JP2001302225A - Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material - Google Patents

Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material

Info

Publication number
JP2001302225A
JP2001302225A JP2000118085A JP2000118085A JP2001302225A JP 2001302225 A JP2001302225 A JP 2001302225A JP 2000118085 A JP2000118085 A JP 2000118085A JP 2000118085 A JP2000118085 A JP 2000118085A JP 2001302225 A JP2001302225 A JP 2001302225A
Authority
JP
Japan
Prior art keywords
carbon material
porous carbon
double layer
electric double
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000118085A
Other languages
Japanese (ja)
Inventor
Kenichi Uehara
健一 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000118085A priority Critical patent/JP2001302225A/en
Publication of JP2001302225A publication Critical patent/JP2001302225A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a porous carbon material having high specific surface area in high yield at a low cost by an oxidizing gas activation method which can be easily incorporated in a process. SOLUTION: This porous carbon material is produced by heating a soft carbon material in the presence of oxygen at a temperature lower than the activation temperature and activating the obtained pretreated product with an oxidizing gas. The pretreatment is preferably carried out at 200-500 deg.C. A porous carbon material having a specific surface area of >=1,000 m2/g and usable as an electrode material for an electric double layer capacitor having high electrical capacitance can be produced by the process.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、酸化性ガス賦活法
による多孔質炭素材料の製造方法、およびこれにより得
られる、比表面積が大きく、低コストの多孔質炭素材
料、これを含む電気二重層キャパシタに関する。
The present invention relates to a method for producing a porous carbon material by an oxidizing gas activation method, a porous carbon material having a large specific surface area and a low cost obtained by the method, and an electric double layer containing the same. Related to capacitors.

【0002】[0002]

【従来の技術】一般に異なる二つの相が接触する界面で
は、極めて短い距離を隔てて正・負の電荷が対向して配
列分布する。電荷の配列分布層は電気二重層と称され
る。電解質中に浸漬した一対の分極性電極に直流電圧を
印加すると、正側に分極した電極には電解質中の陰イオ
ンが、また負側に分極した電極には電解質中の陽イオン
が静電的に引き寄せられ、電極と電解液の界面に電気二
重層と呼ばれる空間電荷層が形成される。電気二重層キ
ャパシタは、この電気二重層に蓄積された電荷の持つ電
気エネルギーを利用するように構成された素子である。
2. Description of the Related Art Generally, at an interface where two different phases are in contact with each other, positive and negative charges are arranged and distributed opposite to each other at an extremely short distance. The charge distribution layer is called an electric double layer. When a DC voltage is applied to a pair of polarizable electrodes immersed in the electrolyte, anions in the electrolyte are electrostatically applied to the positively polarized electrode, and cations in the electrolyte are applied to the negatively polarized electrode. To form a space charge layer called an electric double layer at the interface between the electrode and the electrolyte. The electric double layer capacitor is an element configured to use electric energy of the electric charge stored in the electric double layer.

【0003】このような電気二重層キャパシタは、瞬時
充放電特性に優れ、かつ繰返しによる性能低下が少ない
という特性を有しているため、ICメモリーを搭載する
マイクロコンピューターなどの電子機器のバックアップ
電源などに広く利用されつつある。また瞬時充放電特性
に優れる電気二重層キャパシタは、電気自動車用電源と
しても有用である。
[0003] Such electric double layer capacitors have excellent instantaneous charge / discharge characteristics and a characteristic that the performance is less likely to decrease due to repetition. Therefore, such electric double layer capacitors are used as backup power supplies for electronic devices such as microcomputers equipped with IC memories. It is being widely used in An electric double layer capacitor having excellent instantaneous charge / discharge characteristics is also useful as a power supply for electric vehicles.

【0004】上記のように一対の分極性電極と電解質か
ら構成される電気二重層キャパシタでは、分極性電極と
電解質の界面に形成される電気二重層に蓄積される静電
容量Cは式(1)で示される。 C=∫〔ε/(4πδ)〕dS (1) (ここでε:電解液の誘電率、δ:電極表面からイオン
中心までの距離、S:電極界面の表面積である。)
In an electric double layer capacitor composed of a pair of polarizable electrodes and an electrolyte as described above, the capacitance C stored in the electric double layer formed at the interface between the polarizable electrode and the electrolyte is expressed by the following equation (1). ). C = ∫ [ε / (4πδ)] dS (1) (where ε: the dielectric constant of the electrolytic solution, δ: the distance from the electrode surface to the ion center, and S: the surface area of the electrode interface)

【0005】したがって比表面積の大きな分極性電極材
料を用いれば、静電容量の高い電気二重層キャパシタを
得ることができる。比表面積の大きい分極性電極材料と
しては、従来活性炭類(多孔質炭素材料)が周知であ
る。活性炭は、樹脂などの有機性廃棄物、パルプ製造残
渣、石炭、石炭コークス、木材、ヤシ殻などの原料を賦
活(多孔質化)処理することにより得られる。賦活方法
としては、水蒸気、空気、酸素、CO2 などの酸化性ガ
スを用いる方法、あるいはアルカリ薬品などを用いて薬
品賦活する方法が一般的である。アルカリ薬品を用いて
賦活すれば大きな比表面積が得られやすいが、設備腐蝕
の問題、薬品コスト、洗浄を必要とするなどの工程面か
ら工業的な主流は酸化性ガス賦活法である。
Therefore, when a polarizable electrode material having a large specific surface area is used, an electric double layer capacitor having a high capacitance can be obtained. Activated carbons (porous carbon materials) are conventionally known as polarizable electrode materials having a large specific surface area. Activated carbon is obtained by activating (porosity-forming) raw materials such as organic wastes such as resins, pulp production residues, coal, coal coke, wood, and coconut shells. As an activation method, a method using an oxidizing gas such as steam, air, oxygen, CO 2 , or the like, or a method of activating a chemical using an alkali chemical is generally used. A large specific surface area can be easily obtained by activating with an alkali chemical. However, the industrial mainstream is an oxidizing gas activating method in view of the problem of equipment corrosion, chemical cost, and need for cleaning.

