gcgcatagtg tgactggccg gccgtgagaa 7856 tccggtcggc cagtgcgtcg tcgaccggcc caggatccgt gggaaacgtg atggaccatc 7916 gttgttcgag ttctggaacg gtgggcaaac cgtggagttc gtacgggcgt tcatcgactt 7976 ccatccgcga cgtgccgtcg aagggcgcag ccacggtctc gatgcagagc agcgtgcgag 8036 gagtggtgtc gagaacagtg atcagcaggt cgccgatggc catctttccg cgcatgatcc 8096 agggatcgac acgggcacgg ggttcgagaa acgcgaccac ggcatcgagc cacggcgtgc 8156 cgagtgcgat gaatacgtgc tgaccggagc tc 8188 <210> 4 <211> 319 <212> PRT <213> Rhodococcus erythropolis <400> 4 Met Ile Arg Tyr Ile Ala Gly Arg Leu Pro Ser Ala Val Val Val Leu 1 5 10 15 Phe Leu Ala Ser Ile Leu Ile Phe Ser Val Met Arg Leu Val Pro Gly 20 25 30 Asp Pro Ala Leu Ala Leu Ala Gly Pro Asp Ala Thr Pro Glu Ala Ile 35 40 45 Ala Ala Ile Arg His Ser Leu Gly Leu Asp Arg Ser Ile Pro Ala Gln 50 55 60 Tyr Leu Thr Trp Ile Gly Asp Val Leu Thr Leu Asp Leu Gly Arg Ser 65 70 75 80 Phe Val Leu Gly Gly Gln Ile Ser Asp Leu Val Leu Ala Gly Leu Gly 85 90 95 Asn Thr Ala Val Leu Ala Gly Ser Ala Leu Leu Leu Ala Val Val Leu 100 105 110 Ser Leu Val Leu Ser Val Ala Val Val Val Trp Pro Lys Lys Trp Leu 115 120 125 Thr Ser Val Val Asn Leu Leu Asn Thr Leu Ser Val Ala Leu Pro Asn 130 135 140 Phe Val Thr Gly Val Leu Leu Val Leu Val Phe Ala Val Leu Ile Pro 145 150 155 160 Val Leu Pro Ser Gly Gly Val Pro Pro Gly Gly Tyr Leu Ala Arg Pro 165 170 175 Asp Ile Thr Phe Gln Tyr Leu Leu Leu Pro Ser Leu Cys Leu Ala Leu 180 185 190 Pro Val Ala Ala Ala Leu Thr Arg Phe Leu Ser Glu Ala Leu Arg Thr 195 200 205 Glu Met Ala Gln Gln Tyr Val Ile Thr Ala Arg Ala Ala Gly Val Pro 210 215 220 Arg Trp Asn Leu Val Thr Arg Ser Ala Leu Arg Asn Ala Leu Pro Thr 225 230 235 240 Met Leu Thr Val Leu Gly Ile Gln Thr Gly His Leu Leu Gly Gly Ala 245 250 255 Val Leu Val Glu Ala Ile Phe Ala Trp Pro Gly Ile Gly Gln Leu Ile 260 265 270 Glu Gln Gly Ile Gly Arg Arg Asp Tyr Pro Val Val Gln Val Leu Leu 275 280 285 Leu Leu Ser Val Thr Ile Phe Val Leu Ile Gln Leu Leu Thr Asp Ile 290 295 300 Val His Ala Tyr Leu Asp Pro Arg Ile Arg Ile Gly Gly Gln Gln 305 310 315 <210> 5 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (3726)..(4577) <400> 5 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc ccagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggcgtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcga tgattcgtta cattgcgggg cgactaccgt cggcggtggt ggttctcttc 2820 ctcgcgtcga tattgatctt ctcggtgatg cgtctggtgc ctggcgaccc cgcgttggct 2880 ctcgccggcc ccgatgcaac tccggaagcg attgcagcca ttcgtcattc gctcggtctc 2940 gacaggtcga ttcccgcgca gtacctgacc tggatcggcg acgtactgac attggatctc 3000 gggcgttcgt tcgttctcgg cggccagatt tccgatctgg tgctggcggg gttggggaac 3060 accgcagttc tggcgggaag tgcgttgctg ctggccgtcg tgttgagtct ggtgctcagt 3120 gttgcggtgg tggtgtggcc gaagaaatgg ctgacctcgg tggtgaacct tctcaacact 3180 ctctcggttg ctctgcccaa cttcgtgacc ggtgtcctcc tggttctcgt cttcgcggtg 3240 ctgattccgg ttctgccatc cggtggtgtt ccaccaggtg ggtatctcgc tcgtcccgac 3300 atcacgttcc agtacctgct gctgccgtca ctgtgcctcg cacttcctgt cgcggccgct 3360 ctcaccaggt tcctgtccga agcgctgcgc accgagatgg cgcagcagta cgtgatcacc 3420 gctcgcgcag ccggtgtgcc acggtggaac ttggttacac gcagtgcatt acgcaatgca 3480 ctgccaacta tgctcaccgt gctcggaatt cagaccgggc accttctcgg cggagccgta 3540 ctggttgagg cgatctttgc ctggcctggc atcggccaat tgatcgagca gggaatcggt 3600 cggcgggatt acccggtggt gcaggtgctg ctcctgctgt cggtcacgat cttcgttctg 3660 atccaacttc tgaccgacat cgtgcatgcc tacctcgacc cacgaatcag aatcggaggg 3720 cagca atg acg gtg gcc gat cag tct gtt gac gaa agg gtt cgg cga tct 3770 Met Thr Val Ala Asp Gln Ser Val Asp Glu Arg Val Arg Arg Ser 1 5 10 15 cgt cct gtg cgc gct gct ctg acg cac ggt cag ggg ttg gcg ggt gtg 3818 Arg Pro Val Arg Ala Ala Leu Thr His Gly Gln Gly Leu Ala Gly Val 20 25 30 ttg atc ctg gtg gtc atc gca gta gcg gga att gct gct cca ctg ttg 3866 Leu Ile Leu Val Val Ile Ala Val Ala Gly Ile Ala Ala Pro Leu Leu 35 40 45 act cac tac ggg ccc aac gag cag atc gag ggt gca aat ctg ttg ggg 3914 Thr His Tyr Gly Pro Asn Glu Gln Ile Glu Gly Ala Asn Leu Leu Gly 50 55 60 gcc agt gca cag cac tgg ttc gga aca gat cag gtc aac cgt gac gtc 3962 Ala Ser Ala Gln His Trp Phe Gly Thr Asp Gln Val Asn Arg Asp Val 65 70 75 ttc gcc cgt tct ctt tac gga atc cgg atc aac ctt gtc atc gtg ctc 4010 Phe Ala Arg Ser Leu Tyr Gly Ile Arg Ile Asn Leu Val Ile Val Leu 80 85 90 95 gtc gcg gtg cca gcg ggc gcg atc atc ggt tcg ctc gca ggc ctg gtg 4058 Val Ala Val Pro Ala Gly Ala Ile Ile Gly Ser Leu Ala Gly Leu Val 100 105 110 tcg agt atc aat tcg gtg gca gat gtc atc gca cag cgg atc ttc gat 4106 Ser Ser Ile Asn Ser Val Ala Asp Val Ile Ala Gln Arg Ile Phe Asp 115 120 125 gtg att ctt gcc ttc ccg ctg ttg att ctg gcg atc acg ttg gtc gcg 4154 Val Ile Leu Ala Phe Pro Leu Leu Ile Leu Ala Ile Thr Leu Val Ala 130 135 140 atc acg ggg ccg gga gta gcg ccg gtg atc gcg gtg atc gtg gct gct 4202 Ile Thr Gly Pro Gly Val Ala Pro Val Ile Ala Val Ile Val Ala Ala 145 150 155 gaa ata ccc ttg ttc ggg cgc ctg gtg cga acg acg gtg ttg aag gtg 4250 Glu Ile Pro Leu Phe Gly Arg Leu Val Arg Thr Thr Val Leu Lys Val 160 165 170 175 cgc gaa ctc ccg ttc gtg gag tcg gcc gag gta atc ggt gcg ggg cgg 4298 Arg Glu Leu Pro Phe Val Glu Ser Ala Glu Val Ile Gly Ala Gly Arg 180 185 190 tgg tgg gta ctg cgt aag cat gtg ctg ccc aac gcc gta gaa ccg ctg 4346 Trp Trp Val Leu Arg Lys His Val Leu Pro Asn Ala Val Glu Pro Leu 195 200 205 ggt gtg cag att gcg ctc tcc atg tcg gtt gcg gtg ttc gcc gaa agt 4394 Gly Val Gln Ile Ala Leu Ser Met Ser Val Ala Val Phe Ala Glu Ser 210 215 220 gcg atg agt ttt ctc gga atc ggc gtg cgc ccg ccg gat ccg tct ctc 4442 Ala Met Ser Phe Leu Gly Ile Gly Val Arg Pro Pro Asp Pro Ser Leu 225 230 235 ggt tcg atc atc gcg ggc gcc att ccg aac ctc gat gcc aat ccg gcc 4490 Gly Ser Ile Ile Ala Gly Ala Ile Pro Asn Leu Asp Ala Asn Pro Ala 240 245 250 255 tac gcg atc gga cct ttg gtg atc gtc tcg gcg ttg gtc ctg agc ttc 4538 Tyr Ala Ile Gly Pro Leu Val Ile Val Ser Ala Leu Val Leu Ser Phe 260 265 270 ctg ctg atc gcc cag gga ctg ggc aag gcc cgc cga atc tgaaattgcc 4587 Leu Leu Ile Ala Gln Gly Leu Gly Lys Ala Arg Arg Ile 275 280 accgccacca ccacttcaag gacgtagtca tgaatgcaac acccgcacag gcagttctcg 4647 ccatccggga tctggtgatc gagttcgatg ccgacggttc ccgtggctcg tcgacaactg 4707 tggtcgacca cgtcaacctc gaattgggtt tcggtgagat attggcgttg gtcggcgagt 4767 ccggatccgg taagtcgttg accgcacgcg ctgttctcgg gttgttaccg gacggcgcgc 4827 aggcccgcgg gttgatccaa ctcggtggcc agcaggtgct cggtgccgac gaggcgacgc 4887 tcaatcaatt gcgggggact cgggccgcga tggttttcca ggagcctcag actgcactga 4947 atccagtgca gaaggtgggt tggcagatcg cgcaggcgct gcgggcacac ggcaagatct 5007 cgcgtgccga cgccagagtt cgcgcaatca atcttctacg gatggtggag attccggaac 5067 cggagcgtcg ggtcgactgg tatccgcatc aactctcggg tggacagaag cagcgggttg 5127 tcatcgcgct ggcgttgtcg ggttctcctg atttactcat cgccgacgaa ccgactactg 5187 cgctcgacgt caccgtgcag gccgagattc tgcaactcct gcgtaatctg cgtgatcgtt 5247 cgggcactgc aatactgctc atcacacaca acatgggtgt cgttgcggac atcgcagatc 5307 gcgtgctggt gatgcgatcg ggcagggtcg tcgagcagca gtccgttttc gatctctttg 5367 cgacgccgcg tgagtcgtac acacaggctt tgcttgcggc cgtgccacgt ctgccggagg 5427 tcgaccagcc gaagcctgtg gttgctctgg tcgatagcga aggcgacgcg caagtcccgc 5487 cgatcctgcg gttcgacgcg gcctccatcg tgtacccggc gaggctgggc aacagagagt 5547 ttcgtgcggt cgatcaggtg agcctgacgg ttcaggccgg cgaggttgtc ggactggtcg 5607 gtgaatcggg atcagggaag acaactctcg gccgggctgc gctcggtgtt atcagggcca 5667 gtagcggcat cgttgctttc gacggaaccg atctcggaaa gatctccgcc gcgaatcttc 5727 ggggcatccg caagggaatg gccttgattc atcaggaccc tgcggcatct ctcgatccgc 5787 gtcggacggt cggacaaagc gtcggcgagc cactcgaagt ccatcgcttt gccaccggag 5847 ccctgctgcg aaaccgggtg ggggagttac tcgaatcagt tcgcctaccg aagtcttttg 5907 ctcaccgggc accaggagaa ctttccggtg gtcaacgcca gcgtgttgcg ctggcccgag 5967 cacttgccct cggaccgaga ctgctggtgg ccgatgagcc gaccagcgct ctggatgttt 6027 ccgtccaagc cgatgttctt tcactctttg ccgatctcag ggaggaatac aacttcgcat 6087 gtctgttcat cagccacgat cttgcagtcg tcaatcaggt agccgaccgg gtagcggtac 6147 ttcgcagcgg ggagttggtc gaagagggcc ccgctgcaga ggtattcagc tcgccacggc 6207 aggactacac acaacagttg gttgccgcgg tgcctgttcc agatccgcgt cgtcagcgcg 6267 ccgggcggga acgggaatca ctggttcccg acctgactgt tgccgtttga cccgtctcga 6327 catcgaacag cattaccacc acctcaacct tttgcagact cataggagct tgacatgtcc 6387 atcaccgaac tcgaacgcgt cactcagacc ccggagcaga tctacgctgc cggcggaatc 6447 actgtccaca aggtcggtga gctgatcggc gcccgcatcg acggcgtaca cctctctggg 6507 gatctgtccg aagagaccgc ctacgcgatc aactatgcgc tggcagcgca caaggttgtg 6567 ttcttccgtg ggcagcagca tctcgacgac acgtcgcagt acgaattcgc cggaaccctc 6627 ggcagccaga ccaccacgca tcccactctc aagtccaagg acaacaagct gttggtgctc 6687 gacggcgctg ccagcagctg gcacaccgac gtcactttca tcgatcgcat cccgaaggca 6747 tcgatcctgc gcgcgaccac aattcctgag tacggcggag ccaccacgtg ggcgtctacc 6807 acggctgcgt acaaccaact gccgcattcg ctcaaggtat tggtcgagaa tctgcgcgct 6867 gtccacacca atgcatacga ctacgccgag attatcgaca aggtgaagca aggcgacgct 6927 cagcgcgtga cgaactactc cgaattcact cgcgaaatct acgagacgga gcatccggtg 6987 gttcgggtcc atcctgcgac aggggagaag actctgcttc tcggtcactt cgtcaaggag 7047 ttcgtcggac tgaagccgtc ggagtcggtt gctctctacc agcttctgca ggcacgaatc 7107 atcaagttgg aaaacaccgt tcggtggtca tgggctcccg gtgatctggc gatctgggac 7167 aaccaggcaa cccagcatta cgggatttcc gattacggga cacaggcgcg cagcgtgcat 7227 cgcgtgacgt tggccggtga cgttcccgtc gacgtccacg gtgagcagag ccgcatcatc 7287 aagggcgatg catccgagtt ctcgatcgtt gcagacatcg accggcttcc cggctttgcc 7347 gcaaactgat cagtcctgct gcgggtgatc cggcgggaac atctgtcccc atgagtgatt 7407 gcatgctcgg cacgtccatt ccggggtgtc cggtcccacg acgcagcctg ttccggcgag 7467 ccacggtagg tgatcgaatg gatggaccgg catccccggg gaacactgag cggttctgtg 7527 tgcaccgcag agtgggcacg acggattttt cgccagcatg tagtcgatga agttggtgtg 7587 cccggacgtg gccatccttc cggtgcattt gcggcacagg acggctgggt agtcgtcacc 7647 aggttcagcc tgcctgaaga tccgtgatgc ggaatgaaag tgaaggcgat cgctgctgtt 7707 gaactttcgc aacggcatcg gtgagctgca acctgtgcag ttgccccgct cgttcatcaa 7767 cgttcgggcg tgggcagctg tggacgtcgg atccagcgtg tcgatgtcgc cgaagtagtg 7827 cgcatagtgt gactggccgg ccgtgagaat ccggtcggcc agtgcgtcgt cgaccggccc 7887 aggatccgtg ggaaacgtga tggaccatcg ttgttcgagt tctggaacgg tgggcaaacc 7947 gtggagttcg tacgggcgtt catcgacttc catccgcgac gtgccgtcga agggcgcagc 8007 cacggtctcg atgcagagca gcgtgcgagg agtggtgtcg agaacagtga tcagcaggtc 8067 gccgatggcc atctttccgc gcatgatcca gggatcgaca cgggcacggg gttcgagaaa 8127 cgcgaccacg gcatcgagcc acggcgtgcc gagtgcgatg aatacgtgct gaccggagct 8187 c 8188 <210> 6 <211> 284 <212> PRT <213> Rhodococcus erythropolis <400> 6 Met Thr Val Ala Asp Gln Ser Val Asp Glu Arg Val Arg Arg Ser Arg 1 5 10 15 Pro Val Arg Ala Ala Leu Thr His Gly Gln Gly Leu Ala Gly Val Leu 20 25 30 Ile Leu Val Val Ile Ala Val Ala Gly Ile Ala Ala Pro Leu Leu Thr 35 40 45 His Tyr Gly Pro Asn Glu Gln Ile Glu Gly Ala Asn Leu Leu Gly Ala 50 55 60 Ser Ala Gln His Trp Phe Gly Thr Asp Gln Val Asn Arg Asp Val Phe 65 70 75 80 Ala Arg Ser Leu Tyr Gly Ile Arg Ile Asn Leu Val Ile Val Leu Val 85 90 95 Ala Val Pro Ala Gly Ala Ile Ile Gly Ser Leu Ala Gly Leu Val Ser 100 105 110 Ser Ile Asn Ser Val Ala Asp Val Ile Ala Gln Arg Ile Phe Asp Val 115 120 125 Ile Leu Ala Phe Pro Leu Leu Ile Leu Ala Ile Thr Leu Val Ala Ile 130 135 140 Thr Gly Pro Gly Val Ala Pro Val Ile Ala Val Ile Val Ala Ala Glu 145 150 155 160 Ile Pro Leu Phe Gly Arg Leu Val Arg Thr Thr Val Leu Lys Val Arg 165 170 175 Glu Leu Pro Phe Val Glu Ser Ala Glu Val Ile Gly Ala Gly Arg Trp 180 185 190 Trp Val Leu Arg Lys His Val Leu Pro Asn Ala Val Glu Pro Leu Gly 195 200 205 Val Gln Ile Ala Leu Ser Met Ser Val Ala Val Phe Ala Glu Ser Ala 210 215 220 Met Ser Phe Leu Gly Ile Gly Val Arg Pro Pro Asp Pro Ser Leu Gly 225 230 235 240 Ser Ile Ile Ala Gly Ala Ile Pro Asn Leu Asp Ala Asn Pro Ala Tyr 245 250 255 Ala Ile Gly Pro Leu Val Ile Val Ser Ala Leu Val Leu Ser Phe Leu 260 265 270 Leu Ile Ala Gln Gly Leu Gly Lys Ala Arg Arg Ile 275 280 <210> 7 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (4617)..(6314) <400> 7 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc ccagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggcgtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcga tgattcgtta cattgcgggg cgactaccgt cggcggtggt ggttctcttc 2820 ctcgcgtcga tattgatctt ctcggtgatg cgtctggtgc ctggcgaccc cgcgttggct 2880 ctcgccggcc ccgatgcaac tccggaagcg attgcagcca ttcgtcattc gctcggtctc 2940 gacaggtcga ttcccgcgca gtacctgacc tggatcggcg acgtactgac attggatctc 3000 gggcgttcgt tcgttctcgg cggccagatt tccgatctgg tgctggcggg gttggggaac 3060 accgcagttc tggcgggaag tgcgttgctg ctggccgtcg tgttgagtct ggtgctcagt 3120 gttgcggtgg tggtgtggcc gaagaaatgg ctgacctcgg tggtgaacct tctcaacact 3180 ctctcggttg ctctgcccaa cttcgtgacc ggtgtcctcc tggttctcgt cttcgcggtg 3240 ctgattccgg ttctgccatc cggtggtgtt ccaccaggtg ggtatctcgc tcgtcccgac 3300 atcacgttcc agtacctgct gctgccgtca ctgtgcctcg cacttcctgt cgcggccgct 3360 ctcaccaggt tcctgtccga agcgctgcgc accgagatgg cgcagcagta cgtgatcacc 3420 gctcgcgcag ccggtgtgcc acggtggaac ttggttacac gcagtgcatt acgcaatgca 3480 ctgccaacta tgctcaccgt gctcggaatt cagaccgggc accttctcgg cggagccgta 3540 ctggttgagg cgatctttgc ctggcctggc atcggccaat tgatcgagca gggaatcggt 3600 cggcgggatt acccggtggt gcaggtgctg ctcctgctgt cggtcacgat cttcgttctg 3660 atccaacttc tgaccgacat cgtgcatgcc tacctcgacc cacgaatcag aatcggaggg 3720 cagcaatgac ggtggccgat cagtctgttg acgaaagggt tcggcgatct cgtcctgtgc 3780 gcgctgctct gacgcacggt caggggttgg cgggtgtgtt gatcctggtg gtcatcgcag 3840 tagcgggaat tgctgctcca ctgttgactc actacgggcc caacgagcag atcgagggtg 3900 caaatctgtt gggggccagt gcacagcact ggttcggaac agatcaggtc aaccgtgacg 3960 tcttcgcccg ttctctttac ggaatccgga tcaaccttgt catcgtgctc gtcgcggtgc 4020 cagcgggcgc gatcatcggt tcgctcgcag gcctggtgtc gagtatcaat tcggtggcag 4080 atgtcatcgc acagcggatc ttcgatgtga ttcttgcctt cccgctgttg attctggcga 4140 tcacgttggt cgcgatcacg gggccgggag tagcgccggt gatcgcggtg atcgtggctg 4200 ctgaaatacc cttgttcggg cgcctggtgc gaacgacggt gttgaaggtg cgcgaactcc 4260 cgttcgtgga gtcggccgag gtaatcggtg cggggcggtg gtgggtactg cgtaagcatg 4320 tgctgcccaa cgccgtagaa ccgctgggtg tgcagattgc gctctccatg tcggttgcgg 4380 tgttcgccga aagtgcgatg agttttctcg gaatcggcgt gcgcccgccg gatccgtctc 4440 tcggttcgat catcgcgggc gccattccga acctcgatgc caatccggcc tacgcgatcg 4500 gacctttggt gatcgtctcg gcgttggtcc tgagcttcct gctgatcgcc cagggactgg 4560 gcaaggcccg ccgaatctga aattgccacc gccaccacca cttcaaggac gtagtc atg 4619 Met 1 aat gca aca ccc gca cag gca gtt ctc gcc atc cgg gat ctg gtg atc 4667 Asn Ala Thr Pro Ala Gln Ala Val Leu Ala Ile Arg Asp Leu Val Ile 5 10 15 gag ttc gat gcc gac ggt tcc cgt ggc tcg tcg aca act gtg gtc gac 4715 Glu Phe Asp Ala Asp Gly Ser Arg Gly Ser Ser Thr Thr Val Val Asp 20 25 30 cac gtc aac ctc gaa ttg ggt ttc ggt gag ata ttg gcg ttg gtc ggc 4763 His Val Asn Leu Glu Leu Gly Phe Gly Glu Ile Leu Ala Leu Val Gly 35 40 45 gag tcc gga tcc ggt aag tcg ttg acc gca cgc gct gtt ctc ggg ttg 4811 Glu Ser Gly Ser Gly Lys Ser Leu Thr Ala Arg Ala Val Leu Gly Leu 50 55 60 65 tta ccg gac ggc gcg cag gcc cgc ggg ttg atc caa ctc ggt ggc cag 4859 Leu Pro Asp Gly Ala Gln Ala Arg Gly Leu Ile Gln Leu Gly Gly Gln 70 75 80 cag gtg ctc ggt gcc gac gag gcg acg ctc aat caa ttg cgg ggg act 4907 Gln Val Leu Gly Ala Asp Glu Ala Thr Leu Asn Gln Leu Arg Gly Thr 85 90 95 cgg gcc gcg atg gtt ttc cag gag cct cag act gca ctg aat cca gtg 4955 Arg Ala Ala Met Val Phe Gln Glu Pro Gln Thr Ala Leu Asn Pro Val 100 105 110 cag aag gtg ggt tgg cag atc gcg cag gcg ctg cgg gca cac ggc aag 5003 Gln Lys Val Gly Trp Gln Ile Ala Gln Ala Leu Arg Ala His Gly Lys 115 120 125 atc tcg cgt gcc gac gcc aga gtt cgc gca atc aat ctt cta cgg atg 5051 Ile Ser Arg Ala Asp Ala Arg Val Arg Ala Ile Asn Leu Leu Arg Met 130 135 140 145 gtg gag att ccg gaa ccg gag cgt cgg gtc gac tgg tat ccg cat caa 5099 Val Glu Ile Pro Glu Pro Glu Arg Arg Val Asp Trp Tyr Pro His Gln 150 155 160 ctc tcg ggt gga cag aag cag cgg gtt gtc atc gcg ctg gcg ttg tcg 5147 Leu Ser Gly Gly Gln Lys Gln Arg Val Val Ile Ala