JP2001304031A - Device for measuring amount of hydrogen in exhaust gas and exhaust gas emission control system - Google Patents

Device for measuring amount of hydrogen in exhaust gas and exhaust gas emission control system

Info

Publication number
JP2001304031A
JP2001304031A JP2000117593A JP2000117593A JP2001304031A JP 2001304031 A JP2001304031 A JP 2001304031A JP 2000117593 A JP2000117593 A JP 2000117593A JP 2000117593 A JP2000117593 A JP 2000117593A JP 2001304031 A JP2001304031 A JP 2001304031A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
amount
exhaust gas
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000117593A
Other languages
Japanese (ja)
Other versions
JP4006613B2 (en
Inventor
Hitoshi Onodera
仁 小野寺
Hiroshi Morita
博 森田
Hiroyuki Kanesaka
浩行 金坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000117593A priority Critical patent/JP4006613B2/en
Publication of JP2001304031A publication Critical patent/JP2001304031A/en
Application granted granted Critical
Publication of JP4006613B2 publication Critical patent/JP4006613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1459Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being a hydrocarbon content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/30Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel reformer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen detection device for an internal combustion engine for efficiently purifying NOx by improving fuel economy of the internal combustion engine, when NOx absorbed in an NOx absorbing catalyst is purified serving hydrogen generated by the catalyst as reducing agent, and to provide an exhaust gas emission control system using it. SOLUTION: A hydrogen amount estimating device disposed in an exhaust passage of the internal combustion engine is provided with the catalyst having a function for generating hydrogen from hydrocarbons in exhaust gas, methane sensors disposed on an upstream side and a downstream side of the exhaust passage of the catalyst, and calculating means for calculating methane consumption before and after passing the catalyst, and for estimating an amount of hydrogen delivered to the downstream side of the catalyst. The exhaust gas emission control system is provided with the hydrogen amount estimating device, and is constituted by arranging an NOx absorbing catalyst on the downstream side of the methane sensors.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排気ガス中の水素
量計測装置及び排気ガス浄化システムに係り、更に詳細
には、水素を還元剤として用い、リーンバーンエンジン
などから排出されるリーンバーン排気ガス中の窒素酸化
物(NOx)を効率よく浄化できる排気ガス中の水素量
計測装置及び排気ガス浄化システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the amount of hydrogen in exhaust gas and an exhaust gas purifying system, and more particularly to a lean burn exhaust gas discharged from a lean burn engine or the like using hydrogen as a reducing agent. The present invention relates to a device for measuring the amount of hydrogen in exhaust gas and an exhaust gas purification system capable of efficiently purifying nitrogen oxides (NOx) in gas.

【0002】[0002]

【従来の技術】一般に、内燃機関が理論空燃比よりもリ
ーンで運転されている場合、従来の三元触媒では排出さ
れるNOxの浄化が困難となる。そこで、リーン運転時
に排出されるNOxを吸着するNOx吸着材を備えたN
Ox吸着触媒が用いられる。このNOx吸着触媒は、空
燃比がリーンに設定されたときに排出されるNOxをN
Ox吸着材により吸着し、また、空燃比が理論空燃比又
はそれよりリッチに設定され排気ガス中の酸素濃度が低
く、且つ還元剤である炭化水素類(HC)及び一酸化炭
素(CO)が多いときに、吸着したNOxを放出して浄
化する。
2. Description of the Related Art In general, when an internal combustion engine is operated leaner than a stoichiometric air-fuel ratio, it is difficult to purify NOx discharged with a conventional three-way catalyst. Therefore, N having a NOx adsorbent that adsorbs NOx discharged during lean operation is provided.
An Ox adsorption catalyst is used. This NOx adsorption catalyst converts NOx discharged when the air-fuel ratio is set to lean to N
It is adsorbed by the Ox adsorbent, the air-fuel ratio is set to the stoichiometric air-fuel ratio or richer, the oxygen concentration in the exhaust gas is low, and hydrocarbons (HC) and carbon monoxide (CO) as reducing agents are removed. When the amount is large, the adsorbed NOx is released for purification.

【0003】しかし、NOx吸着触媒に含まれるNOx
吸着材は、吸着できるNOx量に限界があり、空燃比を
リーンに設定して長時間運転を継続すると、吸着されな
かったNOxがそのまま大気中に排出される。そのた
め、上記リーン運転とリッチ運転を適時繰り返し運転す
る空燃比制御方法が採られている。また、NOx吸着材
に吸着されたNOxを放出させて浄化するためには、吸
着されたNOxと当量比のHC及びCOを必要とする。
However, the NOx contained in the NOx adsorption catalyst
The adsorbent has a limit in the amount of NOx that can be adsorbed. If the air-fuel ratio is set to lean and the operation is continued for a long time, the non-adsorbed NOx is discharged to the atmosphere as it is. For this reason, an air-fuel ratio control method in which the above-described lean operation and rich operation are repeatedly performed as appropriate is employed. Further, in order to release and purify the NOx adsorbed by the NOx adsorbent, HC and CO having an equivalent ratio to the adsorbed NOx are required.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
ような空燃比制御方法において、NOx吸着材に吸着さ
れたNOxを放出・浄化すべく、リッチ運転を行ってよ
り多くのHC及びCOを供給することは、内燃機関の燃
料消費を増加させ、燃費の悪化を招くという課題があ
る。
However, in the above-described air-fuel ratio control method, a rich operation is performed to supply more HC and CO in order to release and purify NOx adsorbed by the NOx adsorbent. Therefore, there is a problem that fuel consumption of the internal combustion engine is increased and fuel consumption is deteriorated.

【0005】しかも、例えば、NOx吸着触媒の上流に
三元触媒を配置した場合には、理論空燃比又はそれより
もリッチの運転時に供給されるHC及びCOは、上流に
配置した三元触媒によって浄化されてしまい、NOx吸
着材に吸着されたNOxに対する還元剤の供給が当量比
よりも不足するため、NOxは放出されるものの、その
浄化が不完全となり、大気中にNOxが排出されてしま
う。従って、リーンでNOxを吸着し理論空燃比〜リッ
チでNOxを放出する機能を有する排気ガス浄化触媒の
上流に、三元触媒を配置した場合には、更に多量の燃料
を供給して空燃比をリッチ化しなければならず、上述の
ような燃費の悪化は更に促進されることになる。
[0005] In addition, for example, when a three-way catalyst is arranged upstream of the NOx adsorption catalyst, HC and CO supplied during operation at a stoichiometric air-fuel ratio or richer than the stoichiometric air-fuel ratio are reduced by the three-way catalyst arranged upstream. Since it is purified and the supply of the reducing agent to the NOx adsorbed by the NOx adsorbent is less than the equivalence ratio, the NOx is released, but the purification is incomplete and the NOx is discharged into the atmosphere. . Therefore, when a three-way catalyst is disposed upstream of an exhaust gas purification catalyst having a function of adsorbing NOx lean and releasing NOx at a stoichiometric air-fuel ratio to rich, a larger amount of fuel is supplied to increase the air-fuel ratio. It must be enriched, and the above-described deterioration in fuel efficiency is further promoted.

【0006】また、上記HC及びCO以外にも、NOx
還元剤として排気ガス中の水素が利用でき、例えば、部
分酸化反応及び水蒸気改質反応により水素を多く発生さ
せて、排気ガス中に該水素を供給し、NOxを浄化する
ことが考えられる。ここで、部分酸化反応とは、高温で
炭化水素類と酸素とを反応させると、COとHの混合
ガスが生成される反応であって、次式 2CH+O→2CO+4H… により表され、メタン1モルから水素1モルが生成され
る。また、水蒸気改質反応としては、次式 CH+HO→CO+3H… により表され、メタン1モルより水素が3モル生成され
る。
[0006] In addition to the above HC and CO, NOx
Hydrogen in exhaust gas can be used as a reducing agent. For example, it is conceivable to generate a large amount of hydrogen by a partial oxidation reaction and a steam reforming reaction and supply the hydrogen to the exhaust gas to purify NOx. Here, the partial oxidation reaction is a reaction in which a hydrocarbon and oxygen are reacted at a high temperature to generate a mixed gas of CO and H 2 , and is expressed by the following formula: 2CH 4 + O 2 → 2CO + 4H 2 . And 1 mole of hydrogen is produced from 1 mole of methane. The steam reforming reaction is represented by the following formula: CH 4 + H 2 O → CO + 3H 2 , and 3 moles of hydrogen are produced from 1 mole of methane.

