JP2001304526A - Automatic control method for surface melting furnace - Google Patents

Automatic control method for surface melting furnace

Info

Publication number
JP2001304526A
JP2001304526A JP2000120648A JP2000120648A JP2001304526A JP 2001304526 A JP2001304526 A JP 2001304526A JP 2000120648 A JP2000120648 A JP 2000120648A JP 2000120648 A JP2000120648 A JP 2000120648A JP 2001304526 A JP2001304526 A JP 2001304526A
Authority
JP
Japan
Prior art keywords
furnace
melting
control
detection signal
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000120648A
Other languages
Japanese (ja)
Inventor
Satoshi Yoshimoto
聡 吉本
Hitoshi Akiyama
仁 秋山
Tomohiko Hirao
知彦 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2000120648A priority Critical patent/JP2001304526A/en
Publication of JP2001304526A publication Critical patent/JP2001304526A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface melting furnace for a workpiece such as refuse incineration residues wherein the article can be melted automatically, stably, and successively with high efficiency without causing the sharp cost increase of a controller. SOLUTION: An automatic control method for a surface melting furnace is provided. The surface melting furnace A is adapted such that a melting object article W supplied into a furnace body 1 from a supply apparatus 5 is melted in succession from a surface side with the aid of a combustion flame of a melting burner 6. In the surface melting furnace A, an image pickup apparatus equipped radiation thermometer 18 is provided o a ceiling wall 1d of the furnace body 1 for monitoring a molten part Q of the article W supplied into the surface. On the basis of a temperature detection signal St and an image detection signal Sc from the pickup apparatus equipped radiation thermometer 18 there are achieved any one or both of automatic driving control of the supply apparatus 5 and automatic combustion control of the melting burner 6 through the controller 19.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ごみ焼却炉から排
出される焼却残渣や飛灰、或いは下水汚泥、破砕不燃物
等を溶融処理する表面溶融炉に用いられるものであり、
炉本体の天井壁に設けた撮像装置付放射温度計により炉
内の被溶融物の溶融部を監視し、その温度検出信号及び
画像検出信号を用いて被溶融物の供給量及び溶融バーナ
の燃焼量を自動調整することにより、安定した表面溶融
炉の連続運転等を可能にした表面溶融炉の自動制御方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used in a surface melting furnace for melting and treating incineration residues and fly ash discharged from a refuse incinerator, sewage sludge, crushed incombustibles, and the like.
The melting part of the material in the furnace is monitored by a radiation thermometer with an imaging device provided on the ceiling wall of the furnace body, and the supply amount of the material to be melted and the combustion of the melting burner are determined using the temperature detection signal and the image detection signal. The present invention relates to a method for automatically controlling a surface melting furnace, which enables stable continuous operation of the surface melting furnace by automatically adjusting the amount.

【0002】[0002]

【従来の技術】ごみ焼却炉から排出される焼却残渣や飛
灰等の被溶融物は、通常その多くが埋め立て処理されて
いる。しかし、埋め立て地の確保が年々困難になりつつ
あり、被溶融物の減容化、無害化、有効利用等が要請さ
れている。そこで、近年、焼却残渣や飛灰等の大幅な減
容と無害化とが可能な溶融処理が注目され、実用に供さ
れている。焼却残渣等は溶融固化することにより、その
容積が1/2〜1/3に減ると共に、ダイオキシン類の
完全な分解、重金属等有害物質の溶出防止等が可能とな
り、コンクリートフィラー材、路盤材、ブロック等とし
ての再利用及び最終埋立て処分場の延命等が図れるから
である。
2. Description of the Related Art Molten materials such as incineration residues and fly ash discharged from a refuse incinerator are usually landfilled. However, it is becoming increasingly difficult to secure landfill sites year by year, and there is a demand for reducing the volume, harmlessness, and effective use of molten materials. Thus, in recent years, attention has been paid to a melting treatment capable of significantly reducing the volume and detoxifying incineration residues and fly ash, and has been put to practical use. By melting and solidifying incineration residues, etc., the volume is reduced to 1/2 to 1/3, and complete decomposition of dioxins, prevention of elution of harmful substances such as heavy metals, etc. become possible, and concrete filler materials, roadbed materials, This is because it can be reused as blocks and extend the life of the final landfill site.

