JP2001300743A - Joined body of metallic pipes for expanded pipe and method of manufacturing the same - Google Patents

Joined body of metallic pipes for expanded pipe and method of manufacturing the same

Info

Publication number
JP2001300743A
JP2001300743A JP2000128687A JP2000128687A JP2001300743A JP 2001300743 A JP2001300743 A JP 2001300743A JP 2000128687 A JP2000128687 A JP 2000128687A JP 2000128687 A JP2000128687 A JP 2000128687A JP 2001300743 A JP2001300743 A JP 2001300743A
Authority
JP
Japan
Prior art keywords
pipe
metal
hardness
temperature
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000128687A
Other languages
Japanese (ja)
Inventor
Koji Horio
浩次 堀尾
Takao Hiyamizu
孝夫 冷水
Ryuzo Yamada
龍三 山田
Kazunari Kito
一成 鬼頭
Shigeyuki Inagaki
繁幸 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2000128687A priority Critical patent/JP2001300743A/en
Publication of JP2001300743A publication Critical patent/JP2001300743A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Heat Treatment Of Articles (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a joined body of metallic pipes for an expanded pipe which has high corrosion resistance and is expandable at a high expansion ratio, and a method of manufacturing the joined body. SOLUTION: Two metallic pipes are butted at their end surface, diffusion- joined, and then cooled (joining process). The vicinity of the joined part is kept at a temperature not lower than (At transformation temperature -100 deg.C) and lower than At transformation temperature for at least 30 seconds so that the ratio of the maximum hardness of the vicinity of the joined part to the hardness of the metallic pipes before joined becomes 1.4 or smaller, and then cooled (tempering process). In a case where the tempering is performed with a heating means having a narrow band of a uniform temperature, it is preferable that the vicinity of the joined part is kept at a temperature not lower than the A1 transformation temperature and not higher than (A1 transformation temperature +100 deg.C) for at least 30 seconds before the tempering is performed, and then cooled (intermediate heat treatment process).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、拡管用金属管接合
体及びその製造方法に関し、更に詳しくは、化学工業、
石油化学工業等で用いられるプラント用配管、ラインパ
イプ、あるいは油井で用いられるケーシングチューブ、
プロダクションチューブ、コイルドチューブ等の油井管
として好適な拡管用金属管接合体及びその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal pipe joint for pipe expansion and a method for producing the same, and more particularly, to a chemical industry,
Plant piping and line pipes used in the petrochemical industry, etc., or casing tubes used in oil wells,
TECHNICAL FIELD The present invention relates to a metal pipe joined body suitable for an oil country tubular good such as a production tube or a coiled tube, and a method for producing the same.

【0002】[0002]

【従来の技術】従来から、化学工業、石油化学工業等の
分野においては、種々の環境下での化学反応を利用して
目的生成物を得たり、化学反応の原料、中間生成物、目
的生成物等の腐食性の流体を長距離に亘って輸送するた
めに、長尺の金属管が使用されている。
2. Description of the Related Art Conventionally, in the fields of chemical industry, petrochemical industry, etc., a target product is obtained by utilizing a chemical reaction under various environments, or a starting material, an intermediate product, and a target product of a chemical reaction are obtained. Long metal tubes are used to transport corrosive fluids, such as objects, over long distances.

【0003】腐食環境に曝される金属管には、耐食性に
優れた継目無鋼管が一般に用いられるが、工業的に量産
されている継目無鋼管の長さは、10〜15mであり、
製造可能な長さの上限は100m程度である。そのた
め、このような場合には、長さ10〜15mの継目無鋼
管を複数個接合した接合体(以下、これを「金属管接合
体」という。)が用いられている。
[0003] A seamless steel pipe excellent in corrosion resistance is generally used for a metal pipe exposed to a corrosive environment. The length of a seamless steel pipe industrially mass-produced is 10 to 15 m.
The upper limit of the length that can be manufactured is about 100 m. Therefore, in such a case, a joined body in which a plurality of seamless steel pipes having a length of 10 to 15 m are joined (hereinafter, this is referred to as a "metal tube joined body") is used.

【0004】金属管の接合方法としては、ねじ接続法
(メカニカルカップ法)、溶接法(オービタルウェルデ
ィング法)、摩擦圧接法、拡散接合法などが知られてい
る。これらの中で、拡散接合法は、気密性が高く、母材
強度と同等の接合強度を有する継手が得られ、しかも、
溶接法に比して作業時間が短いという利点がある。その
ため、液相拡散接合法は、油井管やラインパイプ等の接
合方法としての応用が期待されているものである。
[0004] As a joining method of the metal pipe, a screw connection method (mechanical cup method), a welding method (orbital welding method), a friction welding method, a diffusion welding method and the like are known. Among these, the diffusion bonding method has a high airtightness, and a joint having a bonding strength equivalent to the base metal strength can be obtained.
There is an advantage that the working time is shorter than the welding method. Therefore, the liquid phase diffusion bonding method is expected to be applied as a bonding method for oil country tubular goods and line pipes.

【0005】また、一般に、金属管接合体は、接合され
た状態でそのまま使用されるが、用途によっては、接合
後に金属管接合体の内径を拡大させる加工(以下、これ
を「拡管」という。)を行う場合がある。例えば、近
年、油井管の分野では、油井の掘削コストを削減するた
めに、金属管接合体を地中に埋設した後、拡管を行う方
法が提案されている。
[0005] Generally, a metal pipe joint is used as it is in a joined state. However, depending on the application, a process of enlarging the inner diameter of the metal pipe joint after joining (hereinafter, this is referred to as "expansion"). ). For example, in recent years, in the field of oil country tubular goods, in order to reduce the drilling cost of oil wells, a method has been proposed in which a metal pipe joined body is buried in the ground and then expanded.

【0006】例えば、特表平7−507610号公報に
は、地中に掘削されたボアホールに可鍛材料製ケーシン
グを埋設し、液圧膨張ツールをケーシング内で膨張させ
ることにより、ケーシングをボアホール壁に対して半径
方向に膨張させる方法が開示されている。
For example, Japanese Unexamined Patent Publication No. 7-507610 discloses that a casing made of a malleable material is buried in a borehole excavated in the ground, and a hydraulic expansion tool is expanded in the casing to form a casing on the borehole wall. A method is disclosed for radially expanding with respect to.