【0007】上記部分酸化反応により生成される水素量
を知ることができれば、NOx浄化すべきときに、空燃
比を一時的リッチにして水素を供給できるので、無駄に
リッチにすることなく、NOx浄化効率の向上を図るこ
とができる。しかし、ガソリン中には水素が数%しか含
まれていないことから、通常排気ガス中の水素もわずか
しか含まれておらず、該排気ガス中の水素量をセンサー
等により測定しようとしても直接測定できないという課
題がある。
If the amount of hydrogen generated by the partial oxidation reaction can be known, the hydrogen can be supplied by temporarily increasing the air-fuel ratio when NOx is to be purified. Efficiency can be improved. However, since gasoline contains only a few percent of hydrogen, it usually contains only a small amount of hydrogen in the exhaust gas. Therefore, even if the amount of hydrogen in the exhaust gas is measured by a sensor or the like, it is directly measured. There is a problem that cannot be done.

【0008】本発明は、このような従来技術の有する課
題に鑑みてなされたものであり、その目的とするところ
は、触媒で生成された水素を還元剤として、NOx吸着
触媒に吸着されたNOxの浄化を行うときに、内燃機関
の燃費を向上させ、NOxを効率よく浄化できる排気ガ
ス中の水素量推定装置及び排気ガス浄化システムを提供
することにある。
The present invention has been made in view of the above-mentioned problems of the prior art, and an object of the present invention is to use NOx adsorbed on a NOx adsorption catalyst using hydrogen generated by the catalyst as a reducing agent. It is an object of the present invention to provide an apparatus for estimating the amount of hydrogen in exhaust gas and an exhaust gas purification system capable of improving the fuel efficiency of an internal combustion engine and purifying NOx efficiently when purifying the exhaust gas.

【0009】[0009]

【課題を解決するための手段】本発明者らは、上記課題
を解決すべく鋭意検討を行った結果、メタンの部分酸化
反応及び水蒸気改質反応により水素が生成されることに
着目し、排気ガスの空燃比をリッチにしたときに、排気
ガス中の炭化水素から生成されたCH量から水素が生
成される量を推定し、生成された水素を好ましくは適切
なタイミングでNOx浄化に使用することにより、上記
課題が解決されることを見出し、本発明を完成するに至
った。
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, have noticed that hydrogen is generated by a partial oxidation reaction of methane and a steam reforming reaction. When the air-fuel ratio of the gas is made rich, the amount of hydrogen generated is estimated from the amount of CH 4 generated from hydrocarbons in the exhaust gas, and the generated hydrogen is preferably used for NOx purification at an appropriate timing. By doing so, the inventors have found that the above-mentioned problems can be solved, and have completed the present invention.

【0010】即ち、本発明の排気ガス中の水素量計測装
置は、内燃機関の排気流路に設置され、排気ガス中の炭
化水素類から水素を生成する機能を有する触媒と、該触
媒の全体又は一部分の排気流路上流側及び下流側に設置
され、ガス中のメタン量を計測する第1メタンセンサ及
び第2メタンセンサと、この第1メタンセンサ及び第2
メタンセンサによって計測された触媒通過前メタン量及
び触媒通過後メタン量より、該触媒通過前後におけるメ
タン消費量を算出し、得られたメタン消費量より、該触
媒の下流に放出される水素量を推定する演算手段と、を
備えることを特徴とする。
That is, the apparatus for measuring the amount of hydrogen in exhaust gas according to the present invention is provided in an exhaust passage of an internal combustion engine and has a function of generating hydrogen from hydrocarbons in the exhaust gas. Or a first methane sensor and a second methane sensor that are installed on the upstream and downstream sides of a part of the exhaust flow path and measure the amount of methane in the gas;
The methane consumption before and after passing through the catalyst is calculated from the methane amount before passing through the catalyst and the methane amount after passing through the catalyst measured by the methane sensor, and the amount of hydrogen released downstream of the catalyst is calculated from the obtained methane consumption. Calculating means for estimating.

【0011】また、本発明の水素量計測装置の好適形態
は、上記触媒が、炭化水素類からメタンを生成するメタ
ン生成触媒部と、メタンから水素を生成する水素生成触
媒部を有することを特徴とする。
In a preferred embodiment of the hydrogen amount measuring apparatus according to the present invention, the catalyst has a methane generation catalyst section for generating methane from hydrocarbons and a hydrogen generation catalyst section for generating hydrogen from methane. And

【0012】次に、本発明の排気ガス中の水素量計測方
法は、排気ガス中の炭化水素類から水素を生成する触媒
を内燃機関の排気流路に設置し、該排気ガスが該触媒を
通過する際のメタン消費量を計測し、このメタン消費量
から、該触媒の下流側に流出する水素量を算出すること
を特徴とする。
Next, in the method for measuring the amount of hydrogen in exhaust gas according to the present invention, a catalyst for generating hydrogen from hydrocarbons in exhaust gas is installed in an exhaust passage of an internal combustion engine, and the exhaust gas removes the catalyst. It is characterized in that the amount of methane consumed during the passage is measured and the amount of hydrogen flowing out downstream of the catalyst is calculated from the amount of methane consumed.

【0013】更に、本発明の排気ガス浄化システムは、
排気ガス中の炭化水素類から水素を生成する触媒を内燃
機関の排気流路に設置し、該排気ガスが該触媒を通過す
る際のメタン消費量を計測し、このメタン消費量から、
該触媒の下流側に流出する水素量を推定することを特徴
とする。
Further, the exhaust gas purifying system of the present invention comprises:
A catalyst that generates hydrogen from hydrocarbons in the exhaust gas is installed in the exhaust flow path of the internal combustion engine, and the amount of methane consumed when the exhaust gas passes through the catalyst is measured.
It is characterized in that the amount of hydrogen flowing out downstream of the catalyst is estimated.

【0014】[0014]

【発明の実施の形態】以下、本発明の排気ガス中の水素
量計測装置について詳細に説明する。上述の如く、本発
明の排気ガス中の水素量推定装置は、排気ガス中の炭化
水素類から水素を生成する機能を有する触媒を挟んで、
排気流路上流側及び下流側に、それぞれ第1及び第2メ
タンセンサを配置して成る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The apparatus for measuring the amount of hydrogen in exhaust gas according to the present invention will be described below in detail. As described above, the apparatus for estimating the amount of hydrogen in exhaust gas of the present invention includes a catalyst having a function of generating hydrogen from hydrocarbons in exhaust gas,
First and second methane sensors are arranged on the upstream and downstream sides of the exhaust passage, respectively.