Leu Ala Leu Ser 165 170 175 ggt tct cct gat tta ctc atc gcc gac gaa ccg act act gcg ctc gac 5195 Gly Ser Pro Asp Leu Leu Ile Ala Asp Glu Pro Thr Thr Ala Leu Asp 180 185 190 gtc acc gtg cag gcc gag att ctg caa ctc ctg cgt aat ctg cgt gat 5243 Val Thr Val Gln Ala Glu Ile Leu Gln Leu Leu Arg Asn Leu Arg Asp 195 200 205 cgt tcg ggc act gca ata ctg ctc atc aca cac aac atg ggt gtc gtt 5291 Arg Ser Gly Thr Ala Ile Leu Leu Ile Thr His Asn Met Gly Val Val 210 215 220 225 gcg gac atc gca gat cgc gtg ctg gtg atg cga tcg ggc agg gtc gtc 5339 Ala Asp Ile Ala Asp Arg Val Leu Val Met Arg Ser Gly Arg Val Val 230 235 240 gag cag cag tcc gtt ttc gat ctc ttt gcg acg ccg cgt gag tcg tac 5387 Glu Gln Gln Ser Val Phe Asp Leu Phe Ala Thr Pro Arg Glu Ser Tyr 245 250 255 aca cag gct ttg ctt gcg gcc gtg cca cgt ctg ccg gag gtc gac cag 5435 Thr Gln Ala Leu Leu Ala Ala Val Pro Arg Leu Pro Glu Val Asp Gln 260 265 270 ccg aag cct gtg gtt gct ctg gtc gat agc gaa ggc gac gcg caa gtc 5483 Pro Lys Pro Val Val Ala Leu Val Asp Ser Glu Gly Asp Ala Gln Val 275 280 285 ccg ccg atc ctg cgg ttc gac gcg gcc tcc atc gtg tac ccg gcg agg 5531 Pro Pro Ile Leu Arg Phe Asp Ala Ala Ser Ile Val Tyr Pro Ala Arg 290 295 300 305 ctg ggc aac aga gag ttt cgt gcg gtc gat cag gtg agc ctg acg gtt 5579 Leu Gly Asn Arg Glu Phe Arg Ala Val Asp Gln Val Ser Leu Thr Val 310 315 320 cag gcc ggc gag gtt gtc gga ctg gtc ggt gaa tcg gga tca ggg aag 5627 Gln Ala Gly Glu Val Val Gly Leu Val Gly Glu Ser Gly Ser Gly Lys 325 330 335 aca act ctc ggc cgg gct gcg ctc ggt gtt atc agg gcc agt agc ggc 5675 Thr Thr Leu Gly Arg Ala Ala Leu Gly Val Ile Arg Ala Ser Ser Gly 340 345 350 atc gtt gct ttc gac gga acc gat ctc gga aag atc tcc gcc gcg aat 5723 Ile Val Ala Phe Asp Gly Thr Asp Leu Gly Lys Ile Ser Ala Ala Asn 355 360 365 ctt cgg ggc atc cgc aag gga atg gcc ttg att cat cag gac cct gcg 5771 Leu Arg Gly Ile Arg Lys Gly Met Ala Leu Ile His Gln Asp Pro Ala 370 375 380 385 gca tct ctc gat ccg cgt cgg acg gtc gga caa agc gtc ggc gag cca 5819 Ala Ser Leu Asp Pro Arg Arg Thr Val Gly Gln Ser Val Gly Glu Pro 390 395 400 ctc gaa gtc cat cgc ttt gcc acc gga gcc ctg ctg cga aac cgg gtg 5867 Leu Glu Val His Arg Phe Ala Thr Gly Ala Leu Leu Arg Asn Arg Val 405 410 415 ggg gag tta ctc gaa tca gtt cgc cta ccg aag tct ttt gct cac cgg 5915 Gly Glu Leu Leu Glu Ser Val Arg Leu Pro Lys Ser Phe Ala His Arg 420 425 430 gca cca gga gaa ctt tcc ggt ggt caa cgc cag cgt gtt gcg ctg gcc 5963 Ala Pro Gly Glu Leu Ser Gly Gly Gln Arg Gln Arg Val Ala Leu Ala 435 440 445 cga gca ctt gcc ctc gga ccg aga ctg ctg gtg gcc gat gag ccg acc 6011 Arg Ala Leu Ala Leu Gly Pro Arg Leu Leu Val Ala Asp Glu Pro Thr 450 455 460 465 agc gct ctg gat gtt tcc gtc caa gcc gat gtt ctt tca ctc ttt gcc 6059 Ser Ala Leu Asp Val Ser Val Gln Ala Asp Val Leu Ser Leu Phe Ala 470 475 480 gat ctc agg gag gaa tac aac ttc gca tgt ctg ttc atc agc cac gat 6107 Asp Leu Arg Glu Glu Tyr Asn Phe Ala Cys Leu Phe Ile Ser His Asp 485 490 495 ctt gca gtc gtc aat cag gta gcc gac cgg gta gcg gta ctt cgc agc 6155 Leu Ala Val Val Asn Gln Val Ala Asp Arg Val Ala Val Leu Arg Ser 500 505 510 ggg gag ttg gtc gaa gag ggc ccc gct gca gag gta ttc agc tcg cca 6203 Gly Glu Leu Val Glu Glu Gly Pro Ala Ala Glu Val Phe Ser Ser Pro 515 520 525 cgg cag gac tac aca caa cag ttg gtt gcc gcg gtg cct gtt cca gat 6251 Arg Gln Asp Tyr Thr Gln Gln Leu Val Ala Ala Val Pro Val Pro Asp 530 535 540 545 ccg cgt cgt cag cgc gcc ggg cgg gaa cgg gaa tca ctg gtt ccc gac 6299 Pro Arg Arg Gln Arg Ala Gly Arg Glu Arg Glu Ser Leu Val Pro Asp 550 555 560 ctg act gtt gcc gtt tgacccgtct cgacatcgaa cagcattacc accacctcaa 6354 Leu Thr Val Ala Val 565 ccttttgcag actcatagga gcttgacatg tccatcaccg aactcgaacg cgtcactcag 6414 accccggagc agatctacgc tgccggcgga atcactgtcc acaaggtcgg tgagctgatc 6474 ggcgcccgca tcgacggcgt acacctctct ggggatctgt ccgaagagac cgcctacgcg 6534 atcaactatg cgctggcagc gcacaaggtt gtgttcttcc gtgggcagca gcatctcgac 6594 gacacgtcgc agtacgaatt cgccggaacc ctcggcagcc agaccaccac gcatcccact 6654 ctcaagtcca aggacaacaa gctgttggtg ctcgacggcg ctgccagcag ctggcacacc 6714 gacgtcactt tcatcgatcg catcccgaag gcatcgatcc tgcgcgcgac cacaattcct 6774 gagtacggcg gagccaccac gtgggcgtct accacggctg cgtacaacca actgccgcat 6834 tcgctcaagg tattggtcga gaatctgcgc gctgtccaca ccaatgcata cgactacgcc 6894 gagattatcg acaaggtgaa gcaaggcgac gctcagcgcg tgacgaacta ctccgaattc 6954 actcgcgaaa tctacgagac ggagcatccg gtggttcggg tccatcctgc gacaggggag 7014 aagactctgc ttctcggtca cttcgtcaag gagttcgtcg gactgaagcc gtcggagtcg 7074 gttgctctct accagcttct gcaggcacga atcatcaagt tggaaaacac cgttcggtgg 7134 tcatgggctc ccggtgatct ggcgatctgg gacaaccagg caacccagca ttacgggatt 7194 tccgattacg ggacacaggc gcgcagcgtg catcgcgtga cgttggccgg tgacgttccc 7254 gtcgacgtcc acggtgagca gagccgcatc atcaagggcg atgcatccga gttctcgatc 7314 gttgcagaca tcgaccggct tcccggcttt gccgcaaact gatcagtcct gctgcgggtg 7374 atccggcggg aacatctgtc cccatgagtg attgcatgct cggcacgtcc attccggggt 7434 gtccggtccc acgacgcagc ctgttccggc gagccacggt aggtgatcga atggatggac 7494 cggcatcccc ggggaacact gagcggttct gtgtgcaccg cagagtgggc acgacggatt 7554 tttcgccagc atgtagtcga tgaagttggt gtgcccggac gtggccatcc ttccggtgca 7614 tttgcggcac aggacggctg ggtagtcgtc accaggttca gcctgcctga agatccgtga 7674 tgcggaatga aagtgaaggc gatcgctgct gttgaacttt cgcaacggca tcggtgagct 7734 gcaacctgtg cagttgcccc gctcgttcat caacgttcgg gcgtgggcag ctgtggacgt 7794 cggatccagc gtgtcgatgt cgccgaagta gtgcgcatag tgtgactggc cggccgtgag 7854 aatccggtcg gccagtgcgt cgtcgaccgg cccaggatcc gtgggaaacg tgatggacca 7914 tcgttgttcg agttctggaa cggtgggcaa accgtggagt tcgtacgggc gttcatcgac 7974 ttccatccgc gacgtgccgt cgaagggcgc agccacggtc tcgatgcaga gcagcgtgcg 8034 aggagtggtg tcgagaacag tgatcagcag gtcgccgatg gccatctttc cgcgcatgat 8094 ccagggatcg acacgggcac ggggttcgag aaacgcgacc acggcatcga gccacggcgt 8154 gccgagtgcg atgaatacgt gctgaccgga gctc 8188 <210> 8 <211> 566 <212> PRT <213> Rhodococcus erythropolis <400> 8 Met Asn Ala Thr Pro Ala Gln Ala Val Leu Ala Ile Arg Asp Leu Val 1 5 10 15 Ile Glu Phe Asp Ala Asp Gly Ser Arg Gly Ser Ser Thr Thr Val Val 20 25 30 Asp His Val Asn Leu Glu Leu Gly Phe Gly Glu Ile Leu Ala Leu Val 35 40 45 Gly Glu Ser Gly Ser Gly Lys Ser Leu Thr Ala Arg Ala Val Leu Gly 50 55 60 Leu Leu Pro Asp Gly Ala Gln Ala Arg Gly Leu Ile Gln Leu Gly Gly 65 70 75 80 Gln Gln Val Leu Gly Ala Asp Glu Ala Thr Leu Asn Gln Leu Arg Gly 85 90 95 Thr Arg Ala Ala Met Val Phe Gln Glu Pro Gln Thr Ala Leu Asn Pro 100 105 110 Val Gln Lys Val Gly Trp Gln Ile Ala Gln Ala Leu Arg Ala His Gly 115 120 125 Lys Ile Ser Arg Ala Asp Ala Arg Val Arg Ala Ile Asn Leu Leu Arg 130 135 140 Met Val Glu Ile Pro Glu Pro Glu Arg Arg Val Asp Trp Tyr Pro His 145 150 155 160 Gln Leu Ser Gly Gly Gln Lys Gln Arg Val Val Ile Ala Leu Ala Leu 165 170 175 Ser Gly Ser Pro Asp Leu Leu Ile Ala Asp Glu Pro Thr Thr Ala Leu 180 185 190 Asp Val Thr Val Gln Ala Glu Ile Leu Gln Leu Leu Arg Asn Leu Arg 195 200 205 Asp Arg Ser Gly Thr Ala Ile Leu Leu Ile Thr His Asn Met Gly Val 210 215 220 Val Ala Asp Ile Ala Asp Arg Val Leu Val Met Arg Ser Gly Arg Val 225 230 235 240 Val Glu Gln Gln Ser Val Phe Asp Leu Phe Ala Thr Pro Arg Glu Ser 245 250 255 Tyr Thr Gln Ala Leu Leu Ala Ala Val Pro Arg Leu Pro Glu Val Asp 260 265 270 Gln Pro Lys Pro Val Val Ala Leu Val Asp Ser Glu Gly Asp Ala Gln 275 280 285 Val Pro Pro Ile Leu Arg Phe Asp Ala Ala Ser Ile Val Tyr Pro Ala 290 295 300 Arg Leu Gly Asn Arg Glu Phe Arg Ala Val Asp Gln Val Ser Leu Thr 305 310 315 320 Val Gln Ala Gly Glu Val Val Gly Leu Val Gly Glu Ser Gly Ser Gly 325 330 335 Lys Thr Thr Leu Gly Arg Ala Ala Leu Gly Val Ile Arg Ala Ser Ser 340 345 350 Gly Ile Val Ala Phe Asp Gly Thr Asp Leu Gly Lys Ile Ser Ala Ala 355 360 365 Asn Leu Arg Gly Ile Arg Lys Gly Met Ala Leu Ile His Gln Asp Pro 370 375 380 Ala Ala Ser Leu Asp Pro Arg Arg Thr Val Gly Gln Ser Val Gly Glu 385 390 395 400 Pro Leu Glu Val His Arg Phe Ala Thr Gly Ala Leu Leu Arg Asn Arg 405 410 415 Val Gly Glu Leu Leu Glu Ser Val Arg Leu Pro Lys Ser Phe Ala His 420 425 430 Arg Ala Pro Gly Glu Leu Ser Gly Gly Gln Arg Gln Arg Val Ala Leu 435 440 445 Ala Arg Ala Leu Ala Leu Gly Pro Arg Leu Leu Val Ala Asp Glu Pro 450 455 460 Thr Ser Ala Leu Asp Val Ser Val Gln Ala Asp Val Leu Ser Leu Phe 465 470 475 480 Ala Asp Leu Arg Glu Glu Tyr Asn Phe Ala Cys Leu Phe Ile Ser His 485 490 495 Asp Leu Ala Val Val Asn Gln Val Ala Asp Arg Val Ala Val Leu Arg 500 505 510 Ser Gly Glu Leu Val Glu Glu Gly Pro Ala Ala Glu Val Phe Ser Ser 515 520 525 Pro Arg Gln Asp Tyr Thr Gln Gln Leu Val Ala Ala Val Pro Val Pro 530 535 540 Asp Pro Arg Arg Gln Arg Ala Gly Arg Glu Arg Glu Ser Leu Val Pro 545 550 555 560 Asp Leu Thr Val Ala Val 565 <210> 9 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (6382)..(7353) <400> 9 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc ccagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggcgtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcga tgattcgtta cattgcgggg cgactaccgt cggcggtggt ggttctcttc 2820 ctcgcgtcga tattgatctt ctcggtgatg cgtctggtgc ctggcgaccc cgcgttggct 2880 ctcgccggcc ccgatgcaac tccggaagcg attgcagcca ttcgtcattc gctcggtctc 2940 gacaggtcga ttcccgcgca gtacctgacc tggatcggcg acgtactgac attggatctc 3000 gggcgttcgt tcgttctcgg cggccagatt tccgatctgg tgctggcggg gttggggaac 3060 accgcagttc tggcgggaag tgcgttgctg ctggccgtcg tgttgagtct ggtgctcagt 3120 gttgcggtgg tggtgtggcc gaagaaatgg ctgacctcgg tggtgaacct tctcaacact 3180 ctctcggttg ctctgcccaa cttcgtgacc ggtgtcctcc tggttctcgt cttcgcggtg 3240 ctgattccgg ttctgccatc cggtggtgtt ccaccaggtg ggtatctcgc tcgtcccgac 3300 atcacgttcc agtacctgct gctgccgtca ctgtgcctcg cacttcctgt cgcggccgct 3360 ctcaccaggt tcctgtccga agcgctgcgc accgagatgg cgcagcagta cgtgatcacc 3420 gctcgcgcag ccggtgtgcc acggtggaac ttggttacac gcagtgcatt acgcaatgca 3480 ctgccaacta tgctcaccgt gctcggaatt cagaccgggc accttctcgg cggagccgta 3540 ctggttgagg cgatctttgc ctggcctggc atcggccaat tgatcgagca gggaatcggt 3600 cggcgggatt acccggtggt gcaggtgctg ctcctgctgt cggtcacgat cttcgttctg 3660 atccaacttc tgaccgacat cgtgcatgcc tacctcgacc cacgaatcag aatcggaggg 3720 cagcaatgac ggtggccgat cagtctgttg acgaaagggt tcggcgatct cgtcctgtgc 3780 gcgctgctct gacgcacggt caggggttgg cgggtgtgtt gatcctggtg gtcatcgcag 3840 tagcgggaat tgctgctcca ctgttgactc actacgggcc caacgagcag atcgagggtg 3900 caaatctgtt gggggccagt gcacagcact ggttcggaac agatcaggtc aaccgtgacg 3960 tcttcgcccg ttctctttac ggaatccgga tcaaccttgt catcgtgctc gtcgcggtgc 4020 cagcgggcgc gatcatcggt tcgctcgcag gcctggtgtc gagtatcaat tcggtggcag 4080 atgtcatcgc acagcggatc ttcgatgtga ttcttgcctt cccgctgttg attctggcga 4140 tcacgttggt cgcgatcacg gggccgggag tagcgccggt gatcgcggtg atcgtggctg 4200 ctgaaatacc cttgttcggg cgcctggtgc gaacgacggt gttgaaggtg cgcgaactcc 4260 cgttcgtgga gtcggccgag gtaatcggtg cggggcggtg gtgggtactg cgtaagcatg 4320 tgctgcccaa cgccgtagaa ccgctgggtg tgcagattgc gctctccatg tcggttgcgg 4380 tgttcgccga aagtgcgatg agttttctcg gaatcggcgt gcgcccgccg gatccgtctc 4440 tcggttcgat catcgcgggc gccattccga acctcgatgc caatccggcc tacgcgatcg 4500 gacctttggt gatcgtctcg gcgttggtcc tgagcttcct gctgatcgcc cagggactgg 4560 gcaaggcccg ccgaatctga aattgccacc gccaccacca cttcaaggac gtagtcatga 4620 atgcaacacc cgcacaggca gttctcgcca tccgggatct ggtgatcgag ttcgatgccg 4680 acggttcccg tggctcgtcg acaactgtgg tcgaccacgt caacctcgaa ttgggtttcg 4740 gtgagatatt ggcgttggtc ggcgagtccg gatccggtaa gtcgttgacc gcacgcgctg 4800 ttctcgggtt gttaccggac ggcgcgcagg cccgcgggtt gatccaactc ggtggccagc 4860 aggtgctcgg tgccgacgag gcgacgctca atcaattgcg ggggactcgg gccgcgatgg 4920 ttttccagga gcctcagact gcactgaatc cagtgcagaa ggtgggttgg cagatcgcgc 4980 aggcgctgcg ggcacacggc aagatctcgc gtgccgacgc cagagttcgc gcaatcaatc 5040 ttctacggat ggtggagatt ccggaaccgg agcgtcgggt cgactggtat ccgcatcaac 5100 tctcgggtgg acagaagcag cgggttgtca tcgcgctggc gttgtcgggt tctcctgatt 5160 tactcatcgc cgacgaaccg actactgcgc tcgacgtcac cgtgcaggcc gagattctgc 5220 aactcctgcg taatctgcgt gatcgttcgg gcactgcaat actgctcatc acacacaaca 5280 tgggtgtcgt tgcggacatc gcagatcgcg tgctggtgat gcgatcgggc agggtcgtcg 5340 agcagcagtc cgttttcgat ctctttgcga cgccgcgtga gtcgtacaca caggctttgc 5400 ttgcggccgt gccacgtctg ccggaggtcg accagccgaa gcctgtggtt gctctggtcg 5460 atagcgaagg cgacgcgcaa gtcccgccga tcctgcggtt cgacgcggcc tccatcgtgt 5520 acccggcgag gctgggcaac agagagtttc gtgcggtcga tcaggtgagc ctgacggttc 5580 aggccggcga ggttgtcgga ctggtcggtg aatcgggatc agggaagaca actctcggcc 5640 gggctgcgct cggtgttatc agggccagta gcggcatcgt tgctttcgac ggaaccgatc 5700 tcggaaagat ctccgccgcg aatcttcggg gcatccgcaa gggaatggcc ttgattcatc 5760 aggaccctgc ggcatctctc gatccgcgtc ggacggtcgg acaaagcgtc ggcgagccac 5820 tcgaagtcca tcgctttgcc accggagccc tgctgcgaaa ccgggtgggg gagttactcg 5880 aatcagttcg cctaccgaag tcttttgctc accgggcacc aggagaactt tccggtggtc 5940 aacgccagcg tgttgcgctg gcccgagcac ttgccctcgg accgagactg ctggtggccg 6000 atgagccgac cagcgctctg gatgtttccg tccaagccga tgttctttca ctctttgccg 6060 atctcaggga ggaatacaac ttcgcatgtc tgttcatcag ccacgatctt gcagtcgtca 6120 atcaggtagc cgaccgggta gcggtacttc gcagcgggga gttggtcgaa gagggccccg 6180 ctgcagaggt attcagctcg ccacggcagg actacacaca acagttggtt gccgcggtgc 6240 ctgttccaga tccgcgtcgt cagcgcgccg ggcgggaacg ggaatcactg gttcccgacc 6300 tgactgttgc cgtttgaccc gtctcgacat cgaacagcat taccaccacc tcaacctttt 6360 gcagactcat aggagcttga c atg tcc atc acc gaa ctc gaa cgc gtc act 6411 Met Ser Ile Thr Glu Leu Glu Arg Val Thr 1 5 10 cag acc ccg gag cag atc tac gct gcc ggc gga atc act gtc cac aag 6459 Gln Thr Pro Glu Gln Ile Tyr Ala Ala Gly Gly Ile Thr Val His Lys 15 20 25 gtc ggt gag ctg atc ggc gcc cgc atc gac ggc gta cac ctc tct ggg 6507 Val Gly Glu Leu Ile Gly Ala Arg Ile Asp Gly Val His Leu Ser Gly 30 35 40 gat ctg tcc gaa gag acc gcc tac gcg atc aac tat gcg ctg gca gcg 6555 Asp Leu Ser Glu Glu Thr Ala Tyr Ala Ile Asn Tyr Ala Leu Ala Ala 45 50 55 cac aag gtt gtg ttc ttc cgt ggg cag cag cat ctc gac gac acg tcg 6603 His Lys Val Val Phe Phe Arg Gly Gln Gln His Leu Asp Asp Thr Ser 60 65 70 cag tac gaa ttc gcc gga acc ctc ggc agc cag acc acc acg cat ccc 6651 Gln Tyr Glu Phe Ala Gly Thr Leu Gly Ser Gln Thr Thr Thr His Pro 75 80 85 90 act ctc aag tcc aag gac aac aag ctg ttg gtg ctc gac ggc gct gcc 6699 Thr Leu Lys Ser Lys Asp Asn Lys Leu Leu Val Leu Asp Gly Ala Ala 95 100 105 agc agc tgg cac acc gac gtc act ttc atc gat cgc atc ccg aag gca 6747 Ser Ser Trp His Thr Asp Val Thr Phe Ile Asp Arg Ile Pro Lys Ala 110 115 120 tcg atc ctg cgc gcg acc aca att cct gag tac ggc gga gcc acc acg 6795 Ser Ile Leu Arg Ala Thr Thr Ile Pro Glu Tyr Gly Gly Ala Thr Thr 125 130 135 tgg gcg tct acc acg gct gcg tac aac caa ctg ccg cat tcg ctc aag 6843 Trp Ala Ser Thr Thr Ala Ala Tyr Asn Gln Leu Pro His Ser Leu Lys 140 145 150 gta ttg gtc gag aat ctg cgc gct gtc cac acc aat gca tac gac tac 6891 Val Leu Val Glu Asn Leu Arg Ala Val His Thr Asn Ala Tyr Asp Tyr 155 160 165 170 gcc gag att atc gac aag gtg aag caa ggc gac gct cag cgc gtg acg 6939 Ala Glu Ile Ile Asp Lys Val Lys Gln Gly Asp Ala Gln Arg Val Thr 175 180 185 aac tac tcc gaa ttc act cgc gaa atc tac gag acg gag cat ccg gtg 6987 Asn Tyr Ser Glu Phe Thr Arg Glu Ile Tyr Glu Thr Glu His Pro Val 190 195 200 gtt cgg gtc cat cct gcg aca ggg gag aag act ctg ctt ctc ggt cac 7035 Val Arg Val His Pro Ala Thr Gly Glu Lys Thr Leu Leu Leu Gly His 205 210 215 ttc gtc aag gag ttc gtc gga ctg aag ccg tcg gag tcg gtt gct ctc 7083 Phe Val Lys Glu Phe Val Gly Leu Lys Pro Ser Glu Ser Val Ala Leu 220 225 230 tac cag ctt ctg cag gca cga atc atc aag ttg gaa aac acc gtt cgg 7131 Tyr Gln Leu Leu Gln Ala Arg Ile Ile Lys Leu Glu Asn Thr Val Arg 235 240 245 250 tgg tca tgg gct ccc ggt gat ctg gcg atc tgg gac aac cag gca acc 7179 Trp Ser Trp Ala Pro Gly Asp Leu Ala Ile Trp Asp Asn Gln Ala Thr 255 260 265 cag cat tac ggg att tcc gat tac ggg aca cag gcg cgc agc gtg cat 7227 Gln His Tyr Gly Ile Ser Asp Tyr Gly Thr Gln Ala Arg Ser Val His 270 275 280 cgc gtg acg ttg gcc