【0006】酸化性ガス賦活法は、特別な薬品を使用せ
ず簡易な工程で実施でき、コスト面での利点があり、ま
た性能的にも該法で得られた多孔質炭素材料を分極性電
極材料として用いたときの経時変化が小さいという利点
がある。
[0006] The oxidizing gas activation method can be carried out in a simple process without using any special chemicals, has an advantage in cost, and also in terms of performance, the porous carbon material obtained by the method is polarized. There is an advantage that a change with time when used as an electrode material is small.

【0007】しかしながらメソカーボン系賦活原料をア
ルカリなどの薬品を用いずに酸化性ガスで賦活した場
合、本質的に大きな比表面積が得られにくく、また比表
面積の増大化は歩留まりの低下につながるため生産性の
面からも制限される。とくにメソカーボン系賦活原料の
うちでもメソカーボンマイクロビーズ(メソフェーズ小
球体)を用いれば、粒径の揃った多孔質炭素材料が得ら
れ、電気抵抗が小さく、充填密度の高い分極性電極材料
を得ることができるが、メソフェーズ小球体は繊維状の
ものに比べて賦活化しにくい。メソフェーズ小球体は平
滑表面を有し、酸化性ガス賦活での比表面積を1000
2 /gまで賦活することは困難であり、たとえば特開
平1−230414号に示されるように通常のメソフェ
ーズ小球体の水蒸気賦活では比表面積640m2 /g程
度である。このため特に薬品を用いなくても酸化性ガス
賦活法により、比表面積が大きく、充填密度が高く、大
きな静電容量が得られる多孔質炭素材料を生産性よく製
造する方法の出現が望まれていた。
However, when the mesocarbon-based activation raw material is activated with an oxidizing gas without using a chemical such as an alkali, it is difficult to obtain an essentially large specific surface area, and an increase in the specific surface area leads to a decrease in yield. It is also limited in terms of productivity. In particular, when mesocarbon microbeads (mesophase microspheres) are used among the mesocarbon-based activation raw materials, a porous carbon material having a uniform particle size can be obtained, and a polarizable electrode material having a small electric resistance and a high packing density can be obtained. However, the mesophase microspheres are harder to activate compared to fibrous ones. Mesophase microspheres have a smooth surface and a specific surface area of 1000
It is difficult to activate up to m 2 / g. For example, as shown in JP-A-1-230414, the specific surface area is about 640 m 2 / g in the ordinary steam activation of mesophase spherules. For this reason, it is desired to develop a method for producing a porous carbon material having a large specific surface area, a high packing density, and a large capacitance by using an oxidizing gas activation method without using a chemical, with high productivity. Was.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な従来技術に鑑みて、比表面積が大きく、充填密度の高
い多孔質炭素材料を酸化性ガス賦活法により生産性よく
製造する方法およびこれにより得られる静電容量の大き
い多孔質炭素材料、これを含む電気二重層キャパシタを
提供することを目的としている。
SUMMARY OF THE INVENTION In view of the above prior art, the present invention provides a method for producing a porous carbon material having a large specific surface area and a high packing density by an oxidizing gas activation method with high productivity. It is an object of the present invention to provide a porous carbon material having a large capacitance and an electric double layer capacitor including the same.

【0009】[0009]

【課題を解決するための手段】本発明者は、ソフトカー
ボン系炭素材料の酸化性ガス賦活について検討したとこ
ろ、賦活処理に先だって、該賦活温度よりも低温での酸
素存在下の加熱処理を加えておくことによって、比表面
積の大きい多孔質炭素材料が歩留まりよく得られること
を見出して本発明を完成するに至った。
Means for Solving the Problems The present inventor examined the activation of the oxidizing gas of the soft carbon-based carbon material, and prior to the activation treatment, added a heating treatment in the presence of oxygen at a temperature lower than the activation temperature. As a result, the inventors have found that a porous carbon material having a large specific surface area can be obtained with a high yield, and have completed the present invention.

【0010】すなわち本発明は、ソフトカーボン系炭素
材料に、酸素の存在下、賦活温度よりも低い温度で加熱
する前処理を施した後、酸化性ガスで賦活する多孔質炭
素材料の製造方法である。上記ソフトカーボン系炭素材
料として、メソフェーズ小球体および/またはバルクメ
ソフェーズを用いることができる。上記前処理は、20
0〜500℃の温度で行うことが好ましい。
That is, the present invention relates to a method for producing a porous carbon material in which a soft carbon-based carbon material is subjected to a pretreatment of heating at a temperature lower than an activation temperature in the presence of oxygen and then activated with an oxidizing gas. is there. As the soft carbon-based carbon material, mesophase small spheres and / or bulk mesophase can be used. The above pre-processing is 20
It is preferable to carry out at a temperature of 0 to 500 ° C.