【0015】本発明の排気ガス中の水素量計測装置は、
内燃機関の空燃比がリッチのときに排出されるHC及び
CO以外の排気ガス成分であって、かつ還元剤となり得
る水素に着目し、この水素がNOx還元剤としてNOx
を浄化できることを発明者らが見出したことに起因す
る。即ち、内燃機関の空燃比がリーンの場合、従来の三
元触媒等の排気ガス浄化用触媒においては、HC及びC
Oはほとんど浄化されてしまうため、NOx還元剤とし
て利用することができなかった。また、排気ガスが浄化
されると同時に、炭化水素類の部分酸化反応などにより
水素が生成されるが、ほとんどの水素は排気ガス中のC
Oと反応して、水になってしまう。しかし、空燃比を一
時的にリッチにした場合は、排気ガス中の炭化水素類が
増加するので、その分、水素の生成量も大幅に増加す
る。生成された水素は、リーン同様、排気ガス中のCO
と反応して水になるが、水素の生成量に比較してわずか
であり、多くの水素は下流側に流れ、NOx還元剤とし
て利用することができる。
The apparatus for measuring the amount of hydrogen in exhaust gas according to the present invention comprises:
Focusing on hydrogen, which is an exhaust gas component other than HC and CO discharged when the air-fuel ratio of the internal combustion engine is rich and can be a reducing agent, this hydrogen is used as a NOx reducing agent.
This is because the inventors have found that it is possible to purify water. That is, when the air-fuel ratio of the internal combustion engine is lean, the conventional exhaust gas purifying catalyst such as a three-way catalyst uses HC and C
O was almost purified and could not be used as a NOx reducing agent. At the same time as the exhaust gas is purified, hydrogen is generated by a partial oxidation reaction of hydrocarbons.
Reacts with O to form water. However, when the air-fuel ratio is temporarily made rich, the amount of hydrocarbons in the exhaust gas increases, and accordingly, the amount of generated hydrogen increases significantly. The generated hydrogen is, like the lean, CO 2 in the exhaust gas.
Reacts with water to form water, but the amount is small compared to the amount of generated hydrogen, and a large amount of hydrogen flows downstream and can be used as a NOx reducing agent.

【0016】このとき、部分酸化反応によれば、上記式
に示したように、メタン1モルから水素1モルが生成
されるので、生成された水素を直接測定する代わりに、
空燃比をリッチにしたときの排気ガス中のメタンの生成
量を測定することによって、水素の生成量を推定するこ
とができる。即ち、本発明の排気ガス中の水素量計測装
置は、例えば三元触媒のような、部分酸化反応により水
素を生成する機能を有する触媒の前後の排気流路にメタ
ンセンサを配置し、排気ガスが上記用触媒で浄化される
前と後のメタン量の変化を測定し、その変化量から水素
の生成量を算出できる。
At this time, according to the partial oxidation reaction, as shown in the above equation, 1 mol of hydrogen is produced from 1 mol of methane. Therefore, instead of directly measuring the produced hydrogen,
By measuring the amount of methane generated in the exhaust gas when the air-fuel ratio is made rich, the amount of generated hydrogen can be estimated. In other words, the apparatus for measuring the amount of hydrogen in exhaust gas of the present invention includes a methane sensor arranged in an exhaust passage before and after a catalyst having a function of generating hydrogen by a partial oxidation reaction, such as a three-way catalyst. The change in the amount of methane before and after purification by the catalyst for use is measured, and the amount of hydrogen generated can be calculated from the change.

【0017】また、上記排気ガスから水素を生成する機
能を有する触媒の例としては、上述の如く三元触媒が挙
げられる。上記三元触媒は、例えば、アルミナに、白金
(Pt)、パラジウム(Pd)やロジウム(Rd)等の
貴金属を担持させたもので、一酸化炭素(CO)、炭化
水素(HC)及び窒素酸化物(NOx)等をまとめて触
媒反応により浄化でき、その浄化のメカニズムは複雑で
あるが、浄化の際、部分酸化反応等による、内燃機関か
ら排出される炭化水素類等からの水素生成能を持つ。
Further, as an example of the catalyst having a function of generating hydrogen from the exhaust gas, there is a three-way catalyst as described above. The three-way catalyst is, for example, a catalyst in which noble metals such as platinum (Pt), palladium (Pd), and rhodium (Rd) are supported on alumina, and includes carbon monoxide (CO), hydrocarbon (HC), and nitrogen oxide. (NOx) can be purified together by catalytic reaction, and the purification mechanism is complicated. However, during purification, the ability to generate hydrogen from hydrocarbons and the like discharged from the internal combustion engine due to partial oxidation reaction and the like is reduced. Have.

【0018】また、上記排気ガスから水素を生成する機
能を有する触媒は、排気ガス中の炭化水素からメタンを
生成するメタン生成触媒部と、メタンから水素を生成す
る水素生成触媒部とを有することが好ましく、これら2
つの触媒は、排気流路上流側にメタン生成触媒部、下流
側に水素生成触媒部の順で配置されることが好ましい。
この順に配置すれば、クラッキング反応により、高分子
炭化水素を低分子炭化水素に切って、メタンを発生さ
せ、次に、部分酸化反応により、メタンから水素を効率
よく生成させることができる。上記メタン生成触媒部の
触媒成分には、例えばシリカ−アルミナやゼオライト等
が挙げられ、上記水素生成触媒部の触媒成分には、Pd
を担持したセリウム酸化物、ジルコニウム酸化物やニッ
ケル化合物等が挙げられ、これらの成分が適量含まれて
いることが好ましい。
Further, the catalyst having a function of generating hydrogen from the exhaust gas has a methane generating catalyst section for generating methane from hydrocarbons in the exhaust gas, and a hydrogen generating catalyst section for generating hydrogen from methane. Are preferred, and these 2
The two catalysts are preferably arranged in the order of a methane generation catalyst section on the upstream side of the exhaust flow path and a hydrogen generation catalyst section on the downstream side.
By arranging in this order, high molecular hydrocarbons can be cut into low molecular hydrocarbons by a cracking reaction to generate methane, and then hydrogen can be efficiently generated from methane by a partial oxidation reaction. Examples of the catalyst component of the methane generation catalyst section include silica-alumina and zeolite. The catalyst component of the hydrogen generation catalyst section includes Pd.
Cerium oxide, zirconium oxide, nickel compounds, etc., which carry the same, and these components are preferably contained in appropriate amounts.

【0019】また、上記メタン生成触媒部と上記水素生
成触媒部は、上述のようなタンデム配置に特に限定され
るものではなく、触媒担体に、上記水素生成触媒部の触
媒成分を被覆し、その上に上記メタン生成触媒部の触媒
成分を積層してもよい。なお、上記触媒担体は、一体構
造型触媒担体が好ましく、例えばハニカム担体があり、
ハニカム材料としては、一般にセラミック等のコージェ
ライトのものが多く用いられる。しかし、これに限られ
ず、フェライト系ステンレスの金属材料から成るハニカ
ム材料を用いてもよく、更には触媒成分粉末そのものを
ハニカム形状に成形してもよい。
The methane-producing catalyst section and the hydrogen-producing catalyst section are not particularly limited to the tandem arrangement as described above. A catalyst carrier is coated with the catalyst component of the hydrogen-producing catalyst section. The catalyst component of the methane generation catalyst section may be laminated thereon. The catalyst carrier is preferably a monolithic catalyst carrier, for example, a honeycomb carrier.
As the honeycomb material, a cordierite material such as ceramics is generally used. However, the present invention is not limited to this, and a honeycomb material made of a ferritic stainless steel metal material may be used, and the catalyst component powder itself may be formed into a honeycomb shape.

【0020】更に、上記第1及び第2メタンセンサは、
上記水素生成触媒部を挟んで、その上流側及び下流側の
排気流路に配置されることが好ましい。本発明の水素量
推定装置では、上述のように、水素そのものではなく、
メタンを検知することにより、水素が生成されたか否か
を判断するので、上記水素生成触媒部のみの前後にセン
サを配置すれば、生成されたメタン量から生成される水
素量を推定することができる。
Further, the first and second methane sensors may include:
It is preferable that the hydrogen generation catalyst section is disposed in the exhaust passages on the upstream side and the downstream side of the hydrogen generation catalyst section. In the hydrogen amount estimation device of the present invention, as described above, not the hydrogen itself,
Since it is determined whether or not hydrogen has been generated by detecting methane, if sensors are arranged before and after only the hydrogen generation catalyst section, it is possible to estimate the amount of hydrogen generated from the amount of methane generated. it can.