ggt gac gtt ccc gtc gac gtc cac ggt gag cag 7275 Arg Val Thr Leu Ala Gly Asp Val Pro Val Asp Val His Gly Glu Gln 285 290 295 agc cgc atc atc aag ggc gat gca tcc gag ttc tcg atc gtt gca gac 7323 Ser Arg Ile Ile Lys Gly Asp Ala Ser Glu Phe Ser Ile Val Ala Asp 300 305 310 atc gac cgg ctt ccc ggc ttt gcc gca aac tgatcagtcc tgctgcgggt 7373 Ile Asp Arg Leu Pro Gly Phe Ala Ala Asn 315 320 gatccggcgg gaacatctgt ccccatgagt gattgcatgc tcggcacgtc cattccgggg 7433 tgtccggtcc cacgacgcag cctgttccgg cgagccacgg taggtgatcg aatggatgga 7493 ccggcatccc cggggaacac tgagcggttc tgtgtgcacc gcagagtggg cacgacggat 7553 ttttcgccag catgtagtcg atgaagttgg tgtgcccgga cgtggccatc cttccggtgc 7613 atttgcggca caggacggct gggtagtcgt caccaggttc agcctgcctg aagatccgtg 7673 atgcggaatg aaagtgaagg cgatcgctgc tgttgaactt tcgcaacggc atcggtgagc 7733 tgcaacctgt gcagttgccc cgctcgttca tcaacgttcg ggcgtgggca gctgtggacg 7793 tcggatccag cgtgtcgatg tcgccgaagt agtgcgcata gtgtgactgg ccggccgtga 7853 gaatccggtc ggccagtgcg tcgtcgaccg gcccaggatc cgtgggaaac gtgatggacc 7913 atcgttgttc gagttctgga acggtgggca aaccgtggag ttcgtacggg cgttcatcga 7973 cttccatccg cgacgtgccg tcgaagggcg cagccacggt ctcgatgcag agcagcgtgc 8033 gaggagtggt gtcgagaaca gtgatcagca ggtcgccgat ggccatcttt ccgcgcatga 8093 tccagggatc gacacgggca cggggttcga gaaacgcgac cacggcatcg agccacggcg 8153 tgccgagtgc gatgaatacg tgctgaccgg agctc 8188 <210> 10 <211> 324 <212> PRT <213> Rhodococcus erythropolis <400> 10 Met Ser Ile Thr Glu Leu Glu Arg Val Thr Gln Thr Pro Glu Gln Ile 1 5 10 15 Tyr Ala Ala Gly Gly Ile Thr Val His Lys Val Gly Glu Leu Ile Gly 20 25 30 Ala Arg Ile Asp Gly Val His Leu Ser Gly Asp Leu Ser Glu Glu Thr 35 40 45 Ala Tyr Ala Ile Asn Tyr Ala Leu Ala Ala His Lys Val Val Phe Phe 50 55 60 Arg Gly Gln Gln His Leu Asp Asp Thr Ser Gln Tyr Glu Phe Ala Gly 65 70 75 80 Thr Leu Gly Ser Gln Thr Thr Thr His Pro Thr Leu Lys Ser Lys Asp 85 90 95 Asn Lys Leu Leu Val Leu Asp Gly Ala Ala Ser Ser Trp His Thr Asp 100 105 110 Val Thr Phe Ile Asp Arg Ile Pro Lys Ala Ser Ile Leu Arg Ala Thr 115 120 125 Thr Ile Pro Glu Tyr Gly Gly Ala Thr Thr Trp Ala Ser Thr Thr Ala 130 135 140 Ala Tyr Asn Gln Leu Pro His Ser Leu Lys Val Leu Val Glu Asn Leu 145 150 155 160 Arg Ala Val His Thr Asn Ala Tyr Asp Tyr Ala Glu Ile Ile Asp Lys 165 170 175 Val Lys Gln Gly Asp Ala Gln Arg Val Thr Asn Tyr Ser Glu Phe Thr 180 185 190 Arg Glu Ile Tyr Glu Thr Glu His Pro Val Val Arg Val His Pro Ala 195 200 205 Thr Gly Glu Lys Thr Leu Leu Leu Gly His Phe Val Lys Glu Phe Val 210 215 220 Gly Leu Lys Pro Ser Glu Ser Val Ala Leu Tyr Gln Leu Leu Gln Ala 225 230 235 240 Arg Ile Ile Lys Leu Glu Asn Thr Val Arg Trp Ser Trp Ala Pro Gly 245 250 255 Asp Leu Ala Ile Trp Asp Asn Gln Ala Thr Gln His Tyr Gly Ile Ser 260 265 270 Asp Tyr Gly Thr Gln Ala Arg Ser Val His Arg Val Thr Leu Ala Gly 275 280 285 Asp Val Pro Val Asp Val His Gly Glu Gln Ser Arg Ile Ile Lys Gly 290 295 300 Asp Ala Ser Glu Phe Ser Ile Val Ala Asp Ile Asp Arg Leu Pro Gly 305 310 315 320 Phe Ala Ala Asn[Sequence List] SEQUENCE LISTING <110> PETROLEUM ENERGY CENTER <120> YUHKIIOUKAGOUBUTSU WO BUNKAI SURU KOUSO OYOBI IDENNSHI <130> P00-0203 <160> 10 <170> PatentIn Ver. 2.0 <210> 1 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (1070) .. (2758) <400> 1 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc c cagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagc atg tcg gaa 1078 Met Ser Glu 1 cga cac tct ttc cca ttc tcg caa gcg tgt gcc ctg aga gtg cac agc 1126 Arg His Ser Phe Pro Phe Ser Gln Ala Cys Ala Leu Arg Val His Ser 5 10 15 tgc gca cct att acg aag ggc aac acc tcc gtg aac tcg tct ctt tcg 1174 Cys Ala Pro Ile Thr Lys Gly Asn Thr Ser Val Asn Ser Ser Leu Ser 20 25 30 35 acg gcc ggt ctc gac cgc cgt gcc ttc ttc cgt ggc agt gcg atc gcc 1222 Thr Ala Gly Leu Asp Arg Arg Ala Phe Phe Arg Gly Ser Ala Ile Ala 40 45 50 gca ttc gcc atc ttc ggt agc tca ctg gcc gcg tgc tcc tct gca 1270 Ala Phe Ala Ile Phe Gly Ser Gly Ser Leu Ala Ala Cys Ser Ser Ala 55 60 65 gtc ggc gaa caa cgc tcg gac gca ggt gaa tca gtt gag ccg gtt cga 1318 Val Gly Glu Ser Asp Ala Gly Glu Ser Val Glu Pro Val Arg 70 75 80 ggt ggg acg ctc aca ctg gcg ata ccg gac gac gtc agc cct gcg gca 1366 Gly Gly Thr Leu Thr Leu Ala Ile Pro Asp Asp Val Ser Pro Ala Ala 85 90 95 ctt ttg acc agc acc acc gtt gcc ggt gtc acg ata tcc ggg gtg 1414 Leu Leu Thr Ser Thr Thr Val Ala Gly Val Thr Ile Ser Gly Leu Val 100 105 110 115 tac gag acc ctg acc cgc tat cca ctc gat tcg gta gtg cca cag cca 1462 Tyr Glu Thr Leu Thr Arg Tyr Pro Leu Asp Ser Val Val Pro Gln Pro 120 125 130 gtt ctg gcc aag gcc tgg aag ctg tcc gac gac ggg ctg acg ctc acg 1510 Val Leu Ala Lys Ala Trp Lys Leu Ser Asp Asp Gly Leu Thr Leu Thr 135 140 145 ctc aat ctg cgc gat gac gtc acc ttc cac tcc ggc cgg cgc ttc acc 1558 Leu Asn Leu Arg Asp Asp Val Thr Phe His Ser Gly Arg Arg Phe Thr 150 155 160 tcc gct gat gcg gag ttc tcg ctg cgc acc tat gcg gac ccg aaa ttc 1606 Ala Glu Phe Ser Leu Arg Thr Tyr Ala Asp Pro Lys Phe 165 170 175 tcg gcc cag ctc agg agt act gcg gcc gcc atc acc ggc ttc gac tct 1654 Ser Ala Gla Gln Leu Arg Ser Thr Ala Ala Ala Ile Thr Gly Phe Asp Ser 180 185 190 195 tcg gat ccc aat acg ctg gtt ctc acc ctc gca cac cga acc ggg aac 1702 Ser Asp Pro Asn Thr Leu Val Leu Thr Leu Ala His Arg Thr Gly Asn 200 205 210 atc ttc gat ctt ctc gat cta gcg ccg atc ttc gac ccc gaa acg ttc 1750 Ile Phe Asp Leu Leu Asp Leu Ala Pro Ile Phe Asp Pro Glu Thr Phe 215 220 225 gac aag gcg gtg acc ggt gaa tcc ttc gtt ggt acg ggc cct ttc gta 1798 Asp Lys Ala Val Ser Phe Val Gly Thr Gly Pro Phe Val 230 235 240 ttc acc tca cgc acc ccg aac agt tcc atc tcc ttc gat cgg aac ccg 1846 Phe Thr Ser Arg Thr Pro Asn Ser Ser Ile Ser Phe Asp Arg Asn Pro 245 250 255 aac tac tgg gtc gcc gag cgg ccg tac ctc gat cac gtg gaa gcg cgg 1894 Asn Tyr Trp Val Ala Glu Arg Pro Tyr Leu Asp His Val Glu Ala Arg 260 265 270 270 275 atc gtt ccg gac gcc caa gcg cgc ctg acatg cag 1942 Ile Val Pro Asp Ala Gln Ala Arg Leu Thr Ser Leu Lys Ser Gly Gln 280 285 290 gtc tct ctt gtt gct ccg gcg tcg ttg ccc ttc cgt gac tca cag aac 1990 Val Ser Leu Val Ala Pro Ala Ser Leu Pro Phe Arg Asp Ser Gln Asn 295 300 305 ttg acc aag acc agc ggg ttc gtg aca acc tcg atc gag ggt gcg gaa 2038 Leu Thr Lys Thr Ser Gly Phe Val Thr Thr Ser Ile Glu Gly Ala Glu 310 315 320 cta cag ata tac ctg ggc aca aat gtc acc gcc gac ggg ctg acc gat 2086 Leu Gln Ile Tyr Leu Gly Thr Asn Val Thr Ala Asp Gly Leu Thr Asp 325 330 335 gtg cgg gca cga aag gcg ttg gcc tac gcg atc gat cgt gac cgc atc 2134 Val Ala Arg Lys Ala Leu Ala Tyr Ala Ile Asp Arg Asp Arg Ile 340 345 350 355 atc agt gag gtg tat cgc gat acg ggg tat gcg gtc aat ctg ccg tgg 2182 Ile Ser Glu Val Tyr Arg Asp Thr Gly Tyr Ala Val Asn Trp 360 365 370 ccg aag tcg tcg ccc gcc tac gac gct gcc aag aac gcg acc tac act 2230 Pro Lys Ser Ser Pro Ala Tyr Asp Ala Ala Lys Asn Ala Thr Tyr Thr 375 380 385 cgc gat gtc gac aag gcg cgc gcc ctg ggc gat ctg ggt gca ctg 2278 Arg Asp Val Asp Lys Ala Arg Ala Leu Val Gly Asp Leu Gly Ala Leu 390 395 400 ccg acc att ccg ttg acc tac aca gga gcg agc ccg gat ttc gaa gcc 2326 Pro Thr Ile Pro hr Tyr Thr Gly Ala Ser Pro Asp Phe Glu Ala 405 410 415 gcc gcg cag atc gtg cag gcc aat ctc gcc gag gca ggg atc cgc gtc 2374 Ala Ala Gln Ile Val Gln Ala Asn Leu Ala Glu Ala Gly Ile Arg Val 420 425 430 435 gaa ttg gat cct gtc gag gca tcc atc ttc gtc aag cag ttg atc ggc 2422 Glu Leu Asp Pro Val Glu Ala Ser Ile Phe Val Lys Gln Leu Ile Gly 440 445 450 gct gag ttc aaa gga ctt tgg ctg acc atat gcg caa tat 2470 Ala Glu Phe Lys Gly Leu Trp Leu Thr Asn His Thr Phe Ala Gln Tyr 455 460 465 gtt ccg tca acc ctg acg gtc agc gcc tac ccg ttc aac gct gca cac 2518 Val Pro Ser Thr Leu Thr Val Ser Ala Tyr Pro Phe Asn Ala Ala His 470 475 480 aat gcc tcg aag ttc agt tcg ccg gcg tat tcc gcc gca gcg gag ggt 2566 Asn Ala Ser Lys Phe Ser Ser Pro Ala Tyr Ser Ala Ala Ala Glu Gly 485 490 490 495 gcg tcc cag gac ggt tcg agc gat gag gca aag aaa ctg tat 2614 Ala Trp Gln Val Pro Asp Gly Ser Ser Asp Glu Ala Lys Lys Leu Tyr 500 505 510 515 gcc gaa ttg ggc acg caa ctg ttg aac gag ttg ttc ttg atc ttg atc atg atc 2 Ala Glu Leu Gly Thr Gln Leu Leu Asn Glu Leu Phe Leu Ile Glu Ile 520 525 530 ggt gtt gtc gtg ccg cag gta tcg gcg gcc gag acc gtt cgt ggt ctg 2710 Gly Val Val Val Pro Gln Val Ser Ala Ala Glu Thr Val Arg Gly Leu 535 540 545 gcc tgg aca aag ggt cgc cag cca caa ttc gcc aac aca ttc ctg gcg 2758 Ala Trp Thr Lys Gly Arg Gln Pro Gln Phe Ala Asn Thrh Phe Leu Ala 550 555 555 taggggtc gtg gg gtcg gtg ggtc gg gtc gg gtc gg gg gg gatattgatc ttctcggtga tgcgtctggt gcctggcgac cccgcgttgg 2878 ctctcgccgg ccccgatgca actccggaag cgattgcagc cattcgtcat tcgctcggtc 2938 tcgacaggtc gattcccgcg cagtacctga cctggatcgg cgacgtactg acattggatc 2998 tcgggcgttc gttcgttctc ggcggccaga tttccgatct ggtgctggcg gggttgggga 3058 acaccgcagt tctggcggga agtgcgttgc tgctggccgt cgtgttgagt ctggtgctca 3118 gtgttgcggt ggtggtgtgg ccgaagaaat ggctgacctc ggtggtgaac cttctcaaca 3178 ctctctcggt tgctctgccc aacttcgtga ccggtgtcct cctggttctc gtcttcgcgg 3238 tgctgattcc ggttctgcca tccggtggtg ttccaccagg tgggtatctc gctcgtccc g 3298 acatcacgtt ccagtacctg ctgctgccgt cactgtgcct cgcacttcct gtcgcggccg 3358 ctctcaccag gttcctgtcc gaagcgctgc gcaccgagat ggcgcagcag tacgtgatca 3418 ccgctcgcgc agccggtgtg ccacggtgga acttggttac acgcagtgca ttacgcaatg 3478 cactgccaac tatgctcacc gtgctcggaa ttcagaccgg gcaccttctc ggcggagccg 3538 tactggttga ggcgatcttt gcctggcctg gcatcggcca attgatcgag cagggaatcg 3598 gtcggcggga ttacccggtg gtgcaggtgc tgctcctgct gtcggtcacg atcttcgttc 3658 tgatccaact tctgaccgac atcgtgcatg cctacctcga cccacgaatc agaatcggag 3718 ggcagcaatg acggtggccg atcagtctgt tgacgaaagg gttcggcgat ctcgtcctgt 3778 gcgcgctgct ctgacgcacg gtcaggggtt ggcgggtgtg ttgatcctgg tggtcatcgc 3838 agtagcggga attgctgctc cactgttgac tcactacggg cccaacgagc agatcgaggg 3898 tgcaaatctg ttgggggcca gtgcacagca ctggttcgga acagatcagg tcaaccgtga 3958 cgtcttcgcc cgttctcttt acggaatccg gatcaacctt gtcatcgtgc tcgtcgcggt 4018 gccagcgggc gcgatcatcg gttcgctcgc aggcctggtg tcgagtatca attcggtggc 4078 agatgtcatc gcacagcgga tcttcgatgt gattcttgcc ttcccgctgt tgattctggc 4138 gatcacgttg gtcgcgatca cggggccggg agtagcgccg gtgatcgcgg tgatcgtggc 4198 tgctgaaata cccttgttcg ggcgcctggt gcgaacgacg gtgttgaagg tgcgcgaact 4258 cccgttcgtg gagtcggccg aggtaatcgg tgcggggcgg tggtgggtac tgcgtaagca 4318 tgtgctgccc aacgccgtag aaccgctggg tgtgcagatt gcgctctcca tgtcggttgc 4378 ggtgttcgcc gaaagtgcga tgagttttct cggaatcggc gtgcgcccgc cggatccgtc 4438 tctcggttcg atcatcgcgg gcgccattcc gaacctcgat gccaatccgg cctacgcgat 4498 cggacctttg gtgatcgtct cggcgttggt cctgagcttc ctgctgatcg cccagggact 4558 gggcaaggcc cgccgaatct gaaattgcca ccgccaccac cacttcaagg acgtagtcat 4618 gaatgcaaca cccgcacagg cagttctcgc catccgggat ctggtgatcg agttcgatgc 4678 cgacggttcc cgtggctcgt cgacaactgt ggtcgaccac gtcaacctcg aattgggttt 4738 cggtgagata ttggcgttgg tcggcgagtc cggatccggt aagtcgttga ccgcacgcgc 4798 tgttctcggg ttgttaccgg acggcgcgca ggcccgcggg ttgatccaac tcggtggcca 4858 gcaggtgctc ggtgccgacg aggcgacgct caatcaattg cgggggactc gggccgcgat 4918 ggttttccag gagcctcaga ctgcactgaa tccagtgcag aaggtgggtt ggcagatcgc 4978 gcag gcgctg cgggcacacg gcaagatctc gcgtgccgac gccagagttc gcgcaatcaa 5038 tcttctacgg atggtggaga ttccggaacc ggagcgtcgg gtcgactggt atccgcatca 5098 actctcgggt ggacagaagc agcgggttgt catcgcgctg gcgttgtcgg gttctcctga 5158 tttactcatc gccgacgaac cgactactgc gctcgacgtc accgtgcagg ccgagattct 5218 gcaactcctg cgtaatctgc gtgatcgttc gggcactgca atactgctca tcacacacaa 5278 catgggtgtc gttgcggaca tcgcagatcg cgtgctggtg atgcgatcgg gcagggtcgt 5338 cgagcagcag tccgttttcg atctctttgc gacgccgcgt gagtcgtaca cacaggcttt 5398 gcttgcggcc gtgccacgtc tgccggaggt cgaccagccg aagcctgtgg ttgctctggt 5458 cgatagcgaa ggcgacgcgc aagtcccgcc gatcctgcgg ttcgacgcgg cctccatcgt 5518 gtacccggcg aggctgggca acagagagtt tcgtgcggtc gatcaggtga gcctgacggt 5578 tcaggccggc gaggttgtcg gactggtcgg tgaatcggga tcagggaaga caactctcgg 5638 ccgggctgcg ctcggtgtta tcagggccag tagcggcatc gttgctttcg acggaaccga 5698 tctcggaaag atctccgccg cgaatcttcg gggcatccgc aagggaatgg ccttgattca 5758 tcaggaccct gcggcatctc tcgatccgcg tcggacggtc ggacaaagcg tcggcgagcc 5818 actcgaagtc catcgctttg ccaccggagc cctgctgcga aaccgggtgg gggagttact 5878 cgaatcagtt cgcctaccga agtcttttgc tcaccgggca ccaggagaac tttccggtgg 5938 tcaacgccag cgtgttgcgc tggcccgagc acttgccctc ggaccgagac tgctggtggc 5998 cgatgagccg accagcgctc tggatgtttc cgtccaagcc gatgttcttt cactctttgc 6058 cgatctcagg gaggaataca acttcgcatg tctgttcatc agccacgatc ttgcagtcgt 6118 caatcaggta gccgaccggg tagcggtact tcgcagcggg gagttggtcg aagagggccc 6178 cgctgcagag gtattcagct cgccacggca ggactacaca caacagttgg ttgccgcggt 6238 gcctgttcca gatccgcgtc gtcagcgcgc cgggcgggaa cgggaatcac tggttcccga 6298 cctgactgtt gccgtttgac ccgtctcgac atcgaacagc attaccacca cctcaacctt 6358 ttgcagactc ataggagctt gacatgtcca tcaccgaact cgaacgcgtc actcagaccc 6418 cggagcagat ctacgctgcc ggcggaatca ctgtccacaa ggtcggtgag ctgatcggcg 6478 cccgcatcga cggcgtacac ctctctgggg atctgtccga agagaccgcc tacgcgatca 6538 actatgcgct ggcagcgcac aaggttgtgt tcttccgtgg gcagcagcat ctcgacgaca 6598 cgtcgcagta cgaattcgcc ggaaccctcg gcagccagac caccacgcat cccactctca 6658 agtccaagga caaca agctg ttggtgctcg acggcgctgc cagcagctgg cacaccgacg 6718 tcactttcat cgatcgcatc ccgaaggcat cgatcctgcg cgcgaccaca attcctgagt 6778 acggcggagc caccacgtgg gcgtctacca cggctgcgta caaccaactg ccgcattcgc 6838 tcaaggtatt ggtcgagaat ctgcgcgctg tccacaccaa tgcatacgac tacgccgaga 6898 ttatcgacaa ggtgaagcaa ggcgacgctc agcgcgtgac gaactactcc gaattcactc 6958 gcgaaatcta cgagacggag catccggtgg ttcgggtcca tcctgcgaca ggggagaaga 7018 ctctgcttct cggtcacttc gtcaaggagt tcgtcggact gaagccgtcg gagtcggttg 7078 ctctctacca gcttctgcag gcacgaatca tcaagttgga aaacaccgtt cggtggtcat 7138 gggctcccgg tgatctggcg atctgggaca accaggcaac ccagcattac gggatttccg 7198 attacgggac acaggcgcgc agcgtgcatc gcgtgacgtt ggccggtgac gttcccgtcg 7258 acgtccacgg tgagcagagc cgcatcatca agggcgatgc atccgagttc tcgatcgttg 7318 cagacatcga ccggcttccc ggctttgccg caaactgatc agtcctgctg cgggtgatcc 7378 ggcgggaaca tctgtcccca tgagtgattg catgctcggc acgtccattc cggggtgtcc 7438 ggtcccacga cgcagcctgt tccggcgagc cacggtaggt gatcgaatgg atggaccggc 7498 atccccgggg aacactgagc ggttctgtgt gcaccgcaga gtgggcacga cggatttttc 7558 gccagcatgt agtcgatgaa gttggtgtgc ccggacgtgg ccatccttcc ggtgcatttg 7618 cggcacagga cggctgggta gtcgtcacca ggttcagcct gcctgaagat ccgtgatgcg 7678 gaatgaaagt gaaggcgatc gctgctgttg aactttcgca acggcatcgg tgagctgcaa 7738 cctgtgcagt tgccccgctc gttcatcaac gttcgggcgt gggcagctgt ggacgtcgga 7798 tccagcgtgt cgatgtcgcc gaagtagtgc gcatagtgtg actggccggc cgtgagaatc 7858 cggtcggcca gtgcgtcgtc gaccggccca ggatccgtgg gaaacgtgat ggaccatcgt 7918 tgttcgagtt ctggaacggt gggcaaaccg tggagttcgt acgggcgttc atcgacttcc 7978 atccgcgacg tgccgtcgaa gggcgcagcc acggtctcga tgcagagcag cgtgcgagga 8038 gtggtgtcga gaacagtgat cagcaggtcg ccgatggcca tctttccgcg catgatccag 8098 ggatcgacac gggcacgggg ttcgagaaac gcgaccacgg catcgagcca cggcgtgccg 8158 agtgcgatga atacgtgctg accggagctc 8188 <210> 2 <211> 563 <212> PRT <213> Rhodococcus erythropolis <400> 2 Met Ser Glu Arg His Ser Phe Pro Phe Ser Gln Ala Cys Ala Leu Arg 1 5 10 15 Val His Ser Cys Ala Pro Ile Thr Lys Gly Asn Thr Ser Val Asn Ser 20 25 30 Ser Leu Ser Thr Ala Gly Leu Asp Arg Arg Ala Phe Phe Arg Gly Ser 35 40 45 Ala Ile Ala Ala Phe Ala Ile Phe Gly Ser Gly Ser Leu Ala Ala Cys 50 55 60 Ser Ser Ala Val Gly Glu Gln Arg Ser Asp Ala Gly Glu Ser Val Glu 65 70 75 80 Pro Val Arg Gly Gly Thr Leu Thr Leu Ala Ile Pro Asp Asp Val Ser 85 90 95 Pro Ala Ala Leu Leu Thr Ser Thr Thr Val Ala Gly Val Thr Ile Ser 100 105 110 Gly Leu Val Tyr Glu Thr Leu Thr Arg Tyr Pro Leu Asp Ser Val Val 115 120 125 Pro Gln Pro Val Leu Ala Lys Ala Trp Lys Leu Ser Asp Asp Gly Leu 130 135 140 Thr Leu Thr Leu Asn Leu Arg Asp Asp Val Thr Phe His Ser Gly Arg 145 150 155 160 Arg Phe Thr Ser Ala Asp Ala Glu Phe Ser Leu Arg Thr Tyr Ala Asp 165 170 175 Pro