JP2001302984A - Covering material for bottom of ship - Google Patents

Covering material for bottom of ship

Info

Publication number
JP2001302984A
JP2001302984A JP2000120942A JP2000120942A JP2001302984A JP 2001302984 A JP2001302984 A JP 2001302984A JP 2000120942 A JP2000120942 A JP 2000120942A JP 2000120942 A JP2000120942 A JP 2000120942A JP 2001302984 A JP2001302984 A JP 2001302984A
Authority
JP
Japan
Prior art keywords
water
repellent
porous material
super
ship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000120942A
Other languages
Japanese (ja)
Inventor
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000120942A priority Critical patent/JP2001302984A/en
Publication of JP2001302984A publication Critical patent/JP2001302984A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a covering material for the bottom of a ship which realizes a low flowing water resistance by ultra-water repellency and can maintain the ultra-water repellency for a long period of time. SOLUTION: The porous material having been provided with water repellency treatment is used as the covering material of the bottom of a ship.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は船体、特に船底を被
覆することにより、船舶の流水抵抗値を減少させる船底
被覆材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bottom coating material for coating a hull, in particular, a bottom of the hull, thereby reducing the water resistance of the marine vessel.

【0002】[0002]

【従来の技術】従来、船体の流水抵抗値を減少させるた
めに種々の塗料が開発されている。たとえばゴム原料に
水膨潤材を配合した親水性の船底被覆材料が、特開平8
−324481号公報に記載されている。また、特開平
5−112741号公報には、無機質コロイドゾル、疎
水性熱可塑性樹脂微粒子および架橋剤を含有する水分散
剤を用いた親水性の船底塗料とこれを用いた施工方法が
記載されている。
2. Description of the Related Art Conventionally, various paints have been developed in order to reduce the running water resistance of a hull. For example, a hydrophilic ship bottom coating material in which a water swelling material is blended with a rubber raw material is disclosed in
No. 324481. Japanese Patent Application Laid-Open No. 5-1172741 discloses a hydrophilic ship bottom paint using an inorganic colloid sol, a hydrophobic thermoplastic resin fine particle, and a water dispersant containing a crosslinking agent, and a construction method using the same.

【0003】しかし、従来の船底材料は、平滑で水に対
する親水性を高めたもので構成されているため、流水抵
抗値を減少させるのに限界があり、超撥水性から得られ
るような低い流水抵抗値を実現することができなかっ
た。
However, since the conventional bottom material is made of a material which is smooth and has high hydrophilicity with respect to water, there is a limit in reducing the resistance to flowing water, and a low flowing water as obtained from super water repellency is limited. The resistance value could not be realized.

【0004】超撥水表面を得るには、たとえば、船底に
ポリテトラフルオロエチレン(PTFE)などのフッ素
系樹脂やパーフルオロアルキルシランカップリング剤を
用いた撥水コーティングを施す方法があり、船底がフッ
素原子によって覆われるので、水や海水に対して超撥水
性が現われ、水や海水に浮いているような界面が実現し
て、流水抵抗値を著しく減少させることができる。しか
し、PTFEなどのフッ素系樹脂やパーフルオロアルキ
ルシランカップリング剤を用いた撥水コーティングは、
0.01mmにも満たないごく薄い層なので、摩耗に弱
く、荒波にさらされた状態で長時間にわたって超撥水を
維持することはできなかった。また、従来の技術では、
超撥水性の皮膜を分厚くして被覆材料内部にまで超撥水
性を付与することはできなかった。
In order to obtain a super-water-repellent surface, for example, there is a method in which a water-repellent coating using a fluororesin such as polytetrafluoroethylene (PTFE) or a perfluoroalkylsilane coupling agent is applied to the ship bottom. Since it is covered with fluorine atoms, it exhibits super-water repellency against water or seawater, realizes an interface floating on water or seawater, and can significantly reduce the resistance of flowing water. However, a water-repellent coating using a fluorine-based resin such as PTFE or a perfluoroalkylsilane coupling agent,
Since it was a very thin layer of less than 0.01 mm, it was susceptible to abrasion and could not maintain super water repellency for a long time in a state of being exposed to rough waves. In the conventional technology,
It was not possible to impart super water repellency to the inside of the coating material by thickening the super water repellent film.

【0005】[0005]

【発明が解決しようとする課題】以上のように、従来の
船底材料は、平滑であり親水性を高めたもので構成され
ているため、流水抵抗値を減少させるのに限界があり、
超撥水性から得られるような低い流水抵抗値を実現する
ことができなかった。また、船底にPTFEなどのフッ
素系樹脂やパーフルオロアルキルシランカップリング剤
を用いた撥水コーティングを施した場合、摩耗に弱く、
長時間にわたって超撥水を維持することはできなかっ
た。
As described above, since the conventional ship bottom material is made of a material which is smooth and has enhanced hydrophilicity, there is a limit in reducing the flowing water resistance.
It was not possible to realize a low flowing water resistance value obtained from super water repellency. In addition, when a water-repellent coating using a fluorine resin such as PTFE or a perfluoroalkylsilane coupling agent is applied to the bottom of the ship,
Super water repellency could not be maintained for a long time.