【0003】而して、焼却残渣等の溶融処理には、従来
から様々な構造の溶融炉が利用されている。図4は従前
のこの種表面溶融炉Aの一例を示す縦断概要図であり、
当該表面溶融炉Aは、炉内へ2方向(左右方向)若しく
は4方向(前後左右方向)から被溶融物Wを供給し、こ
の被溶融物Wを表面側から溶融して溶融面を形成する2
面式構造若しくは4面式構造となっている。即ち、炉底
1aの中央部にスラグタップ1bを形成した炉本体1
と、炉本体1の左右位置(若しくは前後左右位置)に夫
々配設されたホッパ2と、炉本体1の上方位置に旋回自
在に配設され、供給コンベヤ3から供給された被溶融物
Wを各ホッパ2へ均等に分配投入する分配供給装置4
と、各ホッパ2の下部位置に設けられ、ホッパ2内の被
溶融物Wを炉内へ順次供給する供給装置5と、炉本体1
の天井壁1cに配設され、被溶融物Wを表面側から加熱
溶融する1台若しくは複数台の溶融バーナ6と、炉本体
1の下方位置に配設され、スラグタップ1bから流下し
た溶融スラグSを水冷する冷却水槽7と、冷却水槽7内
に配設され、水砕スラグTを排出するスラグコンベヤ8
等とから構成されている。
[0003] For melting treatment of incineration residues and the like, melting furnaces of various structures have been conventionally used. FIG. 4 is a schematic longitudinal sectional view showing an example of a conventional surface melting furnace A of this type.
The surface melting furnace A supplies the material W to be melted from two directions (left and right directions) or four directions (front and rear left and right directions) into the furnace, and melts the material W to be melted from the surface side to form a molten surface. 2
It has a planar structure or a four-plane structure. That is, a furnace body 1 having a slag tap 1b formed at the center of a furnace bottom 1a.
And a hopper 2 respectively disposed at the left and right positions (or front and rear left and right positions) of the furnace main body 1, and a material W to be melted which is rotatably disposed above the furnace main body 1 and supplied from the supply conveyor 3. Distribution supply device 4 for uniformly distributing and supplying to each hopper 2
A supply device 5 provided at a lower position of each hopper 2 and sequentially supplying the melted material W in the hopper 2 into the furnace;
And one or more melting burners 6 arranged on the ceiling wall 1c for heating and melting the material to be melted W from the surface side, and molten slag arranged below the furnace body 1 and flowing down from the slag tap 1b. A cooling water tank 7 for water-cooling the S, and a slag conveyor 8 disposed in the cooling water tank 7 for discharging the granulated slag T
And so on.

【0004】また、図4に於いて、9は炉下部空間、9
aは炉下部空間を形成する周壁、10はガス排出口、1
1は炉内用のぞき窓、12は炉下部用のぞき窓、13は
工業用テレビ(ITV)、14は画像処理装置、15は
ガス温度計、16は熱電対、17は放射温度計、Qは被
溶融物Wの溶融部である。
In FIG. 4, reference numeral 9 denotes a lower space of the furnace;
a is a peripheral wall forming a lower space of the furnace, 10 is a gas outlet, 1
1 is a view window for the inside of the furnace, 12 is a view window for the lower part of the furnace, 13 is an industrial television (ITV), 14 is an image processing device, 15 is a gas thermometer, 16 is a thermocouple, 17 is a radiation thermometer, and Q is This is a melting portion of the material to be melted W.

【0005】被溶融物Wは、各ホッパ2内に配置したレ
ベルセンサー(図示省略)からの信号により制御される
分配供給装置4により各ホッパ2内へ投入され、一定の
レベルを保ちつつ炉内と各ホッパ2との間を気密にシー
ルする。また、各ホッパ2に投入された被溶融物Wは、
後述するように供給装置5により炉内へ順次押し出さ
れ、表面がスラグタップ1bを中心にして略すり鉢状の
傾斜面(この傾斜面の角度は被溶融物Wの安息角又は安
息角に近い角度)となった状態で炉底1a上に堆積さ
れ、溶融部Qが形成される。
The material to be melted W is introduced into each hopper 2 by a distribution and supply device 4 controlled by a signal from a level sensor (not shown) disposed in each hopper 2, and is maintained in the furnace while maintaining a constant level. And each hopper 2 is hermetically sealed. The material to be melted W charged into each hopper 2 is
As will be described later, the supply device 5 sequentially extrudes the inside of the furnace, and the surface has a substantially mortar-shaped inclined surface centered on the slag tap 1b (the angle of the inclined surface is an angle of repose or an angle close to the angle of repose of the material to be melted W ) Is deposited on the furnace bottom 1a to form a fusion zone Q.

【0006】炉底1aに堆積した被溶融物Wは、溶融バ
ーナ6からの燃焼火炎により表面側から順次加熱・溶融
され、フィルム状の溶融スラグSとなる。この溶融スラ
グSは、すり鉢状の傾斜面を流下してスラグタップ1b
から冷却水槽7内へ落下し、冷却水により冷却固化され
て水砕スラグTとなった後、スラグコンベヤ2により排
出される。また、炉内に発生した高温の燃焼排ガスG
は、溶融スラグSと一緒にスラグタップ1bから炉下部
空間9及びガス排出口10を通して炉外へ排出され、煙
道、空気予熱器、排ガス処理装置等(何れも図示省略)
を経てクリーンガスとなり、大気中へ排出される。
The material W to be melted deposited on the furnace bottom 1a is sequentially heated and melted from the front side by the combustion flame from the melting burner 6, and becomes a film-like molten slag S. The molten slag S flows down the mortar-shaped inclined surface to form a slag tap 1b.
From the cooling water tank 7, cooled and solidified by the cooling water to form granulated slag T, and then discharged by the slag conveyor 2. Also, the high-temperature flue gas G generated in the furnace
Is discharged from the slag tap 1b together with the molten slag S to the outside of the furnace through the furnace lower space 9 and the gas discharge port 10, and is provided with a flue, an air preheater, an exhaust gas treatment device, etc. (all not shown).
It becomes a clean gas after being discharged to the atmosphere.

