JP2001296073A - Heat source evaluation method and characteristics display device - Google Patents

Heat source evaluation method and characteristics display device

Info

Publication number
JP2001296073A
JP2001296073A JP2000110983A JP2000110983A JP2001296073A JP 2001296073 A JP2001296073 A JP 2001296073A JP 2000110983 A JP2000110983 A JP 2000110983A JP 2000110983 A JP2000110983 A JP 2000110983A JP 2001296073 A JP2001296073 A JP 2001296073A
Authority
JP
Japan
Prior art keywords
heat
heat source
heat medium
heat exchanger
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000110983A
Other languages
Japanese (ja)
Inventor
Masahisa Fukahori
賢久 深堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2000110983A priority Critical patent/JP2001296073A/en
Publication of JP2001296073A publication Critical patent/JP2001296073A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T2201/00Prediction; Simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PROBLEM TO BE SOLVED: To accurately and easily grasp the amount of heat exchange on the side of a heat source in a heat source test. SOLUTION: A heat source test where a heating medium W is passed through a heat source heat exchanger 2 is executed under a plurality of conditions where inlet heating medium temperature t1 of the heat source heat exchanger 2 is changed, and characteristics M1 to M3 of heating medium temperature-heat exchange amount on the heat source side possessed by the heat source heat exchanger 2 are judged. The decided characteristics M1 to M3 of the heating medium temperature-heat exchange amount on the heating medium side and characteristics K of heating medium temperature-heat exchange amount on a load side possessed by a load heat exchanger are collated to evaluate equilibrium state points P1 to P3 which provide a relationship in which a heat exchange amount q on the heat source side and a heat exchange amount Q' on the load side on the heating medium temperature-heat exchange amount on the heat source side and the load side satisfy q=Q'×(g/G) [g: a heat medium flow rate per one heat source heat exchanger, G: a heating medium flow rate of a load heat exchanger] for the same heating medium temperature condition.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、熱源熱交換器と負
荷熱交換器との間で熱媒を循環させて熱源熱交換器で熱
源体から採熱する又は熱源体へ放熱する熱設備の構築に
あたり、対象とする熱源体について熱源熱交換器でどの
程度の熱交換量(すなわち、熱源体からの採熱量又は熱
源体への放熱量)が得られるかを予め把握する熱源評価
方法、及び、その方法に用いる特性表示具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat equipment for circulating a heat medium between a heat source heat exchanger and a load heat exchanger to collect heat from a heat source or to radiate heat to the heat source by the heat source heat exchanger. In constructing, a heat source evaluation method for grasping in advance how much heat exchange amount (that is, the amount of heat collected from the heat source body or the amount of heat released to the heat source body) can be obtained in the heat source heat exchanger for the target heat source body, and And a property indicator used in the method.

【0002】[0002]

【従来の技術】従来、上記熱設備の構築にあたり、対象
とする熱源体について熱源熱交換器でどの程度の熱交換
量が得られるかを予め把握するには、適当な試験用の1
温度に調整した一定温度の熱媒を熱源熱交換器に通過さ
せてその熱媒と熱源体とを実際に熱交換させる熱源試験
を行ない、この熱源試験で測定した熱源熱交換器の入出
口熱媒温度差Δtと熱媒流量gとに基づいて、得られる
熱源側の熱交換量q(=g×Δt)を算出するようにし
ていた(例えば、特開平8−338696号公報参
照)。
2. Description of the Related Art Conventionally, when constructing the above-mentioned heat equipment, it is necessary to use an appropriate test method to grasp in advance how much heat exchange can be obtained in a heat source heat exchanger for a target heat source body.
A heat source test is performed in which a heat medium at a constant temperature adjusted to a temperature is passed through a heat source heat exchanger to actually exchange heat between the heat medium and the heat source body. The obtained heat exchange amount q (= g × Δt) on the heat source side is calculated based on the medium temperature difference Δt and the heat medium flow rate g (for example, see Japanese Patent Application Laid-Open No. 8-338696).

【0003】[0003]

【発明が解決しようとする課題】しかし、熱源熱交換器
と負荷熱交換器との間での熱媒循環運転において各部の
熱媒温度は、夫々が固有の熱媒温度―熱交換量特性を有
する熱源側と負荷側との熱的なバランス関係から決まる
ため、負荷熱交換器との間での実際の熱媒循環を未だ伴
わない前述の熱源試験の段階で、負荷熱交換器との間で
の実際の熱媒循環に即した適切な試験用熱媒温度(熱源
熱交換器の入口熱媒温度)を選定することは難しく、こ
のため従来は、負荷熱交換器との間での熱媒循環とは熱
媒温度条件が異なる熱源試験で済ませることになって、
その熱源試験で求められる熱源側熱交換量が負荷熱交換
器との間での熱媒循環運転で得られる熱源側熱交換量と
大きく相違するものとなり、このことで、熱源試験に基
づく熱設備の設計(特に熱源熱交換器の必要並列数(負
荷熱交換器に対する熱源熱交換器の並列接続数)の決定
など)が不適切になる問題があった。
However, in the heat medium circulation operation between the heat source heat exchanger and the load heat exchanger, the heat medium temperature of each part has a unique heat medium temperature-heat exchange characteristic. Since it is determined by the thermal balance relationship between the heat source side and the load side, the actual heat medium circulation between the load heat exchanger and the load heat exchanger It is difficult to select an appropriate test heat medium temperature (the heat medium temperature at the inlet of the heat source heat exchanger) in accordance with the actual heat medium circulation at the load heat exchanger. With medium circulation, heat source tests with different heat medium temperature conditions will be completed,
The heat source side heat exchange amount obtained in the heat source test is greatly different from the heat source side heat exchange amount obtained by the heat medium circulation operation with the load heat exchanger, and this indicates that the heat equipment based on the heat source test (In particular, the determination of the required number of parallel heat source heat exchangers (the number of parallel connection of the heat source heat exchangers to the load heat exchanger), etc.) has been a problem.

