JP2001300274A - Manufacturing method of gas separation membrane - Google Patents

Manufacturing method of gas separation membrane

Info

Publication number
JP2001300274A
JP2001300274A JP2000122328A JP2000122328A JP2001300274A JP 2001300274 A JP2001300274 A JP 2001300274A JP 2000122328 A JP2000122328 A JP 2000122328A JP 2000122328 A JP2000122328 A JP 2000122328A JP 2001300274 A JP2001300274 A JP 2001300274A
Authority
JP
Japan
Prior art keywords
separation membrane
gas separation
oxide
metal
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000122328A
Other languages
Japanese (ja)
Inventor
Hitoshi Sakai
均 酒井
Tomonori Takahashi
知典 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2000122328A priority Critical patent/JP2001300274A/en
Publication of JP2001300274A publication Critical patent/JP2001300274A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compounds Of Iron (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas separation membrane manufacturing method which is for manufacturing a gas separation membrane by using raw materials of metal oxides and metal carbonates stable in an aqueous solvent, molding the raw materials to form a molded body, and then firing the molded body and by which a pre-firing step can be eliminated, the manufacturing steps are simplified, and cost is further down by using the aqueous solvent without using a costly alcohol type solvent. SOLUTION: This gas separation membrane manufacturing method provided comprises a step of obtaining a molded body by molding a mixture of metal carbonates and metal oxides stable in an aqueous solvent and a step of obtaining a sintered body by firing the molded body according to firing schedules planed while taking the decomposition temperature of the metal carbonates and the eutectic point of the metal oxide into consideration.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、混合ガス中から
特定ガスを分離又は供給するガス分離膜の製造方法に関
する。更に詳細には、金属炭酸塩、及び金属酸化物から
成る原料を用い、仮焼工程を省いてブラウンミラーライ
ト構造若しくはペロブスカイト構造を呈した焼結体を得
る、ガス分離膜の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a gas separation membrane for separating or supplying a specific gas from a mixed gas. More specifically, the present invention relates to a method for producing a gas separation membrane, which obtains a sintered body having a brown mirror light structure or a perovskite structure by using a raw material composed of a metal carbonate and a metal oxide and omitting a calcination step.

【0002】[0002]

【従来の技術】 混合ガス中から特定ガスを分離又は供
給する方法として、ガス分離膜を用いた方法が知られて
いる。
2. Description of the Related Art As a method for separating or supplying a specific gas from a mixed gas, a method using a gas separation membrane is known.

【0003】 ガス分離膜の製造方法として、多孔質ガ
ラス、多孔質セラミックス、又は、多孔質酸化アルミニ
ウムなどの無機多孔質支持体上に、ガス分離膜を成膜す
る方法(特公昭53−43153号公報)、貫通孔を有
するモノリス形状の多孔質基体の所定表面にガス分離膜
を成膜する方法(特開平8−40703号公報)、複数
のガス流通孔を有する金属補強板を積層させた金属多孔
質支持体上にガス分離膜を成膜する方法(特開平9−2
55306号公報)、ガス分離能を有する材料で形成さ
れ、且つ、上下方向における複数の平行な貫通孔が、交
互に交差するように構成する方法(アメリカ合衆国特許
第5356728号)、ハニカム型多孔質体の隔壁内面
に凝縮性ガス成分を凝縮させる多数の連続細孔を有する
セラミック薄膜を担持する方法(特公平7−67528
号公報)等がある。
As a method for producing a gas separation membrane, a method of forming a gas separation membrane on an inorganic porous support such as porous glass, porous ceramics, or porous aluminum oxide (Japanese Patent Publication No. 53-43153) Publication), a method of forming a gas separation membrane on a predetermined surface of a monolithic porous substrate having through holes (Japanese Patent Application Laid-Open No. H8-40703), and a method of laminating a metal reinforcing plate having a plurality of gas circulation holes. Method for forming a gas separation membrane on a porous support (Japanese Patent Laid-Open No. 9-2)
No. 55306), a method in which a plurality of parallel through holes in a vertical direction are formed of a material having a gas separating ability and intersect alternately (US Pat. No. 5,356,728), a honeycomb-type porous body. A method of supporting a ceramic thin film having a large number of continuous pores for condensing a condensable gas component on the inner surface of the partition wall (Japanese Patent Publication No. 7-67528)
Publication).