【0006】[0006]

【課題を解決するための手段】本発明は、以上のような
従来の課題を解決するために、耐摩耗性に優れた超撥水
表面を設けることにより、超撥水性から得られる低い流
水抵抗値を実現することにある。
SUMMARY OF THE INVENTION In order to solve the above-mentioned conventional problems, the present invention provides a super-water-repellent surface having excellent abrasion resistance so that a low water flow resistance obtained from the super-water repellency can be obtained. The realization of value.

【0007】すなわち、第1の発明は、撥水処理を施し
た多孔質材からなる船底被覆材料に関する(請求項
1)。
That is, the first invention relates to a ship bottom covering material made of a porous material subjected to a water-repellent treatment (claim 1).

【0008】第2の発明は、前記撥水処理を施した多孔
質材が、0.1〜10mmの厚さで、40〜98%の気
孔率と0.001〜0.05mmの平均気孔径を有する
船底被覆材料に関する(請求項2)。
In a second aspect, the water-repellent porous material has a thickness of 0.1 to 10 mm, a porosity of 40 to 98%, and an average pore diameter of 0.001 to 0.05 mm. (Claim 2).

【0009】第3の発明は、前記撥水処理を施した多孔
質材が、カーボン粉末、セラミックス粉末、金属粉末、
カーボン繊維、セラミックス繊維および金属繊維の群よ
り選ばれる少なくとも1種に樹脂またはゴムを混ぜた
後、撥水処理を施した多孔質材である船底被覆材料に関
する(請求項3)。
In a third aspect of the present invention, the water-repellent porous material is made of carbon powder, ceramic powder, metal powder,
The present invention relates to a ship bottom covering material which is a porous material obtained by mixing a resin or rubber with at least one selected from the group consisting of carbon fiber, ceramic fiber and metal fiber, and then performing a water-repellent treatment.

【0010】第4の発明は、前記撥水処理を施した多孔
質材が、発泡金属に撥水処理を施した多孔質材である船
底被覆材料に関する(請求項4)。
A fourth invention relates to a ship bottom covering material, wherein the porous material subjected to the water repellent treatment is a porous material obtained by subjecting a foamed metal to a water repellent treatment (claim 4).

【0011】[0011]

【発明の実施の形態】本発明にかかわる船底被覆材料
は、撥水処理を施した多孔質材からなる。撥水処理を施
した多孔質材を用いることにより、低い流水抵抗値を長
く維持することができる。
BEST MODE FOR CARRYING OUT THE INVENTION A ship bottom covering material according to the present invention is made of a water-repellent porous material. By using the porous material subjected to the water-repellent treatment, a low flowing water resistance value can be maintained for a long time.

【0012】船底被覆材料の厚さは0.1〜10mmで
あることが好ましく、0.2〜5mmであることがより
好ましい。0.1mmを下回ると、多孔体としての強度
が保てなくなって、船底被覆材料としての強度を得るこ
とができず、一方、10mmより厚いと、重くなりまた
コストが高くなる傾向がある。
The thickness of the bottom coating material is preferably from 0.1 to 10 mm, more preferably from 0.2 to 5 mm. When the thickness is less than 0.1 mm, the strength as a porous body cannot be maintained, and the strength as a ship bottom covering material cannot be obtained. On the other hand, when the thickness is more than 10 mm, the weight tends to be heavy and the cost tends to be high.

【0013】船底被覆材料の気孔率は、40〜98%で
あることが好ましく、50〜80%であることがより好
ましい。40%を下回ると母材の親水性がまさって、超
撥水性を維持することが困難になり、一方、気孔率が9
8%より大きいと、母材の強度が弱くなる傾向がある。
[0013] The porosity of the ship bottom coating material is preferably 40 to 98%, more preferably 50 to 80%. If it is less than 40%, the hydrophilicity of the base material becomes greater, and it becomes difficult to maintain the super water repellency.
If it is larger than 8%, the strength of the base material tends to be weak.