【0004】また、負荷熱交換器が有する負荷側の熱媒
温度―熱交換量特性に基づき、必要な負荷側熱交換量が
得られる熱媒温度条件を判定して、その判定した熱媒温
度条件に即した試験用熱媒温度で熱源試験を行なうよう
にすれば、負荷熱交換器との間での熱媒循環運転で得ら
れる熱源側熱交換量をその熱源試験において正確に把握
できるようにはなるが、それにしても、負荷側条件の変
更で負荷側の熱媒温度―熱交換量特性が異なるものにな
って、必要な負荷側熱交換量が得られる熱媒温度条件が
異なるものになると、その都度、その熱媒温度条件に即
した試験用熱媒温度での熱源試験を再実施しなければな
らず、このことが設備設計上の大きな負担となる問題も
あった。
Further, based on the load-side heat medium temperature-heat exchange amount characteristic of the load heat exchanger, a heat medium temperature condition for obtaining a required load-side heat exchange amount is determined, and the determined heat medium temperature is determined. If the heat source test is performed at the test heat medium temperature according to the conditions, the heat source side heat exchange amount obtained by the heat medium circulation operation with the load heat exchanger can be accurately grasped in the heat source test. Nevertheless, if the load-side conditions change, the load-side heat medium temperature-heat exchange amount characteristics will differ, and the heat medium temperature conditions at which the required load-side heat exchange amount will be different will result. Each time, the heat source test at the test heat medium temperature in accordance with the heat medium temperature condition must be re-executed, and this has a problem that a heavy load is imposed on equipment design.

【0005】以上の実情に鑑み、本発明の主たる課題
は、合理的な熱源評価方法を採ることにより、上記の如
き問題を効果的に解消する点にある。
[0005] In view of the above circumstances, a main object of the present invention is to solve the above problems effectively by employing a rational heat source evaluation method.

【0006】[0006]

【課題を解決するための手段】〔1〕請求項1に係る発
明の熱源評価方法では、熱媒を熱源熱交換器に通過させ
て熱源体と熱交換させる熱源試験を、前記熱源熱交換器
の入口熱媒温度を変化させた複数条件下で実施し、この
熱源試験で得た熱媒温度の測定データと熱媒流量とに基
づき、前記熱源熱交換器が有する熱源側の熱媒温度―熱
交換量特性を判定し、この判定した熱源側の熱媒温度―
熱交換量特性と、前記熱源熱交換器との間での熱媒循環
を予定する負荷熱交換器が有する負荷側の熱媒温度―熱
交換量特性とを照合し、この照合において、前記熱源側
及び負荷側の熱媒温度―熱交換量特性上で熱源側の熱交
換量と負荷側の熱交換量とが同一の熱媒温度条件に対し
て、 q=Q′×(g/G) …………(イ) 但し q:熱源側熱交換量(熱源熱交換器1器当たり) Q′:負荷側熱交換量 g:熱源熱交換器の熱媒流量(熱源熱交換器1器当た
り) G:負荷熱交換器の熱媒流量 上記(イ)式を満たす関係となる平衡状態点を求める。
Means for Solving the Problems [1] In the heat source evaluation method according to the first aspect of the invention, a heat source test in which a heat medium passes through a heat source heat exchanger to exchange heat with a heat source body is performed by the heat source heat exchanger. It is carried out under a plurality of conditions in which the inlet heat medium temperature is changed, and based on the heat medium temperature measurement data and the heat medium flow rate obtained in this heat source test, the heat source side heat medium temperature of the heat source heat exchanger has The heat exchange characteristic is determined, and the determined heat medium temperature on the heat source side
The heat exchange characteristic and the heat medium temperature on the load side of the load heat exchanger that the load heat exchanger that plans to circulate the heat medium between the heat source heat exchanger and the heat exchange characteristic are compared. Medium temperature on the side and the load side-for the same heat medium temperature condition in which the heat exchange amount on the heat source side and the heat exchange amount on the load side are the same in terms of the heat exchange amount characteristics, q = Q 'x (g / G) (A) However, q: Heat source side heat exchange amount (per heat source heat exchanger) Q ': Load side heat exchange amount g: Heat medium flow rate of heat source heat exchanger (per heat source heat exchanger) G: Heat medium flow rate of load heat exchanger An equilibrium state point satisfying the above equation (a) is determined.

【0007】つまり、この方法によれば、上記照合で求
められる平衡状態点が、熱源熱交換器と負荷熱交換器と
の間での熱媒循環運転における熱的平衡状態(すなわ
ち、夫々が固有の熱媒温度―熱交換量特性を有する熱源
側と負荷側との熱的なバランス関係から決まる運転状
態)を示す点となる。
In other words, according to this method, the equilibrium state point obtained by the above-mentioned comparison is determined by the thermal equilibrium state (that is, each of them is unique) in the heat medium circulation operation between the heat source heat exchanger and the load heat exchanger. (Operating state determined by the thermal balance relationship between the heat source side and the load side having the heat medium temperature-heat exchange amount characteristic).

【0008】したがって、この照合で求めた上記平衡状
態点の状態値(換言すれば、その点の座標)から、熱源
熱交換器と負荷熱交換器との間での熱媒循環運転で得ら
れる熱源側の熱交換量や、その熱媒循環運転で現出され
る熱媒温度条件を、熱源熱交換器と負荷熱交換器との間
での実際の熱媒循環が未だ無い段階で的確に把握するこ
とができ、これにより、構築予定熱設備の設計を従前に
比べより適切に行なうことができる。
Therefore, from the state value of the above-mentioned equilibrium state point (in other words, the coordinates of the point) obtained by this collation, it is obtained by the heat medium circulation operation between the heat source heat exchanger and the load heat exchanger. The amount of heat exchange on the heat source side and the temperature conditions of the heat medium appearing in the heat medium circulation operation are accurately determined at the stage where the actual heat medium circulation between the heat source heat exchanger and the load heat exchanger has not yet been performed. It can be grasped, and thereby, the thermal equipment to be constructed can be designed more appropriately than before.