【0004】 しかしながら、無機多孔質支持体上に、
ガス分離膜を成膜する方法(特公昭53−43153号
公報)では、単位体積当たりの膜面積が小さく膜がコン
パクトにならず、多孔質基体の所定表面にガス分離膜を
成膜する方法(特開平8−40703号公報)では、多
孔質基体とガス分離膜との性質(例えば、熱膨張率等)
の違いから、多孔質基体に緻密なガス分離膜を成膜させ
ることが非常に困難であった。又、積層構造を有するガ
ス分離膜を成膜する方法(特開平9−255306号公
報、及びアメリカ合衆国特許第5356728号)で
は、膜面積を大きくすることが出来るが、製造工程が複
雑になり、コストが高くなるという問題点があった。ハ
ニカム型多孔質体の隔壁内面にセラミック薄膜を担持す
る方法(特公平7−67528号公報)では、ハニカム
成形後に成膜が必要であるため製造工程が複雑になり、
基体である隔壁厚みについては特に薄くしておらず膜面
積当たりのガス透過量が少ないという問題点があった。
However, on an inorganic porous support,
In a method of forming a gas separation membrane (Japanese Patent Publication No. 53-43153), a film area per unit volume is small and the membrane is not compact, and a gas separation membrane is formed on a predetermined surface of a porous substrate ( In Japanese Patent Application Laid-Open No. Hei 8-40703, the properties (for example, coefficient of thermal expansion, etc.) of a porous substrate and a gas separation membrane are disclosed.
Therefore, it was very difficult to form a dense gas separation membrane on a porous substrate. In the method of forming a gas separation membrane having a laminated structure (Japanese Patent Application Laid-Open No. 9-255306 and US Pat. No. 5,356,728), the membrane area can be increased, but the manufacturing process becomes complicated and the cost is reduced. There was a problem that the cost was high. In the method of supporting a ceramic thin film on the inner surface of a partition wall of a honeycomb-type porous body (Japanese Patent Publication No. 7-67528), a film formation is required after honeycomb formation, and thus the manufacturing process becomes complicated.
There is a problem that the partition wall thickness as the substrate is not particularly thin and the gas permeation amount per membrane area is small.

【0005】 これらの問題を解決するための提案とし
て、ブラウンミラーライト構造の酸化物からなる緻密体
を用いたガス分離膜が開示されている(WO−97/4
1060公報)。この膜は固体膜(solid sta
te membrane)であり、ガス分離又は供給す
る機能を持ちながら、それ自体に機械的強度を有してお
り、従来の膜のようにガス透過量を増加させるために膜
厚を薄くし、セラミックス等の多孔質支持体に成膜する
必要がない。従って膜面積を大きく出来るとともに、従
来の方法に比べ、より製造工程が簡単でコストを低減す
ることができた。
As a proposal for solving these problems, a gas separation membrane using a dense body composed of an oxide having a brown mirror light structure is disclosed (WO-97 / 4).
1060 publication). This film is a solid film
te membrane), which has the function of separating or supplying gas, and has its own mechanical strength. It is not necessary to form a film on the porous support. Accordingly, the film area can be increased, and the manufacturing process is simpler and the cost can be reduced as compared with the conventional method.

【0006】 しかしながら、WO−97/41060
公報によるガス分離膜の製造方法では、構成元素の金属
酸化物、及び金属炭酸塩を所定量混合した後に一度焼成
し(仮焼工程)、ブラウンミラーライト構造の酸化物を
得て、この酸化物を粉砕して原料とし、そして原料を基
に成形し成形体を得た後に再度焼成し作製するという工
程を経ているため、未だ製造工程が複雑であった。又、
長尺や大型の成形体を成形する際には、押出成形や鋳込
成形を行うが、この時ブラウンミラーライト構造の酸化
物を粉砕した原料を溶媒中に分散させて混合する必要が
あり、このブラウンミラーライト構造の酸化物を粉砕し
た原料は水と容易に反応するため、水以外のアルコール
系の溶媒を用いる必要があってコスト高を招いていた。
However, WO-97 / 41060
In the method for producing a gas separation membrane according to the publication, a predetermined amount of a constituent metal oxide and a metal carbonate are mixed and then fired once (calcination step) to obtain an oxide having a brown mirror light structure. The raw material is crushed into a raw material, and the raw material is molded based on the raw material. Then, the molded body is baked again, and the manufacturing process is still complicated. or,
When molding a long or large molded body, extrusion or cast molding is performed, but at this time it is necessary to disperse and mix the raw material obtained by grinding the oxide of the brown mirror light structure in a solvent, The raw material obtained by pulverizing the oxide having the brown mirror light structure easily reacts with water, so that it is necessary to use an alcoholic solvent other than water, resulting in an increase in cost.