【0011】本発明では、上記のような多孔質炭素材料
の製造方法により得られ、比表面積が1000m2 /g
以上である多孔質炭素材料も提供される。またこの多孔
質炭素材料を分極性電極材料とする電気二重層キャパシ
タも提供される。
In the present invention, the porous carbon material is obtained by the above-described method for producing a porous carbon material, and has a specific surface area of 1000 m 2 / g.
The porous carbon material described above is also provided. Also provided is an electric double layer capacitor using this porous carbon material as a polarizable electrode material.

【0012】[0012]

【発明の実施の形態】以下本発明をより具体的に説明す
る。本発明では、ソフトカーボン系炭素材料に、酸素の
存在下、賦活温度よりも低い温度で加熱する前処理を施
した後、酸化性ガスで賦活して多孔質炭素材料を製造す
る。上記ソフトカーボン系炭素材料として、メソフェー
ズ小球体および/またはバルクメソフェーズを用いるこ
とができる。メソフェーズ小球体およびバルクメソフェ
ーズは、公知のものを広く用いることができ、特に限定
されないが、粒径が5〜100μm範囲内のものが好ま
しく、5〜40μmのものがより好ましい。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below more specifically. In the present invention, a porous carbon material is manufactured by performing a pretreatment of heating a soft carbon-based carbon material in the presence of oxygen at a temperature lower than the activation temperature and then activating with an oxidizing gas. As the soft carbon-based carbon material, mesophase small spheres and / or bulk mesophase can be used. Known mesophase spheres and bulk mesophases can be widely used and are not particularly limited, but those having a particle size in a range of 5 to 100 μm are preferable, and those having a particle size of 5 to 40 μm are more preferable.

【0013】メソフェーズ小球体、バルクメソフェーズ
の製造原料としては、一般的に例えば石炭系タールある
いはピッチ、石油系重質油あるいはピッチなどのピッチ
類が用いられる。これらのピッチ類を好ましくは窒素気
流中で350〜500℃で0.5時間〜10時間加熱処
理を行なえば、加熱の進行に伴ってピッチ中に、先ずメ
ソフェーズ小球体が生成し、次いでメソフェーズ小球体
同士が凝集してバルクメソフェーズが生成してくる。し
たがってメソフェーズ小球体および/またはバルクメソ
フェーズの生成は加熱処理条件を所望に応じて適宜選択
すればよい。上記加熱後のピッチから、例えばキノリン
などを用いた溶剤分離操作でメソフェーズ小球体および
/またはバルクメソフェーズを得ることができる。
As a raw material for producing mesophase small spheres and bulk mesophase, pitches such as coal-based tar or pitch, petroleum heavy oil or pitch are generally used. If these pitches are subjected to a heat treatment at 350 to 500 ° C. for 0.5 hours to 10 hours, preferably in a nitrogen stream, first, mesophase small spheres are formed in the pitch as the heating proceeds, and then the mesophase small spheres are formed. The spheres aggregate to form a bulk mesophase. Therefore, the generation of the mesophase microspheres and / or the bulk mesophase may be performed by appropriately selecting the heat treatment conditions as desired. From the heated pitch, mesophase microspheres and / or bulk mesophase can be obtained by a solvent separation operation using, for example, quinoline.

【0014】本発明で賦活原料に用いるメソフェーズ小
球体およびバルクメソフェーズそのものの詳細は、たと
えば特開平1−230414号、特開平8−85794
号、特許第2950781号などに記載されており、本
明細書にもこれらの記載を引用することができる。本発
明ではこれらの市販品を用いてもよい。メソフェーズ小
球体またはバルクメソフェーズはいずれか一方を用いて
もよく、これらの混合物を用いてもよい。このようなソ
フトカーボン系炭素材料は、黒鉛前駆体であって、賦活
過程では黒鉛化が進み、黒鉛構造をとりやすいため、賦
活後に内部抵抗の少ない微細構造体を形成することがで
きて好ましい。すなわちソフトカーボン系炭素材料を用
いれば、ハードカーボン系材料を原料とする場合に比べ
電気抵抗が小さい多孔質炭素材料が得られるので好まし
い。
The details of the mesophase microspheres and bulk mesophase used as the starting material in the present invention are described in, for example, JP-A-1-230414 and JP-A-8-85794.
And Japanese Patent No. 2950781. These descriptions can also be cited in the present specification. In the present invention, these commercially available products may be used. Either the mesophase sphere or the bulk mesophase may be used, or a mixture thereof may be used. Such a soft carbon-based carbon material is a graphite precursor, which is preferably graphitized in the activation process and easily formed into a graphite structure, so that a fine structure having a small internal resistance can be formed after activation. That is, it is preferable to use a soft carbon-based carbon material because a porous carbon material having a lower electric resistance can be obtained as compared with a case where a hard carbon-based material is used as a raw material.

