JP2001296471A - Objective lens for optical head - Google Patents

Objective lens for optical head

Info

Publication number
JP2001296471A
JP2001296471A JP2000113061A JP2000113061A JP2001296471A JP 2001296471 A JP2001296471 A JP 2001296471A JP 2000113061 A JP2000113061 A JP 2000113061A JP 2000113061 A JP2000113061 A JP 2000113061A JP 2001296471 A JP2001296471 A JP 2001296471A
Authority
JP
Japan
Prior art keywords
lens
wavelength
objective lens
refractive index
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000113061A
Other languages
Japanese (ja)
Inventor
Shuichi Takeuchi
修一 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pentax Corp
Original Assignee
Asahi Kogaku Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogaku Kogyo Co Ltd filed Critical Asahi Kogaku Kogyo Co Ltd
Priority to JP2000113061A priority Critical patent/JP2001296471A/en
Priority to US09/833,612 priority patent/US6515955B2/en
Publication of JP2001296471A publication Critical patent/JP2001296471A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Lenses (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an objective lens by which chromatic aberration is excellently corrected in a short wavelength region. SOLUTION: The objective lens 10 is a single biconvex lens having two lens surfaces 11 and 12, and a concentric zonal diffraction lens structure centering an optical axis is formed on a first surface 11. The lens surfaces 11 and 12 are both aspherical. A step in an optical axis direction is provided at the boundary of each zone like a Fersnel lens, so that it has a function to correct the chromatic aberration caused at a dioptric lens part by the diffraction lens structure. A second surface 12 is a consecutive surface without having the diffraction lens structure. The objective lens 10 is formed of a lens material satisfying the condition of 1/(ν3.λ×10-6)<0.0045 by a relation with used wavelength λ nm. ν means Abbe number thereof on a d line.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、光ディスクに対
して情報を記録し、あるいは再生する光ヘッドに用いら
れる対物レンズに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an objective lens used for an optical head for recording or reproducing information on an optical disk.

【0002】[0002]

【従来の技術】光ディスクの記録密度を高めるために
は、光ディスクの記録面上に形成されるビームスポット
の径を小さく絞る必要がある。スポット径は、開口数N
Aに反比例し、波長に比例するため、対物レンズのNA
を大きくし、あるいは光源の波長を短くすることにより
記録密度を高めることができる。
2. Description of the Related Art In order to increase the recording density of an optical disk, it is necessary to reduce the diameter of a beam spot formed on the recording surface of the optical disk. The spot diameter is the numerical aperture N
Since it is inversely proportional to A and proportional to wavelength, the NA of the objective lens
Or the wavelength of the light source can be shortened to increase the recording density.

【0003】NAを大きくするためには、有効径を大き
くする必要があるが、光ヘッド用の対物レンズは単レン
ズで構成すると曲率半径が極めて小さくなるため、レン
ズ周辺部で所定の厚さを確保するためには中心部のレン
ズ厚が過大になる。したがって、高NA化により記録密
度を高めようとすると、対物レンズのサイズ、重量が大
きくなり、装置の小型化を妨げるという問題がある。
To increase the NA, it is necessary to increase the effective diameter. However, if the objective lens for an optical head is formed of a single lens, the radius of curvature becomes extremely small. In order to ensure this, the thickness of the lens at the center becomes excessive. Therefore, when an attempt is made to increase the recording density by increasing the NA, there is a problem that the size and weight of the objective lens increase, which hinders miniaturization of the apparatus.

【0004】一方、使用波長を短くすると、レンズ材料
の屈折率の波長依存性が大きくなる。例えば、現在対物
レンズに多く使われている材料の650nm付近での屈折率
の波長依存性は-3×10-5[nm-1]程度であるのに対し、同
じ材料の400nm付近での屈折率の波長依存性はその5倍の
-15×10-5[nm-1]程度である。光源として一般に用いら
れる半導体レーザーは、製品の個体毎に発振波長にバラ
ツキがある上、温度変化等によっても発振波長が変化す
るため、対物レンズは波長変動による収差の変動を抑え
る必要がある。特に、波長が短くなると上記のように屈
折率の変化率が大きくなるばかりでなく焦点深度も小さ
くなるため、短波長の領域では色収差の補正が重要であ
る。
On the other hand, when the wavelength used is shortened, the wavelength dependence of the refractive index of the lens material increases. For example, the wavelength dependence of the refractive index around 650 nm of a material that is currently widely used for objective lenses is about -3 × 10 -5 [nm -1 ], while the refractive index of the same material around 400 nm. The wavelength dependence of the rate is five times that
It is about -15 × 10 −5 [nm −1 ]. A semiconductor laser generally used as a light source has a variation in oscillation wavelength for each individual product, and the oscillation wavelength also changes due to a temperature change or the like. Therefore, it is necessary for an objective lens to suppress fluctuation of aberration due to wavelength fluctuation. In particular, as the wavelength becomes shorter, not only the rate of change of the refractive index becomes larger as described above, but also the depth of focus becomes smaller. Therefore, it is important to correct the chromatic aberration in the short wavelength region.

【0005】対物レンズの色収差補正の方法としては、
特開平3−155514号公報、特開平3−155515号公報等に開
示されるように複数のガラスレンズを組み合わせる方
法、あるいは、特開平11−337818号公報等に開示される
ように回折作用を利用する方法等が知られている。特開
平11−337818号公報には、回折レンズ構造のみの焦点距
離fDと屈折レンズと回折レンズ構造とを合わせた全体の
焦点距離fとの関係が、40<fD/fを満たすことが望まし
いことが記載されている。
As a method of correcting chromatic aberration of an objective lens,
JP-A-3-155514, a method of combining a plurality of glass lenses as disclosed in JP-A-3-155515, and the like, or utilizing a diffraction effect as disclosed in JP-A-11-337818, etc. There are known methods. Japanese Patent Application Laid-Open No. 11-337818 discloses that the relationship between the focal length fD of only the diffractive lens structure and the total focal length f of the refraction lens and the diffractive lens structure combined preferably satisfies 40 <fD / f. Is described.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、光学ガ
ラス、特に分散の大きい光学ガラスの内部透過率は短波
長側で著しく低下するため、複数のガラスレンズを組み
合わせる方法では光量の損失が大きくなるという問題を
生じる。他方、回折作用を利用する特開平11−337818号
公報に記載された方法では、上記の条件を400nm近辺の
短波長領域で適用すると、現在知られているどのような
レンズ材料をもってしても満足な色収差補正は不可能で
ある。
However, since the internal transmittance of an optical glass, especially an optical glass having a large dispersion, is significantly reduced on the short wavelength side, a problem that the loss of the light amount becomes large in the method of combining a plurality of glass lenses. Is generated. On the other hand, in the method described in Japanese Patent Application Laid-Open No. H11-337818, which utilizes a diffraction effect, if the above conditions are applied in a short wavelength region around 400 nm, any currently known lens material is satisfactory. No chromatic aberration correction is possible.

【0007】この発明は、上述した従来技術の問題点に
鑑み、F線(波長486nm)より短い短波長領域において色
収差を良好に補正することができる光ヘッド用対物レン
ズを提供することを目的とする。
An object of the present invention is to provide an objective lens for an optical head capable of satisfactorily correcting chromatic aberration in a short wavelength region shorter than the F line (wavelength 486 nm) in view of the above-mentioned problems of the prior art. I do.

【0008】[0008]

【課題を解決するための手段】この発明にかかる光ヘッ
ド用対物レンズは、光源から発するF線より短い波長の
光束を光ディスクの記録面上に収束させるレンズであっ
て、光軸から周辺に向かって曲率半径が大きくなる非球
面を少なくとも1面有する単レンズであり、少なくとも
いずれかのレンズ面にブレーズ化された色収差補正用の
回折レンズ構造が形成されており、以下の条件[1]を満
たすことを特徴とする。 1/(ν3・λ×10-6)<0.0045 …[1] ただし、νはd線に対するアッベ数、λは使用波長(単
位:nm)である。
SUMMARY OF THE INVENTION An objective lens for an optical head according to the present invention is a lens for converging a light beam having a wavelength shorter than the F-line emitted from a light source on a recording surface of an optical disk, and is directed from an optical axis to a periphery. Is a single lens having at least one aspheric surface having a large radius of curvature. A blazed diffractive lens structure for correcting chromatic aberration is formed on at least one of the lens surfaces, and satisfies the following condition [1]: It is characterized by the following. 1 / (ν 3 · λ × 10 −6 ) <0.0045 (1) where ν is the Abbe number for the d-line and λ is the wavelength used (unit: nm).