【0014】船底被覆材料の平均気孔径は、0.001
〜0.05mmであることが好ましく、0.01〜0.
03mmであることがより好ましい。平均気孔径が0.
05mmを上回ると、充分な超撥水性を維持することが
できない傾向がある。これはポア径が大きくなるために
排斥力が弱まったためと考えられる。一方、平均気孔径
が0.001mm未満であると、気孔に撥水材を含浸さ
せるのが難しく、撥水処理が困難になる傾向がある。
The average pore diameter of the ship bottom coating material is 0.001.
To 0.05 mm, preferably 0.01 to 0.1 mm.
More preferably, it is 03 mm. The average pore size is 0.
If it exceeds 05 mm, there is a tendency that sufficient super water repellency cannot be maintained. This is considered to be due to the fact that the repulsion force was weakened due to the increase in the pore diameter. On the other hand, when the average pore diameter is less than 0.001 mm, it is difficult to impregnate the pores with a water-repellent material, and the water-repellent treatment tends to be difficult.

【0015】多孔質材の撥水処理とは、表面にフッ素や
シリコーンを有する層を形成する処理をいう。
The water-repellent treatment of the porous material means a treatment for forming a layer having fluorine or silicone on the surface.

【0016】多孔質材とは、内部に無数の閉塞されてい
ない気孔を保有している材料をいう。
The porous material refers to a material having a myriad of unobstructed pores inside.

【0017】多孔質材としては、カーボン粉末、セラミ
ックス粉末、金属粉末、カーボン繊維、セラミックス繊
維および金属繊維の群より選ばれる少なくとも1種に樹
脂またはゴムを混ぜた後、撥水処理を施した多孔質材
が、強度と耐食性を有し、塗膜性があるため好ましい。
As the porous material, a resin or rubber is mixed with at least one selected from the group consisting of carbon powder, ceramic powder, metal powder, carbon fiber, ceramic fiber and metal fiber, and then water-repellent. The material is preferable because it has strength and corrosion resistance and has coating properties.

【0018】これらの中では、耐食性に優れていて、軽
く安価であるため、カーボン粉末が特に好ましい。
Of these, carbon powder is particularly preferred because it is excellent in corrosion resistance, light and inexpensive.

【0019】樹脂としては、たとえばフェノール系樹
脂、アクリル系樹脂、フッ素系樹脂、シリコーン系樹脂
が挙げられ、またゴムとしては、たとえばネオプレン
(登録商標)ゴム、フッ素系ゴム、シリコーン系ゴムが
挙げられる。
Examples of the resin include a phenol resin, an acrylic resin, a fluorine resin, and a silicone resin. Examples of the rubber include neoprene (registered trademark) rubber, a fluorine rubber, and a silicone rubber. .

【0020】多孔質材としては、また発泡金属に撥水処
理を施した多孔質材も、安価に製造でき、プレス加工な
どにより船底の形状に合わせて被覆材料の形状を曲がっ
た形で固定しやすい点で好ましい。
As the porous material, a porous material obtained by subjecting a foamed metal to a water-repellent treatment can be manufactured at a low cost, and the shape of the coating material is fixed in a bent shape in accordance with the shape of the ship bottom by press working or the like. It is preferable because it is easy.

【0021】発泡金属とは、溶融した状態で多数の気孔
を形成させた金属をいい、たとえば発泡ステンレス、発
泡アルミニウムや発泡ニッケルなどがあげられる。
The foam metal refers to a metal in which a large number of pores are formed in a molten state, such as foamed stainless steel, foamed aluminum and foamed nickel.

【0022】発泡金属の撥水処理とは、パーフルオロシ
ランカップリング剤、フッ素系樹脂やシリコーン系樹脂
などを含浸し熱処理をすることにより、撥水性を発現さ
せることをいう。
The water-repellent treatment of the foamed metal means that the metal is impregnated with a perfluorosilane coupling agent, a fluorine-based resin, a silicone-based resin or the like, and is subjected to a heat treatment to exhibit water-repellency.

【0023】発泡金属の撥水処理の好ましい具体例とし
ては、図3に示すように、たとえば発泡ステンレスシー
トに、特開平10−159688号公報に記載されてい
るような筒内噴射式内燃機関の燃料噴射弁の内壁に用い
られているようなシランカップリング剤を用いた撥水処
理方法を用いて、発泡ステンレスへの撥水処理を行うこ
とにより得ることができ、たとえば金属アルコキシドと
アルコキシル基の一部がフルオロアルキル基で置換され
たフルオロアルキル基置換アルコキシドを含む被覆溶液
を塗布し、焼成することにより得ることができる。この
撥水処理によれば、金属表面にフッ素基で覆われた柔毛
のような超撥水表面が得られる。
As a preferred specific example of the water-repellent treatment of the foamed metal, as shown in FIG. 3, for example, a foamed stainless steel sheet is provided on an in-cylinder injection type internal combustion engine as described in JP-A-10-159688. It can be obtained by performing water repellent treatment on foamed stainless steel using a water repellent treatment method using a silane coupling agent such as that used for the inner wall of the fuel injection valve. For example, a metal alkoxide and an alkoxyl group can be obtained. It can be obtained by applying a coating solution containing a fluoroalkyl group-substituted alkoxide partly substituted with a fluoroalkyl group, followed by firing. According to this water-repellent treatment, a super-water-repellent surface such as soft fur having a metal surface covered with a fluorine group can be obtained.