【0015】本発明では、上記のようなソフトカーボン
系炭素材料を賦活するに先立って、酸素の存在下、賦活
温度よりも低い温度で加熱前処理する。具体的には、酸
素、空気、酸素富化空気などの酸素含有ガスが存在する
雰囲気下で、200℃以上でかつ賦活温度よりは低い前
処理温度に昇温することにより行われる。本発明の効果
を損なわない範囲であれば塩素ガスなど他のガスを共存
させてもよい。前処理温度が高いと前処理工程での歩留
まりが低下し、特に500℃を越えると、酸素濃度など
によっても異なるが実用不適な程度に歩留まりが急低下
するため、前処理温度は通常、200〜500℃程度と
することが望ましい。なお、400℃までの昇温で90
%程度の歩留まりを確保できる条件で500℃まで昇温
すると歩留まりが5%以下に低下した。
In the present invention, prior to the activation of the soft carbon-based carbon material as described above, a pre-heating treatment is performed at a temperature lower than the activation temperature in the presence of oxygen. Specifically, in an atmosphere in which an oxygen-containing gas such as oxygen, air, or oxygen-enriched air is present, the temperature is raised to a pretreatment temperature of 200 ° C. or higher and lower than the activation temperature. Other gases such as chlorine gas may coexist as long as the effects of the present invention are not impaired. If the pretreatment temperature is high, the yield in the pretreatment step is reduced. In particular, when the temperature exceeds 500 ° C., the yield is rapidly lowered to an unsuitable level although it varies depending on the oxygen concentration and the like. It is desirable to be about 500 ° C. In addition, 90 degrees by raising the temperature to 400 ° C.
When the temperature was raised to 500 ° C. under the condition that a yield of about% could be secured, the yield was reduced to 5% or less.

【0016】昇温速度および前処理温度での保持時間は
特に限定されないが、1〜20℃/min程度の昇温速
度で行うことが望ましい。また昇温後、加熱を保持する
ことなく冷却し始めてもよいが、通常、昇温後1分〜1
0時間保持することが望ましい。前処理は、0.03〜
0.2MPa程度加圧して行うこともでき、加圧により
前処理時間を短縮することもできる。
The heating rate and the holding time at the pretreatment temperature are not particularly limited, but it is desirable to perform the heating at a heating rate of about 1 to 20 ° C./min. After the temperature is raised, cooling may be started without holding the heating.
It is desirable to hold for 0 hours. Preprocessing is 0.03 ~
The pressure can be increased by about 0.2 MPa, and the pretreatment time can be reduced by the pressure.

【0017】上記で前処理されたソフトカーボン系炭素
材料は、次いで賦活処理する。賦活は、通常の酸化性ガ
スによる賦活方法に準じて行うことができ、通常、水蒸
気、一酸化炭素、上記空気などの酸素含有ガスの雰囲気
下、加熱して行われる。加熱(賦活)温度は雰囲気によ
っても異なるが、水蒸気(水蒸気飽和不活性ガス雰囲気
など)で賦活する場合には、通常600〜1000℃程
度、好ましくは700〜950℃で、10分〜6時間程
度保持することが好ましい。また空気などの酸素含有ガ
スで賦活する場合には、400〜700℃程度、好まし
くは500〜600℃程度の温度で、数分間保持するこ
とが好ましい。加熱(賦活)時には、温度を一定割合で
上昇させた後、所望温度で保持してもよく、最終温度に
到達するまでに途中で何度か中間保持してもよい。上記
うちでも水蒸気賦活が好ましい。また賦活は、耐圧容器
を用いて加圧下に行うことができる。
The soft carbon-based carbon material pretreated as described above is then subjected to an activation treatment. The activation can be performed according to a normal activation method using an oxidizing gas, and is usually performed by heating under an atmosphere of an oxygen-containing gas such as water vapor, carbon monoxide, or the above air. The heating (activation) temperature varies depending on the atmosphere, but when activated by steam (such as a steam-saturated inert gas atmosphere), it is usually about 600 to 1000 ° C, preferably 700 to 950 ° C, and about 10 minutes to 6 hours. It is preferable to hold. When activated by an oxygen-containing gas such as air, it is preferable that the temperature is maintained at a temperature of about 400 to 700 ° C., preferably about 500 to 600 ° C. for several minutes. At the time of heating (activation), the temperature may be raised at a fixed rate and then maintained at a desired temperature, or may be maintained several times in the middle until reaching the final temperature. Among them, steam activation is preferable. The activation can be performed under pressure using a pressure vessel.

【0018】上記のような本発明によれば、比表面積の
大きい多孔質炭素材料を得ることができる。具体的に本
発明では、従来のアルカリ薬品を用いない酸化性ガス賦
活では困難であった比表面積1000m2 /g以上の多
孔質炭素材料を得ることもできる。
According to the present invention as described above, a porous carbon material having a large specific surface area can be obtained. Specifically, in the present invention, it is possible to obtain a porous carbon material having a specific surface area of 1000 m 2 / g or more, which has been difficult by the conventional oxidizing gas activation without using an alkali chemical.

【0019】さらに本発明で得られる多孔質炭素材料は
電気抵抗が小さく、また充填密度が大きいため単位体積
当りの静電容量も高い。充填密度の具体的な測定方法は
実施例に後述する。本発明では、1000m2 /g以上
の比表面積であっても10%以上の歩留まりで得ること
ができる。なお歩留まりは原料として用いたソフトカー
ボン系炭素材料(質量)に対する、得られた多孔質炭素
材料(質量)の割合である。
Further, the porous carbon material obtained by the present invention has a low electric resistance and a high packing density, so that the capacitance per unit volume is high. A specific method for measuring the packing density will be described later in Examples. In the present invention, a yield of 10% or more can be obtained even with a specific surface area of 1000 m 2 / g or more. The yield is the ratio of the obtained porous carbon material (mass) to the soft carbon-based carbon material (mass) used as the raw material.