【0007】また、特許協力条約に基づく国際公開第W
O98/0062号には、ネッキングや延性破壊するこ
となく歪硬化を生ずる可鍛性の鋼種からなる鋼管を坑
道、あるいは先に埋設されたケーシング内に挿入し、非
金属材料からなるテーパ面を有するマンドレルを用いて
ケーシングを拡管する方法が開示されている。
[0007] International Publication No. W based on the Patent Cooperation Treaty
In O98 / 0062, a steel pipe made of a malleable steel type that causes strain hardening without necking or ductile fracture is inserted into a tunnel or a casing buried earlier, and has a tapered surface made of a nonmetallic material. A method of expanding a casing using a mandrel is disclosed.

【0008】[0008]

【発明が解決しようとする課題】ところで、金属管接合
体を拡管するためには、接合部が高い変形能を有してい
ることが必要である。例えば、油井管の場合、油井の掘
削コストを削減するためには、拡管前後の内径の拡大率
(以下、これを「拡管率」という。)は、少なくとも5
%は必要であり、さらに好ましくは、20%以上であ
る。
By the way, in order to expand the metal pipe joint, it is necessary that the joint has a high deformability. For example, in the case of oil country tubular goods, in order to reduce the drilling cost of oil wells, the expansion rate of the inner diameter before and after expansion (hereinafter, this is referred to as “expansion rate”) is at least five.
% Is necessary, and more preferably 20% or more.

【0009】一方、拡散接合法は、上述したように、高
品質の金属管接合体を高能率で製造することが可能な接
合方法である。そのため、拡散接合法と拡管とを組み合
わせ、これを油井管に適用すれば、油井掘削コストの大
幅な削減が期待できる。
On the other hand, as described above, the diffusion bonding method is a bonding method capable of producing a high quality metal pipe bonded body with high efficiency. Therefore, if the diffusion bonding method and the expansion are combined and applied to an oil country tubular good, a significant reduction in oil well drilling costs can be expected.

【0010】しかしながら、油井管のように、過酷な腐
食環境に曝される金属管には、一般に、耐食性に優れた
鋼種、すなわち、種々の合金元素を添加した鋼種が使用
される。そのため、これを拡散接合した後、冷却する
と、金属管の組成、接合後の冷却速度等によっては、接
合部の変形能が大きく低下し、拡管率を大きく取れない
場合があった。
However, for a metal pipe exposed to a severe corrosive environment such as an oil country tubular good, a steel type excellent in corrosion resistance, that is, a steel type to which various alloying elements are added, is generally used. For this reason, when this is cooled after diffusion bonding, depending on the composition of the metal tube, the cooling rate after bonding, etc., the deformability of the bonded portion is greatly reduced, and a large pipe expansion rate may not be obtained.

【0011】本発明が解決しようとする課題は、高い耐
食性を有し、しかも、高い拡管率で拡管可能な拡管用金
属管接合体及びその製造方法を提供することにある。
An object of the present invention is to provide an expanded metal pipe assembly having high corrosion resistance and capable of expanding at a high expansion rate, and a method of manufacturing the same.

【0012】[0012]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、複数の金属管が拡散接合された拡管用金
属管接合体において、前記金属管の接合前の硬度に対す
る接合部近傍の最大硬度の比が1.4以下であることを
要旨とするものである。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention relates to an expanded metal pipe joint in which a plurality of metal pipes are diffusion-bonded. The ratio of the maximum hardness is 1.4 or less.

【0013】また、本発明に係る拡管用金属管接合体の
製造方法は、2つの金属管を端面において突き合わせて
拡散接合し、次いで冷却する接合工程と、前記金属管の
接合前の硬度に対する接合部近傍の最大硬度の比が1.
4以下となるように、前記接合部近傍を(A変態温度
−100℃)以上、かつ、A変態温度より低い温度で
少なくとも30秒間保持し、次いで冷却する焼戻し工程
とを備えていることを要旨とするものである。
[0013] In addition, the method for manufacturing a joined metal pipe for pipe expansion according to the present invention is a joining step in which two metal pipes are joined at their end faces by diffusion joining and then cooling, and joining is performed on the hardness of the metal pipes before joining. The ratio of the maximum hardness in the vicinity of the part is 1.
4 as to become less, the vicinity of the joint portion (A 1 transformation temperature -100 ° C.) or higher, and that and a tempering step of at least 30 seconds maintained at a temperature lower than the A 1 transformation temperature, then cooled It is the gist.

【0014】この場合、前記焼戻し工程の前に、前記接
合部近傍をA変態温度以上、かつ、(A変態温度+
100℃)以下の温度で少なくとも30秒間保持し、次
いで冷却する中間熱処理工程をさらに備えていても良
い。
[0014] In this case, before the tempering process, the vicinity of the joint portion A 1 transformation temperature or more, and, (A 1 transformation temperature +
An intermediate heat treatment step of holding at a temperature of 100 ° C. or lower for at least 30 seconds and then cooling may be further provided.

【0015】金属管の接合前の硬度に対する接合部近傍
の最大硬度の比が1.4以下であると、金属管の材質に
よらず、金属管接合体の拡管性が向上し、高い拡管率で
拡管を行うことができる。このような金属管接合体は、
接合後に、接合部近傍を(A 変態温度−100℃)以
上、かつ、A変態温度より低い温度で少なくとも30
秒保持した後、冷却する焼戻しを行うことにより得られ
る。
[0015] The vicinity of the joint for the hardness of the metal tube before joining
If the ratio of the maximum hardness of the metal pipe is 1.4 or less,
Regardless, the expandability of the metal pipe joint is improved,
Expansion can be performed. Such a metal pipe joint is
After joining, (A) 1Transformation temperature -100 ℃)
Above and A1At least 30 below the transformation temperature
After holding for 2 seconds, it is obtained by performing tempering to cool.
You.