【0007】より具体的には、表面溶融炉Aの運転に際
しては、先ず、供給装置5による被溶融物Wの供給量
及び燃焼バーナ6の燃焼量を所定値に設定し、表面溶融
炉Aを運転する。その後、ITV13によるスラグタ
ップ1bからの溶融スラグSの流下状態の監視、水砕ス
ラグTの生成量とその品質の監視、ガス温度計15に
よる排ガス温度の監視、炉内のぞき窓11からの炉内
の目視観察等の結果を参照して炉内の被溶融物Wの溶融
状況を把握する。そして、前記把握した溶融状態に応じ
て先きの被溶融物供給量の設定値や溶融バーナ6の設定
値を適宜に調整し、これによって被溶融物Wの溶融状態
を最適状態に保持しつつ表面溶融炉を運転するようにし
ている。
More specifically, in the operation of the surface melting furnace A, first, the supply amount of the material W to be melted by the supply device 5 and the combustion amount of the combustion burner 6 are set to predetermined values. drive. Thereafter, monitoring of the flowing down state of the molten slag S from the slag tap 1b by the ITV 13, monitoring of the amount and quality of the granulated slag T, monitoring of the exhaust gas temperature by the gas thermometer 15, and monitoring of the furnace through the observation window 11 through the furnace. The state of melting of the material W to be melted in the furnace is ascertained with reference to the results of visual observation and the like. Then, the previously set value of the supply amount of the molten material and the set value of the melting burner 6 are appropriately adjusted according to the grasped molten state, thereby maintaining the molten state of the molten material W in the optimum state. We operate the surface melting furnace.

【0008】しかし、上記被溶融物Wの供給量や溶融バ
ーナ6の燃焼量の設定変更は、運転操作員個々の経験に
基づく判断により行なわれており、操作員によって制御
上に大きな個人差が出るだけでなく、表面溶融炉の運転
制御に於ける応答性が極めて悪いと云う問題がある。
However, the setting change of the supply amount of the melted material W and the combustion amount of the melting burner 6 is performed by a judgment based on each operator's experience, and there is a great individual difference in control by the operator. In addition to the above, there is a problem that the response in the operation control of the surface melting furnace is extremely poor.

【0009】また、上記の如き問題点を除くため、前
記スラグタップ1bからの溶融スラグSの流下状態を画
像処理装置14を用いてディジタル化し、当該画像処理
信号を用いて被溶融物Wの供給量や溶融バーナ6の燃焼
量を自動制御する方法、熱電対16や放射温度計17
による炉内温度の検出値に基づいて被溶融物Wの供給量
や溶融バーナ6の燃焼量を自動制御する方法が開発され
ている。
Further, in order to eliminate the above-mentioned problems, the flow-down state of the molten slag S from the slag tap 1b is digitized using the image processing device 14, and the supply of the material W to be melted is performed using the image processing signal. Method for automatically controlling the amount and the combustion amount of the molten burner 6, the thermocouple 16 and the radiation thermometer 17
A method has been developed for automatically controlling the supply amount of the material to be melted W and the combustion amount of the melting burner 6 based on the detected value of the furnace temperature.

【0010】しかし、前者の画像処理装置14を用いる
方法は、高価なカメラやコンピュータを必要とし、制御
装置のコストが大幅に上昇すると云う問題がある。ま
た、この方法は、炉内の被溶融物Wの溶融部Qの状態を
監視するのでは無く、論理的にはスラグタップ1b近傍
の温度分布を監視していることになるため、検出した画
像信号をそのまま被溶融物Wの供給量制御や溶融バーナ
6の燃焼量制御に用いることは出来ないと云う問題があ
る。
However, the former method using the image processing device 14 has a problem that an expensive camera and a computer are required, and the cost of the control device is greatly increased. This method logically monitors the temperature distribution near the slag tap 1b instead of monitoring the state of the molten portion Q of the material W to be melted in the furnace. There is a problem that the signal cannot be used as it is for controlling the supply amount of the melt W or the combustion amount of the melting burner 6.