【0007】[0007]

【発明が解決しようとする課題】 本発明は、かかる状
況に鑑みてなされたものであり、その目的とするところ
は、水溶媒中で安定な金属酸化物、及び金属炭酸塩から
成る原料を用いて、これを成形し成形体を得た後に焼成
しガス分離膜を作製するガス分離膜の製造方法の提供に
より、仮焼工程を省略して、より製造工程を簡略化し、
高価なアルコール系の溶媒を用いずに水溶媒で製造する
ことによって更なるコストダウンを図ることにある。
DISCLOSURE OF THE INVENTION The present invention has been made in view of such circumstances, and an object of the present invention is to use a raw material comprising a metal oxide and a metal carbonate which are stable in an aqueous solvent. Then, by providing a method for producing a gas separation membrane to produce a molded body by firing this to form a gas separation membrane, by omitting the calcination step, further simplify the production process,
An object of the present invention is to further reduce costs by manufacturing with an aqueous solvent without using an expensive alcohol-based solvent.

【0008】[0008]

【課題を解決するための手段】 即ち、本発明によれ
ば、混合ガス中から特定ガスを分離又は供給するガス分
離膜の製造方法であって、水溶媒に安定な金属炭酸塩、
及び金属酸化物から成る混合物を成形し成形体を得る工
程と、成形体を金属炭酸塩の分解温度より高く、且つ、
金属酸化物の共有点温度より低い温度で焼成し焼結体を
得る工程から成ることを特徴とするガス分離膜の製造方
法が提供される。このとき、得られた焼結体が、ブラウ
ンミラーライト構造若しくはペロブスカイト構造の酸化
物から成る緻密体であることが好ましい。
That is, according to the present invention, there is provided a method for producing a gas separation membrane for separating or supplying a specific gas from a mixed gas, comprising a metal carbonate stable in an aqueous solvent,
And forming a mixture comprising a metal oxide to obtain a molded body, and forming the molded body at a temperature higher than the decomposition temperature of the metal carbonate, and
A method for producing a gas separation membrane, comprising a step of firing at a temperature lower than the common point temperature of a metal oxide to obtain a sintered body. At this time, the obtained sintered body is preferably a dense body composed of an oxide having a brown mirror light structure or a perovskite structure.

【0009】[0009]

【発明の実施の形態】 本発明のガス分離膜の製造方法
は、ブラウンミラーライト構造若しくはペロブスカイト
構造の構成元素である金属酸化物、及び金属炭酸塩を所
定量混合し成形して得た成形体を、金属炭酸塩の分解温
度より高く、且つ、金属酸化物の共有点温度より低い温
度で焼成し充分に反応を進め焼結体を得ることに特徴が
ある。このことによって炭酸ガスの急激な発生、及び溶
融による異相生成を抑制し、焼結体をブラウンミラーラ
イト構造若しくはペロブスカイト構造の酸化物から成る
緻密体とすることが出来る。このため、従来の、金属酸
化物、及び金属炭酸塩を混合して一度焼成し(仮焼工
程)、ブラウンミラーライト構造の酸化物を得て、この
酸化物を粉砕してから、成形し成形体を得て再度焼成す
る製造方法(WO−97/41060公報)における二
回の焼成のうち仮焼工程を省略でき、より製造工程が簡
略化され、コストを低減することが出来る。ブラウンミ
ラーライト構造若しくはペロブスカイト構造をとる物質
の原料としては、金属炭酸塩として炭酸ストロンチウ
ム、炭酸バリウム、炭酸カルシウム等があり、金属酸化
物として酸化ランタン、酸化コバルト、酸化イットリウ
ム、酸化銅、酸化クロム、酸化ガドリニウム、酸化鉄、
酸化アルミニウム、酸化チタン、酸化バナジウム、酸化
マンガン、酸化ニッケル等がある。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a gas separation membrane according to the present invention relates to a molded product obtained by mixing and molding a predetermined amount of a metal oxide and a metal carbonate which are constituent elements of a brown mirror light structure or a perovskite structure. Is fired at a temperature higher than the decomposition temperature of the metal carbonate and lower than the common point temperature of the metal oxide, and the reaction is sufficiently advanced to obtain a sintered body. As a result, rapid generation of carbon dioxide gas and generation of a different phase due to melting can be suppressed, and the sintered body can be a dense body made of an oxide having a brown mirror light structure or a perovskite structure. Therefore, a conventional metal oxide and a metal carbonate are mixed and calcined once (calcination step) to obtain an oxide having a brown mirror light structure, and this oxide is pulverized, and then molded and molded. The calcining step can be omitted from the two firings in the manufacturing method of obtaining a body and firing again (WO-97 / 41060), whereby the manufacturing process can be further simplified and the cost can be reduced. Raw materials of the substance having a brown mirror light structure or a perovskite structure include strontium carbonate, barium carbonate, calcium carbonate and the like as metal carbonates, and lanthanum oxide, cobalt oxide, yttrium oxide, copper oxide and chromium oxide as metal oxides. Gadolinium oxide, iron oxide,
Examples include aluminum oxide, titanium oxide, vanadium oxide, manganese oxide, and nickel oxide.