【0016】また、焼戻しを行う前に、接合部近傍をA
変態温度以上、かつ、(A変態温度+100℃)以
下の温度で少なくとも30秒間保持した後、冷却する中
間熱処理を行うと、均熱帯の狭い加熱手段を用いて熱処
理する場合であっても、接合部近傍の硬度をほぼ一様に
下げることができる。
Before the tempering, the vicinity of the joint is
After holding at a temperature of 1 transformation temperature or more and (A 1 transformation temperature + 100 ° C) or less for at least 30 seconds, and then performing an intermediate heat treatment for cooling, even if the heat treatment is performed using a heating means having a uniform and narrow tropical zone, The hardness in the vicinity of the joint can be reduced substantially uniformly.

【0017】[0017]

【発明の実施の形態】以下に、本発明の実施の形態につ
いて詳細に説明する。本発明に係る拡管用金属管接合体
は、拡散接合法により複数の金属管が接合されたもので
あって、金属管の接合前の硬度に対する接合部近傍の最
大硬度の比(以下、これを「硬度比」という。)が1.
4以下であることを特徴とするものである。
Embodiments of the present invention will be described below in detail. A metal pipe joint for pipe expansion according to the present invention is obtained by joining a plurality of metal pipes by a diffusion joining method, and a ratio of a maximum hardness in the vicinity of a joint to a hardness of the metal pipe before joining (hereinafter, this is referred to as "Hardness ratio") is 1.
4 or less.

【0018】硬度比が1.4を超えると、接合部近傍の
変形能が大きく低下し、拡管を行う際に、接合部近傍に
亀裂が発生するので好ましくない。拡管による欠陥の発
生を抑制するためには、硬度比は、小さいほど良い。
If the hardness ratio exceeds 1.4, the deformability near the joint is greatly reduced, and cracks are generated near the joint when expanding the pipe, which is not preferable. In order to suppress the occurrence of defects due to expansion, the smaller the hardness ratio, the better.

【0019】また、接合される金属管の材質は、特に限
定されるものではないが、具体的には、マルテンサイト
系ステンレス鋼管、又は、次の数1の式で定義される炭
素当量Ceqが、数2の式で表される関係式を満たす炭
素鋼管もしくは低合金鋼管が好適な一例として挙げられ
る。
Further, the material of the metal pipe to be joined, but are not particularly limited, specifically, the martensitic stainless steel tube, or, the carbon equivalent C eq, defined by the formula for a number of 1 However, a preferable example is a carbon steel pipe or a low alloy steel pipe satisfying the relational expression represented by the equation (2).

【0020】[0020]

【数1】Ceq=C+(1/6)Mn+(1/15)Ni+(1/5)Cr+(1/4)Mo
+(1/14)V+(1/13)Cu
## EQU1 ## C eq = C + (1/6) Mn + (1/15) Ni + (1/5) Cr + (1/4) Mo
+ (1/14) V + (1/13) Cu

【0021】[0021]

【数2】 Ceq≧(1.4xHbase+200)/1200 (但し、Hbaseは、金属管の接合前の硬度)[Number 2] C eq ≧ (1.4xH base +200) / 1200 ( where, H base, the hardness before bonding of the metal tube)

【0022】なお、拡散接合法には、固相状態を維持し
ながら元素の拡散を行わせる固相拡散接合法と、接合界
面にインサート材を介挿し、インサート材を溶融させる
と共に、その成分の一部を金属管側に拡散させる液相拡
散接合法があるが、本発明に係る金属管接合体は、いず
れの方法により接合されたものであっても良い。
The diffusion bonding method includes a solid-phase diffusion bonding method in which elements are diffused while maintaining a solid phase state, and an insert material interposed at a bonding interface, the insert material is melted, and components of the insert material are melted. Although there is a liquid phase diffusion bonding method in which a part is diffused to the metal pipe side, the metal pipe joined body according to the present invention may be bonded by any method.

【0023】次に、本発明に係る拡管用金属管接合体の
作用について説明する。接合部近傍の拡管能と硬度の間
には、一定の関係がある。本発明は、この関係を明らか
にした点を特徴とするものである。すなわち、金属管の
接合前の硬度に対する接合部近傍の最大硬度の比が1.
4以下であると、接合部近傍に欠陥を発生させることな
く、金属管接合体を高い拡管率で拡管することができ
る。
Next, the operation of the expanded metal pipe assembly according to the present invention will be described. There is a certain relationship between the expandability near the joint and the hardness. The present invention is characterized by clarifying this relationship. That is, the ratio of the maximum hardness in the vicinity of the joint to the hardness of the metal tube before joining is 1.
When the number is 4 or less, the metal pipe joined body can be expanded at a high expansion rate without generating a defect near the joint.

【0024】この関係は、金属管の材質によらず成立す
る。例えば、炭素当量Ceqが数2の式を満たす金属管
を用いて拡散接合した場合、通常、硬度比は、1.4を
越える。しかしながら、このような金属管であっても、
後述する製造方法によって、硬度比を1.4以下とすれ
ば、高い拡管率で拡管を行うことができる。
This relationship holds regardless of the material of the metal tube. For example, when diffusion bonding is performed using a metal tube having a carbon equivalent C eq that satisfies Equation 2, the hardness ratio usually exceeds 1.4. However, even with such a metal tube,
If the hardness ratio is set to 1.4 or less by a manufacturing method described later, it is possible to perform pipe expansion at a high pipe expansion rate.

【0025】次に、本発明に係る拡管用金属管接合体の
製造方法について説明する。図1は、本発明の第1の実
施の形態に係る製造方法に用いられる加熱パターンを示
す図である。図1において、本実施の形態に係る製造方
法は、接合工程と、焼戻し工程とを備えている。
Next, a method for manufacturing the joined metal pipe for pipe expansion according to the present invention will be described. FIG. 1 is a diagram showing a heating pattern used in the manufacturing method according to the first embodiment of the present invention. In FIG. 1, the manufacturing method according to the present embodiment includes a joining step and a tempering step.