【0011】また、後者の炉内温度の検出値を用いる方
法では、熱電対16の破損が頻発し、検出した炉内温度
の信頼性に欠けるうえ、取替品費や補修費が高かくつく
と云う欠点がある。また、放射温度計17のみによる制
御では、視野範囲内の温度だけしか検出することができ
ないことに起因して、制御が所謂過剰制御になったり、
或いは現実の炉内温度よりも大幅に低い温度を検出値と
して表示することが屡々ある。その結果、運転制御に誤
作動を生ずることになり、高精度で安定した自動制御が
行えないと云う問題がある。
In the latter method using the detected value of the furnace temperature, the thermocouple 16 is frequently damaged, the reliability of the detected furnace temperature is low, and the replacement cost and the repair cost are high. There is a disadvantage called. In addition, in the control using only the radiation thermometer 17, since only the temperature within the visual field range can be detected, the control becomes so-called excessive control,
Alternatively, a temperature significantly lower than the actual furnace temperature is often displayed as a detected value. As a result, a malfunction occurs in the operation control, and there is a problem that high-precision and stable automatic control cannot be performed.

【0012】[0012]

【発明が解決しようとする課題】本発明は、従前の焼却
残渣等の表面溶融炉に於ける上述の如き問題、即ち、
操作員が溶融スラグSの流下状態や排ガス温度、炉内の
溶融状態の監視結果等から表面溶融炉の作動状況を判断
し、これに基づいて被溶融物Wの供給量や溶融バーナの
燃焼量を手動調整する方法は、操作員の技能によって表
面溶融炉の運転状態が大きく変わり、表面溶融炉の安定
した高能率運転が出来ないうえ、制御の応答性が悪いこ
と、及び画像処理装置や熱電対、放射温度計等を用い
た自動運転方法は、制御装置の設備費や補修費の上昇を
招くうえ、高精度で安定した自動制御が出来ないと云う
問題を解決せんとするものであり、撮像装置付放射温度
計を用いて炉内溶融部Qの溶融状態の監視並びに温度検
出を行ない、撮像装置付放射温度計からの画像検出信号
及び温度検出信号により、被溶融物の供給量や溶融バー
ナの燃焼量を制御することにより、より安価な制御装置
を用いて表面溶融炉を高能率で安定に運転できるように
した表面溶融炉の自動制御方法を提供するものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems in a conventional surface melting furnace for incineration residues and the like, namely,
The operator judges the operation state of the surface melting furnace from the monitoring results of the falling state of the molten slag S, the exhaust gas temperature, the melting state in the furnace, and the like, and based on this, the supply amount of the melted material W and the combustion amount of the molten burner. In the method of manually adjusting the surface melting furnace, the operation state of the surface melting furnace greatly changes depending on the skill of the operator, and the stable and efficient operation of the surface melting furnace cannot be performed. On the other hand, an automatic operation method using a radiation thermometer or the like causes an increase in equipment costs and repair costs of the control device, and is intended to solve the problem that high-precision and stable automatic control cannot be performed. The melting state of the in-furnace melting section Q is monitored and the temperature is detected using a radiation thermometer with an imaging device, and the supply amount and melting of the material to be melted are determined by an image detection signal and a temperature detection signal from the radiation thermometer with the imaging device. Controls burner combustion It allows there is provided an automatic control method for the surface melting furnace to be stably operated with high efficiency the surface melting furnace using a less expensive control system.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、供給
装置により炉本体内へ供給された被溶融物を溶融バーナ
の燃焼火炎によって表面側から順次溶融するようにした
表面溶融炉に於いて、炉本体の天井壁に炉内へ供給され
た被溶融物の溶融部を監視する撮像装置付放射温度計を
設け、当該撮像装置付放射温度計からの温度検出信号及
び画像検出信号により制御装置を介して前記供給装置の
自動駆動制御と溶融バーナの自動燃焼制御の何れか一方
又は両方を行なうようにしたことを、発明の基本構成と
するものである。
According to the first aspect of the present invention, there is provided a surface melting furnace in which a molten material supplied into a furnace body by a supply device is sequentially melted from the surface side by a combustion flame of a melting burner. And a radiation thermometer with an imaging device for monitoring the melting portion of the material supplied into the furnace on the ceiling wall of the furnace body, and is controlled by a temperature detection signal and an image detection signal from the radiation thermometer with the imaging device. A basic configuration of the present invention is to perform one or both of the automatic drive control of the supply device and the automatic combustion control of the melting burner via a device.

【0014】請求項2の発明は、請求項1の発明に於い
て、撮像装置付放射温度計からの温度検出信号に制御上
の下限値を設け、当該温度検出信号が前記下限値以下の
場合には、供給装置の自動駆動制御及び溶融バーナの自
動燃焼制御を解除すると共に警報信号を発信するように
したものである。
According to a second aspect of the present invention, in the first aspect of the present invention, a lower limit value for control is provided to a temperature detection signal from the radiation thermometer with the imaging device, and the temperature detection signal is lower than the lower limit value. , The automatic drive control of the supply device and the automatic combustion control of the melting burner are canceled and an alarm signal is transmitted.