【0021】また、上記生成されたメタン量から生成さ
れる水素量は、上記第1メタンセンサ及び第2メタンセ
ンサによって計測された触媒通過前メタン量及び触媒通
過後メタン量より、該触媒通過前後におけるメタン消費
量を算出し、得られたメタン消費量より、該触媒の下流
に放出される水素量を算出する演算手段で算出される。
即ち、上記メタンセンサをECUと連結して、上記式
のメタンと水素の関係を用いて、演算することにより
行うことが好ましいが、これに限定されることなく、他
の手段を用いてもよい。
The amount of hydrogen generated from the amount of methane generated is determined before and after the passage of the catalyst from the amounts of methane before and after the catalyst measured by the first and second methane sensors. Is calculated by a calculating means for calculating the amount of hydrogen released downstream of the catalyst from the obtained methane consumption.
That is, the methane sensor is preferably connected to an ECU and operated by using the relationship between methane and hydrogen in the above equation. However, the present invention is not limited to this, and other means may be used. .

【0022】更に、本発明の水素計測装置は、流入する
排気ガスの空燃比が理論空燃比ないしリッチであるとき
に水素を生成することが好ましい。リーンであるときに
おいても水素が生成されている可能性が考えられるが、
特に理論空燃比〜リッチでは、ガソリンなどの燃料が多
量に供給されるため、その分排気ガス中の炭化水素類が
増加し、結果として水素を多量に生成することができ
る。
Further, the hydrogen measuring device of the present invention preferably generates hydrogen when the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich. Although it is possible that hydrogen is generated even when lean,
Particularly, in the range from the stoichiometric air-fuel ratio to rich, a large amount of fuel such as gasoline is supplied, so that the amount of hydrocarbons in the exhaust gas increases accordingly, and as a result, a large amount of hydrogen can be generated.

【0023】次に、本発明の排気ガス中の水素量計測方
法について詳細に説明する。本発明の排気ガス中の水素
量計測方法は、排気ガス中の炭化水素類から水素を生成
する触媒を内燃機関の排気流路に設置し、該排気ガスが
該触媒を通過する際のメタン消費量を計測し、このメタ
ン消費量から、該触媒の下流側に流出する水素量を算出
する。即ち、上述の如く、上記水素生成触媒の前後に上
記第1及び第2メタンセンサを配置し、メタン消費量を
計測して該触媒の下流側に流出する水素量を算出する方
法を用いてもよいが、この方法に限られることなく、他
の装置等を用いて上記水素量推定方法を実施してもよ
い。
Next, the method for measuring the amount of hydrogen in exhaust gas according to the present invention will be described in detail. The method for measuring the amount of hydrogen in exhaust gas according to the present invention includes the steps of: installing a catalyst for generating hydrogen from hydrocarbons in exhaust gas in an exhaust passage of an internal combustion engine, and consuming methane when the exhaust gas passes through the catalyst. The amount of hydrogen is measured, and the amount of hydrogen flowing out downstream of the catalyst is calculated from the amount of methane consumed. That is, as described above, a method in which the first and second methane sensors are arranged before and after the hydrogen generation catalyst, the methane consumption is measured, and the amount of hydrogen flowing out downstream of the catalyst is calculated. The method is not limited to this method, and the hydrogen amount estimating method may be implemented using another device or the like.

【0024】次に、本発明の排気ガス浄化システムにつ
いて詳細に説明する。本発明の排気ガス浄化システム
は、水素量計測装置を備えた排気ガス浄化システムであ
って、上記第2メタンセンサの下流側に窒素酸化物を浄
化するNOx吸着触媒を配置して成る。
Next, the exhaust gas purification system of the present invention will be described in detail. The exhaust gas purifying system of the present invention is an exhaust gas purifying system provided with a hydrogen amount measuring device, wherein a NOx adsorption catalyst for purifying nitrogen oxides is arranged downstream of the second methane sensor.

【0025】上記水素量計測装置には、上述のように、
水素を生成する機能を有する触媒が設置されているの
で、該触媒で生成された水素を還元剤として、下流側に
配置されたNOx吸着触媒でNOxを還元浄化すること
ができる。特に、リーン運転時は、上記水素生成触媒に
おいて、排気ガス中のメタンから水素が生成されても、
排気ガス成分の浄化に消費されたり水になってしまい、
下流側のNOx吸着触媒に生成された水素はほとんど供
給されないか又は供給されるにしてもわずかである。リ
ッチ運転時では、内燃機関に供給されるガソリンなどの
燃料が多くなり、排気ガス中の炭化水素類も増加し、上
記水素生成触媒においてクラッキングがおこり、メタン
が多量に生成される。従って、上記水素生成触媒で消費
される以上に多量に水素が生成されるため、下流側の上
記NOx吸着触媒に生成された水素のほとんどが供給さ
れることになる。
As described above, the above-mentioned hydrogen amount measuring device includes:
Since a catalyst having a function of generating hydrogen is provided, NOx can be reduced and purified by a NOx adsorption catalyst arranged on the downstream side using hydrogen generated by the catalyst as a reducing agent. In particular, during the lean operation, even if hydrogen is generated from methane in the exhaust gas in the hydrogen generation catalyst,
It is consumed for purification of exhaust gas components or becomes water,
Hydrogen generated in the downstream NOx adsorption catalyst is hardly supplied, or is supplied only slightly. During the rich operation, fuel such as gasoline supplied to the internal combustion engine increases, hydrocarbons in the exhaust gas also increase, cracking occurs in the hydrogen generation catalyst, and a large amount of methane is generated. Therefore, since hydrogen is generated in a larger amount than is consumed by the hydrogen generation catalyst, most of the generated hydrogen is supplied to the NOx adsorption catalyst on the downstream side.

【0026】リッチ運転時に多量に供給される水素を上
記NOx吸着触媒で効率的に還元剤として消費するに
は、上記NOx吸着触媒は、流入する排気ガスの空燃比
がリーンのときにNOxを吸着し、理論空燃比〜リッチ
のときにNOxを放出して浄化するNOx吸着浄化触媒
であることが好ましく、NOx吸着成分とNOx浄化成
分とを含有することが好ましい。NOx吸着材として
は、アルカリ金属、アルカリ土類金属又は希土類元素及
びこれらの任意の組み合わせに係る元素、特にこれらの
酸化物を挙げることができ、具体的には、カリウム
(K)、ナトリウム(Na)、リチウム(Li)及びセ
シウム(Cs)のようなアルカリ金属及びこれらの酸化
物、バリウム(Ba)及びカルシウム(Ca)のような
アルカリ土類金属及びこれらの酸化物、ランタン(L
a)及びイットリウム(Y)のような希土類元素及びこ
れらの酸化物が挙げられる。本発明では、これらの2種
以上を任意に組み合わせて用いることもできる。また、
NOxを浄化する成分としては、三元触媒にも用いられ
ている、Pt、Rh又はRd等の貴金属元素が挙げられ
る。
In order to efficiently consume a large amount of hydrogen supplied as a reducing agent by the NOx adsorption catalyst during the rich operation, the NOx adsorption catalyst adsorbs NOx when the inflowing exhaust gas has a lean air-fuel ratio. Preferably, the catalyst is a NOx adsorption and purification catalyst that releases and purifies NOx when the stoichiometric air-fuel ratio is rich, and preferably contains a NOx adsorption component and a NOx purification component. Examples of the NOx adsorbent include alkali metals, alkaline earth metals or rare earth elements and elements related to any combination thereof, especially oxides thereof. Specifically, potassium (K), sodium (Na) ), Alkali metals such as lithium (Li) and cesium (Cs) and their oxides, alkaline earth metals such as barium (Ba) and calcium (Ca) and their oxides, lanthanum (L
a) and rare earth elements such as yttrium (Y) and their oxides. In the present invention, two or more of these can be used in any combination. Also,
As a component for purifying NOx, a noble metal element such as Pt, Rh, or Rd, which is also used in a three-way catalyst, may be mentioned.