【0009】一般に、レンズ材料の波長分散はC線(656
nm)、F線(486nm)、d線(588nm)における屈折率から計算
されるアッベ数νで表される。ν値が大きいほど分散は
小さいので、屈折レンズにより発生する色収差の量を抑
えるにはν値の大きいレンズ材料を選ぶのが望ましい。
波長分散は、波長が短いほど大きくなる傾向があり、F
線より短い波長領域では波長分散のレンズ材料による違
いがν値の2乗から3乗程度になる。したがって、色収差
の発生を抑えるためには、ν値の2乗、あるいは3乗の
値の下限、若しくはその逆数の上限を適宜定めればよ
い。
Generally, the wavelength dispersion of the lens material is C-line (656
nm), F line (486 nm), and d line (588 nm). Since the dispersion becomes smaller as the ν value is larger, it is desirable to select a lens material having a larger ν value in order to suppress the amount of chromatic aberration generated by the refractive lens.
The chromatic dispersion tends to increase as the wavelength decreases, and F
In the wavelength region shorter than the line, the difference in the wavelength dispersion depending on the lens material is about the square to the cube of the ν value. Therefore, in order to suppress the occurrence of chromatic aberration, the lower limit of the square or the third power of the ν value or the upper limit of the reciprocal thereof may be appropriately determined.

【0010】一方、色収差補正の目安として焦点深度が
考えられるが、焦点深度DOFは一般にDOF=kλ/NA2(k
は比例定数)で表される。つまり、焦点深度は波長に比
例することから、色収差の発生量の上限もλに比例す
る。色収差の発生量が1/ν3に比例すると考えればで表
されると考えれば、1/ν3<Kλ、あるいは1/ν3K<
1(Kは比例定数)となる。したがって、F線より短い
波長領域で屈折レンズにより発生する色収差量を抑える
ためには、波長λの逆数と、ν値の3乗の逆数の積があ
る一定の値以下になるのが望ましい。条件[1]は、この
積の上限を規定している。
On the other hand, the depth of focus can be considered as a standard for correcting chromatic aberration. The depth of focus DOF is generally DOF = kλ / NA 2 (k
Is a proportionality constant). That is, since the depth of focus is proportional to the wavelength, the upper limit of the generation amount of chromatic aberration is also proportional to λ. If it is considered that the generation amount of chromatic aberration is proportional to 1 / ν 3 , then it can be expressed as 1 / ν 3 <Kλ or 1 / ν 3 K <
1 (K is a proportional constant). Therefore, in order to suppress the amount of chromatic aberration generated by the refractive lens in a wavelength region shorter than the F-line, it is desirable that the product of the reciprocal of the wavelength λ and the reciprocal of the cube of the ν value be equal to or less than a certain value. Condition [1] specifies the upper limit of this product.

【0011】上記の構成によれば、条件[1]を満たすよ
うに屈折率の波長依存性と使用波長とのバランスをとる
ことにより、屈折レンズによって発生する色収差の影響
を抑えることでき、波長変動による収差の変化を回折レ
ンズ構造を用いて充分に補正することができる。
According to the above configuration, by balancing the wavelength dependence of the refractive index and the wavelength used so as to satisfy the condition [1], it is possible to suppress the influence of chromatic aberration generated by the refractive lens, Can be sufficiently corrected by using the diffractive lens structure.

【0012】レンズ材料は、ガラスであることが望まし
い。ガラスは、プラスチックと比較すると温度変化によ
る形状や屈折率の変化が少ないため、回折レンズ構造を
設計する際にこれらの影響を無視して設計することがで
きる。さらに、記録面が透明保護層により保護された光
ディスクを対象とする場合には以下の条件[2],[3]を、
記録面が透明保護層により保護されない光ディスクを対
象とする場合には以下の条件[4],[3]満たすことが望ま
しい。 -0.015<[Δn・fD・f/[(n−1)・(fD−f)]-Δnd・td/nd2] ・fD(f・NA/uhd)2/f<-0.007 …[2] -0.015<[Δn・fD・f/[(n−1)・(fD−f)]] ・fD(f・NA/uhd)2/f<-0.007 …[4] -0.3<φ42<0.3 …[3] ただし、 Δn:波長(λ+1)nmでの屈折率n+1、波長(λ-1)nmでの
屈折率n-1を用いて以下の式で表されるレンズ材料の屈
折率の変化率、 Δn=(n+1−n-1)/2 Pi:回折レンズ構造による光路長の付加量を光軸から
の高さh、回折次数mを用いて以下の式で表したときの
i次の光路差係数、 φ(h)=(P0+P22+P44+P66+…)×m×λ fD:次の式で求められる回折レンズ構造単独の焦点距
離、 fD=−[1/(2・P2・m・λ)] f:対物レンズ全体の焦点距離、 Δnd:波長(λ+1)nmでの屈折率nd+1、波長(λ-1)nmでの
屈折率nd-1を用いて以下の式で求められる光ディスク保
護層の屈折率の変化率、 Δnd=(nd+1- nd-1)/2 td:光ディスクの保護層の厚さ、 NA:対物レンズの開口数、 uhd:回折レンズ構造が形成された面の有効半径、 φ2 :次の式で求められる2次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差、 φ2=P2・uhd2×m×λ φ4 :次の式で求められる4次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差であ
る。 φ4=P4・uhd4×m×λ
Preferably, the lens material is glass. Since glass has less change in shape and refractive index due to temperature change than plastic, it is possible to design a diffractive lens structure ignoring these effects. Further, when an optical disk whose recording surface is protected by a transparent protective layer is targeted, the following conditions [2] and [3] must be satisfied.
In the case of an optical disk whose recording surface is not protected by the transparent protective layer, the following conditions [4] and [3] are preferably satisfied. -0.015 <[Δn ・ fD ・ f / [(n−1) ・ (fD−f)]-Δnd ・ td / nd 2 ] ・ fD (f ・ NA / uhd) 2 /f<-0.007… [2] -0.015 <[Δn ・ fD ・ f / [(n−1) ・ (fD−f)]] ・ fD (f ・ NA / uhd) 2 /f<-0.007… [4] -0.3 <φ 4 / φ 2 <0.3 ... [3] However, [Delta] n: is represented by the following equation using the wavelength (lambda + 1) refractive index at nm n +1, the refractive index n -1 at the wavelength (λ-1) nm Rate of change of the refractive index of the lens material, Δn = (n + 1− n− 1 ) / 2P i : the additional amount of the optical path length due to the diffractive lens structure is calculated using the height h from the optical axis and the diffraction order m. When expressed by the formula
i-th order optical path difference coefficient, φ (h) = (P 0 + P 2 h 2 + P 4 h 4 + P 6 h 6 +...) × m × λ fD: focal length of the diffractive lens structure alone determined by the following equation: fD = − [1 / (2 · P 2 · m · λ)] f: focal length of the entire objective lens, Δnd: refractive index nd +1 at wavelength (λ + 1) nm, wavelength (λ-1) nm The change rate of the refractive index of the optical disk protective layer obtained by the following equation using the refractive index nd -1 at Δnd: Δnd = (nd + 1 -nd- 1 ) / 2 td: the thickness of the protective layer of the optical disk, NA : Numerical aperture of the objective lens, uhd: Effective radius of the surface on which the diffractive lens structure is formed, φ 2 : Maximum diameter of the surface on which the diffractive lens structure is formed by the second-order optical path difference coefficient obtained by the following equation Optical path length difference, φ 2 = P 2 uhd 2 × m × λ φ 4 : The optical path length difference at the maximum diameter of the surface on which the diffractive lens structure is formed by the fourth-order optical path difference coefficient obtained by the following equation: . φ 4 = P 4・ uhd 4 × mx × λ

【0013】[0013]

【発明の実施の形態】以下、この発明にかかる光ヘッド
用対物レンズの実施形態を説明する。図1は、実施形態
にかかる対物レンズ10を示す説明図であり、(A)は正
面図、(B)は縦断面図、(C)は縦断面の一部拡大図であ
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an objective lens for an optical head according to the present invention will be described below. FIG. 1 is an explanatory view showing an objective lens 10 according to an embodiment, in which (A) is a front view, (B) is a longitudinal sectional view, and (C) is a partially enlarged view of the longitudinal section.

【0014】対物レンズ10は、2つのレンズ面11,
12を有する両凸の単レンズであり、第1面11に図1
(A)に示したように光軸を中心とする同心輪帯状の回折
レンズ構造が形成されている。レンズ面11,12はい
ずれも光軸から周辺に向かって曲率半径が大きくなる非
球面である。回折レンズ構造は、図1(C)に示す通り、
フレネルレンズのように各輪帯の境界に光軸方向の段差
を持ち、屈折レンズ部分で発生する色収差を補正する機
能を有している。第2面12は、回折レンズ構造を持た
ない連続面である。なお、回折レンズ構造は、第1面1
1ではなく第2面12に設けることもできる。
The objective lens 10 has two lens surfaces 11,
12 is a biconvex single lens having a first surface 11
As shown in (A), a concentric ring-shaped diffractive lens structure centered on the optical axis is formed. Each of the lens surfaces 11 and 12 is an aspherical surface whose radius of curvature increases from the optical axis toward the periphery. The diffractive lens structure is as shown in FIG.
Like the Fresnel lens, there is a step in the optical axis direction at the boundary of each ring zone, and it has a function of correcting chromatic aberration generated in the refractive lens portion. The second surface 12 is a continuous surface having no diffraction lens structure. Note that the diffractive lens structure has a first surface 1
It can be provided on the second surface 12 instead of the first surface 12.