【0026】接合工程は、2つの金属管をつき合わせて
加圧し、接合温度に一定時間保持し、次いで冷却する工
程である。ここで、接合は、金属管の融点より低い温度
で行われる。また、液層拡散接合法による場合には、接
合は、インサート材の融点以上、かつ、金属管の融点よ
り低い温度で行われる。加圧力及び保持時間は、接合面
における元素の拡散が十分に行われるように、金属管の
材質、接合温度等に応じて最適な値が用いられる。
The joining step is a step in which two metal tubes are brought into contact with each other and pressurized, kept at the joining temperature for a certain period of time, and then cooled. Here, the joining is performed at a temperature lower than the melting point of the metal tube. In the case of the liquid layer diffusion bonding method, the bonding is performed at a temperature equal to or higher than the melting point of the insert material and lower than the melting point of the metal tube. As the pressure and the holding time, optimal values are used according to the material of the metal tube, the joining temperature, and the like so that the diffusion of the element on the joint surface is sufficiently performed.

【0027】焼戻し工程は、接合後に、接合部近傍を
(A変態温度−100℃)以上、かつ、A変態温度
より低い温度で保持し、次いで冷却する工程である。焼
戻し工程における保持温度を(A変態温度−100
℃)未満とすると、短時間で硬度比を1.4以下とする
ことができないので好ましくない。また、保持温度をA
変態温度以上とすると、硬度比を1.4以下とするこ
とができないので好ましくない。なお、材質の異なる金
属管同士を拡散接合する場合、「A変態温度」とは、
各金属管のA変態温度の内、いずれか低い方を意味す
る。
The tempering process, after bonding, near the junction (A 1 transformation temperature -100 ° C.) or higher, and kept at a temperature lower than the A 1 transformation temperature, and then a step of cooling. The holding temperature at the tempering process (A 1 transformation temperature -100
C.) is not preferable because the hardness ratio cannot be reduced to 1.4 or less in a short time. Further, the holding temperature is A
If the temperature is higher than one transformation temperature, the hardness ratio cannot be reduced to 1.4 or less, which is not preferable. In the case of diffusion bonding the different metal pipes to each other in material, and "the A 1 transformation temperature"
Of A 1 transformation temperature of the metal tube, it means a lower one.

【0028】また、硬度比を1.4以下とするために
は、上述した保持温度に、少なくとも30秒間保持する
必要がある。保持時間が長くなるほど硬度比は低下する
傾向にあるが、保持時間を必要以上に長くとっても、効
果に差異はなく、むしろ作業効率を低下させるので好ま
しくない。金属管の肉厚にもよるが、10分程度の保持
時間で十分な効果が得られる。
Further, in order to make the hardness ratio 1.4 or less, it is necessary to hold at the above-mentioned holding temperature for at least 30 seconds. The hardness ratio tends to decrease as the holding time becomes longer. However, if the holding time is made longer than necessary, there is no difference in the effect, and the working efficiency is rather lowered, which is not preferable. Although depending on the thickness of the metal tube, a sufficient effect can be obtained with a holding time of about 10 minutes.

【0029】次に、本実施の形態に係る製造方法の作用
について説明する。金属管を接合した後、冷却すると、
金属管の材質、冷却速度等によっては、接合部近傍が硬
化し、拡管能が低下する場合がある。これを回復する手
段としては、焼戻しが知られているが、従来の焼戻し
は、数十分〜数時間かけて行われるのが一般的である。
Next, the operation of the manufacturing method according to the present embodiment will be described. After joining the metal tubes and cooling,
Depending on the material of the metal tube, the cooling rate, and the like, the vicinity of the joint may be hardened, and the expandability may be reduced. Tempering is known as a means for recovering this, but conventional tempering is generally performed over several tens of minutes to several hours.

【0030】これに対し、拡管能に優れた金属管接合体
を得るには、接合後に、接合部近傍を(A変態温度−
100℃)以上、かつ、A変態温度より低い温度で少
なくとも30秒保持した後、冷却するだけで十分であ
る。このような短時間の焼戻しによって、金属管の接合
前の硬度に対する接合部近傍の最大硬度が1.4以下と
なり、金属管接合体に対して高い拡管能が付与される。
この点は、空冷によって容易に硬化する材質からなる金
属管を用いる場合であっても、同様である。
[0030] In contrast, in order to obtain an excellent metallic tube assembly to pipe expansion capability, after bonding, near the junction (A 1 transformation temperature -
100 ° C.) or higher, and, after maintaining at least 30 seconds at a temperature below the A 1 transformation temperature, it is sufficient to cool. By such tempering in a short time, the maximum hardness in the vicinity of the joint with respect to the hardness before joining the metal pipe becomes 1.4 or less, and a high pipe expandability is imparted to the joined metal pipe.
This is the same even when a metal tube made of a material that is easily cured by air cooling is used.

【0031】次に、本発明の第2の実施の形態に係る拡
管用金属管接合体の製造方法について説明する。図2
は、本実施の形態に係る製造方法で用いられる加熱パタ
ーンを示したものである。図2において、本実施の形態
に係る製造方法は、上述した接合工程及び焼戻し工程に
加えて、中間熱処理工程をさらに備えている。
Next, a description will be given of a method of manufacturing a joined metal pipe for pipe expansion according to a second embodiment of the present invention. FIG.
Shows a heating pattern used in the manufacturing method according to the present embodiment. In FIG. 2, the manufacturing method according to the present embodiment further includes an intermediate heat treatment step in addition to the above-described bonding step and tempering step.

【0032】中間熱処理工程は、焼戻しを行う前に、接
合部近傍をA変態温度以上、かつ、(A変態温度+
100℃)以下の温度で、少なくとも30秒以上保持
し、次いで冷却する工程である。
The intermediate heat treatment step, before tempering, junction near the A 1 transformation temperature or more, and, (A 1 transformation temperature +
(100 ° C.) or less, and a step of holding for at least 30 seconds or more and then cooling.