【0020】上記のように本発明で得られる多孔質炭素
材料は、電気二重層キャパシタ用分極性電極材料として
好適であり、本発明ではこの多孔質炭素材料を分極性電
極材料とする電気二重層キャパシタも提供される。
As described above, the porous carbon material obtained in the present invention is suitable as a polarizable electrode material for an electric double layer capacitor. In the present invention, the porous carbon material is used as a polarizable electrode material. A capacitor is also provided.

【0021】上記多孔質炭素材料は、原料のメソフェー
ズ小球体、バルクメソフェーズなどのソフトカーボン系
炭素材料の形状にほぼ相応し、平均粒径5〜100μm
であり、分極性電極は、これら材料を用いた一般的な方
法に準じて製造することができる。一般的には、多孔質
炭素材料に、必要に応じて結合剤、導電剤を適宜加え、
円形あるいは矩形のディスクまたはシート状に成形して
多孔質炭素材料層を形成する。
The porous carbon material substantially corresponds to the shape of a soft carbon-based carbon material such as a raw material mesophase small sphere or bulk mesophase, and has an average particle size of 5 to 100 μm.
The polarizable electrode can be manufactured according to a general method using these materials. Generally, if necessary, a binder and a conductive agent are appropriately added to the porous carbon material,
The porous carbon material layer is formed by molding into a circular or rectangular disk or sheet.

【0022】上記結合剤としては、通常ポリテトラフル
オロエチレン(PTFE)、ポリフッ化ビニリデン(P
VDF)などを用いることができる。結合剤は、多孔質
炭素材料に対して、通常、0.1〜20質量%程度の量
で用いることができる。なお上記のような結合剤は、そ
の添加量が多すぎると電池の内部抵抗が大きくなり、少
なすぎると多孔質炭素材料粒子相互および集電体との接
着が不十分となる傾向がある。導電剤としては、通常カ
ーボンブラックなどが必要に応じて用いられる。使用す
る際は、多孔質炭素材料に対して、通常3〜20質量%
程度の量である。
As the binder, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (P
VDF) can be used. The binder can be used usually in an amount of about 0.1 to 20% by mass based on the porous carbon material. When the amount of the above-mentioned binder is too large, the internal resistance of the battery tends to increase, and when too small, the adhesion between the porous carbon material particles and the current collector tends to be insufficient. As the conductive agent, carbon black or the like is usually used as needed. When used, usually 3 to 20% by mass based on the porous carbon material
Of the order of magnitude.

【0023】分極性電極は、上記多孔質炭素材料層の片
面に導電性集電材層を有する構造であるが、導電性集電
材層は、多孔質炭素材料、結合剤および導電剤の混合物
から多孔質炭素材料層を形成する際に同時に圧接成形し
てもよく、また予め、圧縮成形などの方法により成形さ
れた多孔質炭素材料層の片面に集電材を電気的に接続し
てもよい。
The polarizable electrode has a structure in which a conductive current collector layer is provided on one surface of the porous carbon material layer. The conductive current collector layer is formed of a porous carbon material, a binder, and a mixture of a conductive agent. When the porous carbon material layer is formed, the current collector may be electrically connected to one surface of the porous carbon material layer formed in advance by a method such as compression molding.

【0024】厚さ10〜200μm程度の薄い多孔質炭
素材料層と金属などからなる集電材とを同時成形するに
は、上記結合剤を用いることが好ましい。具体的にはポ
リフッ化ビニリデンを結合剤とする場合は、これをN−
メチル−2−ピロリドンなどの溶剤に溶解し、これに多
孔質炭素材料、必要により導電剤を加えペースト状と
し、集電体上に均一に塗布し乾燥する方法が好ましい。
また乾燥後、次いで常温または加熱してプレスすること
によって多孔質炭素材料層の充填密度を大きくすること
も可能である。
In order to simultaneously form a thin porous carbon material layer having a thickness of about 10 to 200 μm and a current collector made of metal or the like, it is preferable to use the above binder. Specifically, when polyvinylidene fluoride is used as the binder, this is
A method of dissolving in a solvent such as methyl-2-pyrrolidone, adding a porous carbon material and, if necessary, a conductive agent to form a paste, uniformly applying the paste on a current collector, and drying the paste is preferred.
After drying, it is also possible to increase the packing density of the porous carbon material layer by pressing at room temperature or by heating.

【0025】ディスクまたは厚いシート状の多孔質炭素
材料成形体を製造する場合は、結合剤にはポリテトラフ
ルオロエチレンなどが好ましく用いられ、多孔質炭素材
料、結合剤、必要により導電剤とを常温または加熱下で
混練し、常温または加熱下で圧縮成形する方法が好まし
い。
In the case of producing a disk or a thick sheet-like molded article of a porous carbon material, polytetrafluoroethylene or the like is preferably used as a binder, and the porous carbon material, the binder and, if necessary, the conductive agent are mixed at room temperature. Alternatively, a method of kneading under heating and compression molding at room temperature or under heating is preferable.

【0026】多孔質炭素材料層に集電体を電気的に接続
する方法としては、アルミニウムなどの金属を溶射して
集電材とする方法、アルミニウムなどの金属箔や金属網
からなる集電材を圧接する方法などが挙げられる。
The current collector may be electrically connected to the porous carbon material layer by spraying a metal such as aluminum to form a current collector, or by pressing a current collector made of a metal foil or a metal net of aluminum or the like. And the like.