Lys Phe Ser Ala Gln Leu Arg Ser Thr Ala Ala Ala Ile Thr Gly 180 185 190 Phe Asp Ser Ser Asp Pro Asn Thr Leu Val Leu Thr Leu Ala His Arg 195 200 205 Thr Gly Asn I le Phe Asp Leu Leu Asp Leu Ala Pro Ile Phe Asp Pro 210 215 220 Glu Thr Phe Asp Lys Ala Val Thr Gly Glu Ser Phe Val Gly Thr Gly 225 230 235 240 Pro Phe Val Phe Thr Ser Arg Thr Pro Asn Ser Ser Ile Ser Phe Asp 245 250 255 Arg Asn Pro Asn Tyr Trp Val Val Ala Glu Arg Pro Tyr Leu Asp His Val 260 265 270 Glu Ala Arg Ile Val Pro Asp Ala Gln Ala Arg Leu Thr Ser Leu Lys 275 280 285 Ser Gly Gln Val Ser Leu Val Ala Pro Ala Ser Leu Pro Phe Arg Asp 290 295 300 Ser Gln Asn Leu Thr Lys Thr Ser Gly Phe Val Thr Thr Ser Ile Glu 305 310 315 320 Gly Ala Glu Leu Gln Ile Tyr Leu Gly Thr Asn Val Thr Ala Asp Gly 325 330 335 Leu Thr Asp Val Arg Ala Arg Lys Ala Leu Ala Tyr Ala Ile Asp Arg 340 345 350 Asp Arg Ile Ile Ser Glu Val Tyr Arg Asp Thr Gly Tyr Ala Val Asn 355 360 365 Leu Pro Trp Pro Lys Ser Ser Pro Ala Tyr Asp Ala Ala Lys Asn Ala 370 375 380 Thr Tyr Thr Arg Asp Val Asp Lys Ala Arg Ala Leu Val Gly Asp Leu 385 390 395 400 Gly Ala Leu Pro Thr Ile Pro Leu Thr Tyr Thr Gly Ala Ser Pro Asp 405 410 415 Phe Glu Ala A la Ala Gln Ile Val Gln Ala Asn Leu Ala Glu Ala Gly 420 425 430 Ile Arg Val Glu Leu Asp Pro Val Glu Ala Ser Ile Phe Val Lys Gln 435 440 445 Leu Ile Gly Ala Glu Phe Lys Gly Leu Trp Leu Thr Asn His Thr Phe 450 455 460 Ala Gln Tyr Val Pro Ser Thr Leu Thr Val Ser Ala Tyr Pro Phe Asn 465 470 475 480 Ala Ala His Asn Ala Ser Lys Phe Ser Ser Pro Ala Tyr Ser Ala Ala 485 490 495 Ala Glu Gly Ala Trp Gln Val Pro Asp Gly Ser Ser Asp Glu Ala Lys 500 505 510 510 Lys Leu Tyr Ala Glu Leu Gly Thr Gln Leu Leu Asn Glu Leu Phe Leu 515 520 525 Ile Glu Ile Gly Val Val Val Pro Gln Val Ser Ala Ala Glu Thr Val 530 535 540 Arg Gly Leu Ala Trp Thr Lys Gly Arg Gln Pro Gln Phe Ala Asn Thr 545 550 555 560 Phe Leu Ala <210> 3 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (2770) .. (3726) <400> 3 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc cc agtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggc gtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcg atg att cgt tac att gcg ggg cga cta ccg tcg gcg gtg gtg 2811 Met Ile Arg Tyr Ile Ala Gly Arg Leu Pro Ser Ala Val Val 1 5 10 gtt ctc ttc ctc gcg tcg ata ttg atc ttc tcg gtg atg cgt ctg gtg 2859 Val Leu Phe Leu Ala Ser Ile Leu Ile Phe Ser Val Met Arg Leu Val 15 20 25 30 cct ggc gac ccc gcg ttg gct ctc gcc ggc ccc gat gca act ccg gaa 2907 Pro Gly Asp Pro Ala Leu Ala Leu Ala Gly Pro Asp Ala Thr Pro Glu 35 40 45 gcg att gca gcc att cgt cat tcg ctc ggt ctc gac agg tcg attccc Ile Ala Ala Ile Arg His Ser Leu Gly Leu Asp Arg Ser Ile Pro 50 55 60 gcg cag tac ctg acc tgg atc ggc gac gta ctg aca ttg gat ctc ggg 3003 Ala Gln Tyr Leu Thr Trp Ile Gly Asp Val Leu Thr Leu Asp Leu Gly 65 70 75 cgt tcg ttc gtt ctc ggc ggc cag att t cc gat ctg gtg ctg gcg ggg 3051 Arg Ser Phe Val Leu Gly Gly Gln Ile Ser Asp Leu Val Leu Ala Gly 80 85 90 ttg ggg aac acc gca gtt ctg gcg gga agt gcg ttg ctg ctg gcc gtc 3099 Leu Val Asn Leu Ala Gly Ser Ala Leu Leu Leu Ala Val 95 100 105 110 gtg ttg agt ctg gtg ctc agt gtt gcg gtg gtg gtg tgg ccg aag aaa 3147 Val Leu Ser Leu Val Leu Ser Val Ala Val Val Val Trp Pro Lys Lys 115 120 125 tgg ctg acc tcg gtg gtg aac ctt ctc aac act ctc tcg gtt gct ctg 3195 Trp Leu Thr Ser Val Val Asn Leu Leu Asn Thr Leu Ser Val Ala Leu 130 135 140 ccc aac ttc gtg acc ggt gtc ctc ctg gtt ctc gc gtt ctg 3243 Pro Asn Phe Val Thr Gly Val Leu Leu Val Leu Val Phe Ala Val Leu 145 150 155 att ccg gtt ctg cca tcc ggt ggt gtt cca cca ggt ggg tat ctc gct 3291 Ile Pro Val Leu Pro Ser Gly Gly Val Pro Pro Gly Gly Tyr Leu Ala 160 165 170 cgt ccc gac atc acg ttc cag tac ctg ctg ctg ccg tca ctg tgc ctc 3339 Arg Pro Asp Ile Thr Phe Gln Tyr Leu Leu Leu Pro Ser Leu Cys Leu 175 180 185 190 gca ctt cct g gcc gct ctc acc agg ttc ctg tcc gaa gcg ctg 3387 Ala Leu Pro Val Ala Ala Ala Leu Thr Arg Phe Leu Ser Glu Ala Leu 195 200 205 cgc acc gag atg gcg cag cag tac gtg atc acc gct cgc gca gcc ggt 3 Thr Glu Met Ala Gln Gln Tyr Val Ile Thr Ala Arg Ala Ala Gly 210 215 220 gtg cca cgg tgg aac ttg gtt aca cgc agt gca tta cgc aat gca ctg 3483 Val Pro Arg Trp Asn Leu Val Thr Arg Ser Ala Leu Arg Asn Ala Leu 225 230 235 cca act atg ctc acc gtg ctc gga att cag acc ggg cac ctt ctc ggc 3531 Pro Thr Met Leu Thr Val Leu Gly Ile Gln Thr Gly His Leu Leu Gly 240 245 250 gga gcc gta ctg gtt gag gcg atc ttt gcc tgg cct ggc atc ggc caa 3579 Gly Ala Val Leu Val Glu Ala Ile Phe Ala Trp Pro Gly Ile Gly Gln 255 260 265 270 ttg atc gag cag gga atc ggt cgg cgg gat tac ccg gtg gtg cag gtg 3627 Leu Ile Glu Gly Arg Arg Asp Tyr Pro Val Val Gln Val 275 280 285 ctg ctc ctg ctg tcg gtc acg atc ttc gtt ctg atc caa ctt ctg acc 3675 Leu Leu Leu Leu Ser Val Thr Ile Phe Val Leu Ile Gln Leu Leu Thr 290 295 30 0 gac atc gtg cat gcc tac ctc gac cca cga atc aga atc gga ggg cag 3723 Asp Ile Val His Ala Tyr Leu Asp Pro Arg Ile Arg Ile Gly Gly Gly Gln 305 310 315 caa tgacggtggc cgatcagtct gttgcgc gcgttcgc gcgttcgc gagttcgc gagttcgc gagttcgc gagttcgc gagttcgg ggtggtcatc 3836 gcagtagcgg gaattgctgc tccactgttg actcactacg ggcccaacga gcagatcgag 3896 ggtgcaaatc tgttgggggc cagtgcacag cactggttcg gaacagatca ggtcaaccgt 3956 gacgtcttcg cccgttctct ttacggaatc cggatcaacc ttgtcatcgt gctcgtcgcg 4016 gtgccagcgg gcgcgatcat cggttcgctc gcaggcctgg tgtcgagtat caattcggtg 4076 gcagatgtca tcgcacagcg gatcttcgat gtgattcttg ccttcccgct gttgattctg 4136 gcgatcacgt tggtcgcgat cacggggccg ggagtagcgc cggtgatcgc ggtgatcgtg 4196 gctgctgaaa tacccttgtt cgggcgcctg gtgcgaacga cggtgttgaa ggtgcgcgaa 4256 ctcccgttcg tggagtcggc cgaggtaatc ggtgcggggc ggtggtgggt actgcgtaag 4316 catgtgctgc ccaacgccgt agaaccgctg ggtgtgcaga ttgcgctctc catgtcggtt 4376 gcggtgttcg ccggagcc ccggagtcg ccggagcc ccggagtc tcggtt cgatcatcgc gggcgccatt ccgaacctcg atgccaatcc ggcctacgcg 4496 atcggacctt tggtgatcgt ctcggcgttg gtcctgagct tcctgctgat cgcccaggga 4556 ctgggcaagg cccgccgaat ctgaaattgc caccgccacc accacttcaa ggacgtagtc 4616 atgaatgcaa cacccgcaca ggcagttctc gccatccggg atctggtgat cgagttcgat 4676 gccgacggtt cccgtggctc gtcgacaact gtggtcgacc acgtcaacct cgaattgggt 4736 ttcggtgaga tattggcgtt ggtcggcgag tccggatccg gtaagtcgtt gaccgcacgc 4796 gctgttctcg ggttgttacc ggacggcgcg caggcccgcg ggttgatcca actcggtggc 4856 cagcaggtgc tcggtgccga cgaggcgacg ctcaatcaat tgcgggggac tcgggccgcg 4916 atggttttcc aggagcctca gactgcactg aatccagtgc agaaggtggg ttggcagatc 4976 gcgcaggcgc tgcgggcaca cggcaagatc tcgcgtgccg acgccagagt tcgcgcaatc 5036 aatcttctac ggatggtgga gattccggaa ccggagcgtc gggtcgactg gtatccgcat 5096 caactctcgg gtggacagaa gcagcgggtt gtcatcgcgc tggcgttgtc gggttctcct 5156 gatttactca tcgccgacga accgactact gcgctcgacg tcaccgtgca ggccgagatt 5216 ctgcaactcc tgcgtaatct gcgtgatcgt tcgggcactg caatactgct catcacacac 5276 aacatgggt g tcgttgcgga catcgcagat cgcgtgctgg tgatgcgatc gggcagggtc 5336 gtcgagcagc agtccgtttt cgatctcttt gcgacgccgc gtgagtcgta cacacaggct 5396 ttgcttgcgg ccgtgccacg tctgccggag gtcgaccagc cgaagcctgt ggttgctctg 5456 gtcgatagcg aaggcgacgc gcaagtcccg ccgatcctgc ggttcgacgc ggcctccatc 5516 gtgtacccgg cgaggctggg caacagagag tttcgtgcgg tcgatcaggt gagcctgacg 5576 gttcaggccg gcgaggttgt cggactggtc ggtgaatcgg gatcagggaa gacaactctc 5636 ggccgggctg cgctcggtgt tatcagggcc agtagcggca tcgttgcttt cgacggaacc 5696 gatctcggaa agatctccgc cgcgaatctt cggggcatcc gcaagggaat ggccttgatt 5756 catcaggacc ctgcggcatc tctcgatccg cgtcggacgg tcggacaaag cgtcggcgag 5816 ccactcgaag tccatcgctt tgccaccgga gccctgctgc gaaaccgggt gggggagtta 5876 ctcgaatcag ttcgcctacc gaagtctttt gctcaccggg caccaggaga actttccggt 5936 ggtcaacgcc agcgtgttgc gctggcccga gcacttgccc tcggaccgag actgctggtg 5996 gccgatgagc cgaccagcgc tctggatgtt tccgtccaag ccgatgttct ttcactcttt 6056 gccgatctca gggaggaata caacttcgca tgtctgttca tcagccacga tcttgcagtc 6116 gtcaatcagg tagc cgaccg ggtagcggta cttcgcagcg gggagttggt cgaagagggc 6176 cccgctgcag aggtattcag ctcgccacgg caggactaca cacaacagtt ggttgccgcg 6236 gtgcctgttc cagatccgcg tcgtcagcgc gccgggcggg aacgggaatc actggttccc 6296 gacctgactg ttgccgtttg acccgtctcg acatcgaaca gcattaccac cacctcaacc 6356 ttttgcagac tcataggagc ttgacatgtc catcaccgaa ctcgaacgcg tcactcagac 6416 cccggagcag atctacgctg ccggcggaat cactgtccac aaggtcggtg agctgatcgg 6476 cgcccgcatc gacggcgtac acctctctgg ggatctgtcc gaagagaccg cctacgcgat 6536 caactatgcg ctggcagcgc acaaggttgt gttcttccgt gggcagcagc atctcgacga 6596 cacgtcgcag tacgaattcg ccggaaccct cggcagccag accaccacgc atcccactct 6656 caagtccaag gacaacaagc tgttggtgct cgacggcgct gccagcagct ggcacaccga 6716 cgtcactttc atcgatcgca tcccgaaggc atcgatcctg cgcgcgacca caattcctga 6776 gtacggcgga gccaccacgt gggcgtctac cacggctgcg tacaaccaac tgccgcattc 6836 gctcaaggta ttggtcgaga atctgcgcgc tgtccacacc aatgcatacg actacgccga 6896 gattatcgac aaggtgaagc aaggcgacgc tcagcgcgtg acgaactact ccgaattcac 6956 tcgcgaaatc tacgagacgg agcatccggt ggttcgggtc catcctgcga caggggagaa 7016 gactctgctt ctcggtcact tcgtcaagga gttcgtcgga ctgaagccgt cggagtcggt 7076 tgctctctac cagcttctgc aggcacgaat catcaagttg gaaaacaccg ttcggtggtc 7136 atgggctccc ggtgatctgg cgatctggga caaccaggca acccagcatt acgggatttc 7196 cgattacggg acacaggcgc gcagcgtgca tcgcgtgacg ttggccggtg acgttcccgt 7256 cgacgtccac ggtgagcaga gccgcatcat caagggcgat gcatccgagt tctcgatcgt 7316 tgcagacatc gaccggcttc ccggctttgc cgcaaactga tcagtcctgc tgcgggtgat 7376 ccggcgggaa catctgtccc catgagtgat tgcatgctcg gcacgtccat tccggggtgt 7436 ccggtcccac gacgcagcct gttccggcga gccacggtag gtgatcgaat ggatggaccg 7496 gcatccccgg ggaacactga gcggttctgt gtgcaccgca gagtgggcac gacggatttt 7556 tcgccagcat gtagtcgatg aagttggtgt gcccggacgt ggccatcctt ccggtgcatt 7616 tgcggcacag gacggctggg tagtcgtcac caggttcagc ctgcctgaag atccgtgatg 7676 cggaatgaaa gtgaaggcga tcgctgctgt tgaactttcg caacggcatc ggtgagctgc 7736 aacctgtgca gttgccccgc tcgttcatca acgttcgggc gtgggcagct gtggacgtcg 7796 gatccagcgt gtcgatgtcg ccgaa gtagt gcgcatagtg tgactggccg gccgtgagaa 7856 tccggtcggc cagtgcgtcg tcgaccggcc caggatccgt gggaaacgtg atggaccatc 7916 gttgttcgag ttctggaacg gtgggcaaac cgtggagttc gtacgggcgt tcatcgactt 7976 ccatccgcga cgtgccgtcg aagggcgcag ccacggtctc gatgcagagc agcgtgcgag 8036 gagtggtgtc gagaacagtg atcagcaggt cgccgatggc catctttccg cgcatgatcc 8096 agggatcgac acgggcacgg ggttcgagaa acgcgaccac ggcatcgagc cacggcgtgc 8156 cgagtgcgat gaatacgtgc tgaccggagc tc 8188 <210> 4 <211> 319 <212> PRT <213> Rhodococcus erythropolis <400> 4 Met Ile Arg Tyr Ile Ala Gly Arg Leu Pro Ser Ala Val Val Val Leu 1 5 10 15 Phe Leu Ala Ser Ile Leu Ile Phe Ser Val Met Arg Leu Val Pro Gly 20 25 30 Asp Pro Ala Leu Ala Leu Ala Gly Pro Asp Ala Thr Pro Glu Ala Ile 35 40 45 Ala Ala Ile Arg His Ser Leu Gly Leu Asp Arg Ser Ile Pro Ala Gln 50 55 60 Tyr Leu Thr Trp Ile Gly Asp Val Leu Thr Leu Asp Leu Gly Arg Ser 65 70 75 80 Phe Val Leu Gly Gly Gln Ile Ser Asp Leu Val Leu Ala Gly Leu Gly 85 90 95 Asn Thr Ala Val Leu Ala Gly Ser Ala Leu Leu Leu Ala Val Val Leu 100 105 110 Ser Leu Val Leu Ser Val Ala Val Val Val Trp Pro Lys Lys Trp Leu 115 120 125 Thr Ser Val Val Asn Leu Leu Asn Thr Leu Ser Val Ala Leu Pro Asn 130 135 140 Phe Val Thr Gly Val Leu Leu Val Leu Val Phe Ala Val Leu Ile Pro 145 150 155 160 Val Leu Pro Ser Gly Gly Val Pro Pro Gly Gly Tyr Leu Ala Arg Pro 165 170 175 Asp Ile Thr Phe Gln Tyr Leu Leu Leu Pro Ser Leu Cys Leu Ala Leu 180 185 190 Pro Val Ala Ala Ala Leu Thr Arg Phe Leu Ser Glu Ala Leu Arg Thr 195 200 205 Glu Met Ala Gl n Gln Tyr Val Ile Thr Ala Arg Ala Ala Gly Val Pro 210 215 220 Arg Trp Asn Leu Val Thr Arg Ser Ala Leu Arg Asn Ala Leu Pro Thr 225 230 235 240 Met Leu Thr Val Leu Gly Ile Gln Thr Gly His Leu Leu Gly Gly Ala 245 250 255 Val Leu Val Glu Ala Ile Phe Ala Trp Pro Gly Ile Gly Gln Leu Ile 260 265 270 Glu Gln Gly Ile Gly Arg Arg Asp Tyr Pro Val Val Gln Val Leu Leu 275 280 285 285 Leu Leu Ser Val Thr Ile Phe Val Leu Ile Gln Leu Leu Thr Asp Ile 290 295 300 Val His Ala Tyr Leu Asp Pro Arg Ile Arg Ile Gly Gly Gln Gln 305 310 315 <210> 5 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (3726) .. (4577) <400> 5 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc cc agtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggc gtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcga tgattcgtta cattgcgggg cgactaccgt cggcggtggt ggttctcttc 2820 ctcgcgtcga tattgatctt ctcggtgatg cgtctggtgc ctggcgaccc cgcgttggct 2880 ctcgccggcc ccgatgcaac tccggaagcg attgcagcca ttcgtcattc gctcggtctc 2940 gacaggtcga ttcccgcgca gtacctgacc tggatcggcg acgtactgac attggatctc 3000 gggcgttcgt tcgttctcgg cggccagatt tccgatctgg tgctggcggg gttggggaac 3060 accgcagttc tggcgggaag tgcgttgctg ctggccgtcg tgttgagtct ggtgctcagt 3120 gttgcggtgg tggtgtggcc gaagaaatgg ctgacctcgg tggtgaacct tctcaacact 3180 ctctcggttg ctctgcccaa cttcgtgacc ggtgtcctcc tggttctcgt cttcgcggtg 3240 ctgattccgg ttctgccatc cggtggtgtt ccaccaggtg ggtatctcgc tcgtcccgac 3300 atcacgttcc agtacctgct gctgccgtca ctgtgcctcg cacttcctgt cgcggccgct 3360 ctcaccaggt tcctgtccga agcgctgcgc accgagatgg cgcagcagta cgtgatcacc 3420 gctcgcgcag ccggtgtgcc acggtggaac ttggttacac gcagtgcatt acgcaatgca 3480 ctgccaacta tgctcaccgt gctcggaatt cagaccgggc accttctcgg cggagccgta 3540 ctggttgagg cgatctttgc ctggcctggc atcggccaat tgatcgagca gggaatcggt 3600 cggcgggatt acccggtggt gcaggtgctg ctcctgctgt cggtcacgat cttcgttctg 3660 atccaacttc tgaccgacat cgtgcatgcc tacctcgacc cacgaatcag aatcggaggg 3720 cagca atg acg gtg gcc gat cag tct gtt gac gaa agg gtt cgg cga tct 3770 Met Thr Val Ala Asp Gln Ser Val Asp Glu Arg Val Arg Arg Ser 1 5 10 15 cgt cct gtg cgc gct gct ctg acg cac ggt cag ggg ttg gcg ggt gtg 3818 Arg Pro Val Arg Ala Ala Leu Thr His Gly Gln Gly Leu Ala Gly Val 20 25 30 ttg atc ctg gtg gtc atc gca gta gcg gga att gct gct cca ctg ttg 3866 Leu Ile Leu Val Val Ile Ala Val Ala Gly Ile Ala Ala Pro Leu Leu 35 40 45 act cac tac ggg ccc aac gag cag atc gag ggt gca aat ctg ttg ggg 3914 Thr His Tyr Gly Pro Asn Glu Gln Ile Glu Gly Ala Asn Leu Leu Gly 50 55 60 gcc agt gca cag cac tgg ttc gga aca gat cag gtc aac cgt gac gtc 3962 Ala Ser Ala Gln His Trp Phe Gly Thr Asp Gln Val Asn Arg Asp Val 65 70 75 ttc gcc cgt tct ctt tac gga atc cgg atc aac ctt gtc atc gtg ctc 4010 Phe Ala Arg Ser Leu Tyr Gly Ile Arg Ile Asn Leu Val Ile Val Leu 80 85 90 95 gtc gcg gtg cca gcg ggc gcg atc atc ggt tcg ctc gca ggc ctg gtg 4058 Val Ala Val Pro Ala Gly Ala Ile Ile Gly Ser Leu Ala Gly Leu Val 100 105 110c agt atc aat tcg gtg gca gat gtc atc gca cag cgg atc ttc gat 4106 Ser Ser Ile Asn Ser Val Ala Asp Val Ile Ala Gln Arg Ile Phe Asp 115 120 125 gtg att ctt gcc ttc ccg ctg ttg att ctg gcg atc ac gcg 4154 Val Ile Leu Ala Phe Pro Leu Leu Ile Leu Ala Ile Thr Leu Val Ala 130 135 140 atc acg ggg ccg gga gta gcg ccg gtg atc gcg gtg atc gtg gct gct 4202 Ile Thr Gly Pro Gly Val Ala Pro Val Ile Ala Val Ile Val Ala Ala 145 150 155 gaa ata ccc ttg ttc ggg cgc ctg gtg cga acg acg gtg ttg aag gtg 4250 Glu Ile Pro Leu Phe Gly Arg Leu Val Arg Thr Thr Val Leu Lys Val 160 165 170 175 cgc gac ctc cc g gag tcg gcc gag gta atc ggt gcg ggg cgg 4298 Arg Glu Leu Pro Phe Val Glu Ser Ala Glu Val Ile Gly Ala Gly Arg 180 185 190 tgg tgg gta ctg cgt aag cat gtg ctg ccc aac gcc gta gaa ccg Trp ctg 4346 Val Leu Arg Lys His Val Leu Pro Asn Ala Val Glu Pro Leu 195 200 205 ggt gtg cag att gcg ctc tcc atg tcg gtt gcg gtg ttc gcc gaa agt 4394 Gly Val Gln Ile Ala Leu Ser Met Ser Val Ala Val Phe Ala Glu Ser 210 215 220 gcg atg agt ttt ctc gga atc ggc gtg cgc ccg ccg gat ccg tct ctc 4442 Ala Met Ser Phe Leu Gly Ile Gly Val Arg Pro Pro Asp Pro Ser Leu 225 230 235 ggt tcg atc atc gcg ccc gcc atc gat gcc aat ccg gcc 4490 Gly Ser Ile Ile Ala Gly Ala Ile Pro Asn Leu Asp Ala Asn Pro Ala 240 245 250 255 tac gcg atc gga cct ttg gtg atc gtc tcg gcg ttg gtc ctg agc ttc 4538 Tly Ala Ila Val Ile Val Ser Ala Leu Val Leu Ser Phe 260 265 270 ctg ctg atc gcc cag gga ctg ggc aag gcc cgc cga atc tgaaattgcc 4587 Leu Leu Ile Ala Gln Gly