【0009】また、熱源熱交換器の入口熱媒温度を変化
させた複数条件下の熱源試験に基づき判定した熱源側の
熱媒温度―熱交換量特性と、予定の負荷熱交換器が有す
る負荷側の熱媒温度―熱交換量特性との照合により上記
平衡状態点を求めるから、負荷側条件の変更で負荷側の
熱媒温度―熱交換量特性が異なるものになったとして
も、一度判定した熱源側の熱媒温度―熱交換量特性につ
いてはそのまま使用することができて、その熱源側の熱
媒温度―熱交換量特性と条件変更により異なるものとな
った負荷側の熱媒温度―熱交換量特性とを照合するだけ
で、その新たな負荷側特性についての上記平衡状態点を
容易に求めることができる。
Further, a heat medium temperature-heat exchange characteristic on the heat source side determined on the basis of heat source tests under a plurality of conditions in which the inlet heat medium temperature of the heat source heat exchanger is changed, and the load of the planned load heat exchanger The above equilibrium state point is obtained by comparing with the heat medium temperature-heat exchange characteristics on the load side, so even if the load-side conditions change the heat medium temperature-heat exchange characteristics on the load side, it is determined once. Heat source temperature on the heat source side-Heat exchange amount characteristics can be used as it is, and the heat medium temperature on the heat source side-Heat exchange temperature on the load side that differs due to heat exchange amount characteristics and changes in conditions- The above equilibrium state point for the new load-side characteristic can be easily obtained only by checking the heat exchange amount characteristic.

【0010】すなわち、このことにより、先述の如く負
荷側条件の変更で負荷側の熱媒温度―熱交換量特性が異
なるものになる度に、その変更に応じた試験用熱媒温度
を選定して熱源試験を再実施するに比べ、設備設計上の
負担を大巾に軽減できる。
That is, as described above, each time the load-side condition is changed to change the load-side heat medium temperature-heat exchange amount characteristic, a test heat medium temperature according to the change is selected. Thus, the burden on equipment design can be greatly reduced as compared to re-executing the heat source test.

【0011】なお、上記(イ)式において、負荷側熱交
換量Q′にg/G値を乗じるのは熱源熱交換器の1器当
たりの熱媒流量gと負荷熱交換器の熱媒流量Gとの差分
を補正した状態で平衡状態点を求めるための処置であ
り、換言すれば、上記方法で求めた平衡状態点での熱源
側熱交換量qに対する負荷側熱交換量Q′の比値Q′/
qが、その負荷側熱交換量Q′に対する熱源熱交換器の
必要並列数になる。
In the above equation (a), the load side heat exchange amount Q 'is multiplied by the g / G value to determine the heat medium flow rate g per heat source heat exchanger and the heat medium flow rate of the load heat exchanger. This is a process for obtaining an equilibrium state point with the difference from G being corrected, in other words, the ratio of the load side heat exchange amount Q ′ to the heat source side heat exchange amount q at the equilibrium state point obtained by the above method. Value Q '/
q is the required number of heat source heat exchangers in parallel with respect to the load side heat exchange amount Q ′.

【0012】〔2〕請求項2に係る発明の熱源評価方法
では、請求項1に係る発明の実施にあたり、前記熱源熱
交換器の熱媒流量を異ならせた複数種の前記熱源試験を
実施することで、前記熱源熱交換器の熱媒流量が異なる
場合の夫々について前記熱源側の熱媒温度―熱交換量特
性を判定し、これら判定した複数の熱源側熱媒温度―熱
交換量特性の夫々について前記照合を行なうことで、前
記熱源熱交換器の熱媒流量が異なる場合の夫々について
前記平衡状態点を求め、これら複数の平衡状態点の夫々
における負荷側熱交換量と必要な負荷側熱交換量との比
較により、前記熱源熱交換器の適正熱媒流量及び必要並
列数を決定する。
[2] In the heat source evaluation method according to the second aspect of the present invention, in carrying out the first aspect of the invention, a plurality of types of the heat source tests are performed with different heat medium flow rates of the heat source heat exchanger. Thus, for each case where the heat medium flow rate of the heat source heat exchanger is different, the heat medium temperature-heat exchange amount characteristics of the heat source side are determined, and the plurality of determined heat source side heat medium temperatures-heat exchange amount characteristics are determined. By performing the comparison for each, the equilibrium state point is obtained for each of the cases where the heat medium flow rate of the heat source heat exchanger is different, and the load side heat exchange amount and the necessary load side at each of these plurality of equilibrium state points are determined. By comparison with the heat exchange amount, the appropriate heat medium flow rate of the heat source heat exchanger and the necessary parallel number are determined.

【0013】つまり、熱源熱交換器の熱媒流量(1器当
たりの熱媒流量)が異なると、熱源側の熱媒温度―熱交
換量特性が異なるものになって、熱源熱交換器と負荷熱
交換器との間での熱媒循環運転における熱的平衡状態も
異なるものとなる。
That is, if the flow rate of the heat medium of the heat source heat exchanger (the flow rate of the heat medium per unit) is different, the heat medium temperature-heat exchange characteristic on the heat source side is different, and the heat source heat exchanger and the load are different. The thermal equilibrium state in the heat medium circulation operation with the heat exchanger is also different.