【0027】また、上記NOx吸着触媒は、吸着できる
NOx量に限界があるため、一定量を吸収すると、排気
ガス中に吸着しきれなかったNOxが増加する。そこ
で、上記NOx吸着触媒の下流側にNOx量を計測する
NOxセンサを付加し、計測されたNOx量信号を上記
水素量計測装置の演算手段に送信し、水素の生成量をフ
ィードバック制御することが好ましい。即ち、上記NO
x浄化触媒を通過した排気ガス中のNOx量を測定すれ
ば、リッチ運転に切り替えるタイミングを知ることがで
き、リッチ運転に切り替えて水素を多量に供給すれば、
吸収されたNOxを効率よく浄化することができる。そ
して、上記NOx吸着触媒は、またNOxを吸収するこ
とができるようになる。上記NOx吸着触媒に吸着しき
れなかったNOxが排気ガス中に含まれているか否かを
知ることができれば十分であるので、上記NOxセンサ
は、上記NOx浄化触媒の下流側にのみ設置すればよ
い。また、上記NOx浄化触媒のNOx吸着量は、機関
回転数及び温度などからNOx飽和吸着量を推定する手
段によっても検知でき、上記の手段に特に限定されるも
のではない。
The NOx adsorbing catalyst has a limit in the amount of NOx that can be adsorbed. Therefore, if a certain amount is absorbed, the amount of NOx that cannot be adsorbed in the exhaust gas increases. Therefore, a NOx sensor for measuring the amount of NOx is added to the downstream side of the NOx adsorption catalyst, a measured NOx amount signal is transmitted to the calculating means of the hydrogen amount measuring device, and the amount of generated hydrogen is feedback-controlled. preferable. That is, the above NO
By measuring the amount of NOx in the exhaust gas that has passed through the x purification catalyst, it is possible to know the timing of switching to the rich operation, and by switching to the rich operation and supplying a large amount of hydrogen,
The absorbed NOx can be efficiently purified. Then, the NOx adsorbing catalyst can absorb NOx again. It is sufficient if it is possible to know whether or not the exhaust gas contains NOx that has not been adsorbed by the NOx adsorption catalyst. Therefore, the NOx sensor may be installed only on the downstream side of the NOx purification catalyst. . Further, the NOx adsorption amount of the NOx purification catalyst can also be detected by means for estimating the NOx saturated adsorption amount from the engine speed, temperature, and the like, and is not particularly limited to the above means.

【0028】[0028]

【実施例】以下、本発明の排気ガス浄化システムを、図
面を参照して実施例により更に詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The exhaust gas purifying system of the present invention will be described below in more detail with reference to the drawings.

【0029】図1は、本発明の排気ガス浄化システムを
適用した内燃機関の一例を示す構成図である。同図にお
いて、符号1は内燃機関、2は三元触媒、3はH生成
触媒、4はNOx吸着触媒、5及び6は第1及び第2メ
タンセンサ、7はNOxセンサ、8はECUを示す。内
燃機関1はエキゾーストマニホールド及び排気管を介し
て三元触媒2に連結されており、H生成触媒3の前後
の排気管にメタンセンサ4及び5が配置されている。更
に、排気管を介してNOx吸着触媒4が連結されてお
り、NOx吸着触媒4の後ろの排気管にNOxセンサ7
が配置される構成となっている。
FIG. 1 is a configuration diagram showing an example of an internal combustion engine to which the exhaust gas purification system of the present invention is applied. In FIG. 1, reference numeral 1 denotes an internal combustion engine, 2 denotes a three-way catalyst, 3 denotes an H 2 generation catalyst, 4 denotes a NOx adsorption catalyst, 5 and 6 denote first and second methane sensors, 7 denotes a NOx sensor, and 8 denotes an ECU. Show. The internal combustion engine 1 is connected to a three-way catalyst 2 via an exhaust manifold and an exhaust pipe, and methane sensors 4 and 5 are arranged in exhaust pipes before and after the H 2 generation catalyst 3. Further, the NOx adsorption catalyst 4 is connected via an exhaust pipe, and a NOx sensor 7 is connected to the exhaust pipe behind the NOx adsorption catalyst 4.
Are arranged.

【0030】内燃機関1から排出される排気ガスはエキ
ゾーストマニホールド及び排気管を通って三元触媒2に
供給される。三元触媒2を通過した排気ガス中に含まれ
るメタンの量は、随時第1メタンセンサ5で発生する出
力電圧がECU8へ入力されることにより得られる。そ
してH生成触媒3を通過した排気ガス中のメタンの量
は同様に第2メタンセンサ6で発生する出力電圧をEC
U8へ入力することにより得られる。
The exhaust gas discharged from the internal combustion engine 1 is supplied to the three-way catalyst 2 through an exhaust manifold and an exhaust pipe. The amount of methane contained in the exhaust gas that has passed through the three-way catalyst 2 is obtained by inputting the output voltage generated by the first methane sensor 5 to the ECU 8 as needed. Similarly, the amount of methane in the exhaust gas that has passed through the H 2 generation catalyst 3 is determined by calculating the output voltage generated by the second methane sensor 6 by EC.
It is obtained by inputting to U8.

【0031】次に、排気ガス中のNOxは、排気ガス組
成がリーンのときに三元触媒2及びH生成触媒3の下
流に配置したNOx吸着触媒4に吸着される。NOx吸
着触媒4を通過した排気ガス中のNOx量はNOx吸着
触媒4の下流に具備したNOxセンサ7で発生する出力
電圧がECU8に入力され、該出力電圧が変換されるこ
とにより得られる。更に、排気ガス中の上記NOx量が
ある所定の値を超えたと判断されたとき、ECU8は、
内燃機関の空燃比制御状態をリッチにし、三元触媒2及
びH生成触媒3で流入したリッチの排気ガスから水素
が生成される。そして三元触媒2及びH生成触媒3で
生成された水素はNOx吸着触媒4に供給され、内燃機
関の空燃比制御状態がリーンのときに吸着されたNOx
が放出浄化される。
[0031] Then, NOx in the exhaust gas is adsorbed in the NOx trap catalyst 4 exhaust gas composition is disposed downstream of the three-way catalyst 2 and H 2 generating catalyst 3 when the lean. The amount of NOx in the exhaust gas passing through the NOx adsorption catalyst 4 is obtained by inputting an output voltage generated by a NOx sensor 7 provided downstream of the NOx adsorption catalyst 4 to the ECU 8 and converting the output voltage. Further, when it is determined that the NOx amount in the exhaust gas exceeds a predetermined value, the ECU 8
The air-fuel ratio control state of the internal combustion engine is made rich, and hydrogen is generated from the rich exhaust gas flowing through the three-way catalyst 2 and the H 2 generation catalyst 3. Then, the hydrogen generated by the three-way catalyst 2 and the H 2 generation catalyst 3 is supplied to the NOx adsorption catalyst 4, and the NOx adsorbed when the air-fuel ratio control state of the internal combustion engine is lean.
Is released and purified.