Leu Gly Lys Ala Arg Arg Ile 275 280 accgccacca ccactca g gacgtagtca tgaatgcaac acccgcacag gcagttctcg 4647 ccatccggga tctggtgatc gagttcgatg ccgacggttc ccgtggctcg tcgacaactg 4707 tggtcgacca cgtcaacctc gaattgggtt tcggtgagat attggcgttg gtcggcgagt 4767 ccggatccgg taagtcgttg accgcacgcg ctgttctcgg gttgttaccg gacggcgcgc 4827 aggcccgcgg gttgatccaa ctcggtggcc agcaggtgct cggtgccgac gaggcgacgc 4887 tcaatcaatt gcgggggact cgggccgcga tggttttcca ggagcctcag actgcactga 4947 atccagtgca gaaggtgggt tggcagatcg cgcaggcgct gcgggcacac ggcaagatct 5007 cgcgtgccga cgccagagtt cgcgcaatca atcttctacg gatggtggag attccggaac 5067 cggagcgtcg ggtcgactgg tatccgcatc aactctcggg tggacagaag cagcgggttg 5127 tcatcgcgct ggcgttgtcg ggttctcctg atttactcat cgccgacgaa ccgactactg 5187 cgctcgacgt caccgtgcag gccgagattc tgcaactcct gcgtaatctg cgtgatcgtt 5247 cgggcactgc aatactgctc atcacacaca acatgggtgt cgttgcggac atcgcagatc 5307 gcgtgctggt gatgcgatcg ggcagggtcg tcgagcagca gtccgttttc gatctctttg 5367 cgacgccgcg tgagtcgtac acacaggctt tgcttgcggc cgtgccacgt ctgccggagg 5427 tcgaccagcc gaagcctgtg gttg ctctgg tcgatagcga aggcgacgcg caagtcccgc 5487 cgatcctgcg gttcgacgcg gcctccatcg tgtacccggc gaggctgggc aacagagagt 5547 ttcgtgcggt cgatcaggtg agcctgacgg ttcaggccgg cgaggttgtc ggactggtcg 5607 gtgaatcggg atcagggaag acaactctcg gccgggctgc gctcggtgtt atcagggcca 5667 gtagcggcat cgttgctttc gacggaaccg atctcggaaa gatctccgcc gcgaatcttc 5727 ggggcatccg caagggaatg gccttgattc atcaggaccc tgcggcatct ctcgatccgc 5787 gtcggacggt cggacaaagc gtcggcgagc cactcgaagt ccatcgcttt gccaccggag 5847 ccctgctgcg aaaccgggtg ggggagttac tcgaatcagt tcgcctaccg aagtcttttg 5907 ctcaccgggc accaggagaa ctttccggtg gtcaacgcca gcgtgttgcg ctggcccgag 5967 cacttgccct cggaccgaga ctgctggtgg ccgatgagcc gaccagcgct ctggatgttt 6027 ccgtccaagc cgatgttctt tcactctttg ccgatctcag ggaggaatac aacttcgcat 6087 gtctgttcat cagccacgat cttgcagtcg tcaatcaggt agccgaccgg gtagcggtac 6147 ttcgcagcgg ggagttggtc gaagagggcc ccgctgcaga ggtattcagc tcgccacggc 6207 aggactacac acaacagttg gttgccgcgg tgcctgttcc agatccgcgt cgtcagcgcg 6267 ccgggcggga acgggaatca ctggttccc g acctgactgt tgccgtttga cccgtctcga 6327 catcgaacag cattaccacc acctcaacct tttgcagact cataggagct tgacatgtcc 6387 atcaccgaac tcgaacgcgt cactcagacc ccggagcaga tctacgctgc cggcggaatc 6447 actgtccaca aggtcggtga gctgatcggc gcccgcatcg acggcgtaca cctctctggg 6507 gatctgtccg aagagaccgc ctacgcgatc aactatgcgc tggcagcgca caaggttgtg 6567 ttcttccgtg ggcagcagca tctcgacgac acgtcgcagt acgaattcgc cggaaccctc 6627 ggcagccaga ccaccacgca tcccactctc aagtccaagg acaacaagct gttggtgctc 6687 gacggcgctg ccagcagctg gcacaccgac gtcactttca tcgatcgcat cccgaaggca 6747 tcgatcctgc gcgcgaccac aattcctgag tacggcggag ccaccacgtg ggcgtctacc 6807 acggctgcgt acaaccaact gccgcattcg ctcaaggtat tggtcgagaa tctgcgcgct 6867 gtccacacca atgcatacga ctacgccgag attatcgaca aggtgaagca aggcgacgct 6927 cagcgcgtga cgaactactc cgaattcact cgcgaaatct acgagacgga gcatccggtg 6987 gttcgggtcc atcctgcgac aggggagaag actctgcttc tcggtcactt cgtcaaggag 7047 ttcgtcggac tgaagccgtc ggagtcggtt gctctctacc agcttctgca ggcacgaatc 7107 atcaagttgg aaaacaccgt tcggtggtca tggg ctcccg gtgatctggc gatctgggac 7167 aaccaggcaa cccagcatta cgggatttcc gattacggga cacaggcgcg cagcgtgcat 7227 cgcgtgacgt tggccggtga cgttcccgtc gacgtccacg gtgagcagag ccgcatcatc 7287 aagggcgatg catccgagtt ctcgatcgtt gcagacatcg accggcttcc cggctttgcc 7347 gcaaactgat cagtcctgct gcgggtgatc cggcgggaac atctgtcccc atgagtgatt 7407 gcatgctcgg cacgtccatt ccggggtgtc cggtcccacg acgcagcctg ttccggcgag 7467 ccacggtagg tgatcgaatg gatggaccgg catccccggg gaacactgag cggttctgtg 7527 tgcaccgcag agtgggcacg acggattttt cgccagcatg tagtcgatga agttggtgtg 7587 cccggacgtg gccatccttc cggtgcattt gcggcacagg acggctgggt agtcgtcacc 7647 aggttcagcc tgcctgaaga tccgtgatgc ggaatgaaag tgaaggcgat cgctgctgtt 7707 gaactttcgc aacggcatcg gtgagctgca acctgtgcag ttgccccgct cgttcatcaa 7767 cgttcgggcg tgggcagctg tggacgtcgg atccagcgtg tcgatgtcgc cgaagtagtg 7827 cgcatagtgt gactggccgg ccgtgagaat ccggtcggcc agtgcgtcgt cgaccggccc 7887 aggatccgtg ggaaacgtga tggaccatcg ttgttcgagt tctggaacgg tgggcaaacc 7947 gtggagttcg tacgggcgtt catcgacttc catccgcgac gtgccgtcga agggcgcagc 8007 cacggtctcg atgcagagca gcgtgcgagg agtggtgtcg agaacagtga tcagcaggtc 8067 gccgatggcc atctttccgc gcatgatcca gggatcgaca cgggcacggg gttcgaggac 8g cgggcgag cggggcgagc 8g <210> 6 <211> 284 <212> PRT <213> Rhodococcus erythropolis <400> 6 Met Thr Val Ala Asp Gln Ser Val Asp Glu Arg Val Arg Arg Ser Arg 1 5 10 15 Pro Val Arg Ala Ala Leu Thr His Gly Gln Gly Leu Ala Gly Val Leu 20 25 30 Ile Leu Val Val Ile Ala Val Ala Gly Ile Ala Ala Pro Leu Leu Thr 35 40 45 His Tyr Gly Pro Asn Glu Gln Ile Glu Gly Ala Asn Leu Leu Gly Ala 50 55 60 Ser Ala Gln His Trp Phe Gly Thr Asp Gln Val Asn Arg Asp Val Phe 65 70 75 80 Ala Arg Ser Leu Tyr Gly Ile Arg Ile Asn Leu Val Ile Val Leu Val 85 90 95 Ala Val Pro Ala Gly Ala Ile Ile Gly Ser Leu Ala Gly Leu Val Ser 100 105 110 Ser Ile Asn Ser Val Ala Asp Val Ile Ala Gln Arg Ile Phe Asp Val 115 120 125 Ile Leu Ala Phe Pro Leu Leu Ile Leu Ala Ile Thr Leu Val Ala Ile 130 135 140 Thr Gly Pro Gly Val Ala Pro Val Ile Ala Val Ile Val Ala Ala Glu 145 150 155 160 Ile Pro Leu Phe Gly Arg Leu Val Arg Thr Thr Val Leu Lys Val Arg 165 170 175 Glu Leu Pro Phe Val Glu Ser Ala Glu Val Ile Gly Ala Gly Arg Trp 180 185 190 Trp Val Leu Arg Lys His Val Leu Pro Asn Ala Val Glu Pro Leu Gly 195 200 205 Val Gln Ile A la Leu Ser Met Ser Val Ala Val Phe Ala Glu Ser Ala 210 215 220 Met Ser Phe Leu Gly Ile Gly Val Arg Pro Pro Asp Pro Ser Leu Gly 225 230 235 240 Ser Ile Ile Ala Gly Ala Ile Pro Asn Leu Asp Ala Asn Pro Ala Tyr 245 250 255 Ala Ile Gly Pro Leu Val Ile Val Ser Ala Leu Val Leu Ser Phe Leu 260 265 270 Leu Ile Ala Gln Gly Leu Gly Lys Ala Arg Arg Ile 275 280 <210> 7 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (4617) .. (6314) <400> 7 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc c cagtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggg a acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggc gtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcga tgattcgtta cattgcgggg cgactaccgt cggcggtggt ggttctcttc 2820 ctcgcgtcga tattgatctt ctcggtgatg cgtctggtgc ctggcgaccc cgcgttggct 2880 ctcgccggcc ccgatgcaac tccggaagcg attgcagcca ttcgtcattc gctcggtctc 2940 gacaggtcga ttcccgcgca gtacctgacc tggatcggcg acgtactgac attggatctc 3000 gggcgttcgt tcgttctcgg cggccagatt tccgatctgg tgctggcggg gttggggaac 3060 accgcagttc tggcgggaag tgcgttgctg ctggccgtcg tgttgagtct ggtgctcagt 3120 gttgcggtgg tggtgtggcc gaagaaatgg ctgacctcgg tggtgaacct tctcaacact 3180 ctctcggttg ctctgcccaa cttcgtgacc ggtgtcctcc tggttctcgt cttcgcggtg 3240 ctgattccgg ttctgccatc cggtggtgtt ccaccaggtg ggtatctcgc tcgtcccgac 3300 atcacgttcc agtacctgct gctgccgtca ctgtgcctcg cacttcctgt cgcggccgct 3360 ctcaccaggt tcctgtccga agcgctgcg c accgagatgg cgcagcagta cgtgatcacc 3420 gctcgcgcag ccggtgtgcc acggtggaac ttggttacac gcagtgcatt acgcaatgca 3480 ctgccaacta tgctcaccgt gctcggaatt cagaccgggc accttctcgg cggagccgta 3540 ctggttgagg cgatctttgc ctggcctggc atcggccaat tgatcgagca gggaatcggt 3600 cggcgggatt acccggtggt gcaggtgctg ctcctgctgt cggtcacgat cttcgttctg 3660 atccaacttc tgaccgacat cgtgcatgcc tacctcgacc cacgaatcag aatcggaggg 3720 cagcaatgac ggtggccgat cagtctgttg acgaaagggt tcggcgatct cgtcctgtgc 3780 gcgctgctct gacgcacggt caggggttgg cgggtgtgtt gatcctggtg gtcatcgcag 3840 tagcgggaat tgctgctcca ctgttgactc actacgggcc caacgagcag atcgagggtg 3900 caaatctgtt gggggccagt gcacagcact ggttcggaac agatcaggtc aaccgtgacg 3960 tcttcgcccg ttctctttac ggaatccgga tcaaccttgt catcgtgctc gtcgcggtgc 4020 cagcgggcgc gatcatcggt tcgctcgcag gcctggtgtc gagtatcaat tcggtggcag 4080 atgtcatcgc acagcggatc ttcgatgtga ttcttgcctt cccgctgttg attctggcga 4140 tcacgttggt cgcgatcacg gggccgggag tagcgccggt gatcgcggtg atcgtggctg 4200 ctgaaatacc cttgttcggg cgcctggtgc gaac gacggt gttgaaggtg cgcgaactcc 4260 cgttcgtgga gtcggccgag gtaatcggtg cggggcggtg gtgggtactg cgtaagcatg 4320 tgctgcccaa cgccgtagaa ccgctgggtg tgcagattgc gctctccatg tcggttgcgg 4380 tgttcgccga aagtgcgatg agttttctcg gaatcggcgt gcgcccgccg gatccgtctc 4440 tcggttcgat catcgcgggc gccattccga acctcgatgc caatccggcc tacgcgatcg 4500 gacctttggt gatcgtctcg gcgttggtcc tgagcttcct gctgatcgcc cagggactgg 4560 gcaaggcccg ccgaatctga aattgccacc gccaccacca cttcaaggac gtagtc atg 4619 Met 1 aat gca aca ccc gca cag gca gtt ctc gcc atc cgg gat ctg gtg atc 4667 Asn Ala Thr Pro Ala Gln Ala Val Leu Ala Ile Arg Asp Leu Val Ile 5 10 15 gag ttc gat gcc gac ggt tcc cgt ggc tcg tcg aca gt gac 4715 Glu Phe Asp Ala Asp Gly Ser Arg Gly Ser Ser Thr Thr Val Val Asp 20 25 30 cac gtc aac ctc gaa ttg ggt ttc ggt gag ata ttg gcg ttg gtc ggc 4763 His Val Asn Leu Glu Leu Gly Phe Gly Glu Leu Ala Leu Val Gly 35 40 45 gag tcc gga tcc ggt aag tcg ttg acc gca cgc gct gtt ctc ggg ttg 4811 Glu Ser Gly Ser Gly Lys Ser Leu Thr Ala Arg Ala Val Leu Gly Leu 50 55 60 65 tta ccg gac ggc gcg cag gcc cgc ggg ttg atc caa ctc ggt ggc cag 4859 Leu Pro Asp Gly Ala Gln Ala Arg Gly Leu Ile Gln Leu Gly Gly Gln 70 75c g gtg ct gcc gac gag gcg acg ctc aat caa ttg cgg ggg act 4907 Gln Val Leu Gly Ala Asp Glu Ala Thr Leu Asn Gln Leu Arg Gly Thr 85 90 95 cgg gcc gcg atg gtt ttc cag gag cct cag act gca ctg aat cca gtg 4955 Ala Ala Met Val Phe Gln Glu Pro Gln Thr Ala Leu Asn Pro Val 100 105 110 cag aag gtg ggt tgg cag atc gcg cag gcg ctg cgg gca cac ggc aag 5003 Gln Lys Val Gly Trp Gln Ile Ala Gln Ala Leu Arg Ala His Gly Lys 115 120 125 atc tcg cgt gcc gac gcc aga gtt cgc gca atc aat ctt cta cgg atg 5051 Ile Ser Arg Ala Asp Ala Arg Val Arg Ala Ile Asn Leu Leu Arg Met 130 135 140 145 gtg gag att ccg gaa ccg gag cgg gtc gac tgg tat ccg cat caa 5099 Val Glu Ile Pro Glu Pro Glu Arg Arg Val Asp Trp Tyr Pro His Gln 150 155 160 ctc tcg ggt gga cag aag cag cgg gtt gtc atc gcg ctg gcg ttg tcg 5147 Leu Ser Gly Gly Gln Arg Val Val Ile Ala Leu Ala Leu Ser 165 170 175 ggt tct cct gat tta ctc atc gcc gac gaa ccg act act gcg ctc gac 5195 Gly Ser Pro Asp Leu Leu Ile Ala Asp Glu Pro Thr Thr Ala Leu Asp 180 185 190 gtc acc gtg cag gcc gag att ctg caa ctc ctg cgt aat ctg cgt gat 5243 Val Thr Val Gln Ala Glu Ile Leu Gln Leu Leu Arg Asn Leu Arg Asp 195 200 205 cgt tcg ggc act gca ata ctg ctc atc aca cac gac atg 5291 Arg Ser Gly Thr Ala Ile Leu Leu Ile Thr His Asn Met Gly Val Val 210 215 220 225 gcg gac atc gca gat cgc gtg ctg gtg atg cga tcg ggc agg gtc gtc 5339 Ala Asp Ile Ala Asp Arg Val Leu Val Met Arg Gly Arg Val Val 230 235 240 gag cag cag tcc gtt ttc gat ctc ttt gcg acg ccg cgt gag tcg tac 5387 Glu Gln Gln Ser Val Phe Asp Leu Phe Ala Thr Pro Arg Glu Ser Tyr 245 250 255 aca cag gct ttg ctt gcg gcc gtg cca cgt ctg ccg gag gtc gac cag 5435 Thr Gln Ala Leu Leu Ala Ala Val Pro Arg Leu Pro Glu Val Asp Gln 260 265 270 270 ccg aag cct gtg gtt gct ctg gtc gat agc gaa ggc gac gcg Caa gtc 5a Pro Val Val Ala Leu Val Asp Ser Glu Gly Asp Ala Gln Val 275 280 285 ccg ccg atc ctg cgg ttc gac gcg gcc tcc atc gtg tac ccg gcg agg 5531 Pro Pro Ile Leu Arg Phe Asp Ala Ala Ser Ile Val Tyr Pro Ala Arg 290 295 300 305 ctg ggc aac aga gag ttt cgt gcg gtc gat cag gtg agc ctg acg gtt 5579 Leu Gly Asn Arg Glu Phe Arg Ala Val Asp Gln Val Ser Leu Thr Val 310 310 320 cag gcc ggc gag gtt gtc gg gct gaa tcg gga tca ggg aag 5627 Gln Ala Gly Glu Val Val Gly Leu Val Gly Glu Ser Gly Ser Gly Lys 325 330 335 aca act ctc ggc cgg gct gcg ctc ggt gtt atc agg gcc agt agc ggc 5675 Thr Thr Leu Gly Arg Ala Leu Gly Val Ile Arg Ala Ser Ser Gly 340 345 350 atc gtt gct ttc gac gga acc gat ctc gga aag atc tcc gcc gcg aat 5723 Ile Val Ala Phe Asp Gly Thr Asp Leu Gly Lys Ile Ser Ala Ala Asn 355 360 365 ctt cgg ggc atc cgc aag gga atg gcc ttg att cat cag gac cct gcg 5771 Leu Arg Gly Ile Arg Lys Gly Met Ala Leu Ile His Gln Asp Pro Ala 370 375 380 385 gca tct ctc gat ccg cgt cgg acg gtc gga cag c gag cca 5819 Ala Ser Leu Asp Pro Arg Arg Thr Val Gly Gln Ser Val Gly Glu Pro 390 395 400 ctc gaa gtc cat cgc ttt gcc acc gga gcc ctg ctg cga aac cgg gtg 5867 Leu Glu Val His Arg Phe Ala Thr Gly Ala Leu Leu Arg Asn Arg Val 405 410 415 ggg gag tta ctc gaa tca gtt cgc cta ccg aag tct ttt gct cac cgg 5915 Gly Glu Leu Leu Leu Glu Ser Val Arg Leu Pro Lys Ser Phe Ala His Arg 420 425 430 430 gca cca gga gactt tcc ggt ggt caa cgc cag cgt gtt gcg ctg gcc 5963 Ala Pro Gly Glu Leu Ser Gly Gly Gln Arg Gln Arg Val Ala Leu Ala 435 440 445 cga gca ctt gcc ctc gga ccg aga ctg ctg gtg gcc gat gag gacc gat gag acc Leu Ala Leu Gly Pro Arg Leu Leu Val Ala Asp Glu Pro Thr 450 455 460 465 agc gct ctg gat gtt tcc gtc caa gcc gat gtt ctt tca ctc ttt gcc 6059 Ser Ala Leu Asp Val Ser Val Gln Ala Asp Val Leu Ser Leu Phe Ala 470 475 480 gat ctc agg gag gaa tac aac ttc gca tgt ctg ttc atc agc cac gat 6107 Asp Leu Arg Glu Glu Tyr Asn Phe Ala Cys Leu Phe Ile Ser His Asp 485 490 495 ctt gca gtc gat gac gat cag cgg gta gcg gta ctt cgc agc 6155 Leu Ala Val Val Asn Gln Val Ala Asp Arg Val Ala Val Leu Arg Ser 500 505 510 ggg gag ttg gtc gaa gag ggc ccc gct gca gag gta ttc agc tcg cca 6203 Gly Glu Leu Gly Pro Ala Ala Glu Val Phe Ser Ser Pro 515 520 525 cgg cag gac tac aca caa cag ttg gtt gcc gcg gtg cct gtt cca gat 6251 Arg Gln Asp Tyr Thr Gln Gln Leu Val Ala Ala Val Pro Val Pro Asp 530 535 540 540 545 ccg cgt cgt cag cgc gcc ggg cgg gaa cgg gaa tca ctg gtt ccc gac 6299 Pro Arg Arg Gln Arg Ala Gly Arg Glu Arg Glu Ser Leu Val Pro Asp 550 555 560 ctg act gtt gcc gtt tgacccgta ccacat Acacacacacagca trca gcat Val 565 ccttttgcag actcatagga gcttgacatg tccatcaccg aactcgaacg cgtcactcag 6414 accccggagc agatctacgc tgccggcgga atcactgtcc acaaggtcgg tgagctgatc 6474 ggcgcccgca tcgacggcgt acacctctct ggggatctgt ccgaagagac cgcctacgcg 6534 atcaactatg cgctggcagc gcacaaggtt gtgttcttcc gtgggcagca gcatctcgac 6594 gacacgtcgc agtacgaatt cgccggaacc ctcggcagcc agaccaccac gcatcccact 6654 ctc aagtcca aggacaacaa gctgttggtg ctcgacggcg ctgccagcag ctggcacacc 6714 gacgtcactt tcatcgatcg catcccgaag gcatcgatcc tgcgcgcgac cacaattcct 6774 gagtacggcg gagccaccac gtgggcgtct accacggctg cgtacaacca actgccgcat 6834 tcgctcaagg tattggtcga gaatctgcgc gctgtccaca ccaatgcata cgactacgcc 6894 gagattatcg acaaggtgaa gcaaggcgac gctcagcgcg tgacgaacta ctccgaattc 6954 actcgcgaaa tctacgagac ggagcatccg gtggttcggg tccatcctgc gacaggggag 7014 aagactctgc ttctcggtca cttcgtcaag gagttcgtcg gactgaagcc gtcggagtcg 7074 gttgctctct accagcttct gcaggcacga atcatcaagt tggaaaacac cgttcggtgg 7134 tcatgggctc ccggtgatct ggcgatctgg gacaaccagg caacccagca ttacgggatt 7194 tccgattacg ggacacaggc gcgcagcgtg catcgcgtga cgttggccgg tgacgttccc 7254 gtcgacgtcc acggtgagca gagccgcatc atcaagggcg atgcatccga gttctcgatc 7314 gttgcagaca tcgaccggct tcccggcttt gccgcaaact gatcagtcct gctgcgggtg 7374 atccggcggg aacatctgtc cccatgagtg attgcatgct cggcacgtcc attccggggt 7434 gtccggtccc acgacgcagc ctgttccggc gagccacggt aggtgatcga atggatggac 7494 cggcatcc cc ggggaacact gagcggttct gtgtgcaccg cagagtgggc acgacggatt 7554 tttcgccagc atgtagtcga tgaagttggt gtgcccggac gtggccatcc ttccggtgca 7614 tttgcggcac aggacggctg ggtagtcgtc accaggttca gcctgcctga agatccgtga 7674 tgcggaatga aagtgaaggc gatcgctgct gttgaacttt cgcaacggca tcggtgagct 7734 gcaacctgtg cagttgcccc gctcgttcat caacgttcgg gcgtgggcag ctgtggacgt 7794 cggatccagc gtgtcgatgt cgccgaagta gtgcgcatag tgtgactggc cggccgtgag 7854 aatccggtcg gccagtgcgt cgtcgaccgg cccaggatcc gtgggaaacg tgatggacca 7914 tcgttgttcg agttctggaa cggtgggcaa accgtggagt tcgtacgggc gttcatcgac 7974 ttccatccgc gacgtgccgt cgaagggcgc agccacggtc tcgatgcaga gcagcgtgcg 8034 aggagtggtg tcgagaacag tgatcagcag gtcgccgatg gccatctttc cgcgcatgat 8094 ccagggatcg acacgggcac ggggttcgag aaacgcgacc acggcatcga gccacggcgt 8154 gccgagtgcg atgaatacgt gctgaccgga gctc 8188 <210> 8 <211> 566 <212> PRT <213> Rhodococcus erythropolis <400> 8 Met Asn Ala Thr Pro Ala Gln Ala Val Leu Ala Ile Arg Asp Leu Val 1 5 10 15 Ile Glu Phe Asp Ala Asp Gly Ser Arg Gly Ser Ser Thr Thr Val Val 20 25 30 Asp His Val Asn Leu Glu Leu Gly Phe