【0010】 又、本発明の製造方法では、水と反応し
やすいためアルコール系の溶媒を用いているブラウンミ
ラーライト構造の酸化物の粉末を作製せず、原料とし
て、安価な水溶媒と金属炭酸塩、及び金属酸化物から成
る混合物を用いるので、更に低コストに製造出来る。
In the production method of the present invention, a powder of an oxide having a brown mirror light structure using an alcohol-based solvent is not produced because it easily reacts with water. Since a mixture of a salt and a metal oxide is used, it can be manufactured at lower cost.

【0011】 本発明のガス分離膜の製造方法により製
造されるガス分離膜は、ブラウンミラーライト構造若し
くはペロブスカイト構造の酸化物からなる緻密体であ
り、固体膜であることが好ましい。こうすることによっ
て、ガス分離膜自身が自重を支持できるために、ガス分
離膜を支持するための支持体が不要であり、膜面積を大
きく出来る。又、酸素透過膜として用いた場合、メタン
等の炭化水素ガスを原料として、酸素透過膜で酸素を供
給することにより、部分酸化反応を起こさせ、一酸化炭
素と水素からなる合成ガスの製造等に適用することが出
来る。更には、ブラウンミラーライト構造若しくはペロ
ブスカイト構造は大変安定した構造であるため、還元性
ガスを透過させても膜組成に変化が生じず、長期間安定
した性能が発揮される。
The gas separation membrane manufactured by the method for manufacturing a gas separation membrane of the present invention is a dense body made of an oxide having a brown mirror light structure or a perovskite structure, and is preferably a solid film. By doing so, since the gas separation membrane itself can support its own weight, a support for supporting the gas separation membrane is not required, and the membrane area can be increased. When used as an oxygen permeable membrane, a partial oxidation reaction is caused by supplying oxygen through the oxygen permeable membrane using a hydrocarbon gas such as methane as a raw material to produce a synthesis gas composed of carbon monoxide and hydrogen. Can be applied to Furthermore, since the brown mirror light structure or the perovskite structure is a very stable structure, the film composition does not change even if a reducing gas is permeated, and stable performance is exhibited for a long period of time.

【0012】 本発明のガス分離膜の製造方法では、長
尺や大型の成形体の場合にも、押し出し成形により容易
に成形体を得ることが出来るため、積層構造のガス分離
膜等と比較すると、より製造工程は簡略化され、コスト
も低減される。
In the method for producing a gas separation membrane of the present invention, a molded article can be easily obtained by extrusion molding even in the case of a long or large molded article. The manufacturing process is simplified and the cost is reduced.