【0015】対物レンズ10の第1面11に形成された
回折レンズ構造による光路長の付加量φは、光軸からの
高さh、n次(偶数次)の光路差関数係数Pi、回折次数
m、波長λを用いて、 φ(h)=(P22+P44+P66+…)×m×λ により定義される光路差関数φ(h)により表される。付
加量は、軸上の光路に対して光路長が長くなる方向を正
として表す。
The additional amount φ of the optical path length due to the diffractive lens structure formed on the first surface 11 of the objective lens 10 is the height h from the optical axis, the n-th (even-order) optical path difference function coefficient P i , the diffraction It is represented by an optical path difference function φ (h) defined by φ (h) = (P 2 h 2 + P 4 h 4 + P 6 h 6 +...) × m × λ using the order m and the wavelength λ. The amount of addition is expressed as positive in the direction in which the optical path length becomes longer than the optical path on the axis.

【0016】実際の回折レンズ構造の微細形状は、上記
の光路差関数で表わされる光路長から波長の整数倍の成
分を消去することにより、フレネルレンズ状の光路長付
加量を持つように決定される。すなわち、輪帯幅は、例
えば1次回折光を用いる場合には、輪帯の内周と外周と
で光路差関数が一波長分の差を持つように決定される。
また、輪帯間の段差は、波長をλ、屈折率をnとして、
λ/(n−1)で求められる。
The actual fine shape of the diffractive lens structure is determined so as to have a Fresnel lens-shaped optical path length addition amount by eliminating a component of an integral multiple of the wavelength from the optical path length represented by the optical path difference function. You. That is, for example, when the first-order diffracted light is used, the annular zone width is determined so that the optical path difference function has a difference of one wavelength between the inner circumference and the outer circumference of the annular zone.
In addition, the step between the annular zones is represented by λ for the wavelength and n for the refractive index.
λ / (n-1).

【0017】実施形態の対物レンズ10は、以下の条件
[1]を満たすレンズ材料により形成されている。 1/(ν3・λ×10-6)<0.0045 …[1] ただし、νはd線に対するアッベ数、λは使用波長(単
位:nm)である。
The objective lens 10 of the embodiment has the following conditions.
It is formed of a lens material satisfying [1]. 1 / (ν 3 · λ × 10 −6 ) <0.0045 (1) where ν is the Abbe number for the d-line and λ is the wavelength used (unit: nm).

【0018】条件[1]を満たすように、屈折率の波長依
存性と波長とのバランスをとることにより、屈折レンズ
により発生する色収差の影響を抑えることができ、回折
レンズ構造により色収差の影響を充分に補正することが
できる。条件[1]の上限を越える場合には、屈折レンズ
により発生する色収差が大きくなり、これを補正するた
めに回折レンズ構造の輪帯数が多く、輪帯幅が小さくな
るため、回折レンズ構造の加工が困難となり、かつ、回
折効率も低下する。
By balancing the wavelength dependence of the refractive index and the wavelength so as to satisfy the condition [1], the influence of the chromatic aberration generated by the refractive lens can be suppressed, and the influence of the chromatic aberration by the diffraction lens structure. It can be corrected sufficiently. When the value exceeds the upper limit of the condition [1], the chromatic aberration generated by the refractive lens becomes large. To correct this, the number of annular zones of the diffractive lens structure is large, and the width of the annular zone is small. Processing becomes difficult, and diffraction efficiency also decreases.

【0019】対物レンズ10のレンズ材料は、ガラスで
ある。ガラスは、プラスチックと比較すると、温度変化
による形状や屈折率の変化が少ないため、回折レンズ構
造を設計する際にこれらの影響を無視でき、色収差を充
分に補正するよう設計することができる。
The lens material of the objective lens 10 is glass. Since glass has less change in shape and refractive index due to temperature change than plastic, these effects can be ignored when designing a diffractive lens structure, and it can be designed to sufficiently correct chromatic aberration.

【0020】さらに、対物レンズ10は、ディスクが透
明保護層を有する場合には以下の条件[2],[3]を満た
し、ディスクが透明保護層を有さない場合には[4],[3]
を満たす。 -0.015<[Δn・fD・f/[(n−1)・(fD−f)]-Δnd・td/nd2] ・fD(f・NA/uhd)2/f<-0.007 …[2] -0.015<[Δn・fD・f/[(n−1)・(fD−f)]] ・fD(f・NA/uhd)2/f<-0.007 …[4] -0.3<φ42<0.3 …[3] ただし、Δn:波長(λ+1)nmでの屈折率n+1、波長(λ-
1)nmでの屈折率n-1を用いて以下の式で表されるレンズ
材料の屈折率の変化率、 Δn=(n+1−n-1)/2 Pi : i次の光路差係数、 fD:次の式で求められる回折レンズ構造単独の焦点距
離、 fD=−[1/(2・P2・m・λ)] f:対物レンズ全体の焦点距離、 Δnd:波長(λ+1)nmでの屈折率nd+1、波長(λ-1)nmでの
屈折率nd-1を用いて以下の式で求められる光ディスク保
護層の屈折率の変化率、 Δnd=(nd+1- nd-1)/2 td:光ディスクの保護層の厚さ、 NA:対物レンズの開口数、 uhd:回折レンズ構造が形成された面の有効半径、 φ2 :次の式で求められる2次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差、 φ2=P2・uhd2×m×λ φ4 :次の式で求められる4次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差であ
る。 φ4=P4・uhd4×m×λ
Further, the objective lens 10 satisfies the following conditions [2] and [3] when the disk has a transparent protective layer, and [4] and [3] when the disk does not have a transparent protective layer. 3]
Meet. -0.015 <[Δn ・ fD ・ f / [(n−1) ・ (fD−f)]-Δnd ・ td / nd 2 ] ・ fD (f ・ NA / uhd) 2 /f<-0.007… [2] -0.015 <[Δn ・ fD ・ f / [(n−1) ・ (fD−f)]] ・ fD (f ・ NA / uhd) 2 /f<-0.007… [4] -0.3 <φ 4 / φ 2 <0.3 ... [3] where Δn: refractive index n +1 at wavelength (λ + 1) nm, wavelength (λ-
1) The change rate of the refractive index of the lens material represented by the following equation using the refractive index n -1 at nm: Δn = (n +1 −n −1 ) / 2 P i : i-th optical path difference factor, fD: a focal length of the diffractive lens structure alone obtained by the following equation, fD = - [1 / ( 2 · P 2 · m · λ)] f: the focal length of the entire objective lens, [Delta] nd: wavelength (lambda + 1) Using the refractive index nd +1 at nm and the refractive index nd -1 at wavelength (λ-1) nm, the change rate of the refractive index of the optical disk protective layer obtained by the following equation, Δnd = (nd + 1 -nd -1 ) / 2 td: thickness of the protective layer of the optical disk, NA: numerical aperture of the objective lens, uhd: effective radius of the surface on which the diffractive lens structure is formed, φ 2 : second order obtained by the following equation The optical path length difference at the maximum diameter of the surface on which the diffractive lens structure is formed due to the optical path difference coefficient of φ 2 = P 2 uhd 2 × m × λ φ 4 : By the fourth-order optical path difference coefficient obtained by the following equation Optical path length difference at the maximum diameter of the surface on which the diffractive lens structure is formed . φ 4 = P 4・ uhd 4 × mx × λ

【0021】条件[2]は、対物レンズ10の屈折レンズ
としての作用により生じる色収差と、記録・再生の対象
となる光ディスクの保護層により生じる色収差とのバラ
ンスにおいて、回折レンズ構造が形成された面の回折作
用の強さを規定した条件である。条件[2]を満たすこと
により、実使用時に色収差の発生を抑えることができ
る。条件[2]の下限を下回る場合には、回折レンズ構造
による色収差補正効果が不足し、上限を上回る場合に
は、回折レンズ構造による色収差補正効果が過剰にな
る。
The condition [2] is that the balance between the chromatic aberration caused by the function of the objective lens 10 as a refracting lens and the chromatic aberration caused by the protective layer of the optical disk to be recorded / reproduced is the surface on which the diffractive lens structure is formed. This is a condition that defines the intensity of the diffraction action of. By satisfying the condition [2], it is possible to suppress the occurrence of chromatic aberration during actual use. When the value is below the lower limit of the condition [2], the effect of correcting chromatic aberration by the diffractive lens structure is insufficient. When the value exceeds the upper limit, the effect of correcting the chromatic aberration by the diffractive lens structure becomes excessive.

【0022】一方、条件[4]は、光ディスクの保護層が
ない場合の対物レンズ10の回折レンズ構造の回折作用
の強さを規定した条件である。条件[4]を満たすことに
より、実使用時に色収差の発生を抑えることができる。
条件[4]の下限を下回る場合には、回折レンズ構造によ
る色収差補正効果が不足し、上限を上回る場合には、回
折レンズ構造による色収差補正効果が過剰になる。
On the other hand, the condition [4] is a condition that defines the intensity of the diffractive action of the diffractive lens structure of the objective lens 10 when the protective layer of the optical disk is not provided. By satisfying the condition [4], it is possible to suppress the occurrence of chromatic aberration during actual use.
When the value is below the lower limit of the condition [4], the effect of correcting chromatic aberration by the diffractive lens structure is insufficient. When the value exceeds the upper limit, the effect of correcting the chromatic aberration by the diffractive lens structure becomes excessive.