【0015】[0015]

【発明の実施の形態】以下、図面に基づいて本発明の実
施形態を説明する。図1は本発明を適用した表面溶融炉
の縦断概要図であり、図2は本発明で使用する撮像装置
付放射温度計の構成図、図3は本発明を適用した表面溶
融炉の制御系統図である。尚、図1乃至図3に於いて、
前記図4の場合と同一の部位、部材には、これと同じ参
照番号が付されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of a surface melting furnace to which the present invention is applied, FIG. 2 is a configuration diagram of a radiation thermometer with an imaging device used in the present invention, and FIG. 3 is a control system of the surface melting furnace to which the present invention is applied. FIG. Note that in FIGS. 1 to 3,
The same parts and members as those in FIG. 4 are denoted by the same reference numerals.

【0016】図1に於いて、Aは表面溶融炉、Wは被溶
融物、Sは溶融スラグ、Tは水砕スラグ、Gは燃焼排ガ
ス、Qは炉内の溶融部、1は炉本体、2はホッパ、3は
供給コンベア、4は分配供給装置、5は被溶融物の供給
装置、5aは供給装置の駆動部、6は溶融バーナ、6a
は溶融バーナの燃焼部、7は冷却水槽、8はスラグコン
ベア、9は炉下部空間、10はガス排出口、11は炉内
のぞき窓、12は炉下部のぞき窓、15はガス温度計、
18は撮像装置付放射温度計、18aは放射温度計、1
8bはCCDカメラ、Stは温度検出信号、Scは画像
検出信号、19は制御装置、Cdは供給量制御信号、C
fは燃焼量制御信号である。尚、表面溶融炉Aそのもの
の構成は公知であり、前記図4の場合とほぼ同様である
ため、ここではその説明を省略する。
In FIG. 1, A is a surface melting furnace, W is a material to be melted, S is a molten slag, T is a granulated slag, G is a combustion exhaust gas, Q is a melting portion in the furnace, 1 is a furnace body, 2 is a hopper, 3 is a supply conveyor, 4 is a distribution supply device, 5 is a supply device for the material to be melted, 5a is a drive unit of the supply device, 6 is a melting burner, 6a
Is a combustion part of a melting burner, 7 is a cooling water tank, 8 is a slag conveyor, 9 is a lower space of the furnace, 10 is a gas outlet, 11 is a peephole in the furnace, 12 is a peephole in the lower part of the furnace, 15 is a gas thermometer,
18 is a radiation thermometer with an imaging device, 18a is a radiation thermometer, 1
8b is a CCD camera, St is a temperature detection signal, Sc is an image detection signal, 19 is a control device, Cd is a supply amount control signal, C
f is a combustion amount control signal. Note that the configuration of the surface melting furnace A itself is publicly known and is substantially the same as the case of FIG. 4 described above.

【0017】炉本体1の天井壁1cには、複数基の撮像
装置付放射温度計18が、炉底1a上即ち被溶融物Wの
溶融部Qの方向に向けて取付けられており、溶融部Qの
温度検出信号St及び溶融部Qの画像検出信号Scが撮
像装置付放射温度計18から夫々制御装置19へ送られ
る。尚、前記撮像装置付放射温度計18は、図2に示す
如く放射温度計18aとCCDカメラ18bとを一体化
したものであり、放射温度計18aによって溶融部Qの
温度検出が行なわれると共に、CCDカメラ18bによ
って溶融部Qの画像による監視が行なわれる。また、当
該温度検出と画像監視は一定時間毎に交互に切換的に行
なわれ、これによって放射温度計の視野が正確に溶融部
Qに合致しているかのチェックが並行して行なわれる。
更に、放射温度計18aとCCDカメラ18bとはケー
シング18c内に格納されており、ケーシング18c内
は空気流Acにより強制冷却されている。
On the ceiling wall 1c of the furnace main body 1, a plurality of radiation thermometers 18 with image pickup devices are mounted on the furnace bottom 1a, that is, in the direction of the melting portion Q of the material W to be melted. The temperature detection signal St of Q and the image detection signal Sc of the fusion zone Q are sent from the radiation thermometer 18 with the imaging device to the control device 19, respectively. The radiation thermometer 18 with the image pickup device is an integral one of a radiation thermometer 18a and a CCD camera 18b as shown in FIG. 2, and the radiation thermometer 18a detects the temperature of the fusion zone Q, The image of the fusion zone Q is monitored by the CCD camera 18b. Further, the temperature detection and the image monitoring are alternately and alternately performed at regular time intervals, thereby checking in parallel whether or not the visual field of the radiation thermometer accurately matches the fusion zone Q.
Further, the radiation thermometer 18a and the CCD camera 18b are stored in a casing 18c, and the inside of the casing 18c is forcibly cooled by an airflow Ac.