【0013】 本発明で用いる、水溶媒に安定な金属炭
酸塩、及び金属酸化物から成る混合物は、特に限定され
ないが、例えば、WO−97/41060公報に開示さ
れている電子伝導性と酸素イオン導電性の両方を有する
混合導電体酸素透過膜に用いられる一般公式A225
で表される化合物であることが好ましい。ここで、上記
化合物の組成式は、A2-XA'x2-yB'y5+z(0<x
<2、0<y<2、0<z<1)で表され、Aがアルカ
リ土類金属、A'がランタニド元素若しくはY、Bが3
d遷移金属若しくは13族金属、B'が3d遷移金属か
13族金属かランタニド元素かYである。上記化合物の
最適組成は、Sr2-xLaxGa2-yFey5+Z(0.2
<x<0.8、1.0<y<1.8、0<z<0.3)
であり、これを用いると、900℃にて片側空気と片側
メタンの両雰囲気に曝露しても1,000時間膜組成に
変化がないことが確認されている。
The mixture of a metal carbonate and a metal oxide that is stable in an aqueous solvent used in the present invention is not particularly limited, and examples thereof include an electron conductivity and an oxygen ion disclosed in WO-97 / 41060. General formula A 2 B 2 O 5 used for mixed conductor oxygen permeable membrane having both conductivity
It is preferable that the compound is represented by Here, the composition formula of the above compound is A 2−x A ′ x B 2−y B ′ y O 5 + z (0 <x
<2, 0 <y <2, 0 <z <1), A is an alkaline earth metal, A ′ is a lanthanide element or Y, B is 3
Y is a d transition metal or a Group 13 metal, and B 'is a 3d transition metal, a Group 13 metal, or a lanthanide element. The optimum composition of the above compound is Sr 2-x La x Ga 2-y Fe y O 5 + Z (0.2
<X <0.8, 1.0 <y <1.8, 0 <z <0.3)
It has been confirmed that when this is used, there is no change in the film composition for 1,000 hours even when exposed to both atmospheres of one-sided air and one-sided methane at 900 ° C.

【0014】[0014]

【実施例】 以下、本発明を実施例を用いて更に詳細に
説明するが、本発明はこれらの実施例に制限されるもの
ではない。 (実施例)SrCO3、La23、Ga23、Fe23
粉末を陽イオンモル比で1.7:0.3:0.4:1.6
となるよう混合し、水溶媒、ZrO2玉石を用いてボー
ルミルで3時間混合した。得られた粉末を120℃で一
晩乾燥した後、粉末を乳鉢で解砕してからふるいを通
し、平均粒度:0.7μmとした後、一軸プレスで直径
20mm、厚さ5mmの成形体を得た。得られた成形体
を、200℃/時で昇温し、焼結温度より僅かに低く、
原料粉末の金属炭酸塩の分解温度より高く金属酸化物の
共有点温度より低い温度である、1300℃で10時間
反応させた後、50℃/時で昇温し、1350℃にて5
時間焼成した。その後、炉内で徐々に冷却し、得られた
焼結体の嵩密度を測定したところ、99%であった。
又、得られた焼結体は、X線回折法により異相がなくブ
ラウンミラーライト構造であることが確認できた。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples. (Example) SrCO 3 , La 2 O 3 , Ga 2 O 3 , Fe 2 O 3
The powder was prepared at a cation molar ratio of 1.7: 0.3: 0.4: 1.6.
And mixed for 3 hours in a ball mill using a water solvent and ZrO 2 beads. After the obtained powder was dried at 120 ° C. overnight, the powder was crushed in a mortar and passed through a sieve to obtain an average particle size of 0.7 μm. Then, a compact having a diameter of 20 mm and a thickness of 5 mm was formed by a uniaxial press. Obtained. The obtained molded body was heated at a rate of 200 ° C./hour, slightly lower than the sintering temperature,
After reacting for 10 hours at 1300 ° C., which is higher than the decomposition temperature of the metal carbonate of the raw material powder and lower than the common point temperature of the metal oxide, the temperature is raised at 50 ° C./hour and 5 ° C. at 1350 ° C.
Fired for hours. Thereafter, the resultant was gradually cooled in a furnace, and the bulk density of the obtained sintered body was measured to be 99%.
Further, it was confirmed by X-ray diffraction that the obtained sintered body did not have a different phase and had a brown mirror light structure.

【0015】 図1に示す装置を用いて、作製したガス
分離膜が期待される性能を発揮していることを確認し
た。得られたガス分離膜1の上下端の外周部にガラス粉
末を塗布した後、角型のアルミナ管2a、2bと接合さ
せ、機械的なバネ力により押さえ付けた状態で、電気炉
5中の石英管9の内部に垂直に配置した。このとき、ガ
ス分離膜1と石英管9との間は、石英ウール6で充填さ
れている。又、石英管9内の空気の流れは、主にガス分
離膜1に流れるように配置されている。尚、ガラス粉末
は、高温で溶融され、ガラスシール3a、3bとなり、
ガス分離膜1の上下端とアルミナ管2a、2bとをシー
ルする。
Using the apparatus shown in FIG. 1, it was confirmed that the produced gas separation membrane exhibited the expected performance. After applying the glass powder to the outer peripheral portions of the upper and lower ends of the obtained gas separation membrane 1, the glass powder is bonded to the square alumina tubes 2 a and 2 b, and pressed in the electric furnace 5 while being pressed by a mechanical spring force. It was arranged vertically inside the quartz tube 9. At this time, the space between the gas separation membrane 1 and the quartz tube 9 is filled with the quartz wool 6. The flow of air in the quartz tube 9 is arranged so as to mainly flow through the gas separation membrane 1. The glass powder is melted at a high temperature to form glass seals 3a and 3b.
The upper and lower ends of the gas separation membrane 1 and the alumina tubes 2a and 2b are sealed.