【0032】図2は、本実施例における水素供給及びN
Ox放出浄化の一例を示すタイムフローチャートであ
る。図1の内燃機関がリーン運転しているときに、排気
ガス中のNOxはNOx浄化触媒4により吸着される。
そしてNOx吸着触媒4のNOx吸収量がその許容値に
達すると、NOx吸着触媒4の下流に配置されたNOx
センサ7の出力電圧が高くなり、NOxが大気中に放出
されていることを知ることができる。そこで、ECU8
内で、NOxセンサ7の出力電圧が、あるしきい値を超
えたと判断されたときは、内燃機関1で空燃比を制御す
る各デバイスに、排気ガスの空燃比をリッチ化する指令
を出す。そして空燃比がリッチ化された排気ガスが三元
触媒2に流入し、排気ガス中のHC成分が部分酸化さ
れ、水素を発生させることができる。
FIG. 2 shows hydrogen supply and N in this embodiment.
It is a time flow chart which shows an example of Ox release purification. When the internal combustion engine of FIG. 1 is operating lean, NOx in the exhaust gas is adsorbed by the NOx purification catalyst 4.
Then, when the NOx absorption amount of the NOx adsorption catalyst 4 reaches the allowable value, NOx disposed downstream of the NOx adsorption catalyst 4
It is possible to know that the output voltage of the sensor 7 has increased and NOx has been released into the atmosphere. Therefore, the ECU 8
When it is determined that the output voltage of the NOx sensor 7 exceeds a certain threshold value, a command for enriching the air-fuel ratio of the exhaust gas is issued to each device that controls the air-fuel ratio in the internal combustion engine 1. Then, the exhaust gas whose air-fuel ratio is enriched flows into the three-way catalyst 2, and the HC component in the exhaust gas is partially oxidized to generate hydrogen.

【0033】上記部分酸化されたHCは、炭素数の少な
いHC種になる。特にメタンは、図2のリッチ運転時に
示すように、内燃機関1から排出されるメタンの量より
も三元触媒2の出口でのメタンの量が多くなる。従っ
て、内燃機関1の排気ガスがリッチのときの三元触媒2
の出口とH生成触媒3出口のメタン量を、メタンセン
サ5及び6によりECU7で検出することにより、水素
が発生しているか否かを判別することができる。
The partially oxidized HC becomes an HC species having a small number of carbon atoms. In particular, the amount of methane at the outlet of the three-way catalyst 2 is larger than the amount of methane discharged from the internal combustion engine 1 as shown in the rich operation in FIG. Therefore, the three-way catalyst 2 when the exhaust gas of the internal combustion engine 1 is rich
By detecting the amount of methane at the outlet of the catalyst and the outlet of the H 2 generation catalyst 3 with the methane sensors 5 and 6 by the ECU 7, it can be determined whether or not hydrogen is generated.

【0034】また、上記三元触媒2及びH生成触媒3
で生成された水素は、NOx吸着触媒4に流入し、排気
ガスがリーンのときにNOx吸着触媒4に吸収されたN
Oxを放出浄化する。水素によるNOx浄化が行われる
と、NOx吸着触媒4の下流に配置したNOxセンサ7
の出力電圧低下がECU8で判別され、ECU8は内燃
機関1の空燃比制御を再びリーン化し、NOx吸着触媒
4はNOxを吸着する。この操作を繰り返すことによ
り、NOxの浄化が可能となり、また無駄なリッチ化の
必要がなくなるので、燃費を改善することができる。
The three-way catalyst 2 and the H 2 generation catalyst 3
Produced in the NOx adsorbing catalyst 4 flows into the NOx adsorbing catalyst 4, and the N2 absorbed by the NOx adsorbing catalyst 4 when the exhaust gas is lean
Releases and purifies Ox. When the NOx purification by hydrogen is performed, the NOx sensor 7 disposed downstream of the NOx adsorption catalyst 4
Is determined by the ECU 8, the ECU 8 makes the air-fuel ratio control of the internal combustion engine 1 lean again, and the NOx adsorption catalyst 4 adsorbs NOx. By repeating this operation, it becomes possible to purify NOx and eliminate the need for unnecessary enrichment, so that fuel efficiency can be improved.

【0035】図3は、本実施例における水素によるNO
x浄化判断の一例を示すフローチャートであり、本実施
例の排気ガスガス浄化システムにおいて所望のタイミン
グで実行されるルーチンを示している。なお、かかるル
ーチンは、図1に示したメタンセンサ5、6やNOxセ
ンサ7からの出力電圧に応じた上記水素量推定装置での
演算により、処理実行される。同図において、まず始め
にステップ101で現在の内燃機関の空燃比がリーンか
どうかが判別される。リーンの場合にはステップ102
へ進み、リーンでない場合はNOx吸着触媒4に吸着さ
れたNOxを放出浄化させる空燃比状態であると判断さ
れる。
FIG. 3 is a graph showing NO by hydrogen in the present embodiment.
6 is a flowchart showing an example of x purification determination, and shows a routine executed at a desired timing in the exhaust gas purification system of the present embodiment. The routine is executed by calculation in the hydrogen amount estimating apparatus according to the output voltage from the methane sensors 5, 6 and the NOx sensor 7 shown in FIG. In the figure, first, at step 101, it is determined whether or not the current air-fuel ratio of the internal combustion engine is lean. Step 102 if lean
If not, it is determined that the air-fuel ratio state is such that the NOx adsorbed by the NOx adsorption catalyst 4 is released and purified.

【0036】次にステップ102において、NOx吸着
触媒4の出口でのNOx量TNOxが、あるしきい値に
達しているかが判別される。これはNOx吸着触媒4の
下流に配置したNOxセンサ7の出力電圧がECU8に
入力され、AD変換されることにより判別される。TN
Oxが、あるしきい値TNOx1に達したと判断された
ときにはステップ103に進み、TNOx1に達してい
ないと判断されたときには排気ガスの運転状態はリーン
で維持される。そしてステップ102において、TNO
xがしきい値であるTNOx1を超えたと判別されたと
き、ステップ103で水素供給フラグがONとなり、内
燃機関1の排気ガスの空燃比がリッチ化される。
Next, at step 102, it is determined whether the NOx amount TNOx at the outlet of the NOx adsorption catalyst 4 has reached a certain threshold value. This is determined by the output voltage of the NOx sensor 7 arranged downstream of the NOx adsorption catalyst 4 being input to the ECU 8 and being subjected to AD conversion. TN
When it is determined that Ox has reached a certain threshold value TNOx1, the routine proceeds to step 103, and when it is determined that TNOx1 has not been reached, the operating state of the exhaust gas is maintained lean. Then, in step 102, TNO
When it is determined that x has exceeded the threshold value TNOx1, the hydrogen supply flag is turned on in step 103, and the air-fuel ratio of the exhaust gas of the internal combustion engine 1 is enriched.

【0037】次に、ステップ104において、H生成
触媒3の入口のメタン量CH4INがH生成触媒3の
出口のメタン量CH4OUTよりも低いかどうかが判別
される。CH4INがCH4OUTよりも低い場合、H
生成触媒3において水素が生成されていると判断さ
れ、ステップ106へ進み、CH4INがCH4OUT
よりも高い場合はステップ105に進み、さらに深いリ
ッチ化を内燃機関1に対して指令する。ステップ106
において、NOx吸着触媒4に吸収されたNOxの放出
浄化が完了したかどうかが判別される。これはNOx吸
着触媒4の出口のNOx量TNOxがあるしきい値TN
Ox2よりも低いかどうかで判別される。TNOxがT
NOx2よりも低い場合、NOx吸着触媒4の吸収され
たNOxの放出浄化が終了し、NOx吸着触媒4は再び
NOxを吸着できる状態に再生された判断し、ステップ
107へ進む。TNOxはTNOx2よりも高い場合に
は水素供給の状態が維持される。そして、ステップ10
7において水素供給フラグがOFFとなり、水素供給に
よるNOxの放出浄化が完了し、内燃機関1の排気ガス
空燃比は再びリーンとなる。TONxはTNOx2より
も高い場合には水素供給の状態が維持される。
Next, in step 104, the inlet of the amount of methane CH4IN of H 2 generating catalyst 3 whether low is determined than the amount of methane CH4OUT the outlet of H 2 generating catalyst 3. If CH4IN is lower than CH4OUT, H
It is determined that hydrogen has been generated in the 2- generation catalyst 3, and the routine proceeds to step 106, where CH4IN becomes CH4OUT.
If it is higher, the routine proceeds to step 105, where a command for further enrichment is given to the internal combustion engine 1. Step 106
It is determined whether or not the release and purification of the NOx absorbed by the NOx adsorption catalyst 4 has been completed. This is the threshold TN at which the NOx amount TNOx at the outlet of the NOx adsorption catalyst 4 is
It is determined based on whether it is lower than Ox2. TNOx is T
If it is lower than NOx2, the release and purification of the NOx absorbed by the NOx adsorption catalyst 4 is completed, it is determined that the NOx adsorption catalyst 4 has been regenerated to a state where it can adsorb NOx again, and the routine proceeds to step 107. When TNOx is higher than TNOx2, the state of hydrogen supply is maintained. And step 10
At 7, the hydrogen supply flag is turned off, the purification of NOx release by hydrogen supply is completed, and the exhaust gas air-fuel ratio of the internal combustion engine 1 becomes lean again. When TONx is higher than TNOx2, the state of hydrogen supply is maintained.