【0024】図1に示す実施の形態に基づいて従来と同
一または相当する部分には同一の符号を付して本発明の
構成とその作用を説明する。図1は、第3の発明にかか
わる船底被覆材料の断面拡大模式図であり、図におい
て、2は多孔質材料で構成される撥水処理の施された船
底被覆材料、3は多孔質材料、4は気孔を模式的に示し
たものである。
Based on the embodiment shown in FIG. 1, the same reference numerals are given to the same or corresponding parts as in the prior art, and the configuration of the present invention and its operation will be described. FIG. 1 is an enlarged schematic cross-sectional view of a ship bottom covering material according to a third invention. In the drawing, reference numeral 2 denotes a water bottom repellent ship bottom covering material made of a porous material, 3 denotes a porous material, Reference numeral 4 schematically shows pores.

【0025】気孔内部の撥水性について、その作用を図
を用いて説明する。図2は、多孔質体の気孔径と接触角
および排斥力または吸引力の関係を示す図である。図2
では、気孔径は直径ではなく、ポア半径raで表してい
る。ΔPは排斥力または吸引力で、正であれば吸引力、
負であれば排斥力になる。次式はΔPとポア半径ra、
接触角θの関係を示したものである。 ΔP = 2γcosθ/ra (1)
The function of the water repellency inside the pores will be described with reference to the drawings. FIG. 2 is a diagram showing the relationship between the pore diameter of the porous body, the contact angle, and the repulsive or attractive force. FIG.
In, the pore diameter is not represented by the diameter but by the pore radius ra. ΔP is the repulsive force or suction force, if positive, the suction force,
If it is negative, it will be a repulsive force. The following equation is ΔP and the pore radius ra,
This shows the relationship of the contact angle θ. ΔP = 2γ cos θ / ra (1)

【0026】ΔPが排斥力になるか吸引力になるかは、
接触角θが90度を上回るか、下回るかによって決定さ
れる。また、ポア半径raが小さくなればなるほど、Δ
Pの絶対値が大きくなる。従って、気孔の撥水性が高
く、気孔径が小さければ小さいほど強力な超撥水が実現
することになる。平滑面の超撥水に比べて、気孔内部の
超撥水がより強力であることは、図2および式1で明ら
かである。
Whether ΔP becomes a repulsive force or a suction force is determined by
Is determined depending on whether the contact angle θ is greater than or less than 90 degrees. In addition, the smaller the pore radius ra, the more Δ
The absolute value of P increases. Therefore, the stronger the water repellency of the pores and the smaller the pore diameter, the more powerful super water repellency is realized. It is clear from FIG. 2 and Equation 1 that the super water repellency inside the pores is stronger than the super water repellency on the smooth surface.

【0027】さらに、多孔体の場合、摩耗によって表面
層が削られても、常に新しい超撥水気孔面4が現れるの
で、超撥水が保たれる。
Further, in the case of a porous body, even if the surface layer is scraped by abrasion, a new super water repellent pore surface 4 always appears, so that the super water repellency is maintained.

【0028】本発明にかかわる第3の船底被覆材料は、
たとえばカーボン布にカーボン粉末とPTFEディスパ
ージョンを加えてペースト化したものを含浸した後、4
00℃で15分程度加熱し、PTFEを溶融し、結着さ
せることにより得ることができる。
The third ship bottom covering material according to the present invention comprises:
For example, a carbon cloth impregnated with a paste obtained by adding carbon powder and PTFE dispersion,
It can be obtained by heating at 00 ° C. for about 15 minutes to melt and bind PTFE.

【0029】[0029]

【実施例】つぎに、本発明を実施例に基づいてさらに詳
細に説明するが、本発明はかかる実施例に限定されるも
のではない。
EXAMPLES Next, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

【0030】実施例1 多孔質材料3として、厚さ0.3mmのカーボン布にカ
ーボン粉末の一種であるファーネスブラック(バルカン
XC72、米国キャボット社)とPTFEディスパージ
ョン(ポリフロンD−1、ダイキン工業)を加えてペー
スト化したものを含浸し、400℃で15分間熱処理し
て、PTFEを溶融、結着させたものを用いた。
Example 1 As the porous material 3, furnace black (Vulcan XC72, Cabot Corporation, USA) and PTFE dispersion (Polyflon D-1, Daikin Industries, Ltd.), which are a kind of carbon powder, were put on a 0.3 mm thick carbon cloth. Was added, and the paste was impregnated and heat-treated at 400 ° C. for 15 minutes to melt and bind PTFE.