【0027】電気二重層キャパシタの単位セルは、一般
に上記のようにして得られる分極性電極を一対用い、必
要に応じて不織布、その他の多孔性材料からなる透液性
セパレータを介して対向させ、電解液中に浸漬すること
により形成する。なお一対の分極性電極は、互いに同じ
であって異なっていてもよい。電気二重層キャパシタの
使用に当たっては、上記単位セルを単独で、または複数
の単位セルを直列および/または並列に接続して使用す
る。
The unit cell of the electric double layer capacitor generally uses a pair of polarizable electrodes obtained as described above, and opposes each other via a liquid-permeable separator made of a nonwoven fabric or another porous material as necessary. It is formed by dipping in an electrolytic solution. Note that the pair of polarizable electrodes may be the same or different. In using the electric double layer capacitor, the unit cells are used alone or a plurality of unit cells are connected in series and / or in parallel.

【0028】電解液は非水溶媒系または水系のいずれも
使用可能である。非水溶媒系電解液は、有機溶媒に電解
質を溶解したものであり、有機溶媒としては、例えばエ
チレンカーボネート、プロピレンカーボネート、γ−ブ
チルラクトン、ジメチルスルホキシド、ジメチルフォル
ムアミド、アセトニトリル、テトラヒドロフラン、ジメ
トキシエタンなどを用いることができる。これらの二種
以上の混合物も使用することができる。
As the electrolytic solution, either a non-aqueous solvent system or an aqueous system can be used. The non-aqueous solvent-based electrolyte is a solution in which an electrolyte is dissolved in an organic solvent.Examples of the organic solvent include ethylene carbonate, propylene carbonate, γ-butyl lactone, dimethyl sulfoxide, dimethyl formamide, acetonitrile, tetrahydrofuran, dimethoxyethane, and the like. Can be used. Mixtures of two or more of these can also be used.

【0029】電解質としては、(C2 5 4 PB
4 、(C3 7 4 PBF4 、(C25 4 NBF
4 、(C3 7 4 NBF4 、(C2 5 4 PP
6 、(C25 4 PCF3 SO3 、LiBF4 、L
iClO4 、LiCF3 SO3 などを用いることができ
る。水系電解液の電解質としては、NaCl、NaO
H、HCl、H2 SO4 などを使用することができる。
As the electrolyte, (C 2 H 5 ) 4 PB
F 4 , (C 3 H 7 ) 4 PBF 4 , (C 2 H 5 ) 4 NBF
4 , (C 3 H 7 ) 4 NBF 4 , (C 2 H 5 ) 4 PP
F 6 , (C 2 H 5 ) 4 PCF 3 SO 3 , LiBF 4 , L
iClO 4 , LiCF 3 SO 3, or the like can be used. The electrolyte of the aqueous electrolyte is NaCl, NaO
H, HCl, H 2 SO 4 and the like can be used.

【0030】[0030]

【実施例】次に本発明を実施例により具体的に説明する
が、本発明はこれら実施例に限定されるものではない。 (実施例1〜3)耐熱容器中に、平均粒径17μmのメ
ソフェーズ小球体(川崎製鉄製商品名KMFC)を入
れ、10リットル/minの空気気流下、表1中に示す
所定の温度で1時間加熱(前処理)した。次いで10リ
ットル/minの33%H2 O飽和窒素気流下、900
℃で3時間熱処理(水蒸気賦活)した。得られた多孔質
炭素材料の細孔構造(比表面積および細孔径)、充填密
度を表1に示す。さらに多孔質炭素材料を用いて作製し
た電気二重層キャパシタの静電容量を表1に示す。
EXAMPLES Next, the present invention will be described specifically with reference to examples, but the present invention is not limited to these examples. (Examples 1 to 3) In a heat-resistant container, mesophase microspheres (trade name: KMFC manufactured by Kawasaki Steel Co., Ltd.) having an average particle size of 17 μm were placed at a predetermined temperature shown in Table 1 under an air flow of 10 L / min. Heating (pretreatment) for hours. Then, 900 L / min under a 33% H 2 O saturated nitrogen stream.
Heat treatment (steam activation) at 3 ° C. for 3 hours. Table 1 shows the pore structure (specific surface area and pore diameter) and packing density of the obtained porous carbon material. Further, Table 1 shows the capacitance of the electric double layer capacitor manufactured using the porous carbon material.

【0031】<細孔構造>比表面積および細孔径は、窒
素吸着BET法により求めた。比表面積と細孔径は、mi
crometrics社製ASAP2400を使用して、77Kに
おけるN2 吸脱着による吸着等温線をもとにBET法に
て算出した。なお平均細孔径=4×(細孔容積)/(比
表面積)である。
<Pore Structure> The specific surface area and the pore diameter were determined by a nitrogen adsorption BET method. The specific surface area and pore size are mi
Calculated by the BET method based on the adsorption isotherm by adsorption and desorption of N 2 at 77 K using ASAP2400 manufactured by crometrics. The average pore diameter is 4 × (pore volume) / (specific surface area).

【0032】<密度>炭素材料80mgに対し、ポリテ
トラフルオロエチレン(PTFE)を1mg混合し、直
径13mmのディスク状にプレス成形(圧力14.7G
Pa)し、ディスクの直径、厚さ、質量から、充填密度
(g/cm3 )を算出した。
<Density> 80 mg of a carbon material was mixed with 1 mg of polytetrafluoroethylene (PTFE) and press-formed into a disk having a diameter of 13 mm (pressure 14.7 G).
Pa), and the packing density (g / cm 3 ) was calculated from the diameter, thickness, and mass of the disk.