【0023】条件[3]は、回折レンズ構造による回折作
用の2次成分と、4次成分との比を規定する。この比が条
件[3]を満たすことにより、球面収差の色収差を補正す
ることができる。比が条件[3]の範囲から外れると、球
面収差の色収差を適切に補正できなくなる。
The condition [3] defines the ratio between the second-order component and the fourth-order component of the diffraction action by the diffraction lens structure. When this ratio satisfies the condition [3], chromatic aberration of spherical aberration can be corrected. If the ratio is out of the range of the condition [3], chromatic aberration of spherical aberration cannot be properly corrected.

【0024】なお、対物レンズ10に形成された回折レ
ンズ構造は、1次回折光を利用するよう設計されてい
る。ただし、いずれの次数の回折光を利用するかは任意
であり、例えば2次回折光を利用することもできる。1
次回折光利用の設計で輪帯の幅が小さくなりすぎる場合
には、2次回折光を利用するよう設計すれば、輪帯の幅
を大きくして加工を容易にし、回折効率の低下を防ぐこ
とができる。次に、上述した実施形態に基づく具体的な
実施例を6例提示する。
The diffractive lens structure formed on the objective lens 10 is designed to use the first-order diffracted light. However, which order of diffracted light is used is arbitrary, and for example, second-order diffracted light can be used. 1
If the width of the orbicular zone is too small in the design using the second order diffracted light, the design of the second order diffracted light can be used to make the width of the orbicular zone easier to process and prevent a decrease in diffraction efficiency. it can. Next, six specific examples based on the above-described embodiment will be presented.

【0025】[0025]

【実施例1】図2は、実施例1にかかる対物レンズ20
と厚さ0.6mmの光ディスクの保護層D1を示す。実施例
1の対物レンズ20は、第1面21に回折レンズ構造を
有している。第1面21のベースカーブ(回折レンズ構
造を除いた屈折レンズとしての形状)、第2面はいずれ
も非球面である。
FIG. 2 shows an objective lens 20 according to a first embodiment.
And a protective layer D1 of an optical disk having a thickness of 0.6 mm. The objective lens 20 according to the first embodiment has a diffraction lens structure on the first surface 21. Both the base curve of the first surface 21 (shape as a refractive lens excluding the diffractive lens structure) and the second surface are aspherical.

【0026】非球面の形状は、光軸からの高さがhとな
る非球面上の座標点の非球面の光軸上での接平面からの
距離(サグ量)をX(h)、非球面の光軸上での曲率(1/r)を
C、円錐係数をK、i次(偶数次)の非球面係数をAiとし
て、以下の式で表される。 X(h)=Ch2/(1+√(1-(1+K)C2h2))+A4h4+A6h6+A8h8+A10h
10+…
The shape of the aspherical surface is such that the distance (sag amount) from the tangent plane on the optical axis of the aspherical surface to the coordinate point on the aspherical surface whose height from the optical axis is h is X (h), The curvature (1 / r) of the spherical surface on the optical axis is represented by C, the conic coefficient is K, and the i-th (even-order) aspheric coefficient is Ai. X (h) = Ch 2 / (1 + √ (1- (1 + K) C 2 h 2 )) + A 4 h 4 + A 6 h 6 + A 8 h 8 + A 10 h
10 +…

【0027】実施例1の対物レンズの具体的な数値構成
は、以下の表1に示される。表中、λ,f,NAは、そ
れぞれ使用波長(単位:nm)、回折レンズ構造を含めた対
物レンズの焦点距離(単位:mm)、開口数を示す。また、
n,Δn,tはレンズの屈折率、屈折率の変化率、厚さ
を示し、nd,Δnd,tdは光ディスクの保護層の屈折率、
屈折率の変化率、厚さを示す。uhdは回折レンズ構造が
形成された面の有効径、mは回折次数、rは曲率半径で
ある。表1では、第1面のベースカーブの曲率半径と非
球面係数、回折レンズ構造を定義する係数、第2面の曲
率半径と非球面係数の値が示されている。
Table 1 below shows the specific numerical configuration of the objective lens of the first embodiment. In the table, λ, f, and NA indicate the wavelength used (unit: nm), the focal length (unit: mm) of the objective lens including the diffractive lens structure, and the numerical aperture, respectively. Also,
n, Δn, t indicate the refractive index of the lens, the change rate of the refractive index, and the thickness, nd, Δnd, td indicate the refractive index of the protective layer of the optical disk,
It shows the rate of change of the refractive index and the thickness. uhd is the effective diameter of the surface on which the diffractive lens structure is formed, m is the diffraction order, and r is the radius of curvature. Table 1 shows values of the radius of curvature and the aspheric coefficient of the base curve of the first surface, the coefficient defining the diffractive lens structure, and the values of the radius of curvature and the aspheric coefficient of the second surface.

【0028】[0028]

【表1】 λ:405nm f:2.5mm NA:0.60 n405:1.44185 Δn:−7.5×10-5/nm t:1.60mm ν:95.0 nd405:1.62231 Δnd:−4.1×10-4/nm td:0.60mm uhd:1.50mm m:1次 第1面 第2面 r 1.459 −3.464 κ −0.4800 0.0000 A4 −7.75717×10-3 3.46180×10-2 A6 9.00752×10-4 2.37236×10-2 A8 −5.23422×10-4 −3.06734×10-2 A10 8.49317×10-4 1.17906×10-2 A12 −4.86639×10-4 −1.67845×10-3 P2 −1.8000×10 − P4 −1.7000 − P6 −2.0000×10-1[Table 1] λ: 405 nm f: 2.5 mm NA: 0.60 n 405 : 1.44185 Δn: −7.5 × 10 −5 / nm t: 1.60 mm ν: 95.0 nd 405 : 1.62231 Δnd: −4.1 × 10 −4 / nm td : 0.60mm uhd : 1.50mm m : Primary 1st surface 2nd surface r 1.459 −3.464 κ −0.4800 0.0000 A4 −7.75717 × 10 -3 3.46180 × 10 -2 A6 9.00752 × 10 -4 2.37236 × 10 -2 A8 − 5.23422 × 10 -4 −3.06734 × 10 -2 A10 8.49317 × 10 -4 1.17906 × 10 -2 A12 −4.86639 × 10 -4 −1.67845 × 10 -3 P2 −1.8000 × 10 − P4 −1.7000 − P6 −2.0000 × 10 -1-

【0029】図3(A)は実施例1の対物レンズ20を光
ディスクD1に適用した際の波長405nmにおける球面収
差SAおよび正弦条件SC、(B)は波長405,404, 406,3
95,415nmの球面収差により表される色収差を示してい
る。各グラフの縦軸は開口数NA、横軸は収差の発生量
を示し、単位はmmである。
FIG. 3A shows the spherical aberration SA and the sine condition SC at a wavelength of 405 nm when the objective lens 20 of the first embodiment is applied to the optical disk D1, and FIG. 3B shows the wavelengths 405, 404, 406, and 3
The chromatic aberration represented by the spherical aberration of 95,415 nm is shown. The vertical axis of each graph indicates the numerical aperture NA, and the horizontal axis indicates the amount of aberration generated, and the unit is mm.

【0030】また、図4は、各波長404,405,406,395,41
5nmにおけるデフォーカスと波面収差の発生量(rms値)と
の関係を示すグラフである。横軸がデフォーカス量(単
位:mm)、縦軸が収差量(単位:波長)を示す。図3(B),
図4に示されるように、395nmを除く各波長において
は、球面収差、波面収差の最小点がほぼ一致し、この範
囲で色収差が良好に補正されていることがわかる。
FIG. 4 shows each wavelength 404,405,406,395,41.
9 is a graph showing the relationship between the defocus at 5 nm and the generation amount (rms value) of wavefront aberration. The horizontal axis indicates the defocus amount (unit: mm), and the vertical axis indicates the aberration amount (unit: wavelength). FIG. 3 (B),
As shown in FIG. 4, at the wavelengths other than 395 nm, the minimum points of the spherical aberration and the wavefront aberration almost coincide, and it can be seen that the chromatic aberration is favorably corrected in this range.

【0031】実施例1で必要輪帯数、輪帯幅を計算する
と、輪帯数は51、最小輪帯幅は11.8μmである。これに
対し、レンズの仕様や光ディスクの保護層等の条件を変
えずに、単レンズの材料をν=55.8の樹脂材料に変えた
場合、実施例1と同等の色収差補正をするためには輪帯
数97、最小輪帯幅6.4μmとする必要がある。輪帯数が増
加し最小輪帯幅が小さくなることから、金型加工は困難
となり、また、成形時の転写性の劣化が大きくなる。
When the required number of orbicular zones and the orbicular zone width are calculated in Example 1, the number of orbicular zones is 51 and the minimum orbicular zone width is 11.8 μm. On the other hand, when the material of the single lens is changed to a resin material of ν = 55.8 without changing the specifications of the lens and the conditions such as the protective layer of the optical disc, it is necessary to perform the same chromatic aberration correction as in the first embodiment. The number of bands must be 97 and the minimum ring width must be 6.4 μm. Since the number of orbicular zones increases and the minimum orbicular zone width decreases, mold processing becomes difficult, and the deterioration of transferability during molding increases.