【0018】撮像装置付放射温度計18から制御装置1
9へ温度検出信号St及び画像検出信号Scが入力され
ると、制御装置19では、入力された温度検出信号St
及び画像検出信号Scと、予かじめ設定されている基準
温度信号及び基準画像信号との比較が行なわれ、両者の
各比較差が設定値を越えた場合には、供給装置5の駆動
制御部5aと溶融バーナ5の燃焼制御部6aの何れか一
方又は両方へ、前記比較差を減少させる方向の制御信号
Cd、Cfが発信される。これにより、被溶融物Wの供
給量と燃料燃焼量の何れか一方又は両方が自動的に制御
されることになる。
From the radiation thermometer 18 with the imaging device to the control device 1
When the temperature detection signal St and the image detection signal Sc are input to the control device 9, the control device 19 outputs the input temperature detection signal St.
And the image detection signal Sc is compared with a preset reference temperature signal and reference image signal. If the comparison difference between the two exceeds a set value, the drive control unit of the supply device 5 Control signals Cd and Cf in a direction to reduce the comparison difference are transmitted to one or both of the combustion control unit 5a and the combustion control unit 6a of the melting burner 5. As a result, one or both of the supply amount of the melt W and the fuel combustion amount are automatically controlled.

【0019】尚、制御装置19に於いては、前記撮像装
置付放射温度計18からの温度検出信号Stに対して制
御上の下限値が設定されており、温度検出信号Stが前
記下限値以下に下降した場合には、温度検出信号Stに
よる自動制御を解除してアラーム信号Saを発信する。
このように、温度検出信号Stに対する制御上の下限値
を設定することにより、放射温度計18aに於いて屡々
発生する温度の誤検出に起因する運転制御上のトラブル
がほぼ完全に回避されることになる。
In the control device 19, a lower limit value for control is set for the temperature detection signal St from the radiation thermometer 18 with an image pickup device, and the temperature detection signal St is set to be equal to or less than the lower limit value. , The automatic control based on the temperature detection signal St is released and the alarm signal Sa is transmitted.
In this way, by setting the control lower limit for the temperature detection signal St, it is possible to almost completely avoid operation control troubles caused by erroneous temperature detection that frequently occurs in the radiation thermometer 18a. become.

【0020】制御装置19から前記警報信号Saが発信
されると、運転員はCCDカメラの画像を目視により確
認すると共に、各のぞき窓11、12を通して炉内の溶
融部Qの状態やスラグタップ1bからの溶融スラグSの
流下状態等を目視で確認する。そして、溶融処理状態に
特に異常が認められない場合には、前記温度検出信号S
tによる自動制御の解除をリセットして、制御系を自動
制御運転の状態に復帰させる。また、溶融処理状態に異
常が認められる場合には、運転を手動制御に切換え、溶
融処理状態を正常状態に戻した時点で自動制御運転に切
換える。
When the alarm signal Sa is transmitted from the control device 19, the operator visually confirms the image of the CCD camera, and checks the state of the melted portion Q in the furnace and the slag tap 1b through the view windows 11 and 12. The state of the molten slag S flowing down from the container is visually checked. If no abnormality is found in the state of the melting process, the temperature detection signal S
The reset of the automatic control by t is reset, and the control system is returned to the state of the automatic control operation. If an abnormality is found in the state of the melting process, the operation is switched to the manual control, and when the state of the melting process is returned to the normal state, the operation is switched to the automatic control operation.

【0021】[0021]

【発明の効果】本発明に於いては、撮像装置付放射温度
計を用いて被処理物の溶融部の温度検出と画像による監
視を連続的に行ない、溶融部の溶融状況を温度検出信号
及び画像検出信号として制御装置へ出力すると共に、前
記両信号により被溶融物の供給量と溶融バーナの燃焼量
の何れか一方又は両方を自動制御する構成としている。
その結果、放射温度計の視野をCCDカメラの画像でも
って確認することが可能となり、放射温度計のみを用い
た場合に屡々生じる過剰制御や制御上の誤差動をほぼ完
全に防止でき、安定した表面溶融炉の自動制御が可能と
なる。
According to the present invention, the temperature of the melting portion of the object to be processed is continuously detected and monitored by an image using a radiation thermometer with an image pickup device, and the melting state of the melting portion is detected by a temperature detection signal and a temperature detection signal. In addition to outputting the image detection signal to the control device, one or both of the supply amount of the material to be melted and the combustion amount of the melting burner are automatically controlled based on the two signals.
As a result, the field of view of the radiation thermometer can be confirmed by the image of the CCD camera, and the excessive control and error in control that often occur when only the radiation thermometer is used can be almost completely prevented. Automatic control of the surface melting furnace becomes possible.

【0022】また、撮像装置付放射温度計により被溶融
物の溶融部を直接監視するようにしているため、制御の
応答性を高めることができる。これにより、運転中に被
溶融物の性状が変化しても表面溶融炉の安定した運転が
可能となり、未溶融物の混入の無い高品質な水砕スラグ
を得ることが出来る。
Further, since the melting portion of the material to be melted is directly monitored by the radiation thermometer with the image pickup device, the response of the control can be enhanced. Thereby, even if the property of the material to be melted changes during operation, the stable operation of the surface melting furnace becomes possible, and a high-quality granulated slag free of unmelted material can be obtained.