【0014】このことに対し、上記の如く熱源熱交換器
の熱媒流量を異ならせた複数種の熱源試験により、熱源
熱交換器の熱媒流量が異なる場合の夫々についての熱源
側熱媒温度―熱交換量特性を判定し、そして、それら判
定した複数の熱源側熱媒温度―熱交換特性の夫々につい
て前記照合を行なうことで、熱源熱交換器の熱媒流量が
異なる場合の夫々についての前記平衡状態点を求めるよ
うにすれば、熱源熱交換器と負荷熱交換器との熱媒循環
で得られる負荷側熱交換量を、熱源熱交換器の熱媒流量
が異なる場合の夫々について各平衡状態点の状態値から
的確かつ容易に把握することができる。
[0014] On the other hand, a plurality of heat source tests in which the heat medium flow rates of the heat source heat exchangers are different from each other as described above show that the heat source side heat medium temperature for each of the heat source heat exchangers having different heat medium flow rates is different. -Heat exchange amount characteristics are determined, and by performing the above-mentioned comparison on each of the plurality of determined heat source-side heat medium temperatures-heat exchange characteristics, for each case where the heat medium flow rate of the heat source heat exchanger is different. If the equilibrium state point is obtained, the load-side heat exchange amount obtained by circulating the heat medium between the heat source heat exchanger and the load heat exchanger is different for each case where the heat medium flow rate of the heat source heat exchanger is different. It can be accurately and easily grasped from the state value of the equilibrium state point.

【0015】したがって、これら複数の平衡状態点の夫
々における負荷側熱交換量と、構築予定の熱設備で要求
される必要負荷側熱交換量とを比較すれば、必要な負荷
側熱交換量を得るための熱源熱交換器の適正熱媒流量及
び必要並列数を容易に決定することができる。
Therefore, comparing the load-side heat exchange amount at each of the plurality of equilibrium state points with the required load-side heat exchange amount required by the heat equipment to be constructed, the necessary load-side heat exchange amount is calculated. It is possible to easily determine the appropriate heat medium flow rate and the necessary number of parallel heat source heat exchangers to obtain.

【0016】〔3〕請求項3に係る発明の熱源評価方法
では、請求項1又は2に係る発明の実施にあたり、前記
照合として、前記熱源熱交換器の出口熱媒温度又は入口
熱媒温度又はそれら入出口熱媒温度の平均温度を一方の
座標変数とし、かつ、熱交換量を他方の座標変数とする
座標系上で、前記熱源側の熱媒温度―熱交換量特性を表
す熱源側特性直線を、前記熱源熱交換器の熱媒流量に対
する前記負荷熱交換器の熱媒流量の比値分だけ熱源側熱
交換量を補正した状態で描くとともに、前記負荷側の熱
媒温度―熱交換量特性を表す負荷側特性直線を描き、こ
れら特性直線の交点として前記平衡状態点を求める。
[3] In the heat source evaluation method according to the third aspect of the present invention, in carrying out the invention according to the first or second aspect, as the comparison, the temperature of the outlet heat medium or the temperature of the inlet heat medium of the heat source heat exchanger is determined. A heat source side characteristic representing a heat medium temperature-heat exchange amount characteristic on the heat source side on a coordinate system in which the average temperature of the inlet and outlet heat medium temperatures is one coordinate variable, and the heat exchange amount is the other coordinate variable. A straight line is drawn with the heat source side heat exchange amount corrected by the ratio of the heat medium flow rate of the load heat exchanger to the heat medium flow rate of the heat source heat exchanger, and the heat medium temperature on the load side minus the heat exchange. A load-side characteristic line representing a quantity characteristic is drawn, and the above-mentioned equilibrium state point is obtained as an intersection of these characteristic lines.

【0017】つまり、上記の座標系(すなわち、一方の
座標軸に熱媒温度条件を代表的に示す適当箇所の熱媒温
度を採り、他方の座標軸に熱交換量を採った座標系)に
おいて、熱源側の熱媒温度―熱交換量特性を表す熱源側
特性直線と、負荷側の熱媒温度―熱交換量特性を表す負
荷側特性直線とを描けば、それら特性直線の交点が熱源
熱交換器と負荷熱交換器との間での熱媒循環運転での熱
的平衡状態を示す点(すなわち、前記の平衡状態点)と
なる。
That is, in the above coordinate system (that is, a coordinate system in which the heat medium temperature at an appropriate position representatively representing the heat medium temperature condition is taken on one coordinate axis and the heat exchange amount is taken on the other coordinate axis), Drawing the heat source side characteristic line representing the heat medium temperature-heat exchange characteristic on the load side and the load side characteristic line representing the heat medium temperature-heat exchange characteristic on the load side, the intersection of these characteristic lines is the heat source heat exchanger. A point indicating a thermal equilibrium state in the heat medium circulation operation between the heat exchanger and the load heat exchanger (that is, the above-mentioned equilibrium state point).

【0018】したがって、前記の照合として、このよう
に特性直線を座標系上に描く方法を採れば、前記の平衡
状態点を特性直線どうしの交点として極めて容易に求め
ることができて、熱源熱交換器と負荷熱交換器との間で
の熱媒循環運転で得られる熱源側の熱交換量(換言すれ
ば負荷側の熱交換量)や、その熱媒循環運転で現出され
る熱媒温度条件を、上記交点の座標から極めて容易に求
めることができる。
Therefore, if the method of drawing the characteristic straight line on the coordinate system as described above is adopted, the above-mentioned equilibrium state point can be obtained very easily as the intersection of the characteristic straight lines. Of heat on the heat source side (in other words, the amount of heat exchange on the load side) obtained in the heat medium circulation operation between the heat exchanger and the load heat exchanger, and the temperature of the heat medium appearing in the heat medium circulation operation The condition can be obtained very easily from the coordinates of the intersection.