【0033】中間熱処理工程における保持温度をA
態温度未満とすると、特に、接合面を挟む広い範囲に渡
って硬化領域が生じたときに、硬化領域の硬度を一様に
下げることができないので好ましくない。また、中間熱
処理工程における保持温度が(A変態温度+100
℃)を超えると、中間熱処理を行うことによって硬化領
域がさらに広がり、接合部近傍の変形能を低下させるの
で好ましくない。なお、材質の異なる金属管同士を拡散
接合する場合、「A変態温度」とは、各金属管のA
変態温度の内、いずれか低い方を意味する。
[0033] When the holding temperature in the intermediate heat treatment step is less than the A 1 transformation temperature, in particular, when the curing region over a wide range sandwiching the bonding surfaces has occurred, it is impossible to uniformly lower the hardness of the hardened zone Not preferred. Further, the holding temperature in the intermediate heat treatment step (A 1 transformation temperature +100
If the temperature exceeds (° C.), the hardened region is further expanded by performing the intermediate heat treatment, and the deformability near the joint is reduced, which is not preferable. In the case of diffusion bonding the different metal pipes to each other in material, and "the A 1 transformation temperature", A 1 of each metal tube
It means the lower one of the transformation temperatures.

【0034】次に、本実施の形態に係る製造方法の作用
について説明する。本実施の形態に係る製造方法は、焼
戻しに用いる加熱手段の均熱帯が狭い場合に、特に有効
な方法である。すなわち、長さの長い金属管を拡散接合
する場合、接合面近傍を局部加熱するために、高周波誘
導コイルを用いた高周波誘導加熱法を用いるのが一般的
である。
Next, the operation of the manufacturing method according to this embodiment will be described. The manufacturing method according to the present embodiment is particularly effective when the heating means used for tempering has a narrow uniform area. That is, when a long metal tube is diffusion-bonded, a high-frequency induction heating method using a high-frequency induction coil is generally used to locally heat the vicinity of the bonding surface.

【0035】高周波誘導コイルを用いて金属管を加熱す
る場合、コイル幅に応じた均熱帯のみが目的温度に加熱
され、均熱帯の両側は、目的温度より低い温度に加熱さ
れる。また、均熱帯の両側の加熱温度は、均熱帯からの
距離が長くなるほど低くなる。そのため、接合後に、幅
の狭いコイルを用いて焼戻しを行うと、コイルの均熱帯
部分のみが軟化し、均熱帯の両側は、硬化したままとな
る。従って、このような金属管接合体を拡管すると、硬
化領域から亀裂が発生するおそれがある。
When a metal tube is heated using a high-frequency induction coil, only the soaking zone corresponding to the coil width is heated to the target temperature, and both sides of the soaking zone are heated to a temperature lower than the target temperature. Further, the heating temperature on both sides of the solitary tropic becomes lower as the distance from the solitary tropic becomes longer. Therefore, when tempering is performed using a coil having a small width after joining, only the tropic portion of the coil is softened, and both sides of the tropic remain hardened. Therefore, when such a metal pipe joint is expanded, a crack may be generated from the hardened region.

【0036】これに対し、焼戻しの前に、幅の狭いコイ
ルを用いて中間熱処理を行うと、均熱帯部分の硬度は低
下しないが、均熱帯の両側に広がる領域の温度はA
態温度より低くなる。そのため、均熱帯の両側のみが焼
戻される。次いで、同一のコイル幅を有するコイルを用
いて焼戻しを行うと、均熱帯部分が焼戻される。そのた
め、均熱帯の狭い加熱手段を用いて熱処理する場合であ
っても、接合部近傍の硬度をほぼ一様に下げることがで
きる。
[0036] In contrast, prior to tempering, when the intermediate heat treatment using a narrow coil width, although the hardness of the soaking zone section does not decrease, the temperature of the region extending on either side of the soaking zone than the A 1 transformation temperature Lower. Therefore, only the temperate sides are tempered. Next, when tempering is performed using a coil having the same coil width, the solitary zone is tempered. Therefore, even in the case where the heat treatment is performed using a heating means having a uniform and narrow tropical zone, the hardness in the vicinity of the joint can be reduced substantially uniformly.

【0037】[0037]

【実施例】(実施例1)高周波誘導加熱を用いて、金属
管の液相拡散接合を行った。金属管には、機械構造用合
金鋼管SCM420TK(JIS G 3445)及び
マルテンサイト系ステンレス鋼管SUS420J1TK
A(JIS G 3446)を用いた。また、インサー
ト材には、Ni系合金箔BNi−2(JIS Z 32
65)を用い、接合温度1250℃、保持時間60s、
加圧力4.0MPa、接合雰囲気Arの条件下で接合を
行った。次に、高周波誘導加熱法を用いて、焼戻しを行
った。得られた金属管接合体について、接合面近傍のマ
イクロビッカース硬度(荷重=2.97N)を測定し、
硬度比を求めた。また、得られた金属管接合体につい
て、拡管率20%の条件で拡管を行った。結果を表1に
示す。
EXAMPLE 1 Liquid-phase diffusion bonding of a metal tube was performed using high-frequency induction heating. The metal pipe includes alloy steel pipe SCM420TK (JIS G 3445) for machine structure and martensitic stainless steel pipe SUS420J1TK.
A (JIS G 3446) was used. The insert material includes a Ni-based alloy foil BNi-2 (JIS Z32).
65) using a bonding temperature of 1250 ° C., a holding time of 60 s,
Bonding was performed under the conditions of a pressure of 4.0 MPa and a bonding atmosphere Ar. Next, tempering was performed using a high frequency induction heating method. About the obtained metal tube joined body, the micro Vickers hardness (load = 2.97 N) near the joint surface was measured,
The hardness ratio was determined. In addition, the obtained metal pipe joint was expanded under the conditions of a pipe expansion ratio of 20%. Table 1 shows the results.