【0038】以上、本発明を実施例により詳細に説明し
たが、本発明はこれら実施例に限定されるものではな
く、本発明の開示の範囲内において種々の変形実施が可
能である。特にNOx吸着触媒4の出口でNOx量があ
るしきい値に達しているかを判別する際には、従来より
公知であるNOx吸着触媒へのNOx吸着量推定手段を
用いてもかまわない。
Although the present invention has been described in detail with reference to the embodiments, the present invention is not limited to these embodiments, and various modifications can be made within the scope of the disclosure of the present invention. In particular, when determining whether or not the NOx amount has reached a certain threshold value at the outlet of the NOx adsorption catalyst 4, a conventionally known means for estimating the NOx adsorption amount to the NOx adsorption catalyst may be used.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
メタンの部分酸化反応により水素が生成されることに着
目し、排気ガスの空燃比をリッチにしたときに、排気ガ
ス中の炭化水素から水素が生成される量を算出し、生成
された水素を好ましくは適切なタイミングでNOx浄化
に使用することにより、触媒で生成された水素を還元剤
として、NOx浄化触媒に吸収されたNOxの浄化を行
うときに、内燃機関の燃費を向上させ、NOxを効率よ
く浄化できる排気ガス中の水素量計測装置及び排気ガス
浄化システムを提供することができる。
As described above, according to the present invention,
Focusing on the fact that hydrogen is generated by the partial oxidation reaction of methane, when the air-fuel ratio of the exhaust gas is made rich, the amount of hydrogen generated from hydrocarbons in the exhaust gas is calculated, and the generated hydrogen is Preferably, it is used for NOx purification at an appropriate timing to improve the fuel efficiency of the internal combustion engine when purifying NOx absorbed by the NOx purification catalyst using hydrogen generated by the catalyst as a reducing agent. It is possible to provide a device for measuring the amount of hydrogen in exhaust gas and an exhaust gas purification system that can be efficiently purified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の排気ガス浄化システムを適用した内燃
機関の一例を示す構成図である。
FIG. 1 is a configuration diagram showing an example of an internal combustion engine to which an exhaust gas purification system of the present invention is applied.

【図2】水素供給及びNOx浄化の一例を示すタイムフ
ローチャートである。
FIG. 2 is a time flowchart illustrating an example of hydrogen supply and NOx purification.

【図3】水素によるNOx浄化判断の一例を示すフロー
チャートであり、所望のタイミングで実行されるルーチ
ンを示している。
FIG. 3 is a flowchart illustrating an example of NOx purification determination using hydrogen, and illustrates a routine executed at a desired timing.

【符号の説明】[Explanation of symbols]

1 内燃機関 2 三元触媒 3 H生成触媒 4 NOx吸着触媒 5 第1メタンセンサ 6 第2メタンセンサ 7 NOxセンサ 8 ECU1 internal combustion engine 2 three-way catalyst 3 H 2 generating catalyst 4 NOx adsorbing catalyst 5 first methane sensor 6 second methane sensor 7 NOx sensor 8 ECU