【0019】なお、上記方法において、熱源側の熱媒温
度―熱交換量特性を表す熱源側特性直線を、熱源熱交換
器の熱媒流量gに対する負荷熱交換器の熱媒流量Gの比
値(G/g)分だけ熱源側熱交換量qを補正(q×G/
g)した状態で描くのは、先述した請求項1に係る発明
と同様、熱源熱交換器の1器当たりの熱媒流量gと負荷
熱交換器の熱媒流量Gとの差分を補正した状態で熱源側
特性直線を描いて、その熱源側特性直線と負荷側特性直
線との交点として前記平衡状態点を求めるための処置で
ある。
In the above method, the heat source-side characteristic line representing the heat medium temperature-heat exchange amount characteristic on the heat source side is represented by the ratio of the heat medium flow rate G of the load heat exchanger to the heat medium flow rate g of the heat source heat exchanger. The heat source side heat exchange amount q is corrected by (G / g) (q × G /
g) is drawn in a state where the difference between the heat medium flow rate g per heat source heat exchanger and the heat medium flow rate G per load heat exchanger is corrected, as in the above-described invention according to claim 1. Is a procedure for drawing a heat source side characteristic straight line and obtaining the equilibrium state point as an intersection of the heat source side characteristic straight line and the load side characteristic straight line.

【0020】〔4〕請求項4に係る発明の熱源評価方法
では、熱媒を熱源熱交換器に通過させて熱源体と熱交換
させる熱源試験を、前記熱源熱交換器の入口熱媒温度を
変化させた複数条件下で実施し、この熱源試験で得た熱
媒温度の測定データと熱媒流量とに基づき、前記熱源熱
交換器が有する熱源側の熱媒温度―熱交換量特性を判定
し、一方、前記熱源熱交換器との間での熱媒循環を予定
する負荷熱交換器が有する負荷側の熱媒温度―熱交換量
特性に基づき、必要な負荷側熱交換量が得られる熱媒温
度条件を判定し、前記判定した熱源側の熱媒温度―熱交
換量特性上で、前記判定した熱媒温度条件に対応する熱
源側の熱交換量を求め、この求めた対応の熱源側熱交換
量と前記必要な負荷側熱交換量との比較により、前記熱
源熱交換器の必要並列数を決定する。
[4] In the heat source evaluation method according to the fourth aspect of the present invention, the heat source test in which the heat medium passes through the heat source heat exchanger to exchange heat with the heat source body is performed by measuring the temperature of the inlet heat medium of the heat source heat exchanger. The test is performed under a plurality of changed conditions, and based on the measured data of the heat medium temperature and the heat medium flow rate obtained in the heat source test, a heat medium temperature-heat exchange amount characteristic of the heat source side of the heat source heat exchanger is determined. On the other hand, the required load-side heat exchange amount is obtained based on the load-side heat medium temperature-heat exchange amount characteristic of the load heat exchanger that is scheduled to circulate the heat medium with the heat source heat exchanger. The heat medium temperature condition is determined, and on the heat medium temperature-heat exchange amount characteristic on the determined heat source side, the heat exchange amount on the heat source side corresponding to the determined heat medium temperature condition is determined. By comparing the amount of heat exchange on the side and the required amount of heat exchange on the load side, To determine the number of columns.

【0021】つまり、この方法によれば、上記の如く求
める対応の熱源側熱交換量(上記判定した熱源側の熱媒
温度―熱交換量特性上で上記判定熱媒温度条件に対応す
る熱源側熱交換量)が、予定の負荷熱交換器において必
要な負荷熱交換量が得られる熱媒温度条件の下での熱源
熱交換器の1器当たり熱交換量を示すものとなる。
That is, according to this method, the corresponding heat source side heat exchange amount obtained as described above (the heat source side corresponding to the determined heat medium temperature condition in the determined heat source side heat exchange temperature-heat exchange amount characteristic). (Heat exchange amount) indicates the heat exchange amount per heat source heat exchanger under the heat medium temperature condition under which the required load heat exchange amount is obtained in the planned load heat exchanger.

【0022】したがって、この求めた対応の熱源側熱交
換量と構築予定の熱設備で要求される必要負荷側熱交換
量とを、その熱源側熱交換量をもって必要負荷側熱交換
量を除する形態で比較すれば、熱源熱交換器と負荷熱交
換器との間での熱媒循環において必要な負荷側熱交換量
を得るための熱源熱交換器の必要並列数(換言すれば、
夫々が固有の熱媒温度―熱交換量特性を有する熱源側と
負荷側との熱的なバランス関係上で上記の判定熱媒温度
条件と同等の熱媒温度条件を現出させるための熱源熱交
換器の必要並列数)を的確かつ容易に決定することがで
き、これにより、構築予定熱設備の設計を従前に比べよ
り適切かつ容易に行なうことができる。
Therefore, the required heat-source-side heat exchange amount is divided by the required heat-source-side heat exchange amount required for the heat equipment to be constructed by the obtained heat-source-side heat exchange amount. In comparison, the required number of parallel heat source heat exchangers (in other words, the number of heat source heat exchangers) required to obtain the required load side heat exchange amount in the heat medium circulation between the heat source heat exchanger and the load heat exchanger
Heat source heat for producing heat medium temperature conditions equivalent to the above-mentioned judgment heat medium temperature conditions on the thermal balance relationship between the heat source side and the load side, each having a specific heat medium temperature-heat exchange amount characteristic The required number of parallel exchangers) can be determined accurately and easily, so that the design of the thermal equipment to be built can be made more appropriate and easier than before.