Gly Glu Ile Leu Ala Leu Val 35 40 45 Gly Glu Ser Gly Ser Gly Lys Ser Leu Thr Ala Arg Ala Val Leu Gly 50 55 60 Leu Leu Pro Asp Gly Ala Gln Ala Arg Gly Leu Ile Gln Leu Gly Gly 65 70 75 80 Gln Gln Val Leu Gly Ala Asp Glu Ala Thr Leu Asn Gln Leu Arg Gly 85 90 95 Thr Arg Ala Ala Met Val Phe Gln Glu Pro Gln Thr Ala Leu Asn Pro 100 105 110 Val Gln Lys Val Gly Trp Gln Ile Ala Gln Ala Leu Arg Ala His Gly 115 120 125 Lys Ile Ser Arg Ala Asp Ala Arg Val Arg Ala Ile Asn Leu Leu Arg 130 135 140 Met Val Glu Ile Pro Glu Pro Glu Arg Arg Val Asp Trp Tyr Pro His 145 150 155 160 Gln Leu Ser Gly Gly Gln Lys Gln Arg Val Val Ile Ala Leu Ala Leu 165 170 175 Ser Gly Ser Pro Asp Leu Leu Ile Ala Asp Glu Pro Thr Thr Ala Leu 180 185 190 Asp Val Thr Val Gln Ala Glu Ile Leu Gln Leu Leu Arg Asn Leu Arg 195 200 205 Asp Arg Ser G ly Thr Ala Ile Leu Leu Ile Thr His Asn Met Gly Val 210 215 220 Val Ala Asp Ile Ala Asp Arg Val Leu Val Met Arg Ser Gly Arg Val 225 230 235 240 Val Glu Gln Gln Ser Val Phe Asp Leu Phe Ala Thr Pro Arg Glu Ser 245 250 255 Tyr Thr Gln Ala Leu Leu Ala Ala Val Pro Arg Leu Pro Glu Val Asp 260 265 270 Gln Pro Lys Pro Val Val Ala Leu Val Asp Ser Glu Gly Asp Ala Gln 275 280 285 Val Pro Pro Ile Leu Arg Phe Asp Ala Ala Ser Ile Val Tyr Pro Ala 290 295 300 300 Arg Leu Gly Asn Arg Glu Phe Arg Ala Val Asp Gln Val Ser Leu Thr 305 310 315 320 Val Gln Ala Gly Glu Val Val Gly Leu Val Gly Glu Ser Gly Ser Gly 325 330 335 Lys Thr Thr Leu Gly Arg Ala Ala Leu Gly Val Ile Arg Ala Ser Ser 340 345 345 350 Gly Ile Val Ala Phe Asp Gly Thr Asp Leu Gly Lys Ile Ser Ala Ala 355 360 365 Asn Leu Arg Gly Ile Arg Lys Gly Met Ala Leu Ile His Gln Asp Pro 370 375 380 Ala Ala Ser Leu Asp Pro Arg Arg Thr Val Gly Gln Ser Val Gly Glu 385 390 395 400 Pro Leu Glu Val His Arg Phe Ala Thr Gly Ala Leu Leu Arg Asn Arg 405 410 415 Val Gly Glu L eu Leu Glu Ser Val Arg Leu Pro Lys Ser Phe Ala His 420 425 430 Arg Ala Pro Gly Glu Leu Ser Gly Gly Gln Arg Gln Arg Val Ala Leu 435 440 445 Ala Arg Ala Leu Ala Leu Gly Pro Arg Leu Leu Val Ala Asp Glu Pro 450 455 460 Thr Ser Ala Leu Asp Val Ser Val Gln Ala Asp Val Leu Ser Leu Phe 465 470 475 480 Ala Asp Leu Arg Glu Glu Tyr Asn Phe Ala Cys Leu Phe Ile Ser His 485 490 495 Asp Leu Ala Val Val Asn Gln Val Ala Asp Arg Val Ala Val Leu Arg 500 505 510 Ser Gly Glu Leu Val Glu Glu Gly Pro Ala Ala Glu Val Phe Ser Ser 515 520 525 Pro Arg Gln Asp Tyr Thr Gln Gln Leu Val Ala Ala Val Pro Val Pro 530 535 540 Asp Pro Arg Arg Gln Arg Ala Gly Arg Glu Arg Glu Ser Leu Val Pro 545 550 555 560 Asp Leu Thr Val Ala Val 565 <210> 9 <211> 8188 <212> DNA <213> Rhodococcus erythropolis <220> <221> CDS <222> (6382) .. (7353) <400> 9 gagctcagtc tatgccgtcg gcgccgaaag tcggacatga gtgacagcga tgggtagggc 60 ggggcgagtc gggtaccccg aggaccgaag cgagagtgaa ggaggagaac cgatgcgtgt 120 gaaagcgatg gtcggaacag gcgcgatggc tgttgcgctg gccgccggcc cagttgccac 180 agcttctgct gaaggcgccg agacggcggg gtcggagggt tcaccggaga tgctgacctg 240 cgaggtggtc ttcgatgcac tggaagacat gagcccggaa tgggcggaag aggggatcga 300 tcaggtcgaa gactggtgtg aggcgatcac cggcgaagaa gactgaacgt cagccgcgcg 360 agatcactcg tcgcgacagt cgccaccgcc cgtcttcgag ttcgaactcg tcggcgtagc 420 tcccgacgcc actgagcttg ggagttgtgg tcgtgtcgac gtagaacgtc cacaccgcat 480 ccgcgcgggc tgtagtttcc gacgtcacgt ccacggcgat cgccgtggtg acgtgacgtg 540 tgaacgtgcc cgggccttgt atgccggcgg ctcgacgctc gattactcca gcagcaattt 600 cttcgcggcc acgtcgtacc tgtgcgggga taccgcgatc gggattggcc ggcatgttcc 660 attcggcctc gcgggtgaac tgctcgacgt agtcctcgac agagccggtg tcagccagat 720 gggcgatccg agcgagcgtt gaacgaatct gttcggcaag gctctcgggt tgcatgctgt 780 tctccgtacg tgtgagtgct gtggtggatc gcaggatatt gcccgtggac tgaccgaaca 840 ccgaggcgtc cc agtcagtg gcagcagttg agagaaattc agatcaccgt gagttcaact 900 atttccccga tatcagggga aatggttgag tatcccctga aggcaaaagc cttaattccg 960 accgggaggt ttcacaccgt gtccgtcgct cctcgatgtc ggctctgact tcttcagcgc 1020 cacaacgact gtcgtagcag ctcgcttttc tgaattcccg ggagtgagca tgtcggaacg 1080 acactctttc ccattctcgc aagcgtgtgc cctgagagtg cacagctgcg cacctattac 1140 gaagggcaac acctccgtga actcgtctct ttcgacggcc ggtctcgacc gccgtgcctt 1200 cttccgtggc agtgcgatcg ccgcattcgc catcttcggt agcggctcac tggccgcgtg 1260 ctcctctgca gtcggcgaac aacgctcgga cgcaggtgaa tcagttgagc cggttcgagg 1320 tgggacgctc acactggcga taccggacga cgtcagccct gcggcacttt tgaccagcac 1380 caccgttgcc ggtgtcacga tatccgggct cgtgtacgag accctgaccc gctatccact 1440 cgattcggta gtgccacagc cagttctggc caaggcctgg aagctgtccg acgacgggct 1500 gacgctcacg ctcaatctgc gcgatgacgt caccttccac tccggccggc gcttcacctc 1560 cgctgatgcg gagttctcgc tgcgcaccta tgcggacccg aaattctcgg cccagctcag 1620 gagtactgcg gccgccatca ccggcttcga ctcttcggat cccaatacgc tggttctcac 1680 cctcgcacac cgaaccggga acatcttcga tcttctcgat ctagcgccga tcttcgaccc 1740 cgaaacgttc gacaaggcgg tgaccggtga atccttcgtt ggtacgggcc ctttcgtatt 1800 cacctcacgc accccgaaca gttccatctc cttcgatcgg aacccgaact actgggtcgc 1860 cgagcggccg tacctcgatc acgtggaagc gcggatcgtt ccggacgccc aagcgcgcct 1920 gacatcgctg aagtccggac aggtctctct tgttgctccg gcgtcgttgc ccttccgtga 1980 ctcacagaac ttgaccaaga ccagcgggtt cgtgacaacc tcgatcgagg gtgcggaact 2040 acagatatac ctgggcacaa atgtcaccgc cgacgggctg accgatgtgc gggcacgaaa 2100 ggcgttggcc tacgcgatcg atcgtgaccg catcatcagt gaggtgtatc gcgatacggg 2160 gtatgcggtc aatctgccgt ggccgaagtc gtcgcccgcc tacgacgctg ccaagaacgc 2220 gacctacact cgcgatgtcg acaaggcgcg cgccctggtc ggcgatctgg gtgcactgcc 2280 gaccattccg ttgacctaca caggagcgag cccggatttc gaagccgccg cgcagatcgt 2340 gcaggccaat ctcgccgagg cagggatccg cgtcgaattg gatcctgtcg aggcatccat 2400 cttcgtcaag cagttgatcg gcgctgagtt caaaggactt tggctgacca atcacacttt 2460 tgcgcaatat gttccgtcaa ccctgacggt cagcgcctac ccgttcaacg ctgcacacaa 2520 tgcctcgaag ttcagttcgc cggc gtattc cgccgcagcg gagggtgcgt ggcaggttcc 2580 cgacggttcg agcgatgagg caaagaaact gtatgccgaa ttgggcacgc aactgttgaa 2640 cgagttgttc ttgatcgaga tcggtgttgt cgtgccgcag gtatcggcgg ccgagaccgt 2700 tcgtggtctg gcctggacaa agggtcgcca gccacaattc gccaacacat tcctggcgta 2760 ggggattcga tgattcgtta cattgcgggg cgactaccgt cggcggtggt ggttctcttc 2820 ctcgcgtcga tattgatctt ctcggtgatg cgtctggtgc ctggcgaccc cgcgttggct 2880 ctcgccggcc ccgatgcaac tccggaagcg attgcagcca ttcgtcattc gctcggtctc 2940 gacaggtcga ttcccgcgca gtacctgacc tggatcggcg acgtactgac attggatctc 3000 gggcgttcgt tcgttctcgg cggccagatt tccgatctgg tgctggcggg gttggggaac 3060 accgcagttc tggcgggaag tgcgttgctg ctggccgtcg tgttgagtct ggtgctcagt 3120 gttgcggtgg tggtgtggcc gaagaaatgg ctgacctcgg tggtgaacct tctcaacact 3180 ctctcggttg ctctgcccaa cttcgtgacc ggtgtcctcc tggttctcgt cttcgcggtg 3240 ctgattccgg ttctgccatc cggtggtgtt ccaccaggtg ggtatctcgc tcgtcccgac 3300 atcacgttcc agtacctgct gctgccgtca ctgtgcctcg cacttcctgt cgcggccgct 3360 ctcaccaggt tcctgtccga agcgctgcgc accgagatgg cgcagcagta cgtgatcacc 3420 gctcgcgcag ccggtgtgcc acggtggaac ttggttacac gcagtgcatt acgcaatgca 3480 ctgccaacta tgctcaccgt gctcggaatt cagaccgggc accttctcgg cggagccgta 3540 ctggttgagg cgatctttgc ctggcctggc atcggccaat tgatcgagca gggaatcggt 3600 cggcgggatt acccggtggt gcaggtgctg ctcctgctgt cggtcacgat cttcgttctg 3660 atccaacttc tgaccgacat cgtgcatgcc tacctcgacc cacgaatcag aatcggaggg 3720 cagcaatgac ggtggccgat cagtctgttg acgaaagggt tcggcgatct cgtcctgtgc 3780 gcgctgctct gacgcacggt caggggttgg cgggtgtgtt gatcctggtg gtcatcgcag 3840 tagcgggaat tgctgctcca ctgttgactc actacgggcc caacgagcag atcgagggtg 3900 caaatctgtt gggggccagt gcacagcact ggttcggaac agatcaggtc aaccgtgacg 3960 tcttcgcccg ttctctttac ggaatccgga tcaaccttgt catcgtgctc gtcgcggtgc 4020 cagcgggcgc gatcatcggt tcgctcgcag gcctggtgtc gagtatcaat tcggtggcag 4080 atgtcatcgc acagcggatc ttcgatgtga ttcttgcctt cccgctgttg attctggcga 4140 tcacgttggt cgcgatcacg gggccgggag tagcgccggt gatcgcggtg atcgtggctg 4200 ctgaaatacc cttgttcggg cgcctggtgc gaacg acggt gttgaaggtg cgcgaactcc 4260 cgttcgtgga gtcggccgag gtaatcggtg cggggcggtg gtgggtactg cgtaagcatg 4320 tgctgcccaa cgccgtagaa ccgctgggtg tgcagattgc gctctccatg tcggttgcgg 4380 tgttcgccga aagtgcgatg agttttctcg gaatcggcgt gcgcccgccg gatccgtctc 4440 tcggttcgat catcgcgggc gccattccga acctcgatgc caatccggcc tacgcgatcg 4500 gacctttggt gatcgtctcg gcgttggtcc tgagcttcct gctgatcgcc cagggactgg 4560 gcaaggcccg ccgaatctga aattgccacc gccaccacca cttcaaggac gtagtcatga 4620 atgcaacacc cgcacaggca gttctcgcca tccgggatct ggtgatcgag ttcgatgccg 4680 acggttcccg tggctcgtcg acaactgtgg tcgaccacgt caacctcgaa ttgggtttcg 4740 gtgagatatt ggcgttggtc ggcgagtccg gatccggtaa gtcgttgacc gcacgcgctg 4800 ttctcgggtt gttaccggac ggcgcgcagg cccgcgggtt gatccaactc ggtggccagc 4860 aggtgctcgg tgccgacgag gcgacgctca atcaattgcg ggggactcgg gccgcgatgg 4920 ttttccagga gcctcagact gcactgaatc cagtgcagaa ggtgggttgg cagatcgcgc 4980 aggcgctgcg ggcacacggc aagatctcgc gtgccgacgc cagagttcgc gcaatcaatc 5040 ttctacggat ggtggagatt ccggaaccgg agcgtcgggt cgactggtat ccgcatcaac 5100 tctcgggtgg acagaagcag cgggttgtca tcgcgctggc gttgtcgggt tctcctgatt 5160 tactcatcgc cgacgaaccg actactgcgc tcgacgtcac cgtgcaggcc gagattctgc 5220 aactcctgcg taatctgcgt gatcgttcgg gcactgcaat actgctcatc acacacaaca 5280 tgggtgtcgt tgcggacatc gcagatcgcg tgctggtgat gcgatcgggc agggtcgtcg 5340 agcagcagtc cgttttcgat ctctttgcga cgccgcgtga gtcgtacaca caggctttgc 5400 ttgcggccgt gccacgtctg ccggaggtcg accagccgaa gcctgtggtt gctctggtcg 5460 atagcgaagg cgacgcgcaa gtcccgccga tcctgcggtt cgacgcggcc tccatcgtgt 5520 acccggcgag gctgggcaac agagagtttc gtgcggtcga tcaggtgagc ctgacggttc 5580 aggccggcga ggttgtcgga ctggtcggtg aatcgggatc agggaagaca actctcggcc 5640 gggctgcgct cggtgttatc agggccagta gcggcatcgt tgctttcgac ggaaccgatc 5700 tcggaaagat ctccgccgcg aatcttcggg gcatccgcaa gggaatggcc ttgattcatc 5760 aggaccctgc ggcatctctc gatccgcgtc ggacggtcgg acaaagcgtc ggcgagccac 5820 tcgaagtcca tcgctttgcc accggagccc tgctgcgaaa ccgggtgggg gagttactcg 5880 aatcagttcg cctaccgaag tcttttgctc accgggcacc aggag aactt tccggtggtc 5940 aacgccagcg tgttgcgctg gcccgagcac ttgccctcgg accgagactg ctggtggccg 6000 atgagccgac cagcgctctg gatgtttccg tccaagccga tgttctttca ctctttgccg 6060 atctcaggga ggaatacaac ttcgcatgtc tgttcatcag ccacgatctt gcagtcgtca 6120 atcaggtagc cgaccgggta gcggtacttc gcagcgggga gttggtcgaa gagggccccg 6180 ctgcagaggt attcagctcg ccacggcagg actacacaca acagttggtt gccgcggtgc 6240 ctgttccaga tccgcgtcgt cagcgcgccg ggcgggaacg ggaatcactg gttcccgacc 6300 tgactgttgc cgtttgaccc gtctcgacat cgaacagcat taccaccacc tcaacctttt 6360 gcagactcat aggagcttga c atg tcc atc acc gaa ctc gaa cgc gtc act 6411 Met Ser Ile Thr Glu Leu Glu Arg Val Thr 1 5 10 cag acc ccg gag cag atc tac gct gcc ggc gga atc act gtc Gac Prog ag 59 Gln Ile Tyr Ala Ala Gly Gly Ile Thr Val His Lys 15 20 25 gtc ggt gag ctg atc ggc gcc cgc atc gac ggc gta cac ctc tct ggg 6507 Val Gly Glu Leu Ile Gly Ala Arg Ile Asp Gly Val His Leu Ser Gly 30 35 40 gat ctg tcc gaa gag acc gcc tac gcg atc aac tat gcg ctg gca gcg 6555 Asp Leu Ser Glu Glu Thr Ala Tyr Ala Ile Asn Tyr Ala Leu Ala Ala 45 50 55 cac aag gtt gtg ttc ttc cgt ggg cag cag cat ctc gac gac acg tcg 6603 His Lys Val Val Phe Phe Arg Gly Gln Gln His Leu Asp Asp Thr Ser 60 65 70 cag tac gaa ttc gcc gga acc ctc ggc agc cag acc acc acg cat ccc 6651 Gln Tyr Glu Phe Ala Gly Thr Leu Gly Ser Gln Thr Thr Thr His Pro 75 80 85 90 act ctc aag tcc aag gac aac aag ctg ttg gtg ctc gac ggc gct gcc 6699 Thr Leu Lys Ser Lys Asp Asn Lys Leu Leu Val Leu Asp Gly Ala Ala 95 100 105 agc agc tgg cac acc gac gtc act ttc atc gat cgc atc ccg aag gca 6747 Ser Ser Trp His Thr Asp Val Thr Phe Ile Asp Arg Ile Pro Lys Ala 110 115 120 tcg atc ctg cgc gcg acc aca att cct gag tac ggc gga gcc acc acg 6795 Ser Ile Leu Arg Ala Thr Thr Ile Pro Glu Tyr Gly Gly Ala Thr Thr 125 130 135 tgg gcg tct acc acg gct gcg tac aac caa ctg ccg cat tcg ctc aag 6843 Trp Ala Ser Thr Thr Ala Ala Tyr Asn Gln Leu Pro His Ser Leu Lys 140 145 150 gta ttg gtc gag aat ctg cgc gct gtc cac acc aat gca tac gac tac Val Leu Val Glu Asn Leu Arg Ala Val His Thr Asn Ala Tyr Asp Tyr 155 160 165 170 gcc gag att atc gac aag gtg aag caa ggc gac gct cag cgc gtg acg 6939 Ala Glu Ile Ile Asp Lys Val Lys Gln Gly Asp Ala Gln Arg Val Thr 175 180 185 aac tac tcc gaa ttc act cgc gaa atc tac gag acg gag cat ccg gtg 6987 Asn Tyr Ser Glu Phe Thr Arg Glu Ile Tyr Glu Thr Glu His Pro Val 190 195 200 gtt cgg gtc cat cct gcg aca ggg gag aag act ctg ctt ctc ggt cac 7035 Val Arg Val His Pro Ala Thr Gly Glu Lys Thr Leu Leu Leu Gly His 205 210 215 ttc gtc aag gag ttc gtc gga ctg aag ccg tcg gag tcg gtt gct ctc 7083 Phe Val Lys Glu Gly Leu Lys Pro Ser Glu Ser Val Ala Leu 220 225 230 tac cag ctt ctg cag gca cga atc atc aag ttg gaa aac acc gtt cgg 7131 Tyr Gln Leu Leu Leu Gln Ala Arg Ile Ile Lys Leu Glu Asn Thr Val Arg 235 240 245 250 tgg tca tgg gct ccc ggt gat ctg gcg atc tgg gac aac cag gca acc 7179 Trp Ser Trp Ala Pro Gly Asp Leu Ala Ile Trp Asp Asn Gln Ala Thr 255 260 265 cag cat tac ggg att tcc gat tac ggg aca cag gcg c gc agc gtg cat 7227 Gln His Tyr Gly Ile Ser Asp Tyr Gly Thr Gln Ala Arg Ser Val His 270 275 280 cgc gtg acg ttg gcc ggt gac gtt ccc gtc gac gtc cac ggt gag cag 7275 Arg Val Thr Leu Ala Gly Asp Val Pro Val Asp Val His Gly Glu Gln 285 290 295 agc cgc atc atc aag ggc gat gca tcc gag ttc tcg atc gtt gca gac 7323 Ser Arg Ile Ile Lys Gly Asp Ala Ser Glu Phe Ser Ile Val Ala Asp 300 305 310 atc gac cgg ctt ccc ggc ttt gcc gca aac tgatcagtcc tgctgcgggt 7373 Ile Asp Arg Leu Pro Gly Phe Ala Ala Asn 315 320 gatccggcgg gaacatctgt ccccatgagt gattgcatgc tcggcacgtc cattccgggg 7433 tgtccggtcc cacgacgcag cctgttccgg cgagccacgg taggtgatcg aatggatgga 7493 ccggcatccc cggggaacac tgagcggttc tgtgtgcacc gcagagtggg cacgacggat 7553 ttttcgccag catgtagtcg atgaagttgg tgtgcccgga cgtggccatc cttccggtgc 7613 atttgcggca caggacggct gggtagtcgt caccaggttc agcctgcctg aagatccgtg 7673 atgcggaatg aaagtgaagg cgatcgctgc tgttgaactt tcgcaacggc atcggtgagc 7733 tgcaacctgt gcagttgccc cgctcgtcca tgcgtcg cgctcgtcca tgcgtcgt ggatccag cgtgtcgatg tcgccgaagt agtgcgcata gtgtgactgg ccggccgtga 7853 gaatccggtc ggccagtgcg tcgtcgaccg gcccaggatc cgtgggaaac gtgatggacc 7913 atcgttgttc gagttctgga acggtgggca aaccgtggag ttcgtacggg cgttcatcga 7973 cttccatccg cgacgtgccg tcgaagggcg cagccacggt ctcgatgcag agcagcgtgc 8033 gaggagtggt gtcgagaaca gtgatcagca ggtcgccgat ggccatcttt ccgcgcatga 8093 tccagggatc gacacgggca cggggttcga gaaacgcgac cacggcatcg agccacggcg 8153 tgccgagtgc gatgaatacg tgctgaccgg agctc 8188 <210> 10 <211> 324 <212> PRT <213> Rhodococcus erythropolis <400> 10 Met Ser Ile Thr Glu Leu Glu Arg Val Thr Gln Thr Pro Glu Gln Ile 1 5 10 15 Tyr Ala Ala Gly Gly Ile Thr Val His Lys Val Gly Glu Leu Ile Gly 20 25 30 Ala Arg Ile Asp Gly Val His Leu Ser Gly Asp Leu Ser Glu Glu Thr 35 40 45 Ala Tyr Ala Ile Asn Tyr Ala Leu Ala Ala His Lys Val Val Phe Phe 50 55 60 Arg Gly Gln Gln His Leu Asp Asp Thr Ser Gln Tyr Glu Phe Ala Gly 65 70 75 80 Thr Leu Gly Ser Gln Thr Thr Thr His Pro Thr Leu Lys Ser Lys Asp 85 90 95 Asn Lys Leu Leu Val Leu Asp Gly Ala Ala Ser Ser Trp His Thr Asp 100 105 110 Val Thr Phe Ile Asp Arg Ile Pro Lys Ala Ser Ile Leu Arg Ala Thr 115 120 125 Thr Ile Pro Glu Tyr Gly Gly Ala Thr Thr Trp Ala Ser Thr Thr Ala 130 135 140 Ala Tyr Asn Gln Leu Pro His Ser Leu Lys Val Leu Val Glu Asn Leu 145 150 155 160 Arg Ala Val His Thr Asn Ala Tyr Asp Tyr Ala Glu Ile Ile Asp Lys 165 170 175 Val Lys Gln Gly Asp Ala Gln Arg Val Thr Asn Tyr Ser Glu Phe Thr 180 185 190 Arg Glu Ile Tyr Glu Thr Glu His Pro Val Val Arg Val His Pro Ala 195 200 205 Thr Gly Glu L ys Thr Leu Leu Leu Gly His Phe Val Lys Glu Phe Val 210 215 220 Gly Leu Lys Pro Ser Glu Ser Val Ala Leu Tyr Gln Leu Leu Gln Ala 225 230 235 240 Arg Ile Ile Lys Leu Glu Asn Thr Val Arg Trp Ser Trp Ala Pro Gly 245 250 255 Asp Leu Ala Ile Trp Asp Asn Gln Ala Thr Gln His Tyr Gly Ile Ser 260 265 270 Asp Tyr Gly Thr Gln Ala Arg Ser Val His Arg Val Thr Leu Ala Gly 275 280 285 Asp Val Pro Val Asp Val His Gly Glu Gln Ser Arg Ile Ile Lys Gly 290 295 300 Asp Ala Ser Glu Phe Ser Ile Val Ala Asp Ile Asp Arg Leu Pro Gly 305 310 315 320 Phe Ala Ala Asn