【0038】[0038]

【表1】 [Table 1]

【0039】合金鋼管を液相拡散接合した試料No.1
は、接合直後の硬度比が1.55であった。また、焼戻
しを行わないまま拡管を行ったために、拡管の際に接合
面近傍に亀裂が発生した。一方、合金鋼管を液相拡散接
合した後、700℃x300sの焼戻しを行った試料N
o.2は、焼戻し後の硬度比が1.07まで低下した。
また、これにより欠陥を発生させることなく拡管を行う
ことができた。焼戻しにおける保持時間を30秒とした
試料No.3は、焼戻し後の硬度比は1.25と若干高
めであったが、欠陥を発生させることなく拡管が可能で
あった。
Sample No. 1 was obtained by liquid-phase diffusion bonding of an alloy steel pipe. 1
Had a hardness ratio of 1.55 immediately after joining. In addition, since the pipe was expanded without tempering, a crack was generated near the joint surface during the pipe expansion. On the other hand, the sample N was subjected to liquid phase diffusion bonding of the alloy steel pipe and then tempered at 700 ° C. × 300 s.
o. In No. 2, the hardness ratio after tempering decreased to 1.07.
In addition, the tube could be expanded without generating defects. Sample No. having a holding time in tempering of 30 seconds. Sample No. 3 had a slightly higher hardness ratio after tempering of 1.25, but could be expanded without causing defects.

【0040】同様に、マルテンサイト系ステンレス鋼管
を液相拡散接合した試料No.4は、接合直後の硬度比
が2.00であった。また、焼戻しを行わないまま拡管
を行ったために、拡管の際に接合面近傍に亀裂が発生し
た。一方、マルテンサイト系ステンレス鋼管を液相拡散
接合した後、700℃x300sの焼戻しを行った試料
No.5は、焼戻し後の硬度比が1.05まで低下し
た。また、これにより欠陥を発生させることなく拡管を
行うことができた。焼戻し工程における保持時間を30
秒とした試料No.6は、焼戻し後の硬度比は1.30
と若干高めであったが、欠陥を発生させることなく拡管
が可能であった。
Similarly, sample No. 1 was prepared by liquid-phase diffusion bonding martensitic stainless steel pipe. In No. 4, the hardness ratio immediately after joining was 2.00. In addition, since the pipe was expanded without tempering, a crack was generated near the joint surface during the pipe expansion. On the other hand, after the martensitic stainless steel pipe was subjected to liquid phase diffusion bonding, it was tempered at 700 ° C. × 300 s. In No. 5, the hardness ratio after tempering decreased to 1.05. In addition, the tube could be expanded without generating defects. The holding time in the tempering process is 30
Sample No. No. 6 has a hardness ratio of 1.30 after tempering.
Although it was slightly higher, the tube could be expanded without generating defects.

【0041】(実施例2)実施例1と同一の条件下で、
マルテンサイト系ステンレス鋼管の液相拡散接合を行
い、接合面近傍のマイクロビッカース硬度(荷重=2.
97N)分布を測定した。次いで、得られた金属管接合
体について、均熱帯の狭いコイルを用いた高周波誘導加
熱により、850℃x60sの条件で中間熱処理のみを
行い、接合面近傍の硬度分布を測定した。同様に、マル
テンサイト系ステンレス鋼管を実施例1と同一の条件下
で液相拡散接合した後、750℃x60sの条件で焼戻
しのみを行ったもの、及び、850℃x60sの条件で
中間熱処理を行った後、750℃x60sの条件で焼戻
しを行ったものについて、接合面近傍の硬度分布を測定
した。結果を図3に示す。
Example 2 Under the same conditions as in Example 1,
The liquid phase diffusion bonding of the martensitic stainless steel pipe is performed, and the micro Vickers hardness near the bonding surface (load = 2.
97N) distribution was measured. Next, with respect to the obtained metal tube joined body, only the intermediate heat treatment was performed at 850 ° C. × 60 s by high-frequency induction heating using a narrow coil in a uniform zone, and the hardness distribution near the joint surface was measured. Similarly, a martensitic stainless steel pipe was subjected to liquid phase diffusion bonding under the same conditions as in Example 1, then tempered only at 750 ° C. × 60 s, and an intermediate heat treatment at 850 ° C. × 60 s. After that, the tempering was performed at 750 ° C. × 60 s, and the hardness distribution near the joint surface was measured. The results are shown in FIG.

【0042】接合直後の状態では、接合面±50mmの
範囲で硬化領域が生じていた。一方、焼戻しのみを行っ
た場合は、接合面±20mmの範囲において硬度が低下
し、接合面から20mm以上離れた領域では、硬度が低
下しなかった。また、中間熱処理のみを行った場合は、
接合面±20mmの範囲において硬度が高いままであ
り、接合面から20mm以上離れた領域では、硬度が低
下した。これに対し、中間熱処理を行った後焼戻しを行
った場合には、接合面近傍の硬度が接合前の硬度まで一
様に低下した。
Immediately after the bonding, a hardened region was formed within a range of the bonding surface ± 50 mm. On the other hand, when only tempering was performed, the hardness was reduced in the range of the bonding surface ± 20 mm, and the hardness did not decrease in a region 20 mm or more from the bonding surface. When only the intermediate heat treatment is performed,
The hardness remained high in the range of the bonding surface ± 20 mm, and decreased in the region 20 mm or more from the bonding surface. On the other hand, when tempering was performed after the intermediate heat treatment, the hardness near the joint surface was uniformly reduced to the hardness before the joint.

【0043】以上、本発明の実施の形態につて詳細に説
明したが、本発明は、上記実施の形態に何ら限定される
ものではなく、本発明の要旨を逸脱しない範囲で種々の
改変が可能である。
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the gist of the present invention. It is.

【0044】例えば、上記実施例では、合金鋼管及びマ
ルテンサイト系ステンレス鋼管について本発明を適用し
た例について説明したが、本発明が適用される金属管
は、これに限定されるものではなく、接合後の冷却過程
で容易に接合部近傍が硬化するあらゆる鋼種に対して適
用できる。
For example, in the above-described embodiment, an example in which the present invention is applied to an alloy steel pipe and a martensitic stainless steel pipe has been described. However, the metal pipe to which the present invention is applied is not limited to this. The present invention can be applied to any type of steel in which the vicinity of the joint is easily hardened in the subsequent cooling process.