【0023】また、熱源熱交換器の入口熱媒温度を変化
させた複数条件下の熱源試験に基づき判定した熱源側の
熱媒温度―熱交換量特性と、予定の負荷熱交換器が有す
る負荷側の熱媒温度―熱交換量特性に基づき判定した必
要負荷側熱交換量を得るための熱媒温度条件とから上記
の如く熱源熱交換器の必要並列数を求めるから、請求項
1に係る発明と同様、負荷側条件の変更で負荷側の熱媒
温度―熱交換量特性が異なるものになったとしても、一
度判定した熱源側の熱媒温度―熱交換量特性については
そのまま使用することができて、その熱源側の熱媒温度
―熱交換量特性と、条件変更により異なるものとなった
負荷側の熱媒温度―熱交換量特性に基づき判定した必要
負荷側熱交換量を得るための熱媒温度条件とから、その
新たな負荷側特性についての熱源熱交換器の必要並列数
を容易に求めることができる。
Further, the heat medium temperature-heat exchange amount characteristic on the heat source side determined based on the heat source test under a plurality of conditions in which the heat medium temperature at the inlet of the heat source heat exchanger is changed, and the load of the planned load heat exchanger The required number of parallel heat source heat exchangers is obtained from the heat medium temperature conditions for obtaining the required load side heat exchange amount determined based on the heat medium temperature on the side and the heat exchange amount characteristic as described above. Similar to the invention, even if the load side conditions change the heat medium temperature-heat exchange characteristic on the load side, the heat medium temperature-heat exchange characteristic on the heat source once determined should be used as it is. To obtain the required load-side heat exchange amount determined based on the heat medium temperature-heat exchange amount characteristic on the heat source side and the load-side heat medium temperature-heat exchange amount characteristic changed due to the change in conditions. And the new load-side characteristics The necessary number of parallel heat source heat exchanger with can be easily obtained.

【0024】すなわち、このことにより、先述の如く負
荷側条件の変更で負荷側の熱媒温度―熱交換量特性が異
なるものになる度に、その変更に応じた試験用熱媒温度
を選定して熱源試験を再実施するに比べ、設備設計上の
負担を大巾に軽減できる。
That is, as described above, each time the load-side conditions change the heat medium temperature-heat exchange amount characteristics on the load side as described above, a test heat medium temperature according to the change is selected. Thus, the burden on equipment design can be greatly reduced as compared to re-executing the heat source test.

【0025】なお、上記方法で決定した熱源熱交換器の
必要並列数を採用する場合、熱源側と負荷側との熱媒流
量バランス上の制約から、熱源熱交換器の1器当たり熱
媒流量が熱源試験段階の流量と多少異なるものとなる、
又は、負荷熱交換器の熱媒流量が必要負荷側熱交換量を
得るための熱媒温度条件を判定した際の流量と多少異な
るものとなるといった誤差が生じることもあるが、熱源
試験における熱源熱交換器の1器当たり熱媒流量、及
び、負荷側の熱媒温度―熱交換量特性を求めるときの負
荷熱交換器の熱媒流量に一般的な流量(定格値的な流
量)を採用するとともに、必要負荷側熱交換量を熱源側
熱交換量で除する形態での必要並列数の決定において安
全側に端数処理を行なうようにすれば、この誤差は無視
できる程度のものとなる。
When the required number of parallel heat source heat exchangers determined by the above method is adopted, the flow rate of the heat medium per heat source heat exchanger per unit of heat source heat exchanger is limited due to restrictions on the balance of the heat medium flow between the heat source side and the load side. Is slightly different from the flow rate in the heat source test stage,
Alternatively, an error may occur such that the flow rate of the heat medium in the load heat exchanger is slightly different from the flow rate when the heat medium temperature condition for obtaining the required load-side heat exchange amount is determined. A general flow rate (rated flow rate) is used as the heat medium flow rate of the load heat exchanger when calculating the heat medium flow rate per heat exchanger and the heat medium temperature-heat exchange amount characteristics on the load side. In addition, if the necessary parallel number is determined by dividing the required load-side heat exchange amount by the heat source-side heat exchange amount, if the fraction processing is performed on the safe side, this error becomes negligible.

【0026】また、より厳密な設計が要求される場合に
は、熱源熱交換器の熱媒流量を異ならせた複数種の熱源
試験により、熱源熱交換器の熱媒流量が異なる場合の熱
源側熱媒温度―熱交換量特性を予め判定しておき、そし
て、これら複数の熱源側熱媒温度―熱交換量特性に基づ
き、熱源熱交換器の1器当たり熱媒流量が上記の如く流
量バランス上の制約から異なった場合の熱源側熱媒温度
―熱交換量特性を求めるようにして、その求めた新たな
熱源側熱媒温度―熱交換量特性を用いて上記方法を繰り
返すといった補正処置、あるいは、負荷熱交換器の熱媒
流量が上記の如く流量バランス上の制約から異なった場
合の負荷側熱媒温度―熱交換量特性を用いて上記方法を
繰り返すといった補正処置を行なうようにすればよい。
When a more rigorous design is required, a plurality of types of heat source tests in which the heat medium flow rates of the heat source heat exchangers are different are performed. The heat medium temperature-heat exchange amount characteristic is determined in advance, and based on the plurality of heat source side heat medium temperature-heat exchange amount characteristics, the flow rate of the heat medium per heat source heat exchanger is balanced as described above. Correction measures such as repeating the above method using the new heat source side heat medium temperature-heat exchange amount characteristics obtained by determining the heat source side heat medium temperature-heat exchange amount characteristics in the case of different from the above restrictions. Alternatively, when the heat medium flow rate of the load heat exchanger is different due to the restriction on the flow rate balance as described above, the correction method such as repeating the above method using the load side heat medium temperature-heat exchange amount characteristic may be performed. Good.