【0031】こうして作製した撥水処理したカーボン布
の一部について、水銀圧入式のポロシメーターで気孔分
布および気孔率を調べたところ、平均気孔径は0.00
5mmであり、気孔率は60%であった。また、マイク
ロメーターで撥水処理後の多孔質材の厚さを測定する
と、0.31mmであった。このカーボン布は明らかに
超撥水性を示し、水および海水をこのカーボン布の上に
滴下した所、球形になってこぼれ落ちた。従って、実施
例1の超撥水は、非常に強力なものである。
The pore distribution and the porosity of a part of the water-repellent carbon cloth thus produced were examined by a mercury intrusion porosimeter, and the average pore diameter was 0.00.
5 mm, and the porosity was 60%. The thickness of the porous material after the water-repellent treatment was measured with a micrometer and found to be 0.31 mm. This carbon cloth clearly showed super water repellency, and when water and seawater were dropped on the carbon cloth, it became spherical and spilled. Therefore, the super water repellent of Example 1 is very strong.

【0032】この超撥水性のカーボン布を大型模型の船
の船底(喫水線よりも下の位置)に貼り、従来の親水性
の塗料を塗った場合との速度の差異を調べた。大型の円
形の水槽を用いて、真水を入れ、直流モーターで駆動す
るプロペラを備えた大型模型の船を浮かべて、一定時間
内に大型模型の船が何周できるかの回数を調べた。その
結果、従来の親水性の塗料を塗った場合と比べて、45
%ほど回数が増えており、超撥水の実現により、船体の
流水抵抗値を著しく減少させることができたことを確認
できた。
This super-water-repellent carbon cloth was stuck on the bottom of a large model ship (at a position below the waterline), and the difference in speed from that when a conventional hydrophilic paint was applied was examined. Using a large circular water tank, fresh water was poured, and a large model ship equipped with a propeller driven by a DC motor was floated, and the number of laps of the large model ship within a certain time was examined. As a result, compared to the case where the conventional hydrophilic paint is applied, 45
%, And it was confirmed that the super-water-repellent material was able to significantly reduce the water resistance of the hull.

【0033】また、実施例1による船底被覆材料を脱水
機能を有する自動洗濯機に入れて、洗濯石鹸の代わりに
食塩を加え、洗い、脱水、すすぎ、脱水、すすぎ、脱水
の洗濯行程サイクルを40回繰り返した後、同様の試験
を実施したところ、船体の流水抵抗値はほとんど変化し
なかった。
Further, the bottom-coating material according to the first embodiment is put into an automatic washing machine having a dehydrating function, and salt is added instead of the washing soap. When the same test was carried out after repeating the number of times, the flowing resistance value of the hull hardly changed.

【0034】なお、カーボン粉末の代わりに、セラミッ
クス粉末、金属粉末、カーボン繊維、セラミックス繊維
や金属繊維を用いても良く、またこれらの混合物を用い
ても同様の効果が得られる。
In place of the carbon powder, ceramic powder, metal powder, carbon fiber, ceramic fiber or metal fiber may be used, and a similar effect can be obtained by using a mixture thereof.

【0035】実施例2 多孔質材料として、厚さ0.5mmの発泡ステンレスシ
ートを用い、特開平10−159688号公報に記載さ
れているような筒内噴射式内燃機関の燃料噴射弁の内壁
に用いられているようなシランカップリング剤を用いた
撥水処理方法を用いて、発泡ステンレスへの撥水処理を
行った。この撥水処理によれば、金属表面にフッ素基で
覆われた柔毛のような超撥水表面が得られる。具体的に
は、テトラエトキシシラン3g、ヘプタデカフルオロデ
シルトリメトキシシラン1g、エタノール40gと0.
05規定の塩酸水溶液3gを混合し攪拌した。つぎに、
得られた溶液を発泡ステンレスシートに塗布し、乾燥の
後、250℃で1時間熱処理した。
Example 2 A 0.5 mm thick foamed stainless steel sheet was used as a porous material, and was applied to the inner wall of a fuel injection valve of a direct injection internal combustion engine as described in JP-A-10-159688. The water-repellent treatment was performed on the foamed stainless steel using a water-repellent treatment method using a silane coupling agent as used. According to this water-repellent treatment, a super-water-repellent surface such as soft fur having a metal surface covered with a fluorine group can be obtained. Specifically, 3 g of tetraethoxysilane, 1 g of heptadecafluorodecyltrimethoxysilane, 40 g of ethanol, and 0.1 g of ethanol were added.
3 g of a 05N hydrochloric acid aqueous solution was mixed and stirred. Next,
The obtained solution was applied to a foamed stainless sheet, dried, and then heat-treated at 250 ° C. for 1 hour.