【0023】更に、被溶融物の溶融部を直接監視するこ
とにより、被溶融物Wの安定した供給が可能となり、被
溶融物の供給不足による炉壁耐火物の損耗や過剰な燃料
使用を抑えることができる。
Further, by directly monitoring the melted portion of the material to be melted, it is possible to stably supply the material to be melted W, thereby suppressing wear of the refractory on the furnace wall due to insufficient supply of the material to be melted and excessive use of fuel. be able to.

【0024】加えて、従前の熱電対を用いた自動制御方
法の場合のような熱電対等の破損に起因する誤差動が皆
無となり、安定した表面溶融炉の自動運転が可能とな
る。本発明は上述の通り、制御装置の大幅なコスト増を
招くことなしに被溶融物を高能率で安定して溶融処理す
ることができるという優れた実用的効用を奏するもので
ある。
In addition, there is no error caused by breakage of the thermocouple or the like as in the case of the conventional automatic control method using a thermocouple, and stable automatic operation of the surface melting furnace can be performed. INDUSTRIAL APPLICABILITY As described above, the present invention has an excellent practical effect that a material to be melted can be stably melted with high efficiency without causing a significant increase in the cost of the control device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した表面溶融炉の縦断概要図であ
る。
FIG. 1 is a schematic longitudinal sectional view of a surface melting furnace to which the present invention is applied.

【図2】本発明で使用する撮像装置付放射温度計の構成
図である。
FIG. 2 is a configuration diagram of a radiation thermometer with an imaging device used in the present invention.

【図3】本発明を適用した表面溶融炉の制御系統図であ
る。
FIG. 3 is a control system diagram of a surface melting furnace to which the present invention is applied.

【図4】従前の表面溶融炉の縦断概要図である。FIG. 4 is a schematic longitudinal sectional view of a conventional surface melting furnace.

【符号の説明】[Explanation of symbols]

1は炉本体、1aは炉底、1bはスラグタップ、1cは
天井壁、2はホッパ、3は供給コンベア、4は分配供給
装置、5は供給装置、5aは駆動部、6は溶融バーナ、
6aは燃焼部、7は冷却水槽、8はスラグコンベア、9
は炉下部空間、9aは周壁、10はガス排出口、11は
炉内のぞき窓、12は炉下部のぞき窓、15はガス温度
計、18は撮像装置付放射温度計、18aは放射温度
計、18bはCCDカメラ、19は制御装置、Aは表面
溶融炉、Wは被溶融物、Sは溶融スラグ、Tは水砕スラ
グ、Gは燃焼排ガス、Qは溶融部、Stは温度検出信
号、Scは画像検出信号、Cdは供給量制御信号、Cf
は燃焼量制御信号、Saは警報信号。
1 is a furnace body, 1a is a furnace bottom, 1b is a slag tap, 1c is a ceiling wall, 2 is a hopper, 3 is a supply conveyor, 4 is a distribution supply device, 5 is a supply device, 5a is a driving unit, 6 is a melting burner,
6a is a combustion part, 7 is a cooling water tank, 8 is a slag conveyor, 9
Is a furnace lower space, 9a is a peripheral wall, 10 is a gas outlet, 11 is a view port in the furnace, 12 is a view port in the lower furnace, 15 is a gas thermometer, 18 is a radiation thermometer with an imaging device, 18a is a radiation thermometer, 18b is a CCD camera, 19 is a control device, A is a surface melting furnace, W is a material to be melted, S is a molten slag, T is a granulated slag, G is a combustion exhaust gas, Q is a melting part, St is a temperature detection signal, Sc Is an image detection signal, Cd is a supply amount control signal, Cf
Is a combustion amount control signal, and Sa is a warning signal.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23G 5/00 115 F23G 5/00 115A F27B 1/28 F27B 1/28 F27D 21/00 F27D 21/00 D 21/02 21/02 (72)発明者 平尾 知彦 兵庫県尼崎市金楽寺町2丁目2番33号 株 式会社タクマ内 Fターム(参考) 3K061 AA05 AB03 AC01 BA02 CA01 DA13 DB02 DB19 DB20 3K062 AA05 AB03 AC01 BA02 BB02 CA03 CA08 CB03 DA01 DB01 DB13 4K045 AA04 BA07 BA10 DA04 4K056 AA05 BA01 BB01 CA20 FA03 FA12 FA23 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23G 5/00 115 F23G 5/00 115A F27B 1/28 F27B 1/28 F27D 21/00 F27D 21/00 D 21/02 21/02 (72) Inventor Tomohiko Hirao 2-33, Kinrakuji-cho, Amagasaki-shi, Hyogo F-term in Takuma Co., Ltd. (reference) 3K061 AA05 AB03 AC01 BA02 CA01 DA13 DB02 DB19 DB20 3K062 AA05 AB03 AC01 BA02 BB02 CA03 CA08 CB03 DA01 DB01 DB13 4K045 AA04 BA07 BA10 DA04 4K056 AA05 BA01 BB01 CA20 FA03 FA12 FA23