【図面の簡単な説明】[Brief description of the drawings]

【図1】KA2-5-1株の菌体破砕液中に含まれる蛋白質の2
次元電気泳動像を示す。
[Fig. 1] 2 of the proteins contained in the lysate of KA2-5-1 strain
3 shows a two-dimensional electrophoresis image.

【図2】実施例5のスクリーニングで陽性を示したファ
ージクローンの遺伝子断片の制限酵素地図を示す。
FIG. 2 shows a restriction map of a gene fragment of a phage clone showing a positive result in the screening of Example 5.

【図3】ロドコッカス−大腸菌シャトルベクターpRHK1
の構築工程を示す。
FIG. 3. Rhodococcus-E. Coli shuttle vector pRHK1
Is shown.

【図4】プラスミドpRKPP及びPRKPPRの構造を示す。FIG. 4 shows the structures of plasmids pRKPP and PRKPPR.

【図5】プラスミドpRKI5の構造を示す。FIG. 5 shows the structure of plasmid pRKI5.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 正則 静岡県清水市西久保136−1 西久保アパ ート1−134号 (72)発明者 丸橋 健司 静岡県清水市西久保1−6−1 エスポワ ール米寿A−201 Fターム(参考) 4B024 AA17 BA08 BA80 CA04 DA06 EA04 GA11 HA01 4B050 CC03 DD02 LL10 4H045 AA10 BA10 CA11 EA61 FA74 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masanori Suzuki 136-1 Nishikubo Apartment 1-134 Nishikubo, Shimizu-shi, Shizuoka (72) Inventor Kenji Maruhashi 1-6-1, Nishikubo, Shimizu-shi, Shizuoka Yoneju A-201 F term (reference) 4B024 AA17 BA08 BA80 CA04 DA06 EA04 GA11 HA01 4B050 CC03 DD02 LL10 4H045 AA10 BA10 CA11 EA61 FA74