【0032】なお、金型から回折レンズ構造をレンズ材
料に転写する際に、輪帯間の段差のコーナー部分には、
必然的に形状の「なまり」が発生する。上記の比較で、
このなまりが同等であると仮定して回折効率を計算する
と、実施例1では88.8%となるのに対し、樹脂材料を用
いた場合は80.8%と大きな差が生じる。また、転写性は
ガラスより樹脂材料の方が高いため、その差を考慮して
実施例1のコーナー部分の曲率半径を2倍にして計算し
ても82.8%の回折効率が得られ、樹脂製レンズよりも高
い回折効率を得ることができる。
When the diffractive lens structure is transferred from the mold to the lens material, the corner of the step between the annular zones is
Inevitably, "rounding" of the shape occurs. In the comparison above,
When the diffraction efficiency is calculated assuming that the rounding is the same, the diffraction efficiency is 88.8% in Example 1, whereas a large difference occurs when the resin material is used, 80.8%. Further, since the transfer property of the resin material is higher than that of the glass, the diffraction efficiency of 82.8% can be obtained even if the curvature radius of the corner portion of Example 1 is calculated by doubling the difference in consideration of the difference. Higher diffraction efficiency than a lens can be obtained.

【0033】[0033]

【実施例2】以下の表2は、実施例2の対物レンズの数
値構成を示す。レンズ形状は実施例1と同様であるため
図示を省略する。実施例2の対物レンズは、第1面に回
折レンズ構造を有している。
Embodiment 2 Table 2 below shows a numerical configuration of the objective lens of Embodiment 2. Since the lens shape is the same as in the first embodiment, illustration is omitted. The objective lens of Example 2 has a diffractive lens structure on the first surface.

【0034】[0034]

【表2】 λ:420nm f:3.0mm NA:0.50 n420:1.50579 Δn:−8.5×10-5/nm t:1.60mm ν:81.6 nd420:1.61663 Δnd:−3.5×10-4/nm td:0.60mm uhd:1.50mm m:1次 第1面 第2面 r 1.888 −7.032 κ −0.4800 0.0000 A4 −1.73000×10-3 1.52000×10-2 A6 −1.25000×10-4 −5.37000×10-3 A8 −5.33000×10-4 3.00000×10-3 A10 3.50000×10-4 −1.82000×10-3 A12 −1.15000×10-4 3.33000×10-4 P2 −1.8000×10 − P4 −1.2500 − P6 0.0000 −[Table 2] λ: 420 nm f: 3.0 mm NA: 0.50 n 420 : 1.50579 Δn: −8.5 × 10 −5 / nm t: 1.60 mm ν: 81.6 nd 420 : 1.61663 Δnd: −3.5 × 10 −4 / nm td : 0.60mm uhd : 1.50mm m : Primary 1st surface 2nd surface r 1.888 −7.032 κ −0.4800 0.0000 A4 −1.73000 × 10 -3 1.52000 × 10 -2 A6 −1.25000 × 10 -4 −5.37000 × 10 -3 A8 −5.33000 × 10 -4 3.00000 × 10 -3 A10 3.50000 × 10 -4 −1.82000 × 10 -3 A12 −1.15000 × 10 -4 3.33000 × 10 -4 P2 −1.8000 × 10 − P4 −1.2500 − P6 0.0000 −

【0035】図5(A)は実施例2の対物レンズを光ディ
スクD1に適用した際の波長420nmにおける球面収差S
Aおよび正弦条件SC、(B)は波長420,419,421,410,43
0nmの球面収差により表される色収差を示している。ま
た、図6は、各波長420,419,421,410,430nmにおけるデ
フォーカスと波面収差の発生量(rms値)との関係を示す
グラフである。410nmを除く各波長においては、球面収
差、波面収差の最小点がほぼ一致し、この範囲で色収差
が良好に補正されていることがわかる。
FIG. 5A shows the spherical aberration S at a wavelength of 420 nm when the objective lens of the second embodiment is applied to the optical disk D1.
A and sine condition SC, (B) wavelengths 420, 419, 421, 410, 43
The chromatic aberration represented by the spherical aberration of 0 nm is shown. FIG. 6 is a graph showing the relationship between the defocus and the generation amount (rms value) of the wavefront aberration at the wavelengths of 420, 419, 421, 410, and 430 nm. At the wavelengths other than 410 nm, the minimum points of the spherical aberration and the wavefront aberration almost coincide, and it can be seen that the chromatic aberration is favorably corrected in this range.

【0036】[0036]

【実施例3】以下の表3は、実施例3の対物レンズの数
値構成を示す。レンズ形状は実施例1と同様であるため
図示を省略する。実施例3の対物レンズは、第2面に回
折レンズ構造を有している。
Third Embodiment Table 3 below shows a numerical configuration of the objective lens of the third embodiment. Since the lens shape is the same as in the first embodiment, illustration is omitted. The objective lens of the third embodiment has a diffractive lens structure on the second surface.

【0037】[0037]

【表3】 λ:405nm f:3.0mm NA:0.50 n405:1.44185 Δn:−7.5×10-5/nm t:1.60mm ν:95.0 nd405:1.62231 Δnd:−4.1×10-4/nm td:0.60mm uhd:1.30mm m:1次 第1面 第2面 r 1.709 −5.628 κ −0.4800 0.0000 A4 −3.56800×10-3 1.53000×10-2 A6 5.20000×10-5 −1.39000×10-3 A8 −7.00000×10-4 −2.50000×10-4 A10 4.35000×10-4 −6.30000×10-4 A12 −1.61000×10-4 1.62000×10-4 P2 − −3.2600×10 P4 − 4.5800 P6 − −5.0300×10-1 [Table 3] λ: 405 nm f: 3.0 mm NA: 0.50 n 405 : 1.44185 Δn: −7.5 × 10 −5 / nm t: 1.60 mm ν: 95.0 nd 405 : 1.62231 Δnd: −4.1 × 10 −4 / nm td : 0.60mm uhd : 1.30mm m : Primary 1st surface 2nd surface r 1.709 −5.628 κ −0.4800 0.0000 A4 −3.56800 × 10 -3 1.53000 × 10 −2 A6 5.20000 × 10 -5 −1.39000 × 10 -3 A8 −7.00000 × 10 -4 −2.50000 × 10 -4 A10 4.35000 × 10 -4 −6.30000 × 10 -4 A12 −1.61000 × 10 -4 1.62000 × 10 -4 P2 − −3.2600 × 10 P4 − 4.5800 P6 − −5.0300 × 10 -1

【0038】図7(A)は実施例3の対物レンズを光ディ
スクD1に適用した際の波長405nmにおける球面収差S
Aおよび正弦条件SC、(B)は波長405,404,406,395,41
5nmの球面収差により表される色収差を示している。ま
た、図8は、各波長405,404,406,395,415nmにおけるデ
フォーカスと波面収差の発生量(rms値)との関係を示す
グラフである。395nmを除く各波長においては、球面収
差、波面収差の最小点がほぼ一致し、この範囲で色収差
が良好に補正されていることがわかる。
FIG. 7A shows the spherical aberration S at a wavelength of 405 nm when the objective lens of the third embodiment is applied to the optical disc D1.
A and sine condition SC, (B) wavelengths 405,404,406,395,41
Chromatic aberration represented by 5 nm of spherical aberration is shown. FIG. 8 is a graph showing the relationship between the defocus at each wavelength 405, 404, 406, 395, and 415 nm and the generation amount (rms value) of the wavefront aberration. At the wavelengths other than 395 nm, the minimum points of the spherical aberration and the wavefront aberration almost coincide, and it can be seen that the chromatic aberration is favorably corrected in this range.

【0039】[0039]

【実施例4】図9は、実施例4にかかる対物レンズ30
と厚さ0.2mmの光ディスクの保護層D2を示す。実施例4
の対物レンズ30は、第1面31に回折レンズ構造を有
している。実施例4の対物レンズ30の具体的な数値構
成は、以下の表4に示される。
FIG. 9 shows an objective lens 30 according to a fourth embodiment.
And a protective layer D2 of an optical disk having a thickness of 0.2 mm. Example 4
The objective lens 30 has a diffraction lens structure on the first surface 31. Table 4 below shows specific numerical configurations of the objective lens 30 according to the fourth embodiment.