【0033】<電極の作製>多孔質炭素材料80gにカ
ーボンブラック10g、PVDFを10gの割合(質量
比)で加え、乾式混合した後、アルミメッシュを集電体
として室温で直径13mmの円盤状に加圧(9.8GP
a/cm2 )成形し分極性電極材料とした。これを減圧
下(133.3Pa)、160℃で6時間乾燥した。
<Preparation of Electrode> To 80 g of the porous carbon material, 10 g of carbon black and 10 g of PVDF were added at a ratio (mass ratio) of 10 g, and the mixture was dry-mixed. Pressurization (9.8 GP
a / cm 2 ) to form a polarizable electrode material. This was dried at 160 ° C. for 6 hours under reduced pressure (133.3 Pa).

【0034】<電気二重層キャパシタの作製>露点温度
−60℃、高純度アルゴンを流通させているグローブボ
ックス内において、上記で作製された一組の分極性電極
材料の間に多孔質ポリプロピレン(孔径0.20μm)
を挟み込み、宝泉社製の2極式セルに組み込み、電解液
を満たしてセルを作製した。電解液はプロピレンカーボ
ネートに1Mの濃度でテトラエチルアンモニウムテトラ
フルオロボレート((C2 5 4 NBF4 )を溶解し
たものを使用した。
<Preparation of Electric Double Layer Capacitor> In a glove box through which high-purity argon is flowed at a dew point of -60 ° C., porous polypropylene (pore diameter) is interposed between the pair of polarizable electrode materials prepared above. 0.20 μm)
Was inserted into a two-electrode cell manufactured by Hosensha, and filled with an electrolyte to prepare a cell. The electrolyte used was a solution of tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) dissolved in propylene carbonate at a concentration of 1M.

【0035】<静電容量の測定>充放電の測定は、北斗
電工充放電試験装置(HJR−110mSM6)を使用
し、充電0.5mA/cm2 の定電流充電を行い、電位
が2.4Vに達した後、定電圧充電に移行し2時間充電
を行った。0.5mA/cm2 の定電流放電を行い終止
電圧0Vとした。これを10サイクル実施した。静電容
量は次のようにして計算した。3サイクル目の放電曲線
(放電電圧−放電時間)から放電エネルギー(放電電圧
×電流)の時間積分として合計放電エネルギー(W・
s)を求め、静電容量(F)=2×合計放電エネルギー
(W・s )/(放電開始電圧(V))2 の関係式を用い
て静電容量を求め、この静電容量を分極性電極材料の炭
素材質量(正極+負極、単位:g)で除し、単位質量当
たりの静電容量とした。単位質量当たりの静電容量に、
分極性電極材料の充填密度(g/cm3 )を乗じた値を
単位容積当たりの静電容量(F/cm3 )とした。
<Measurement of Capacitance> The charge / discharge measurement was performed using a Hokuto Denko charge / discharge tester (HJR-110mSM6), a constant current charge of 0.5 mA / cm 2 was performed, and the potential was 2.4 V. After that, the operation was shifted to constant voltage charging, and charging was performed for 2 hours. A constant current discharge of 0.5 mA / cm 2 was performed to make the final voltage 0 V. This was performed for 10 cycles. The capacitance was calculated as follows. From the discharge curve of the third cycle (discharge voltage-discharge time), the total discharge energy (W ·
s) The seek, seeking capacitance using a capacitance (F) = 2 × total discharge energy (W · s) / (a discharge start voltage (V)) 2 relationship, minute the capacitance The capacitance per unit mass was divided by the mass of the carbon material of the polar electrode material (positive electrode + negative electrode, unit: g). To the capacitance per unit mass,
The value multiplied by the packing density (g / cm 3 ) of the polarizable electrode material was defined as the capacitance per unit volume (F / cm 3 ).

【0036】(比較例1)前処理を行わなかった以外
は、実施例1と同様にして水蒸気賦活した。結果を表1
に示す。
(Comparative Example 1) Steam activation was performed in the same manner as in Example 1 except that the pretreatment was not performed. Table 1 shows the results
Shown in

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【発明の効果】本発明の多孔質炭素材料の製造方法は、
低コストで工程化が容易な酸化性ガス賦活法により、比
表面積の大きい多孔質炭素材料を歩留まりよく製造する
ことができる。また上記で製造される本発明の多孔質炭
素材料は、静電容量が高く、充填密度が高い。このよう
な多孔質炭素材料は、このような諸特性が求められる種
々用途に使用することができるが、特に高密度エネルギ
ーが求められる電気二重層キャパシタ用電極材料として
好適に利用される。
According to the method for producing a porous carbon material of the present invention,
By the oxidizing gas activation method, which is low cost and easy to process, a porous carbon material having a large specific surface area can be manufactured with high yield. Further, the porous carbon material of the present invention produced as described above has a high capacitance and a high packing density. Such a porous carbon material can be used for various applications in which such various properties are required, but is particularly suitably used as an electrode material for an electric double layer capacitor requiring high density energy.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ソフトカーボン系炭素材料に、酸素の存在
下、賦活温度よりも低い温度で加熱する前処理を施した
後、酸化性ガスで賦活する多孔質炭素材料の製造方法。
1. A method for producing a porous carbon material, wherein a soft carbon-based carbon material is subjected to a pretreatment of heating at a temperature lower than an activation temperature in the presence of oxygen and then activated with an oxidizing gas.
【請求項2】前記ソフトカーボン系炭素材料がメソフェ
ーズ小球体および/またはバルクメソフェーズである請
求項1に記載の多孔質炭素材料の製造方法。
2. The method for producing a porous carbon material according to claim 1, wherein the soft carbon-based carbon material is mesophase small spheres and / or bulk mesophase.
【請求項3】前記前処理を200〜500℃の温度で行
う請求項1または2に記載の多孔質炭素材料の製造方
法。
3. The method for producing a porous carbon material according to claim 1, wherein the pretreatment is performed at a temperature of 200 to 500 ° C.
【請求項4】請求項1〜3のいずれかに記載の多孔質炭
素材料の製造方法により得られ、比表面積が1000m
2 /g以上である多孔質炭素材料。
4. A method for producing a porous carbon material according to claim 1, which has a specific surface area of 1000 m
2 / g or more of a porous carbon material.
【請求項5】請求項4の多孔質炭素材料を分極性電極材
料とする電気二重層キャパシタ。
5. An electric double layer capacitor using the porous carbon material according to claim 4 as a polarizable electrode material.
JP2000118085A 2000-04-19 2000-04-19 Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material Pending JP2001302225A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000118085A JP2001302225A (en) 2000-04-19 2000-04-19 Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000118085A JP2001302225A (en) 2000-04-19 2000-04-19 Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material