【0045】また、接合工程又は第2熱処理工程におい
ては、所定温度に保持した後冷却しているが、冷却は、
徐冷しても良く、あるいは、接合部近傍の温度がA
態温度以下となったところで急冷してもよい。特に、A
変態温度以下となったところで急冷すると、接合部近
傍を硬化させることなく冷却時間を短縮することがで
き、製造効率が向上するという利点がある。
In the joining step or the second heat treatment step, cooling is performed after maintaining at a predetermined temperature.
It may be gradually cooled, or a temperature in the vicinity of the junction portion may be quenched upon reaching than the A 1 transformation temperature. In particular, A
Rapid cooling when the temperature is equal to or lower than one transformation temperature has an advantage that the cooling time can be shortened without hardening the vicinity of the joint, and the production efficiency is improved.

【0046】[0046]

【発明の効果】本発明は、複数の金属管が拡散接合され
た拡管用金属管接合体において、金属管の接合前の硬度
に対する接合部近傍の最大硬度の比を1.4以下とした
ので、金属管の材質によらず、高い拡管率で拡管を行う
ことができるという効果がある。
According to the present invention, the ratio of the maximum hardness in the vicinity of the joint to the hardness before joining of the metal tubes is set to 1.4 or less in the expanded metal tube joint in which a plurality of metal tubes are diffusion-joined. In addition, there is an effect that the tube can be expanded at a high expansion ratio regardless of the material of the metal tube.

【0047】また、本発明に係る拡管用金属管接合体の
製造方法は、2つの金属管を端面において突き合わせて
拡散接合し、次いで冷却する接合工程と、前記金属管の
接合前の硬度に対する接合部近傍の最大硬度の比が1.
4以下となるように、前記接合部近傍を(A変態温度
−100℃)以上、かつ、A変態温度より低い温度で
少なくとも30秒間保持し、次いで冷却する焼戻し工程
とを備えているので、拡管性に優れた金属管接合体が効
率よく得られるという効果がある。
Further, the method for manufacturing a joined metal pipe for pipe expansion according to the present invention is a joining step of joining two metal pipes at their end faces by diffusion joining and then cooling, and joining the metal pipes to the hardness before joining. The ratio of the maximum hardness in the vicinity of the part is 1.
4 as to become less, the vicinity of the joint portion (A 1 transformation temperature -100 ° C.) or higher, and at least 30 seconds maintained at a temperature lower than the A 1 transformation temperature, then since a tempering step of cooling In addition, there is an effect that a metal pipe joined body having excellent pipe expandability can be efficiently obtained.

【0048】また、前記焼戻し工程の前に、前記接合部
近傍をA変態温度以上、かつ、(A変態温度+10
0℃)以下の温度で少なくとも30秒間保持し、次いで
冷却する中間熱処理工程をさらに備えている場合には、
均熱帯の狭い加熱手段を用いて熱処理する場合であって
も、拡管性に優れた金属管接合体が得られるという効果
がある。
[0048] The prior to tempering process, the vicinity of the joint portion A 1 transformation temperature or more, and, (A 1 transformation temperature + 10
0 ° C.) or less, and further comprising an intermediate heat treatment step of holding for at least 30 seconds and then cooling.
Even in the case where the heat treatment is performed using a heating means with a narrow soaking zone, there is an effect that a metal pipe joined body having excellent pipe expandability can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態に係る拡管用金属
管接合体の製造方法に用いられる加熱パターン示す図で
ある。
FIG. 1 is a view showing a heating pattern used in a method for manufacturing a metal pipe joined body for pipe expansion according to a first embodiment of the present invention.

【図2】 本発明の第2の実施の形態に係る拡管用金属
管接合体の製造方法に用いられる加熱パターン示す図で
ある。
FIG. 2 is a view showing a heating pattern used in a method for manufacturing a metal-pipe joint for pipe expansion according to a second embodiment of the present invention.

【図3】熱処理前後における接合面近傍の硬度分布を示
す図である。
FIG. 3 is a diagram showing a hardness distribution near a bonding surface before and after heat treatment.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B23K 103:04 B23K 103:04 (72)発明者 山田 龍三 愛知県知多市大草四方田48番地1 臨海荘 A301 (72)発明者 鬼頭 一成 愛知県名古屋市緑区古鳴海二丁目38番地 (72)発明者 稲垣 繁幸 愛知県名古屋市南区天白町3−9−47 Fターム(参考) 3H111 AA01 BA03 BA34 CB27 DA08 DA26 DB22 DB27 EA12 EA16 4E067 AA02 AA03 BA00 DD01 EA03 EB00 EC06 4K042 AA06 AA24 BA05 CA16 DA02 DA06 DC02 DC03 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) B23K 103: 04 B23K 103: 04 (72) Inventor Ryuzo Yamada 48-1, Ogusa Shikata, Chita City, Aichi Prefecture Rinkaiso A301 (72) Inventor Kazunari Kitoh 2-38, Konarumi, Midori-ku, Nagoya-shi, Aichi (72) Inventor Shigeyuki Inagaki 3-9-47, Tenpakucho, Minami-ku, Nagoya-shi, Aichi F-term (reference) 3H111 AA01 BA03 BA34 CB27 DA08 DA26 DB22 DB27 EA12 EA16 4E067 AA02 AA03 BA00 DD01 EA03 EB00 EC06 4K042 AA06 AA24 BA05 CA16 DA02 DA06 DC02 DC03