【0036】こうして作製した撥水処理した発泡ステン
レスシートの一部を用いて、水銀圧入式のポロシメータ
ーで気孔分布および気孔率を調べた所、平均気孔径は
0.01mmであり、気孔率は80%であった。また、
マイクロメーターで撥水処理後の多孔質材の厚さを測定
すると、0.51mmであった。この撥水処理した発泡
ステンレスシートは明らかに超撥水性を示し、水および
海水をこの撥水処理した発泡ステンレスシートの上に滴
下した所、球形になってこぼれ落ちた。
Using a part of the water-repellent foamed stainless steel sheet prepared as described above, the pore distribution and porosity were examined by a mercury intrusion porosimeter. The average pore diameter was 0.01 mm and the porosity was 80%. %Met. Also,
The thickness of the porous material after the water-repellent treatment was measured with a micrometer and found to be 0.51 mm. The water-repellent foamed stainless steel sheet clearly exhibited super-water repellency. When water and seawater were dropped on the water-repellent foamed stainless steel sheet, the sheet became spherical and spilled.

【0037】この超撥水性の発泡ステンレスシートを大
型模型の船の船底(喫水線よりも下の位置)に貼り、従
来の親水性の塗料を塗った場合との速度の差異を調べ
た。大型の円形の水槽を用いて、真水を入れ、直流モー
ターで駆動するプロペラを備えた大型模型の船を浮かべ
て、一定時間内に大型模型の船が何周できるかの回数を
調べた。その結果、従来の親水性の塗料を塗った場合と
比べて、35%ほど回数が増えており、超撥水の実現に
より、船体の流水抵抗値を著しく減少させることができ
たことを確認できた。
The super-water-repellent foamed stainless steel sheet was attached to the bottom of a large model ship (at a position below the waterline), and the difference in speed from the case where a conventional hydrophilic paint was applied was examined. Using a large circular water tank, fresh water was poured, and a large model ship equipped with a propeller driven by a DC motor was floated, and the number of laps of the large model ship within a certain time was examined. As a result, the number of times was increased by about 35% compared to the case where the conventional hydrophilic paint was applied, and it was confirmed that the super-water-repellent material was able to significantly reduce the flowing resistance value of the hull. Was.

【0038】また、実施例1の場合と同様に船底被覆材
料を脱水機能を有する自動洗濯機に入れて、洗濯石鹸の
代わりに食塩を加え、洗い、脱水、すすぎ、脱水、すす
ぎ、脱水の洗濯行程サイクルを40回繰り返した後、同
様の試験を実施した所、船体の流水抵抗値はほとんど変
化しなかった。
As in the case of the first embodiment, the bottom coating material is put into an automatic washing machine having a dehydrating function, and salt is added instead of the washing soap, and washing, dehydrating, rinsing, dehydrating, rinsing, and dehydrating washing are performed. After repeating the stroke cycle for 40 times, a similar test was conducted, and the flowing resistance of the hull hardly changed.

【0039】なお、発泡ステンレスの代わりに、発泡ア
ルミニウムや発泡ニッケルなど、他の発泡金属を用いて
も良く、同様の効果が得られる。
In place of the foamed stainless steel, other foamed metals such as foamed aluminum and foamed nickel may be used, and the same effect can be obtained.

【0040】実施例1と実施例2について、カーボン粉
末、セラミックス粉末、金属粉末、カーボン繊維、セラ
ミックス繊維、金属繊維などの種々の材料を用いて、多
孔質材の厚さ、気孔率および平均気孔径について調べ
た。その結果、まず厚さについては、0.1mmを下回
ると、多孔体としての強度が保てなくなって、船底被覆
材料としての強度を得ることができなかった。しかし、
厚い分には5mmを超えても撥水性の低下は見られなか
った。気孔率については、40%を下回ると母材の親水
性がまさって、超撥水性を維持することが困難になっ
た。しかし、気孔率が80%を上回っても、金属などの
よう母材の強度が保たれていれば船底被覆材料としての
強度に問題は生じなかった。一方、気孔径については、
母材に関係なく、0.05mm以下の平均気孔径であれ
ば、摩耗しても超撥水性を保つことができた。しかし
0.05mmを上回った場合には、充分な超撥水性を維
持することができなかった。
In Examples 1 and 2, using various materials such as carbon powder, ceramic powder, metal powder, carbon fiber, ceramic fiber, and metal fiber, the thickness, porosity, and average porosity of the porous material were used. The pore size was examined. As a result, first, when the thickness was less than 0.1 mm, the strength as a porous body could not be maintained, and the strength as a ship bottom covering material could not be obtained. But,
No reduction in water repellency was observed even when the thickness exceeded 5 mm for the thick portion. If the porosity is less than 40%, the hydrophilicity of the base material becomes greater, and it becomes difficult to maintain the super water repellency. However, even if the porosity exceeds 80%, there is no problem in the strength as a ship bottom covering material as long as the strength of the base material such as metal is maintained. On the other hand, regarding the pore diameter,
Regardless of the base material, if the average pore diameter was 0.05 mm or less, super water repellency could be maintained even when worn. However, when it exceeded 0.05 mm, sufficient super water repellency could not be maintained.