Publications (1)

Publication Number Publication Date
JP2001302225A true JP2001302225A (en) 2001-10-31

Family

ID=18629288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000118085A Pending JP2001302225A (en) 2000-04-19 2000-04-19 Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material

Country Status (1)

Country Link
JP (1) JP2001302225A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108538640A (en) * 2017-08-30 2018-09-14 北京化工大学 A kind of method that self-template, auto-dope prepare ultracapacitor richness phosphorus mesoporous carbon
US10714752B2 (en) 2016-01-13 2020-07-14 Nec Corporation Hierarchical oxygen containing carbon anode for lithium ion batteries with high capacity and fast charging capability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230414A (en) * 1987-11-20 1989-09-13 Osaka Gas Co Ltd Activated carbon and production thereof
JPH02185008A (en) * 1989-01-12 1990-07-19 Osaka Gas Co Ltd Electric double layer capacitor
JPH046760A (en) * 1990-04-23 1992-01-10 Osaka Gas Co Ltd Secondary battery and electric double-layer capacitor
JP2001189244A (en) * 1999-12-28 2001-07-10 Honda Motor Co Ltd Activated carbon for electric double-layer capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01230414A (en) * 1987-11-20 1989-09-13 Osaka Gas Co Ltd Activated carbon and production thereof
JPH02185008A (en) * 1989-01-12 1990-07-19 Osaka Gas Co Ltd Electric double layer capacitor
JPH046760A (en) * 1990-04-23 1992-01-10 Osaka Gas Co Ltd Secondary battery and electric double-layer capacitor
JP2001189244A (en) * 1999-12-28 2001-07-10 Honda Motor Co Ltd Activated carbon for electric double-layer capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10714752B2 (en) 2016-01-13 2020-07-14 Nec Corporation Hierarchical oxygen containing carbon anode for lithium ion batteries with high capacity and fast charging capability
CN108538640A (en) * 2017-08-30 2018-09-14 北京化工大学 A kind of method that self-template, auto-dope prepare ultracapacitor richness phosphorus mesoporous carbon
CN108538640B (en) * 2017-08-30 2019-12-06 北京化工大学 Method for preparing phosphorus-rich mesoporous carbon of supercapacitor by self-template and self-doping

Similar Documents

Publication Publication Date Title
Mehare et al. Preparation of porous agro-waste-derived carbon from onion peel for supercapacitor application
Zhang et al. Molecular level one-step activation of agar to activated carbon for high performance supercapacitors
Wang et al. A high-capacity carbon prepared from renewable chicken feather biopolymer for supercapacitors
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP5473282B2 (en) Carbon material for electric double layer capacitor and manufacturing method thereof
JP4754553B2 (en) Electrode manufacturing method, obtained electrode, and super capacitor including this electrode
KR100836524B1 (en) Active Material Having High Capacitance For An Electrode, Manufacturing Method thereof, Electrode And Energy Storage Apparatus Comprising The Same
WO2011081086A1 (en) Activated carbon for electric double-layer capacitor electrode and method for producing the same
JP2014530502A (en) High voltage electrochemical double layer capacitor
EP1565404A2 (en) Active carbon, production method thereof and polarizable electrode
JP2005136397A (en) Activated carbon, electrode material using it, and electric double layer capacitor
JP2001287906A (en) Method for producing porous carbon material, porous carbon material and electric double layer capacitor using the same
Hughes et al. The properties of carbons derived through the electrolytic reduction of molten carbonates under varied conditions: Part I. A study based on step potential electrochemical spectroscopy
JP4733707B2 (en) Carbon material for electric double layer capacitor, electric double layer capacitor, and method for producing carbon material for electric double layer capacitor
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP4941952B2 (en) Activated carbon, its production method and its use
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
JP2007269518A (en) Porous carbon material, method for producing the same, polarizable electrode for electrical double layer capacitor, and electrical double layer capacitor
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
JP2001302225A (en) Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material
JP2005347517A (en) Method of manufacturing activated charcoal for electric double layer capacitor electrode
JP2000138141A (en) Manufacture of carbon porous body for electric double layer capacitor polarizable electrode
JP2001302226A (en) Method for producing porous carbon material, porous carbon material and electric double layer capacitor produced by using the material
JP2005093778A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100316