【0040】[0040]

【表4】 λ:405nm f:2.5mm NA:0.60 n405:1.44185 Δn:−7.5×10-5/nm t:1.50mm ν:95.0 nd405:1.62231 Δnd:−4.1×10-4/nm td:0.20mm uhd:1.50mm m:1次 第1面 第2面 r 1.431 −4.030 κ −0.4800 0.0000 A4 −8.80000×10-3 2.40000×10-2 A6 1.00000×10-3 3.08000×10-2 A8 −5.40000×10-4 −3.30000×10-2 A10 1.10000×10-3 1.19000×10-2 A12 −6.00000×10-4 −1.62000×10-3 P2 −2.2800×10 P4 −2.0000 P6 −2.4000×10-1 [Table 4] λ: 405 nm f: 2.5 mm NA: 0.60 n 405 : 1.44185 Δn: −7.5 × 10 −5 / nm t: 1.50 mm ν: 95.0 nd 405 : 1.62231 Δnd: −4.1 × 10 −4 / nm td : 0.20mm uhd : 1.50mm m : Primary 1st surface 2nd surface r 1.431 −4.030 κ −0.4800 0.0000 A4 −8.80000 × 10 -3 2.40000 × 10 -2 A6 1.00000 × 10 -3 3.08000 × 10 -2 A8 − 5.40000 × 10 -4 −3.30000 × 10 -2 A10 1.10000 × 10 -3 1.19000 × 10 -2 A12 −6.00000 × 10 -4 −1.62000 × 10 -3 P2 −2.2800 × 10 P4 −2.0000 P6 −2.4000 × 10 -1

【0041】図10(A)は実施例4の対物レンズ30を
光ディスクD2に適用した際の波長405nmにおける球面収
差SAおよび正弦条件SC、(B)は波長405,404,406,39
5,415nmの球面収差により表される色収差を示してい
る。また、図11は、各波長405,404,406,395,415nmに
おけるデフォーカスと波面収差の発生量(rms値)との関
係を示すグラフである。395nmを除く各波長において
は、球面収差、波面収差の最小点がほぼ一致し、この範
囲で色収差が良好に補正されていることがわかる。
FIG. 10A shows the spherical aberration SA and the sine condition SC at a wavelength of 405 nm when the objective lens 30 of the fourth embodiment is applied to an optical disk D2, and FIG. 10B shows the wavelengths 405, 404, 406 and 39.
The chromatic aberration represented by the spherical aberration of 5,415 nm is shown. FIG. 11 is a graph showing the relationship between the defocus and the generation amount (rms value) of the wavefront aberration at the wavelengths of 405, 404, 406, 395, and 415 nm. At the wavelengths other than 395 nm, the minimum points of the spherical aberration and the wavefront aberration almost coincide, and it can be seen that the chromatic aberration is favorably corrected in this range.

【0042】[0042]

【実施例5】以下の表5は、実施例5の対物レンズの数
値構成を示す。レンズ形状は実施例1と同様であるため
図示を省略する。実施例5の対物レンズは、第1面に回
折レンズ構造を有している。
Fifth Embodiment Table 5 below shows a numerical configuration of the objective lens of the fifth embodiment. Since the lens shape is the same as in the first embodiment, illustration is omitted. The objective lens of Example 5 has a diffractive lens structure on the first surface.

【0043】[0043]

【表5】 λ:405nm f:2.5mm NA:0.80 n405:1.44185 Δn:−7.5×10-5/nm t:2.60mm ν:95.0 nd405:1.62231 Δnd:−4.1×10-4/nm td:0.60mm uhd:2.00mm m:1次 第1面 第2面 r 1.480 −2.182 κ −0.6500 0.0000 A4 1.82000×10-3 1.11200×10-1 A6 −4.30000×10-4 −2.24000×10-2 A8 1.70000×10-4 −8.33000×10-3 A10 −5.68000×10-6 9.20000×10-3 A12 −2.94000×10-5 −3.24000×10-3 A14 5.25000×10-5 4.49000×10-4 A16 −2.48200×10-5 3.73400×10-5 A18 4.62000×10-6 −1.98100×10-5 A20 −3.47000×10-7 1.86480×10-6 P2 −1.5520×10 P4 −9.0000 P6 −3.7500×10-1 [Table 5] λ: 405 nm f: 2.5 mm NA: 0.80 n 405 : 1.44185 Δn: −7.5 × 10 −5 / nm t: 2.60 mm ν: 95.0 nd 405 : 1.62231 Δnd: −4.1 × 10 −4 / nm td : 0.60mm uhd : 2.00mm m : Primary 1st surface 2nd surface r 1.480 −2.182 κ −0.6500 0.0000 A4 1.82000 × 10 -3 1.11200 × 10 -1 A6 −4.30000 × 10 -4 −2.24000 × 10 -2 A8 1.70000 × 10 -4 −8.33000 × 10 -3 A10 −5.68000 × 10 -6 9.20000 × 10 -3 A12 −2.94000 × 10 -5 −3.24000 × 10 -3 A14 5.25000 × 10 -5 4.49000 × 10 -4 A16 −2.48200 × 10 -5 3.73400 × 10 -5 A18 4.62000 × 10 -6 −1.98 100 × 10 -5 A20 −3.47000 × 10 -7 1.86480 × 10 -6 P2 −1.5520 × 10 P4 −9.0000 P6 −3.7500 × 10 -1

【0044】図12(A)は実施例5の対物レンズを光デ
ィスクD1に適用した際の波長405nmにおける球面収差S
Aおよび正弦条件SC、(B)は波長405,404,406,395,41
5nmの球面収差により表される色収差を示している。ま
た、図13は、各波長405,404,406,395,415nmにおける
デフォーカスと波面収差の発生量(rms値)との関係を示
すグラフである。395nmを除く各波長においては、球面
収差、波面収差の最小点がほぼ一致し、この範囲で色収
差が良好に補正されていることがわかる。
FIG. 12A shows the spherical aberration S at a wavelength of 405 nm when the objective lens of Example 5 is applied to the optical disk D1.
A and sine condition SC, (B) wavelengths 405,404,406,395,41
Chromatic aberration represented by 5 nm of spherical aberration is shown. FIG. 13 is a graph showing the relationship between the defocus at each of the wavelengths 405, 404, 406, 395, and 415 nm and the generation amount (rms value) of the wavefront aberration. At the wavelengths other than 395 nm, the minimum points of the spherical aberration and the wavefront aberration almost coincide, and it can be seen that the chromatic aberration is favorably corrected in this range.

【0045】[0045]

【実施例6】図14は、実施例6にかかる対物レンズ4
0と保護層を有しない光ディスクD3とを示す。実施例
6の対物レンズ40は、第1面41に回折レンズ構造を
有している。実施例6の対物レンズ40の具体的な数値
構成は、以下の表6に示される。
Sixth Embodiment FIG. 14 shows an objective lens 4 according to a sixth embodiment.
0 and an optical disc D3 having no protective layer. The objective lens 40 according to the sixth embodiment has a diffraction lens structure on the first surface 41. Table 6 below shows specific numerical configurations of the objective lens 40 according to the sixth embodiment.

【0046】[0046]

【表6】 λ:405nm f:2.5mm NA:0.60 n405:1.44185 Δn:−7.5×10-5/nm t:1.80mm ν:95.0 uhd:1.50mm m:1次 第1面 第2面 r 1.459 −3.428 κ −0.4800 0.0000 A4 2.00000×10-3 1.13300×10-1 A6 1.35000×10-5 −8.66000×10-2 A8 −1.00000×10-3 3.79000×10-2 A10 1.60000×10-4 −9.34000×10-3 A12 −2.28650×10-4 9.74800×10-4 P2 −2.5000×10 P4 −1.4000 P6 −5.0000×10-1 [Table 6] λ: 405 nm f: 2.5 mm NA: 0.60 n 405 : 1.44185 Δn: -7.5 × 10 -5 / nm t: 1.80 mm ν: 95.0 uhd: 1.50 mm m: primary first surface second surface r 1.459 −3.428 κ −0.4800 0.0000 A4 2.00000 × 10 -3 1.13300 × 10 -1 A6 1.35000 × 10 -5 −8.66000 × 10 -2 A8 −1.00000 × 10 -3 3.79000 × 10 -2 A10 1.60000 × 10 -4 −9.34000 × 10 -3 A12 −2.28650 × 10 -4 9.74800 × 10 -4 P2 −2.5000 × 10 P4 −1.4000 P6 −5.0000 × 10 -1

【0047】図15(A)は実施例6の対物レンズ40を
透明保護層のない光ディスクD3に適用した際の波長405
nmにおける球面収差SAおよび正弦条件SC、(B)は波
長405,404,406,395,415nmの球面収差により表される色
収差を示している。また、図16は、各波長405,404,40
6,395,415nmにおけるデフォーカスと波面収差の発生量
(rms値)との関係を示すグラフである。395nm、415nmを
除く各波長においては、球面収差、波面収差の最小点が
ほぼ一致し、この範囲で色収差が良好に補正されている
ことがわかる。
FIG. 15A shows a wavelength 405 when the objective lens 40 of the sixth embodiment is applied to an optical disk D3 having no transparent protective layer.
The spherical aberration SA in nm and the sine condition SC, (B) show chromatic aberration represented by spherical aberration at wavelengths of 405, 404, 406, 395, and 415 nm. FIG. 16 shows each wavelength 405, 404, 40
Defocus and wavefront aberration at 6,395,415nm
6 is a graph showing the relationship with (rms value). At each wavelength except for 395 nm and 415 nm, the minimum points of the spherical aberration and the wavefront aberration almost coincide, and it can be seen that the chromatic aberration is favorably corrected in this range.