【0041】[0041]

【発明の効果】本発明にかかわる第1の船底被覆材料に
よれば、撥水処理を施した多孔質材を用いることによ
り、低い流水抵抗値を長期間維持することができる。
According to the first ship bottom covering material of the present invention, a low water resistance can be maintained for a long time by using a water-repellent porous material.

【0042】本発明にかかわる第2の船底被覆材料によ
れば、0.1〜10mmの厚さで、40〜98%の気孔
率と0.001〜0.05mmの平均気孔径を有し、撥
水処理を施した多孔質材を用いて船底被覆材料を構成し
たので、摩耗しても、常に新しい超撥水気孔が現れ、長
時間維持できる超撥水性が発現し、船体の流水抵抗値を
著しく減少させることができる効果がある。
According to the second ship bottom covering material of the present invention, it has a thickness of 0.1 to 10 mm, a porosity of 40 to 98%, and an average pore diameter of 0.001 to 0.05 mm, The hull bottom coating material is made of water-repellent porous material, so even when worn, new super-water-repellent pores always appear, exhibiting super-water-repellency that can be maintained for a long time, and the water resistance of the hull Is significantly reduced.

【0043】本発明にかかわる第3の船底被覆材料によ
れば、多孔質材として、カーボン粉末、セラミックス粉
末、金属粉末、カーボン繊維、セラミックス繊維および
金属繊維からなる群より選ばれた1種以上に樹脂または
ゴムを混ぜた後、撥水処理を施して構成したので、長期
間維持できる超撥水性が発現し、船体の流水抵抗値を著
しく減少させることができる効果があるとともに、船底
を覆うように貼り付け、必要に応じて、取り外すことが
できる。
According to the third ship bottom covering material of the present invention, the porous material is selected from the group consisting of carbon powder, ceramic powder, metal powder, carbon fiber, ceramic fiber and metal fiber. After mixing the resin or rubber, the water repellent treatment is applied, so that super water repellency that can be maintained for a long period of time is expressed, and there is an effect that the flowing water resistance value of the hull can be significantly reduced, and the bottom of the ship is covered. And can be removed if necessary.

【0044】本発明にかかわる第4の船底被覆材料によ
れば、多孔質材として、発泡金属に撥水処理を施して構
成したので、船底の形状に合わせて、構成し、船底には
め込み、必要に応じて取り外すことができる。また、気
孔部分の内壁が超撥水に保たれるので、表面が荒らされ
たり、摩耗しても、次々に新しい超撥水面が現れ、長期
間にわたって超撥水性を保つことができる。
According to the fourth ship bottom covering material of the present invention, since the porous material is formed by applying a water-repellent treatment to the foamed metal, it is formed according to the shape of the ship bottom, and is fitted into the ship bottom. Can be removed according to. Further, since the inner wall of the pore portion is kept super water repellent, even if the surface is roughened or worn, new super water repellent surfaces appear one after another, and the super water repellency can be maintained for a long period of time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1による船底被覆材料の断面拡大模式
図である。
FIG. 1 is an enlarged schematic cross-sectional view of a ship bottom covering material according to a first embodiment.

【図2】 実施例1による気孔径と接触角および排斥力
または吸引力の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a pore diameter, a contact angle, and a repulsive force or a suction force according to the first embodiment.

【図3】 実施例2による船底被覆材料の断面拡大模式
図である。
FIG. 3 is an enlarged schematic cross-sectional view of a ship bottom covering material according to a second embodiment.

【図4】 従来の船底被覆材料の断面拡大模式図であ
る。
FIG. 4 is an enlarged schematic sectional view of a conventional ship bottom covering material.

【符号の説明】[Explanation of symbols]