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 以下の(a)又は(b)の蛋白質をコードする
遺伝子。 (a)配列番号2記載のアミノ酸配列により表される蛋白
質 (b)配列番号2記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
1. A gene encoding the following protein (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 2; (b) a protein represented by the amino acid sequence of SEQ ID NO: 2 in which one or more amino acids are deleted, substituted, or added; and A protein having the same function as the protein of a).
【請求項2】 以下の(a)又は(b)の蛋白質をコードする
遺伝子。 (a)配列番号4記載のアミノ酸配列により表される蛋白
質 (b)配列番号4記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
2. A gene encoding the following protein (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 4; (b) a protein represented by the amino acid sequence of SEQ ID NO: 4 in which one or more amino acids are deleted, substituted, or added; and A protein having the same function as the protein of a).
【請求項3】 以下の(a)又は(b)の蛋白質をコードする
遺伝子。 (a)配列番号6記載のアミノ酸配列により表される蛋白
質 (b)配列番号6記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
3. A gene encoding the following protein (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 6; (b) represented by an amino acid sequence in which one or more amino acids have been deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 6, and ( A protein having the same function as the protein of a).
【請求項4】 以下の(a)又は(b)の蛋白質をコードする
遺伝子。 (a)配列番号8記載のアミノ酸配列により表される蛋白
質 (b)配列番号8記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
4. A gene encoding the following protein (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 8; (b) a protein represented by the amino acid sequence of SEQ ID NO: 8 in which one or more amino acids have been deleted, substituted, or added; and A protein having the same function as the protein of a).
【請求項5】 以下の(a)又は(b) の蛋白質をコードす
る遺伝子。 (a)配列番号10記載のアミノ酸配列により表される蛋
白質 (b)配列番号10記載のアミノ酸配列において1若しく
は複数個のアミノ酸が欠失、置換、若しくは付加された
アミノ酸配列により表され、かつ(a)の蛋白質と同様の
機能を有する蛋白質。
5. A gene encoding the following protein (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 10; (b) represented by an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 10, and ( A protein having the same function as the protein of a).
【請求項6】 以下の(a)又は(b)に示す蛋白質。 (a)配列番号2記載のアミノ酸配列により表される蛋白
質 (b)配列番号2記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
6. A protein represented by the following (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 2; (b) a protein represented by the amino acid sequence of SEQ ID NO: 2 in which one or more amino acids are deleted, substituted, or added; and A protein having the same function as the protein of a).
【請求項7】 以下の(a)又は(b)に示す蛋白質。 (a)配列番号4記載のアミノ酸配列により表される蛋白
質 (b)配列番号4記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
7. A protein represented by the following (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 4; (b) a protein represented by the amino acid sequence of SEQ ID NO: 4 in which one or more amino acids are deleted, substituted, or added; and A protein having the same function as the protein of a).
【請求項8】 以下の(a)又は(b)に示す蛋白質。 (a)配列番号6記載のアミノ酸配列により表される蛋白
質 (b)配列番号6記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
8. A protein represented by the following (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 6; (b) represented by an amino acid sequence in which one or more amino acids have been deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 6, and ( A protein having the same function as the protein of a).
【請求項9】 以下の(a)又は(b)に示す蛋白質。 (a)配列番号8記載のアミノ酸配列により表される蛋白
質 (b)配列番号8記載のアミノ酸配列において1若しくは
複数個のアミノ酸が欠失、置換、若しくは付加されたア
ミノ酸配列により表され、かつ(a)の蛋白質と同様の機
能を有する蛋白質。
9. A protein represented by the following (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 8; (b) a protein represented by the amino acid sequence of SEQ ID NO: 8 in which one or more amino acids have been deleted, substituted, or added; and A protein having the same function as the protein of a).
【請求項10】 以下の(a)又は(b)に示す蛋白質。 (a)配列番号10記載のアミノ酸配列により表される蛋
白質 (b)配列番号10記載のアミノ酸配列において1若しく
は複数個のアミノ酸が欠失、置換、若しくは付加された
アミノ酸配列により表され、かつ(a)の蛋白質と同様の
機能を有する蛋白質。
10. A protein represented by the following (a) or (b): (a) a protein represented by the amino acid sequence of SEQ ID NO: 10; (b) represented by an amino acid sequence in which one or more amino acids are deleted, substituted, or added in the amino acid sequence of SEQ ID NO: 10, and ( A protein having the same function as the protein of a).
JP2000133900A 2000-05-02 2000-05-02 Enzyme capable of splitting organosulfur compound and gene encoding the same Pending JP2001309788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000133900A JP2001309788A (en) 2000-05-02 2000-05-02 Enzyme capable of splitting organosulfur compound and gene encoding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000133900A JP2001309788A (en) 2000-05-02 2000-05-02 Enzyme capable of splitting organosulfur compound and gene encoding the same

Publications (1)

Publication Number Publication Date
JP2001309788A true JP2001309788A (en) 2001-11-06

Family

ID=18642294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133900A Pending JP2001309788A (en) 2000-05-02 2000-05-02 Enzyme capable of splitting organosulfur compound and gene encoding the same

Country Status (1)

Country Link
JP (1) JP2001309788A (en)

Similar Documents

Publication Publication Date Title
van den Wijngaard et al. Degradation of 1, 2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs
Laville et al. Characterization of the hcnABC gene cluster encoding hydrogen cyanide synthase and anaerobic regulation by ANR in the strictly aerobic biocontrol agent Pseudomonas fluorescens CHA0
Peters-Wendisch et al. Pyruvate carboxylase from Corynebacterium glutamicum: characterization, expression and inactivation of the pyc gene
Sato et al. Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequences of genes and characterization of meta-cleavage enzymes and hydrolase
Kleihues et al. The H2 sensor of Ralstonia eutropha is a member of the subclass of regulatory [NiFe] hydrogenases
Kappler et al. Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus)
RU2504584C2 (en) METHOD FOR OBTAINING PYRROLOQUINOLINE QUINONE (PQQ) USING BACTERIUM OF Methylobacterium OR Hyphomicrobium TYPE
US7135315B2 (en) Aldehyde dehydrogenase gene
Van Beilen et al. Cloning of Baeyer‐Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers
JP2007275070A (en) New alcohol/aldehyde dehydrogenase
Achterholt et al. Purification and characterization of the coniferyl aldehyde dehydrogenase from Pseudomonas sp. strain HR199 and molecular characterization of the gene
Reich et al. Halovibrin, secreted from the light organ symbiont Vibrio fischeri, is a member of a new class of ADP-ribosyltransferases
JP2001309788A (en) Enzyme capable of splitting organosulfur compound and gene encoding the same
Kimura et al. Molecular cloning and characterization of two genes for the biotin carboxylase and carboxyltransferase subunits of acetyl coenzyme A carboxylase in Myxococcus xanthus
WO1998045447A1 (en) Dsz gene expression in pseudomonas hosts
CN106795511B (en) Oxidase, polynucleotide encoding the same, and use thereof
US6235519B1 (en) Gene involved in thiophene biotransformation from nocardia asteroides KGB1
Ishii et al. Cloning and expression of the gene encoding the thermophilic NAD (P) H-FMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2
US5811285A (en) DSZD utilization in desulfurization of DBT by rhodococcus sp. IGTS8
JP3850557B2 (en) Novel gene and transformed cell carrying the gene
Li et al. Identification and functional expression of a Δ9 fatty acid desaturase from the marine bacterium Pseudoalteromonas sp. MLY15
US6133016A (en) Sphingomonas biodesulfurization catalyst
JP2004283120A (en) Gene encoding desulfurization-relating oxidoreductase and method for preparing the same
JP4129494B2 (en) Microbial desulfurization method to degrade dibenzothiophenes
JP2009065837A (en) Promoter and activation method thereof