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/24 F01N 3/24 R 3/28 301C 3/28 301 F02D 41/04 305A F02D 41/04 305 41/14 310J 41/14 310 G01N 31/00 C G01N 31/00 31/10 31/10 31/12 Z 31/12 B01D 53/36 101A (72)発明者 金坂 浩行 神奈川県横浜市神奈川区宝町2番地 日産 自動車株式会社内 Fターム(参考) 2G042 AA01 BB02 CA01 DA03 FA04 FA08 3G084 AA04 BA09 DA02 DA10 EB11 FA28 3G091 AA12 AA17 AA28 AB01 AB03 AB06 AB09 BA14 BA15 BA19 BA33 CA19 CB02 DA01 DA02 DA03 DA04 DB10 DC01 EA01 EA15 EA33 FB10 FB12 FC02 GA06 GB01X GB02Y GB03Y GB04X GB04Y GB05W GB06W GB07W GB10X GB16X GB17X HA08 HA12 HA18 HA36 HA37 HA42 HA47 3G301 HA15 JA02 JA25 MA01 ND01 NE13 NE14 NE15 PD01A PD01Z 4D048 AA06 AB02 AB06 AB07 BA03Y BA06Y BA08Y BA10Y BA11Y BA19X BA30Y BA31Y BA33Y BA38Y BA39Y BA41Y BA42Y BB02 CC44 DA01 DA02 DA08 DA20 EA04 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (Reference) F01N 3/24 F01N 3/24 R 3/28 301C 3/28 301 F02D 41/04 305A F02D 41/04 305 41/14 310J 41/14 310 G01N 31/00 C G01N 31/00 31/10 31/10 31/12 Z 31/12 B01D 53/36 101A (72) Inventor Hiroyuki Kanasaka 2 Takaracho, Kanagawa-ku, Yokohama-shi, Kanagawa-ken Address F-term in Nissan Motor Co., Ltd. (Reference) 2G042 AA01 BB02 CA01 DA03 FA04 FA08 3G084 AA04 BA09 DA02 DA10 EB11 FA28 3G091 AA12 AA17 AA28 AB01 AB03 AB06 AB09 BA14 BA15 BA19 BA33 CA19 CB02 DA01 DA02 DA03 DA01 DB10 FB10 EA12 FC02 GA06 GB01X GB02Y GB03Y GB04X GB04Y GB05W GB06W GB07W GB10X GB16X GB17X HA08 HA12 HA18 HA36 HA37 HA42 HA47 3G301 HA15 JA02 JA25 MA01 ND01 N E13 NE14 NE15 PD01A PD01Z 4D048 AA06 AB02 AB06 AB07 BA03Y BA06Y BA08Y BA10Y BA11Y BA19X BA30Y BA31Y BA33Y BA38Y BA39Y BA41Y BA42Y BB02 CC44 DA01 DA02 DA08 DA20 EA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の排気流路に設置され、排気ガ
ス中の炭化水素類から水素を生成する機能を有する触媒
と、 該触媒の全体又は一部分の排気流路上流側及び下流側に
設置され、ガス中のメタン量を計測する第1メタンセン
サ及び第2メタンセンサと、 この第1メタンセンサ及び第2メタンセンサによって計
測された触媒通過前メタン量及び触媒通過後メタン量よ
り、該触媒通過前後におけるメタン消費量を算出し、得
られたメタン消費量より、該触媒の下流に放出される水
素量を算出する演算手段と、を備えることを特徴とする
排気ガス中の水素量計測装置。
1. A catalyst which is installed in an exhaust passage of an internal combustion engine and has a function of generating hydrogen from hydrocarbons in exhaust gas, and which is installed on the entire or a part of the catalyst on the upstream and downstream sides of the exhaust passage. A first methane sensor and a second methane sensor for measuring the amount of methane in the gas; and a methane amount before and after the catalyst passed through the catalyst measured by the first and second methane sensors. Calculating means for calculating the amount of methane before and after the passage, and calculating the amount of hydrogen released downstream of the catalyst from the obtained amount of methane consumption, a device for measuring the amount of hydrogen in exhaust gas, comprising: .
【請求項2】 上記触媒が、炭化水素類からメタンを生
成するメタン生成触媒部と、メタンから水素を生成する
水素生成触媒部を有することを特徴とする請求項1記載
の水素量計測装置。
2. The hydrogen amount measurement device according to claim 1, wherein the catalyst has a methane generation catalyst unit that generates methane from hydrocarbons, and a hydrogen generation catalyst unit that generates hydrogen from methane.
【請求項3】 上記メタン生成触媒部が上記水素生成触
媒部より上流側に配置され、この水素生成触媒部の上流
側及び下流側に、上記第1メタンセンサ及び第2メタン
センサが配置されていることを特徴とする請求項2記載
の水素量計測装置。
3. The methane generation catalyst section is disposed upstream of the hydrogen generation catalyst section, and the first methane sensor and the second methane sensor are disposed upstream and downstream of the hydrogen generation catalyst section. 3. The hydrogen amount measuring device according to claim 2, wherein:
【請求項4】 上記触媒は、流入する排気ガスの空燃比
が理論空燃比ないしリッチであるときに水素を生成する
ことを特徴とする請求項1〜3のいずれか1つの項に記
載の水素量計測装置。
4. The hydrogen according to claim 1, wherein the catalyst generates hydrogen when the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich. Quantity measuring device.
【請求項5】 排気ガス中の炭化水素類から水素を生成
する触媒を内燃機関の排気流路に設置し、該排気ガスが
該触媒を通過する際のメタン消費量を計測し、このメタ
ン消費量から、該触媒の下流側に流出する水素量を算出
することを特徴とする排気ガス中の水素量計測方法。
5. A catalyst for generating hydrogen from hydrocarbons in exhaust gas is provided in an exhaust passage of an internal combustion engine, and the amount of methane consumed when the exhaust gas passes through the catalyst is measured. A method for measuring the amount of hydrogen in exhaust gas, comprising calculating an amount of hydrogen flowing out downstream of the catalyst from the amount.
【請求項6】 請求項1〜4のいずれか1つの項に記載
の水素量計測装置を備えた排気ガス浄化システムであっ
て、 上記第2メタンセンサの下流側に、窒素酸化物を浄化す
るNOx吸着触媒を配置して成ることを特徴とする排気
ガス浄化システム。
6. An exhaust gas purifying system comprising the hydrogen amount measuring device according to claim 1, wherein a nitrogen oxide is purified downstream of the second methane sensor. An exhaust gas purification system comprising a NOx adsorption catalyst.
【請求項7】 上記NOx吸着触媒は、流入する排気ガ
スの空燃比がリーンのときに窒素酸化物を吸収し、理論
空燃比ないしリッチのときに窒素酸化物を放出して浄化
するNOx吸蔵浄化触媒であることを特徴とする請求項
6記載の排気ガス浄化システム。
7. The NOx storage / purification catalyst that absorbs nitrogen oxide when the air-fuel ratio of the inflowing exhaust gas is lean and releases and purifies nitrogen oxide when the air-fuel ratio of the inflowing exhaust gas is stoichiometric or rich. The exhaust gas purification system according to claim 6, which is a catalyst.
【請求項8】 上記NOx吸着触媒の下流側に窒素酸化
物量を計測するNOxセンサを付加し、計測されたNO
x量信号を上記水素量計測装置の演算手段に送信し、水
素の生成量をフィードバック制御することを特徴とする
請求項6又は7記載の排気ガス浄化システム。
8. A NOx sensor for measuring the amount of nitrogen oxides is added downstream of the NOx adsorption catalyst, and the measured NO
The exhaust gas purification system according to claim 6 or 7, wherein an x amount signal is transmitted to a calculation unit of the hydrogen amount measuring device, and the amount of generated hydrogen is feedback-controlled.
JP2000117593A 2000-04-19 2000-04-19 Apparatus for measuring hydrogen content in exhaust gas and exhaust gas purification system Expired - Lifetime JP4006613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000117593A JP4006613B2 (en) 2000-04-19 2000-04-19 Apparatus for measuring hydrogen content in exhaust gas and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000117593A JP4006613B2 (en) 2000-04-19 2000-04-19 Apparatus for measuring hydrogen content in exhaust gas and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2001304031A true JP2001304031A (en) 2001-10-31
JP4006613B2 JP4006613B2 (en) 2007-11-14

Family

ID=18628889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000117593A Expired - Lifetime JP4006613B2 (en) 2000-04-19 2000-04-19 Apparatus for measuring hydrogen content in exhaust gas and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4006613B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076830A1 (en) * 2003-02-28 2004-09-10 T Baden Hardstaff Limited Exhaust system
JP2006177366A (en) * 2004-12-23 2006-07-06 Caterpillar Inc System for monitoring exhaust gas concentration
WO2006123564A1 (en) * 2005-05-19 2006-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying device for internal combustion engine
CN113883640A (en) * 2021-10-25 2022-01-04 湖南美莱珀科技发展有限公司 Air purification device for flame retardant performance detection equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004076830A1 (en) * 2003-02-28 2004-09-10 T Baden Hardstaff Limited Exhaust system
JP2006177366A (en) * 2004-12-23 2006-07-06 Caterpillar Inc System for monitoring exhaust gas concentration
WO2006123564A1 (en) * 2005-05-19 2006-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying device for internal combustion engine
CN113883640A (en) * 2021-10-25 2022-01-04 湖南美莱珀科技发展有限公司 Air purification device for flame retardant performance detection equipment

Also Published As

Publication number Publication date
JP4006613B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP5340305B2 (en) Method for treating nitrogen oxides in exhaust gas and system therefor
US9810120B2 (en) Exhaust gas purifying system
JP5037283B2 (en) Exhaust gas purification device for internal combustion engine
JP4650109B2 (en) Exhaust gas purification method and exhaust gas purification system
WO2006027903A1 (en) Method of exhaust gas purification and exhaust gas purification system
JPH1193744A (en) Exhaust emission control device for internal combustion engine
JP2007332881A (en) Exhaust emission control device and exhaust emission control method using this device
JPWO2005103461A1 (en) Exhaust gas purification device for internal combustion engine
KR20080056001A (en) Exhaust purifying system for internal combustion engine
JP4930636B2 (en) Exhaust gas purification system for internal combustion engine
JP2006177366A (en) System for monitoring exhaust gas concentration
Millet et al. Synthetic gas bench study of a 4-way catalytic converter: Catalytic oxidation, NOx storage/reduction and impact of soot loading and regeneration
JP2016125391A (en) Deterioration diagnostic device for exhaust emission control device
JP2019203487A (en) Fuel reforming device and control method therefor
JP2001304031A (en) Device for measuring amount of hydrogen in exhaust gas and exhaust gas emission control system
JP2001050036A (en) Exhaust emission control system
JP2000204928A (en) Exhaust emission control device for internal combustion engine
JP4946725B2 (en) Exhaust gas purification method and exhaust gas purification device
JP2001327838A (en) Exhaust cleaning device for diesel engine
JP2000257417A (en) Exhaust emission control device for internal combustion engine
JP2007113497A (en) Exhaust emission control device of internal combustion engine
JP7418143B2 (en) Hydrogen fuel engine exhaust purification system
JP3454177B2 (en) Exhaust gas purification device for internal combustion engine
JP2001012231A (en) Exhaust emission control device
Qiao et al. Optimized Three-Way Catalysts for Emission Control on a Heavy-Duty Stoichiometric Natural Gas Engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070815

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4006613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140907

Year of fee payment: 7

EXPY Cancellation because of completion of term