1 船底の鋼板、2 多孔質材料で構成され撥水処理の
施された船底被覆材料、3 多孔質材料、4 気孔、5
親水性の船底被覆材料、6 被覆材料内部、7 被覆
材料表面、8 発泡金属。
1 Steel plate at the bottom of ship, 2 Bottom covering material composed of porous material and subjected to water-repellent treatment, 3 Porous material, 4 pores, 5
Hydrophilic bottom coating material, 6 coating material inside, 7 coating material surface, 8 foam metal.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 撥水処理を施した多孔質材からなる船底
被覆材料。
1. A ship bottom covering material comprising a porous material subjected to a water repellent treatment.
【請求項2】 前記撥水処理を施した多孔質材が、0.
1〜10mmの厚さで、40〜98%の気孔率と0.0
01〜0.05mmの平均気孔径を有する請求項1記載
の船底被覆材料。
2. The porous material having been subjected to the water-repellent treatment has a particle size of 0.1.
With a thickness of 1-10 mm, a porosity of 40-98% and 0.0
The ship bottom covering material according to claim 1, which has an average pore diameter of 01 to 0.05 mm.
【請求項3】 前記撥水処理を施した多孔質材が、カー
ボン粉末、セラミックス粉末、金属粉末、カーボン繊
維、セラミックス繊維および金属繊維の群より選ばれる
少なくとも1種に樹脂またはゴムを混ぜた後、撥水処理
を施した多孔質材である請求項1または2記載の船底被
覆材料。
3. After the water-repellent porous material is mixed with a resin or rubber, at least one selected from the group consisting of carbon powder, ceramic powder, metal powder, carbon fiber, ceramic fiber and metal fiber. 3. The ship bottom covering material according to claim 1, which is a porous material subjected to a water-repellent treatment.
【請求項4】 前記撥水処理を施した多孔質材が、発泡
金属に撥水処理を施した多孔質材である請求項1または
2記載の船底被覆材料。
4. The ship bottom covering material according to claim 1, wherein the water-repellent porous material is a porous material obtained by performing a water-repellent treatment on a foamed metal.
JP2000120942A 2000-04-21 2000-04-21 Covering material for bottom of ship Pending JP2001302984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000120942A JP2001302984A (en) 2000-04-21 2000-04-21 Covering material for bottom of ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000120942A JP2001302984A (en) 2000-04-21 2000-04-21 Covering material for bottom of ship

Publications (1)

Publication Number Publication Date
JP2001302984A true JP2001302984A (en) 2001-10-31

Family

ID=18631678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000120942A Pending JP2001302984A (en) 2000-04-21 2000-04-21 Covering material for bottom of ship

Country Status (1)

Country Link
JP (1) JP2001302984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227950A (en) * 2008-03-20 2009-10-08 Kenjiro Maekawa Antifouling ship bottom paint and hull coating material whose paint film or coating is porous or water-permeable, and ship molded and coated with the coating material
JP2018035227A (en) * 2016-08-30 2018-03-08 日本ペイントマリン株式会社 Coating composition and film formed therefrom

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227950A (en) * 2008-03-20 2009-10-08 Kenjiro Maekawa Antifouling ship bottom paint and hull coating material whose paint film or coating is porous or water-permeable, and ship molded and coated with the coating material
JP2018035227A (en) * 2016-08-30 2018-03-08 日本ペイントマリン株式会社 Coating composition and film formed therefrom

Similar Documents

Publication Publication Date Title
Yong et al. Superoleophobic surfaces
Wang et al. Porous metal filters and membranes for oil–water separation
Chen et al. Nature-inspired hierarchical protrusion structure construction for washable and wear-resistant superhydrophobic textiles with self-cleaning ability
Zhu et al. One-pot preparation of fluorine-free magnetic superhydrophobic particles for controllable liquid marbles and robust multifunctional coatings
Khan et al. Recent advances in superhydrophobic surfaces for practical applications: A review
Kota et al. The design and applications of superomniphobic surfaces
Teisala et al. Superhydrophobic coatings on cellulose‐based materials: fabrication, properties, and applications
Zhang et al. One-step method for fabrication of superhydrophobic and superoleophilic surface for water-oil separation
CN109575769A (en) Super-hydrophobic and super oleophobic coating of one kind and preparation method thereof
US4947785A (en) Improvements in or relating to boat hulls
CN112626518B (en) In-situ growth TiO based on laser hole array2Multifunctional bionic titanium-based surface of nanowire and preparation method thereof
CN105908187B (en) Bionic super-hydrophobic surface, preparation method and drag reduction method
Yan et al. Super hydrophobic property of PVDF/CaCO3 nanocomposite coatings
Rios et al. The effects of nanostructure and composition on the hydrophobic properties of solid surfaces
CN107349803A (en) A kind of hydrophobic polymer microporous barrier and its manufacture method
CN108659600B (en) Super-amphiphobic self-cleaning fluorine-silicon coating material and preparation method thereof
Zhang et al. NiCo2O4 hierarchical structure coated mesh with long-term stable underwater superoleophobicity for high-efficient, high-flux oil-water separation
Motlagh et al. Super dewetting surfaces: focusing on their design and fabrication methods
Wu et al. Fabrication of highly underwater oleophobic textiles through poly (vinyl alcohol) crosslinking for oil/water separation: the effect of surface wettability and textile type
CN108722347A (en) A kind of preparation of graphene oil suction sponge
JP2001302984A (en) Covering material for bottom of ship
CN113665728A (en) Bionic drag reduction method for underwater vehicle and water surface ship
CN113248776A (en) Preparation method of waterproof and oil-proof breathable film with super-amphiphobic function
AU611724B2 (en) Anti-fouling marine coating
JP2008020864A (en) Sound absorbing non-woven fabric sheet