【0048】以下の表7は、前記の条件[1],[2],[4],
[3]に対する各実施例の値を示す。いずれの実施例も、
全ての条件を満たしており、色収差を良好に補正するこ
とができる。
Table 7 below shows the conditions [1], [2], [4],
The value of each example for [3] is shown. In each embodiment,
All conditions are satisfied, and chromatic aberration can be corrected well.

【0049】[0049]

【表7】 条件[1] 条件[2][4] 条件[3] 条件範囲 0.0045より小 −0.015〜−0.007 −0.30〜0.30 実施例1 0.0029 −0.0095 0.213 実施例2 0.0044 −0.0099 0.156 実施例3 0.0029 −0.0077 −0.237 実施例4 0.0029 −0.0090 0.197 実施例5 0.0029 −0.0110 0.232 実施例6 0.0029 −0.0088 0.126[Table 7] Condition [1] Condition [2] [4] Condition [3] Condition range Less than 0.0045 -0.015 to -0.007 -0.30 to 0.30 Example 1 0.0029 -0.0095 0.213 Example 2 0.0044 -0.0099 0.156 Example 3 0.0029 -0.0077 -0.237 Example 4 0.0029 -0.0090 0.197 Example 5 0.0029 -0.0110 0.232 Example 6 0.0029 -0.0088 0.126

【0050】[0050]

【発明の効果】以上説明したように、この発明によれ
ば、単レンズである屈折レンズの一面に回折レンズ構造
を形成することにより、かつ、レンズ材料として屈折率
の波長による変化率が小さい材料を選ぶことにより、F
線より短い波長の領域において、色収差が良好に補正さ
れた対物レンズを提供することができる。
As described above, according to the present invention, a diffractive lens structure is formed on one surface of a refraction lens which is a single lens, and a material having a small change rate of the refractive index due to the wavelength as a lens material. By choosing
It is possible to provide an objective lens in which chromatic aberration is satisfactorily corrected in a wavelength region shorter than the line.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 この発明の実施形態にかかる光ヘッド用対物
レンズの形状を示す (A) 正面図、 (B) 側面図、
(C) 一部拡大図。
FIG. 1A is a front view, FIG. 1B is a side view showing the shape of an objective lens for an optical head according to an embodiment of the present invention, FIG.
(C) Partly enlarged view.

【図2】 実施例1の対物レンズを示すレンズ図。FIG. 2 is a lens diagram illustrating an objective lens according to a first embodiment.

【図3】 実施例1の対物レンズの(A)球面収差および
正弦条件、(B)球面収差の色収差をそれぞれ示すグラ
フ。
3A and 3B are graphs respectively showing (A) spherical aberration and sine condition, and (B) chromatic aberration of spherical aberration of the objective lens of Example 1. FIG.

【図4】 実施例1の光学系のデフォーカスと波面収差
との関係を示すグラフ。
FIG. 4 is a graph showing the relationship between defocus and wavefront aberration of the optical system according to the first embodiment.

【図5】 実施例2の対物レンズの(A)球面収差および
正弦条件、(B)球面収差の色収差をそれぞれ示すグラ
フ。
5A and 5B are graphs respectively showing (A) spherical aberration and sine condition, and (B) chromatic aberration of spherical aberration of the objective lens of Example 2.

【図6】 実施例2の光学系のデフォーカスと波面収差
との関係を示すグラフ。
FIG. 6 is a graph showing a relationship between defocus and wavefront aberration of the optical system according to the second embodiment.

【図7】 実施例3の対物レンズの(A)球面収差および
正弦条件、(B)球面収差の色収差をそれぞれ示すグラ
フ。
7A and 7B are graphs respectively showing (A) spherical aberration and sine condition and (B) chromatic aberration of spherical aberration of the objective lens of Example 3.

【図8】 実施例3の光学系のデフォーカスと波面収差
との関係を示すグラフ。
FIG. 8 is a graph illustrating the relationship between defocus and wavefront aberration of the optical system according to the third embodiment.

【図9】 実施例4の対物レンズを示すレンズ図。FIG. 9 is a lens diagram showing an objective lens according to a fourth embodiment.

【図10】 実施例4の対物レンズの(A)球面収差およ
び正弦条件、(B)球面収差の色収差をそれぞれ示すグラ
フ。
10A and 10B are graphs respectively showing (A) spherical aberration and sine condition, and (B) chromatic aberration of spherical aberration of the objective lens of Example 4.

【図11】 実施例4の光学系のデフォーカスと波面収
差との関係を示すグラフ。
FIG. 11 is a graph showing a relationship between defocus and wavefront aberration of the optical system according to the fourth embodiment.

【図12】 実施例5の対物レンズの(A)球面収差およ
び正弦条件、(B)球面収差の色収差をそれぞれ示すグラ
フ。
FIG. 12 is a graph showing (A) spherical aberration and sine condition, and (B) chromatic aberration of spherical aberration of the objective lens of Example 5, respectively.

【図13】 実施例5の光学系のデフォーカスと波面収
差との関係を示すグラフ。
FIG. 13 is a graph showing the relationship between defocus and wavefront aberration of the optical system according to the fifth embodiment.

【図14】 実施例6の対物レンズを示すレンズ図。FIG. 14 is a lens diagram showing an objective lens according to a sixth embodiment.

【図15】 実施例6の対物レンズの(A)球面収差およ
び正弦条件、(B)球面収差の色収差をそれぞれ示すグラ
フ。
15 is a graph showing (A) spherical aberration and a sine condition of the objective lens of Example 6, and (B) a chromatic aberration of spherical aberration, respectively.

【図16】 実施例6の光学系のデフォーカスと波面収
差との関係を示すグラフ。
FIG. 16 is a graph showing the relationship between defocus and wavefront aberration of the optical system according to the sixth embodiment.

【符号の説明】[Explanation of symbols]