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 複数の金属管が拡散接合された拡管用金
属管接合体において、 前記金属管の接合前の硬度に対する接合部近傍の最大硬
度の比が1.4以下であることを特徴とする拡管用金属
管接合体。
1. A metal pipe joined body for expansion in which a plurality of metal pipes are diffusion-bonded, wherein a ratio of a maximum hardness in a vicinity of a joint to a hardness of the metal pipe before joining is 1.4 or less. Metal pipe joint for pipe expansion.
【請求項2】 前記金属管は、炭素当量Ceqが次式 Ceq≧(1.4xHbase+200)/1200 (但し、Hbaseは、前記金属管の接合前の硬度)で
表される炭素鋼管又は低合金鋼管であることを特徴とす
る請求項1に記載の拡管用金属管接合体。
Wherein said metal tube is carbon carbon equivalent C eq is represented by the following formula C eq ≧ (1.4xH base +200) / 1200 ( where, H base is before bonding of the metal tube hardness) The joined metal pipe assembly for pipe expansion according to claim 1, which is a steel pipe or a low alloy steel pipe.
【請求項3】 前記金属管は、マルテンサイト系ステン
レス鋼管であることを特徴とする請求項1に記載の拡管
用金属管接合体。
3. The joined metal pipe for expansion according to claim 1, wherein the metal pipe is a martensitic stainless steel pipe.
【請求項4】 2つの金属管を端面において突き合わせ
て拡散接合し、次いで冷却する接合工程と、 前記金属管の接合前の硬度に対する接合部近傍の最大硬
度の比が1.4以下となるように、前記接合部近傍を
(A変態温度−100℃)以上、かつ、A変態温度
より低い温度で少なくとも30秒間保持し、次いで冷却
する焼戻し工程とを備えていることを特徴とする拡管用
金属管接合体の製造方法。
4. A joining step in which two metal pipes are joined by diffusion joining at the end faces thereof, and then cooled, and a ratio of a maximum hardness in the vicinity of a joining portion to a hardness before joining of the metal pipes is 1.4 or less. in the vicinity of the joint portion (a 1 transformation temperature -100 ° C.) or higher, and at least 30 seconds maintained at a temperature lower than the a 1 transformation temperature, then characterized by comprising a tempering step of cooling tube expansion Of manufacturing metal pipe joints for automobiles.
【請求項5】 前記焼戻し工程の前に、前記接合部近傍
をA変態温度以上、かつ、(A変態温度+100
℃)以下の温度で少なくとも30秒間保持し、次いで冷
却する中間熱処理工程をさらに備えていること特徴とす
る請求項4に記載の拡管用金属管接合体の製造方法。
5. Prior to the tempering process, the vicinity of the joint portion A 1 transformation temperature or more, and, (A 1 transformation temperature +100
The method according to claim 4, further comprising an intermediate heat treatment step of holding at a temperature of not more than (° C) for at least 30 seconds and then cooling.
JP2000128687A 2000-04-28 2000-04-28 Joined body of metallic pipes for expanded pipe and method of manufacturing the same Pending JP2001300743A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000128687A JP2001300743A (en) 2000-04-28 2000-04-28 Joined body of metallic pipes for expanded pipe and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000128687A JP2001300743A (en) 2000-04-28 2000-04-28 Joined body of metallic pipes for expanded pipe and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2001300743A true JP2001300743A (en) 2001-10-30

Family

ID=18638092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000128687A Pending JP2001300743A (en) 2000-04-28 2000-04-28 Joined body of metallic pipes for expanded pipe and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2001300743A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016764A1 (en) * 2007-08-02 2009-02-05 Toshiaki Kitazawa Method of bonding steel members, method of heightening bonding strength in bonded object comprising steel members, steel product, and resin product
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
JP5208106B2 (en) * 2007-04-09 2013-06-12 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, and steel products

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208106B2 (en) * 2007-04-09 2013-06-12 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, and steel products
WO2009016764A1 (en) * 2007-08-02 2009-02-05 Toshiaki Kitazawa Method of bonding steel members, method of heightening bonding strength in bonded object comprising steel members, steel product, and resin product
JPWO2009016764A1 (en) * 2007-08-02 2010-10-14 株式会社Mole’S Act Method for joining steel members, method for strengthening joining force in joined bodies made of steel members, method for producing steel products, and method for producing resin products
JP4590014B2 (en) * 2007-08-02 2010-12-01 株式会社Mole’S Act Method for joining steel members and method for strengthening joining force in joined body comprising steel members
WO2009034654A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Corporation Method of joining steel members together, method of enhancing junction strength of junction body composed of steel members, steel product and diecast product
WO2009034656A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034655A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material, steel product and diecast product
WO2009034657A1 (en) * 2007-09-14 2009-03-19 Seiko Epson Coporation Joined material and steel product
JP5198458B2 (en) * 2007-09-14 2013-05-15 セイコーエプソン株式会社 Method for joining steel members, method for strengthening joining force in joined bodies composed of steel members, steel products and die-cast products

Similar Documents

Publication Publication Date Title
US6452139B1 (en) Method of joining metal components
US20070132228A1 (en) Production of clad pipes
US5988484A (en) Clad tubular product and method of manufacturing same
JPS61216877A (en) Manufacture of internal clad tubular product
JP2001058279A (en) Manufacture of joined body of carbon steel pipes suitable for tube expansion and tube expansion method
JP2001300743A (en) Joined body of metallic pipes for expanded pipe and method of manufacturing the same
JP2007516351A (en) Manufacturing method of stainless steel pipe used for piping system
CN116221509A (en) High-strength corrosion-resistant alloy composite oil pipe and manufacturing method thereof
JPH11290939A (en) Manufacture of long double metallic tube
RU2438842C1 (en) Method of producing bimetal tube
JP4274986B2 (en) Stainless steel welded pipe for oil supply pipe
JP2000107870A (en) Metallic tube joined body for expansion and its manufacture
US20160207140A1 (en) Method for joining dissimilar metal parts for improved weldability, weld quality, mechanical performance
JPS607591B2 (en) Clad pipe production method
JP2001269712A (en) Metallic clad tube and its manufacturing method
JP2000071029A (en) Manufacture of long length double metallic pipe
US20170016561A1 (en) Method for the production of a conveying pipe for the transport of solids, and conveying pipe for the transport of solids
JPH01197081A (en) Manufacture of high corrosion resistant double metal pipe
JP2001340974A (en) Steel pipe joint for pipe expanding and method for expanding steel pipe joint
JP2000176652A (en) Method for joining metallic tube
JPH0576383B2 (en)
US4781768A (en) Full length forging method for producing large section, large mass cylindrical sleeves of alloy 625
JP2003053442A (en) Dissimilar metal welded tube for hydroforming and its manufacturing method
JP2002103034A (en) Piping material having quenched internal surface
JP3854534B2 (en) Titanium welded pipe excellent in workability and manufacturing method thereof