【0027】〔5〕請求項5に係る発明の熱源評価方法
では、請求項1〜4のいずれか1項に係る発明の実施に
あたり、前記熱源試験で得た前記熱源熱交換器の入出口
熱媒温度の測定値と熱媒流量とに基づき熱源側の熱交換
量を算出するのに、前記熱源熱交換器の入口から出口に
至るまでに要する熱媒通過時間だけ前記熱源熱交換器の
出口熱媒温度の方が入口熱媒温度よりも測定時点の遅い
入出口熱媒温度の測定値を用いる。
[5] In the heat source evaluation method according to the fifth aspect of the present invention, in carrying out the invention according to any one of the first to fourth aspects, the inlet / outlet heat of the heat source heat exchanger obtained in the heat source test is obtained. To calculate the heat exchange amount on the heat source side based on the measured value of the medium temperature and the flow rate of the heat medium, the outlet of the heat source heat exchanger is the heat medium passage time required from the inlet to the outlet of the heat source heat exchanger. The measured value of the inlet / outlet heat medium temperature at which the heat medium temperature is measured later than the inlet heat medium temperature is used.

【0028】つまり、熱源熱交換器における熱媒通過で
熱媒が熱源熱交換器の入口から出口に至るまでには相応
の時間を要することから、熱源熱交換器の入出口熱媒温
度の測定値と熱媒流量とに基づき熱源側の熱交換量を算
出するのに、単純に熱源熱交換器の入口熱媒温度と出口
熱媒温度とについて互いの測定時点が同じ測定値を用い
ると、それら入出口熱媒温度の測定値が上記の時間分だ
け熱源熱交換器への送り込み時点のズレた熱媒に対する
測定値であることによる誤差が熱源熱交換量の算出結果
に生じ、その分、熱源側熱媒温度―熱交換量特性の判定
についても誤差を生じることになる。
That is, since it takes a certain amount of time for the heat medium to pass from the inlet to the outlet of the heat source heat exchanger when the heat medium passes through the heat source heat exchanger, the temperature of the inlet and outlet heat medium of the heat source heat exchanger is measured. To calculate the heat exchange amount on the heat source side based on the value and the flow rate of the heat medium, simply using the same measurement value at the time of measurement of the inlet heat medium temperature and the outlet heat medium temperature of the heat source heat exchanger, An error due to the measured value of the heat medium temperature at the inlet / outlet being a measured value for the heat medium displaced at the time of being sent to the heat source heat exchanger for the above-described time occurs in the calculation result of the heat source heat exchange amount, An error will also occur in the determination of the heat source side heat medium temperature-heat exchange amount characteristic.

【0029】これに対し、上記の如く、熱源熱交換器の
入出口熱媒温度の測定値と熱媒流量とに基づく熱源側熱
交換量の算出において、熱源熱交換器の入口から出口に
至るまでに要する熱媒通過時間だけ、熱源熱交換器の出
口熱媒温度の方が入口熱媒温度よりも測定時点の遅い入
出口熱媒温度の測定値を用いるようにすれば、それら入
出口熱媒温度の測定値が熱源熱交換器に対する同一送り
込み時点の熱媒に対する測定値となることから、上記の
如き誤差を回避することができ、これにより、熱源側の
熱媒温度―熱交換量特性の判定をより正確なものにし
て、請求項1〜3に係る発明では前記平衡状態点を、ま
た、請求項4に係る発明では熱源熱交換器の必要並列数
を夫々、一層正確に求めることができる。
On the other hand, as described above, in the calculation of the heat source side heat exchange amount based on the measured value of the heat medium flow rate at the inlet and outlet of the heat source heat exchanger and the flow rate of the heat medium, the heat source heat exchanger reaches from the inlet to the outlet. If the measured value of the inlet / outlet heat medium temperature at the time of measurement at the outlet heat medium temperature of the heat source heat exchanger is slower than the inlet heat medium temperature for the heat medium passage time required by Since the measured value of the medium temperature is the measured value of the heat medium at the same feeding time to the heat source heat exchanger, the error as described above can be avoided, and thus, the heat medium temperature-heat exchange amount characteristic on the heat source side In the invention according to the first to third aspects, the equilibrium state point is determined, and in the invention according to the fourth aspect, the required number of parallel heat source heat exchangers is more accurately determined. Can be.

【0030】そして、熱源熱交換器が熱媒を地中で対地
熱交換させる地中熱交換器である場合には、地中熱交換
器の入口から出口に至るまでに要する熱媒通過時間が他
種の熱源熱交換器に比べ特に大きく、また、熱交換の進
行に伴い熱源体である土壌の温度が漸次的に変化する傾
向があることから、特にこの方法が有効となる。
When the heat source heat exchanger is an underground heat exchanger for exchanging a heat medium underground with the ground, the heat medium passage time required from the entrance to the exit of the underground heat exchanger is required. This method is particularly effective because it is particularly large compared to other types of heat source heat exchangers, and the temperature of the soil as a heat source tends to gradually change with the progress of heat exchange.

【0031】〔6〕請求項6に係る発明の熱源評価方法
では、請求項1〜5のいずれか1項に係る発明の実施に
あたり、熱媒を地中で対地熱交換させる地中熱交換器を
前記熱源熱交換器とする前記熱源試験において、前記熱
源側の熱媒温度―熱交換量特性の判定に用いる熱媒温度
の測定データを、前記熱源熱交換器の入口熱媒温度を変
化させた各条件下で採取するのに、前記熱源熱交換器の
入口熱媒温度の変更後、前記測定データとして採用する
熱媒温度を採取するまでの間に待機時間を設け、この待
機時間を、熱媒温度と熱源側熱交換量との間の線形相関
の相関係数が設定値以上となる測定データが得られる時
間とする。
[6] In the heat source evaluation method according to the sixth aspect of the present invention, in carrying out the invention according to any one of the first to fifth aspects, an underground heat exchanger for exchanging a heat medium with the ground in the ground is provided. In the heat source test with the heat source heat exchanger, the heat medium temperature on the heat source side-measurement data of the heat medium temperature used for determination of the heat exchange amount characteristic, changing the inlet heat medium temperature of the heat source heat exchanger In order to collect under each condition, after changing the inlet heat medium temperature of the heat source heat exchanger, a standby time is provided until the heat medium temperature adopted as the measurement data is collected, and this standby time is It is a time during which measurement data in which the correlation coefficient of the linear correlation between the heat medium temperature and the heat source side heat exchange amount is equal to or greater than a set value is obtained.