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 供給装置により炉本体内へ供給された被
溶融物を溶融バーナの燃焼火炎によって表面側から順次
溶融するようにした表面溶融炉に於いて、炉本体の天井
壁に炉内へ供給された被溶融物の溶融部を監視する撮像
装置付放射温度計を設け、当該撮像装置付放射温度計か
らの温度検出信号及び画像検出信号により制御装置を介
して前記供給装置の自動駆動制御と溶融バーナの自動燃
焼制御の何れか一方又は両方を行なう構成とした表面溶
融炉の自動制御方法。
1. A surface melting furnace in which a material to be melt supplied into a furnace main body by a supply device is sequentially melted from the front side by a combustion flame of a melting burner. A radiation thermometer with an imaging device for monitoring the melted portion of the supplied melt is provided, and automatic driving control of the supply device is performed via a control device by a temperature detection signal and an image detection signal from the radiation thermometer with the imaging device. And / or an automatic combustion control of the melting burner.
【請求項2】 撮像装置付放射温度計からの温度検出信
号に制御上の下限値を設け、当該温度検出信号が前記下
限値以下の場合には、供給装置の自動駆動制御及び溶融
バーナの自動燃焼制御を解除すると共に警報信号を発信
するようにした請求項1に記載の表面溶融炉の自動制御
方法。
2. A lower limit value for control is provided to a temperature detection signal from a radiation thermometer with an imaging device, and when the temperature detection signal is equal to or less than the lower limit value, automatic driving control of a supply device and automatic control of a melting burner are performed. The method for automatically controlling a surface melting furnace according to claim 1, wherein the combustion control is canceled and an alarm signal is transmitted.
JP2000120648A 2000-04-21 2000-04-21 Automatic control method for surface melting furnace Pending JP2001304526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120648A JP2001304526A (en) 2000-04-21 2000-04-21 Automatic control method for surface melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120648A JP2001304526A (en) 2000-04-21 2000-04-21 Automatic control method for surface melting furnace

Publications (1)

Publication Number Publication Date
JP2001304526A true JP2001304526A (en) 2001-10-31

Family

ID=18631419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120648A Pending JP2001304526A (en) 2000-04-21 2000-04-21 Automatic control method for surface melting furnace

Country Status (1)

Country Link
JP (1) JP2001304526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065187A1 (en) * 2012-10-24 2014-05-01 三菱重工環境・化学エンジニアリング株式会社 Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014065187A1 (en) * 2012-10-24 2014-05-01 三菱重工環境・化学エンジニアリング株式会社 Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
JP2014085069A (en) * 2012-10-24 2014-05-12 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd High-temperature furnace monitoring device and high-temperature furnace monitoring system including the same
EP2913613A4 (en) * 2012-10-24 2016-07-06 Mitsubishi Heavy Ind Environmental & Chemical Eng Co Ltd Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
US9657995B2 (en) 2012-10-24 2017-05-23 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
EA029310B1 (en) * 2012-10-24 2018-03-30 Мицубиси Хэви Индастриз Инвайронментал Энд Кемикал Инджиниринг Ко., Лтд. Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same

Similar Documents

Publication Publication Date Title
US5711018A (en) Rotary kiln treatment of potliner
JP5261038B2 (en) In-furnace monitoring apparatus, in-furnace monitoring method, and furnace operation control method using the same
JP2003302024A (en) Melting furnace and slag removing method for molten slag discharge portion
JP5054985B2 (en) Dust monitoring and removal method in equipment
JP2001304526A (en) Automatic control method for surface melting furnace
JP2003294219A (en) Slag monitor, and control method
JP2003074828A (en) Melting device for ash
JP2007301422A (en) Method and facility for treating asbestos waste
JPH10324880A (en) Bridge-detecting and bridge-breaking apparatuses of thermal decomposition residue discharge apparatus in waste treatment apparatus
JP3469189B2 (en) Method and apparatus for monitoring and controlling slag flow in melting furnace
JP3904379B2 (en) Dust discharge device for secondary combustion chamber
JP3771800B2 (en) Operating method of plasma ash melting furnace
JP2007225125A (en) Scattering asbestos melting treatment device
JP2009139027A (en) Radioactive miscellaneous solid waste incinerator
JP4245600B2 (en) Operating method of plasma ash melting furnace
JPH05141633A (en) Rotary kiln type waste incineration device
JP2007307548A (en) Method and equipment for melting asbestos waste
JP3946473B2 (en) In-furnace temperature control method and in-furnace temperature control apparatus for thermite melting furnace
JP2807811B2 (en) Ash melting method and equipment
JPH10246418A (en) Facility for melting incineration residue of waste
JP2008261510A (en) Plant operation control method by omnidirectional monitoring
JP2002206728A (en) Melting furnace
JP3325491B2 (en) Equipment to supply melted material to surface melting furnace
JP2009045561A (en) Rotary kiln and its operation method
JP2004044907A (en) Melting treatment equipment

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040301