【0016】 次に、図1に示すように、ガス分離膜1
のセル通路4側(透過側)の上から下へCH4ガスを2
Nl/min導入し、ガス分離膜1の側面に配設された
スリット8側(原料側)の下から上へ空気を流通させな
がら、電気炉5を10℃/minで900℃まで昇温さ
せた時におけるガス分離膜1のCO、CO 2、H2、CH
4量、及び空気のリーク量の測定をガスクロにてそれぞ
れ行った。
Next, as shown in FIG. 1, the gas separation membrane 1
From top to bottom of cell passage 4 side (transmission side)Four2 gas
Nl / min was introduced and disposed on the side of the gas separation membrane 1.
Do not allow air to flow from below to above the slit 8 side (raw material side).
Then, the temperature of the electric furnace 5 was raised to 900 ° C. at a rate of 10 ° C./min.
And CO of the gas separation membrane 1 when Two, HTwo, CH
FourGas and air leak measurement by gas chromatography
Done.

【0017】 以上の結果、ガス分離膜1のCO+H2
合計量(合成ガス量)は、5Nml/minであった。
又、ガス分離膜1の空気のリーク量は、窒素濃度が0.
01%以下であり、空気のリークがないことを確認し
た。
As a result, CO + H 2 of the gas separation membrane 1
The total amount (synthesis gas amount) was 5 Nml / min.
Further, the amount of air leaking from the gas separation membrane 1 is as follows.
01% or less, and it was confirmed that there was no air leakage.

【0018】[0018]

【発明の効果】 本発明によれば、水溶媒中で安定な金
属酸化物、及び金属炭酸塩から成る原料を用いて、これ
を成形し成形体を得た後に焼成しガス分離膜を作製する
ガス分離膜の製造方法が提供され、この製造方法によ
り、仮焼工程が省略され、より製造工程を簡略化出来、
高価なアルコール系の溶媒を用いずに水溶媒で製造され
るので更なるコストダウンが図られるといった効果を奏
する。
According to the present invention, a gas separation membrane is produced by using a raw material composed of a metal oxide and a metal carbonate which are stable in an aqueous solvent, shaping the same, obtaining a molded body, and then firing. A method for producing a gas separation membrane is provided. By this method, a calcination step is omitted, and the production step can be further simplified.
Since an aqueous alcoholic solvent is used without using an expensive alcohol-based solvent, the cost can be further reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例で用いたガス分離膜の性能評価試験装
置の一例を示す概略構成図である。
FIG. 1 is a schematic configuration diagram illustrating an example of a performance evaluation test apparatus for a gas separation membrane used in an example.

【符号の説明】[Explanation of symbols]

1…ガス分離膜、2…アルミナ管、3…ガラスシール、
4…セル通路、5…電気炉、6…石英ウール、7…熱電
対、8…スリット、9…石英管。
1 ... gas separation membrane, 2 ... alumina tube, 3 ... glass seal,
4 cell passage, 5 electric furnace, 6 quartz wool, 7 thermocouple, 8 slit, 9 quartz tube.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D006 GA41 HA21 JA01C MA02 MA33 MB04 MC01 MC02 MC03 NA39 NA63 PB18 PB68 4G002 AA08 AA09 AB02 AE05 4G030 AA09 AA12 AA13 AA27 AA34 BA32 CA01 CA07  ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 4D006 GA41 HA21 JA01C MA02 MA33 MB04 MC01 MC02 MC03 NA39 NA63 PB18 PB68 4G002 AA08 AA09 AB02 AE05 4G030 AA09 AA12 AA13 AA27 AA34 BA32 CA01 CA07