10 対物レンズ 11 第1面 12 第2面 10 Objective lens 11 First surface 12 Second surface

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 光源から発するF線より短い波長の光束
を光ディスクの記録面上に収束させる光ヘッド用対物レ
ンズであって、 光軸から周辺に向かって曲率半径が大きくなる非球面を
少なくとも1面有する単レンズであり、少なくともいず
れかのレンズ面にブレーズ化された色収差補正用の回折
レンズ構造が形成されており、以下の条件[1]を満たす
ことを特徴とする光ヘッド用対物レンズ。 1/(ν3・λ×10-6)<0.0045 …[1] ただし、νはd線に対するアッベ数、λは使用波長(単
位:nm)である。
An objective lens for an optical head for converging a light beam having a wavelength shorter than the F-line emitted from a light source on a recording surface of an optical disc, wherein at least one aspherical surface having a radius of curvature increasing from the optical axis toward the periphery is provided. An objective lens for an optical head, comprising: a single lens having a surface, wherein a blazed diffractive lens structure for correcting chromatic aberration is formed on at least one of the lens surfaces, and the following condition [1] is satisfied. 1 / (ν 3 · λ × 10 −6 ) <0.0045 (1) where ν is the Abbe number for the d-line and λ is the wavelength used (unit: nm).
【請求項2】 レンズ材料がガラスであることを特徴と
する請求項1に記載の光ヘッド用対物レンズ。
2. The objective lens for an optical head according to claim 1, wherein the lens material is glass.
【請求項3】 前記記録面を覆う透明保護層が設けられ
た光ディスクに適用され、以下の条件[2],[3]を満たす
ことを特徴とする請求項1または2に記載の光ヘッド用
対物レンズ。 -0.015<[Δn・fD・f/[(n−1)・(fD−f)]-Δnd・td/nd2] ・fD(f・NA/uhd)2/f<-0.007 …[2] -0.3<φ42<0.3 …[3] ただし、 Δn:波長(λ+1)nmでの屈折率n+1、波長(λ-1)nmでの
屈折率n-1を用いて以下の式で表されるレンズ材料の屈
折率の変化率、 Δn=(n+1−n-1)/2 Pi:回折レンズ構造による光路長の付加量φを光軸か
らの高さh、回折次数mを用いて以下の式で表したとき
のi次の光路差係数、 φ(h)=(P0+P22+P44+P66+…)×m×λ fD:次の式で求められる回折レンズ構造単独の焦点距
離、 fD=−[1/(2・P2・m・λ)] f:対物レンズ全体の焦点距離、 Δnd:波長(λ+1)nmでの屈折率nd+1、波長(λ-1)nmでの
屈折率nd-1を用いて以下の式で求められる光ディスク保
護層の屈折率の変化率、 Δnd=(nd+1- nd-1)/2 td:光ディスクの保護層の厚さ、 NA:対物レンズの開口数、 uhd:回折レンズ構造が形成された面の有効半径、 φ2 :次の式で求められる2次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差、 φ2=P2・uhd2×m×λ φ4 :次の式で求められる4次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差であ
る。 φ4=P4・uhd4×m×λ
3. The optical head according to claim 1, which is applied to an optical disk provided with a transparent protective layer covering the recording surface and satisfies the following conditions [2] and [3]. Objective lens. -0.015 <[Δn ・ fD ・ f / [(n−1) ・ (fD−f)]-Δnd ・ td / nd 2 ] ・ fD (f ・ NA / uhd) 2 /f<-0.007… [2] -0.3 <φ 4 / φ 2 < 0.3 ... [3] However, [Delta] n: wavelength (λ + 1) refractive index in nm n +1, the wavelength (λ-1) using the refractive index n -1 in nm The change rate of the refractive index of the lens material represented by the following equation: Δn = (n + 1− n− 1 ) / 2P i : the additional amount φ of the optical path length due to the diffractive lens structure is the height h from the optical axis. And the i-th optical path difference coefficient when represented by the following equation using the diffraction order m: φ (h) = (P 0 + P 2 h 2 + P 4 h 4 + P 6 h 6 +...) × m × λ fD the focal length of the diffractive lens structure alone obtained by the following equation, fD = - [1 / ( 2 · P 2 · m · λ)] f: the focal length of the entire objective lens, [Delta] nd: wavelength (λ + 1) nm refractive index nd +1, the wavelength (λ-1) the refractive index of the rate of change of an optical disk protective layer obtained by the following equation using the refractive index nd -1 in nm at, Δnd = (nd +1 - nd - 1 ) / 2 td: Thickness of protective layer of optical disk, N A: numerical aperture of the objective lens, uhd: effective radius of the surface on which the diffractive lens structure is formed, φ 2 : maximum diameter of the surface on which the diffractive lens structure is formed by a second-order optical path difference coefficient obtained by the following equation Φ 2 = P 2 · uhd 2 × m × λ φ 4 : The optical path length difference at the maximum diameter of the surface on which the diffractive lens structure is formed by the fourth-order optical path difference coefficient obtained by the following equation: is there. φ 4 = P 4・ uhd 4 × mx × λ
【請求項4】 前記記録面が保護層により覆われていな
い光ディスクに適用され、以下の条件[3],[4]を満たす
ことを特徴とする請求項1または2に記載の光ヘッド用
対物レンズ。 -0.015<[Δn・fD・f/[(n−1)・(fD−f)]] ・fD(f・NA/uhd)2/f<-0.007 …[4] -0.3<φ42<0.3 …[3] ただし、 Δn:波長(λ+1)nmでの屈折率n+1、波長(λ-1)nmでの
屈折率n-1を用いて以下の式で表されるレンズ材料の屈
折率の変化率、 Δn=(n+1−n-1)/2 Pi:回折レンズ構造による光路長の付加量φを光軸か
らの高さh、回折次数mを用いて以下の式で表したとき
のi次の光路差係数、 φ(h)=(P0+P22+P44+P66+…)×m×λ fD:次の式で求められる回折レンズ構造単独の焦点距
離、 fD=−[1/(2・P2・m・λ)] f:対物レンズ全体の焦点距離、 NA:対物レンズの開口数、 uhd:回折レンズ構造が形成された面の有効半径、 φ2 :次の式で求められる2次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差、 φ2=P2・uhd2×m×λ φ4 :次の式で求められる4次の光路差係数による回折
レンズ構造が形成された面の最大径での光路長差であ
る。 φ4=P4・uhd4×m×λ
4. The objective for an optical head according to claim 1, wherein the objective is applied to an optical disc whose recording surface is not covered with a protective layer, and satisfies the following conditions [3] and [4]. lens. -0.015 <[Δn ・ fD ・ f / [(n−1) ・ (fD−f)]] ・ fD (f ・ NA / uhd) 2 /f<-0.007… [4] -0.3 <φ 4 / φ 2 <0.3 ... [3] However, [Delta] n: is represented by the following equation using the wavelength (lambda + 1) refractive index at nm n +1, the refractive index n -1 at the wavelength (λ-1) nm Rate of change of the refractive index of the lens material, Δn = (n + 1− n− 1 ) / 2P i : The additional amount φ of the optical path length due to the diffractive lens structure is obtained by using the height h from the optical axis and the diffraction order m. The i-th order optical path difference coefficient when expressed by the following equation: φ (h) = (P 0 + P 2 h 2 + P 4 h 4 + P 6 h 6 +...) × m × λ fD: Obtained by the following equation focal length of the diffractive lens structure alone, fD = - [1 / ( 2 · P 2 · m · λ)] f: the focal length of the entire objective lens, NA: numerical aperture of an objective lens, UHD: diffractive lens structure is formed effective radius of the surface, phi 2: optical path length difference of the maximum diameter of the surface on which the diffractive lens structure according to the second-order optical path difference coefficient obtained is formed by the following equation, phi 2 = P 2 uhd 2 × m × λ φ 4 : an optical path length difference of the maximum diameter of the surface on which the diffractive lens structure according to a fourth-order optical path difference coefficient obtained is formed by the following equation. φ 4 = P 4・ uhd 4 × mx × λ
JP2000113061A 2000-04-14 2000-04-14 Objective lens for optical head Withdrawn JP2001296471A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000113061A JP2001296471A (en) 2000-04-14 2000-04-14 Objective lens for optical head
US09/833,612 US6515955B2 (en) 2000-04-14 2001-04-13 Objective optical system for optical pick-up

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000113061A JP2001296471A (en) 2000-04-14 2000-04-14 Objective lens for optical head

Publications (1)

Publication Number Publication Date
JP2001296471A true JP2001296471A (en) 2001-10-26

Family

ID=18625102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000113061A Withdrawn JP2001296471A (en) 2000-04-14 2000-04-14 Objective lens for optical head

Country Status (1)

Country Link
JP (1) JP2001296471A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021065A1 (en) * 2002-08-28 2004-03-11 Konica Minolta Holdings, Inc. Object lens for optical pickup device, optical pickup device and optical information recording/reproducing device
JP2007316655A (en) * 2002-08-28 2007-12-06 Konica Minolta Holdings Inc Object lens for optical pickup device, optical pickup device and optical information recording/reproducing device
JP2008293630A (en) * 2007-04-27 2008-12-04 Konica Minolta Opto Inc Optical pickup device and objective optical element
WO2011093231A1 (en) * 2010-01-29 2011-08-04 コニカミノルタオプト株式会社 Optical pickup device and optical information recording/playback device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004021065A1 (en) * 2002-08-28 2004-03-11 Konica Minolta Holdings, Inc. Object lens for optical pickup device, optical pickup device and optical information recording/reproducing device
JP2007316655A (en) * 2002-08-28 2007-12-06 Konica Minolta Holdings Inc Object lens for optical pickup device, optical pickup device and optical information recording/reproducing device
CN100357780C (en) * 2002-08-28 2007-12-26 柯尼卡美能达控股株式会社 Object lens for optical pickup device, optical pickup device and optical information recording/reproducing device
US7606136B2 (en) 2002-08-28 2009-10-20 Konica Minolta Holdings, Inc. Object lens for optical pickup device, optical pickup device and optical information recording/reproducing device
US7920456B2 (en) 2002-08-28 2011-04-05 Konica Minolta Holdings, Inc. Objective lens for optical pickup device, optical pickup device and optical information recording/reproducing apparatus
JP2008293630A (en) * 2007-04-27 2008-12-04 Konica Minolta Opto Inc Optical pickup device and objective optical element
WO2011093231A1 (en) * 2010-01-29 2011-08-04 コニカミノルタオプト株式会社 Optical pickup device and optical information recording/playback device
CN102714045A (en) * 2010-01-29 2012-10-03 柯尼卡美能达先进多层薄膜株式会社 Optical pickup device and optical information recording/playback device
JP5582421B2 (en) * 2010-01-29 2014-09-03 コニカミノルタ株式会社 Optical pickup device and optical information recording / reproducing device

Similar Documents

Publication Publication Date Title
KR100361587B1 (en) Objective Lens for Optical Pick-up
JP4610118B2 (en) Objective lens for optical head
JP4850032B2 (en) Optical pickup lens
JP4073396B2 (en) Hybrid achromatic optical lens and manufacturing method thereof
US6865025B2 (en) Aberration compensating optical element, optical system, optical pickup device, recorder and reproducer
US6515955B2 (en) Objective optical system for optical pick-up
JP2004185797A (en) Optical system for optical pickup device, optical pickup device, and objective lens
KR101061347B1 (en) Objective lens, optical pickup device and optical information recording and reproducing device for optical pickup device
JPH06331887A (en) Compound lens
JP4070936B2 (en) Objective optical system for optical head
JP2001296471A (en) Objective lens for optical head
JPS61163308A (en) Refractive index distributed single lens
JP3306170B2 (en) Chromatic aberration correction element
JP4422775B2 (en) Optical pickup lens
JP2010244035A (en) Object lens
JP2008262699A (en) Optical pickup lens
JPH02235010A (en) Glass-molded aspherical single lens
JPH02245715A (en) Aspherical single lens formed by molding of low dispersion glass
US20070263523A1 (en) Objective lens optical system and optical pickup optical system
JP2003084196A (en) Objective lens, optical pickup device and recording/ reproducing device
JP2727373B2 (en) Finite system large aperture imaging lens
JPS60172010A (en) Refractive index distribution type lens for optical pickup
JPS61163311A (en) Refractive index distributed single lens
JP2001249271A (en) Refraction/diffraction hybrid lens
JP2004219474A (en) Objective for optical disk

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070529