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 混合ガス中から特定ガスを分離又は供給
するガス分離膜の製造方法であって、 水溶媒に安定な金属炭酸塩、及び金属酸化物から成る混
合物を、成形し成形体を得る工程と、 前記成形体を、前記金属炭酸塩の分解温度より高く、且
つ、前記金属酸化物の共有点温度より低い温度で焼成し
焼結体を得る工程から成ることを特徴とするガス分離膜
の製造方法。
1. A method for producing a gas separation membrane for separating or supplying a specific gas from a mixed gas, comprising forming a mixture comprising a metal carbonate and a metal oxide, which are stable in an aqueous solvent, to obtain a molded body. And a step of firing the molded body at a temperature higher than the decomposition temperature of the metal carbonate and lower than the common point temperature of the metal oxide to obtain a sintered body. Manufacturing method.
【請求項2】 前記焼結体が、ブラウンミラーライト構
造若しくはペロブスカイト構造の酸化物から成る緻密体
である請求項1に記載のガス分離膜の製造方法。
2. The method for producing a gas separation membrane according to claim 1, wherein the sintered body is a dense body composed of an oxide having a brown mirror light structure or a perovskite structure.
JP2000122328A 2000-04-24 2000-04-24 Manufacturing method of gas separation membrane Withdrawn JP2001300274A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122328A JP2001300274A (en) 2000-04-24 2000-04-24 Manufacturing method of gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122328A JP2001300274A (en) 2000-04-24 2000-04-24 Manufacturing method of gas separation membrane

Publications (1)

Publication Number Publication Date
JP2001300274A true JP2001300274A (en) 2001-10-30

Family

ID=18632815

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122328A Withdrawn JP2001300274A (en) 2000-04-24 2000-04-24 Manufacturing method of gas separation membrane

Country Status (1)

Country Link
JP (1) JP2001300274A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572318B2 (en) * 2006-04-18 2009-08-11 Gas Technology Institute High-temperature membrane for CO2 and/or H2S separation
JP2012217931A (en) * 2011-04-08 2012-11-12 Mitsubishi Chemicals Corp Catalyst for cleaning exhaust gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572318B2 (en) * 2006-04-18 2009-08-11 Gas Technology Institute High-temperature membrane for CO2 and/or H2S separation
JP2012217931A (en) * 2011-04-08 2012-11-12 Mitsubishi Chemicals Corp Catalyst for cleaning exhaust gas

Similar Documents

Publication Publication Date Title
CA2307005C (en) Hydrogen permeation through mixed protonic-electronic conducting materials
US6146549A (en) Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties
US6641626B2 (en) Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
AU737377B2 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
Zeng et al. Re-evaluation of Ba0. 5Sr0. 5Co0. 8Fe0. 2O3− δ perovskite as oxygen semi-permeable membrane
US5817597A (en) Compositions capable of operating under high oxygen partial pressures for use in solid-state oxygen producing devices
US20020022568A1 (en) Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
US6592782B2 (en) Materials and methods for the separation of oxygen from air
ES2218457T3 (en) MIXED DRIVING MEMBRANES FOR SYNGAS PRODUCTION.
JP2008522801A (en) Catalytic membrane reactor
JP2003510178A (en) Membrane and its use
Geffroy et al. Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La (1− x) SrxFe (1− y) GayO3− δ perovskite membranes
JPH11253769A (en) Fluid separation device with solid membrane formed out of mixed conductive multicomponent metal oxide
Zhang et al. A novel tubular oxygen-permeable membrane reactor for partial oxidation of CH4 in coke oven gas to syngas
JP2001300274A (en) Manufacturing method of gas separation membrane
JP4293775B2 (en) Catalyzed ceramic composite, production method thereof, and ceramic membrane reactor
JP2001104742A (en) Honeycomb-shaped gas separation membrane structure
KR20090062832A (en) A manufacturing method for the perovskite ion transport membrane of separating process of oxygen using the same
JP3876306B2 (en) Mixed conductive oxide
JP2005281077A (en) Ceramic composition, composite material, and chemical reaction apparatus
JP2005507308A (en) Proton and electron conducting membranes in solid multicomponent mixtures.
JP6075155B2 (en) Oxygen permeable membrane, oxygen separation method and fuel cell system
JP2002012472A (en) Composite material, ceramic composition, oxygen separator, chemical reactor and method of manufacturing composite material
JP2002097083A (en) Porous material and composite material
JP4340269B2 (en) Porcelain composition, oxygen separator and chemical reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070703