【0032】つまり、熱媒を対地熱交換させる地中熱交
換器を熱源熱交換器とする熱源試験では、土壌を熱源体
とすることの特質として、熱媒を水や空気などの流体と
熱交換させる熱源試験に比べ、試験条件の変更として熱
源熱交換器の入口熱媒温度を変化させたとき、各部の熱
媒温度及び熱源側熱交換量が安定するまでに極めて長い
時間を要する。
That is, in a heat source test in which an underground heat exchanger for exchanging a heat medium with a ground heat is used as a heat source heat exchanger, one of the characteristics of using soil as a heat source body is that the heat medium is exchanged with a fluid such as water or air. Compared to the heat source test to be exchanged, when the temperature of the heat medium at the inlet of the heat source heat exchanger is changed as a change of the test conditions, it takes an extremely long time until the heat medium temperature and the heat source side heat exchange amount of each part are stabilized.

【0033】このことに対し、地中熱交換器についての
熱源試験の場合、熱源側の熱媒温度―熱交換量特性の判
定に用いる熱媒温度の測定データを、熱源熱交換器の入
口熱媒温度を変化させた各条件下の熱交換試験で採取す
るのに、上記の如く、熱源熱交換器の入口熱媒温度の変
更後、測定データとして採用する熱媒温度を採取するま
での間に待機時間を設けるようにし、そして、この待機
時間を、熱媒温度と熱源熱交換量との間の線形相関の相
関係数が設定値以上となる測定データが得られる時間に
規定すれば、土壌を熱源体とすることにかかわらず、そ
の測定データに基づき熱源側の熱媒温度―熱交換量特性
をより正確に判定できるようになり、これにより、地中
熱交換器を熱源熱交換器とする場合についても前記平衡
状態点や地中熱交換器の必要並列数を一層正確に求める
ことができる。
On the other hand, in the case of the heat source test for the underground heat exchanger, the measurement data of the heat medium temperature used to determine the heat medium temperature-heat exchange amount characteristic on the heat source side is used as the heat transfer rate at the inlet of the heat source heat exchanger. As described above, after the temperature of the inlet heat medium of the heat source heat exchanger is changed, until the heat medium temperature adopted as measurement data is collected, in the heat exchange test under each condition with the medium temperature changed. If a waiting time is provided, and this waiting time is defined as a time at which measurement data in which the correlation coefficient of the linear correlation between the heat medium temperature and the heat source heat exchange amount is equal to or greater than a set value is obtained, Regardless of whether the soil is used as the heat source, the heat medium temperature-heat exchange characteristic on the heat source side can be determined more accurately based on the measurement data, which allows the underground heat exchanger to be replaced with the heat source heat exchanger. The equilibrium point and underground heat exchange The necessary number of parallel vessels can be determined more accurately.

【0034】なお、請求項6に係る発明の熱源評価方法
の実施にあたっては、前記待機時間として、構築予定の
熱設備で予測される最大の連続採熱運転時間(いわゆる
実用時間)以上で、かつ、前記の相関係数が設定値以上
の測定データが得られる時間を採用するのが望ましい。
In carrying out the heat source evaluation method of the invention according to claim 6, the standby time is not less than the maximum continuous heat-collecting operation time (so-called practical time) predicted by the heat equipment to be constructed, and It is desirable to adopt a time during which measurement data having a correlation coefficient equal to or greater than a set value is obtained.

【0035】〔7〕請求項7に係る発明の特性表示具で
は、請求項3又は請求項4に係る発明の熱源評価方法に
用いる特性表示具として、前記熱源熱交換器の出口熱媒
温度又は入口熱媒温度又はそれら入出口熱媒温度の平均
温度を一方の座標変数とし、かつ、熱交換量を他方の座
標変数とする座標系上で、前記熱源側の熱媒温度―熱交
換量特性を表す熱源側特性直線を、前記熱源熱交換器の
熱媒流量に対する前記負荷熱交換器の熱媒流量の比値分
だけ熱源側熱交換量を補正した状態で、又は、その補正
前の状態で描いたものにする。
[7] In the characteristic indicator of the present invention according to claim 7, as the characteristic indicator used in the heat source evaluation method of the invention according to claim 3 or 4, the temperature indicator of the outlet heat medium of the heat source heat exchanger or the characteristic indicator is used. The heat medium temperature-heat exchange amount characteristic on the heat source side on a coordinate system in which the inlet heat medium temperature or the average temperature of the inlet and outlet heat medium temperatures is one coordinate variable, and the heat exchange amount is the other coordinate variable. In the state where the heat source side heat exchange amount is corrected by the ratio of the heat medium flow rate of the load heat exchanger to the heat medium flow rate of the heat source heat exchanger, or the state before the correction. Make it what you drew.

【0036】つまり、上記の熱源側特性直線を、熱源熱
交換器の熱媒流量に対する負荷熱交換器の熱媒流量の比
値分だけ熱源側熱交換量を補正した状態で描いた特性表
示具では、負荷側の熱媒温度―熱交換量特性を表す負荷
側特性直線を座標系上に描き加えるだけで、請求項3に
係る発明をもって前記平衡状態点を特性直線どうしの交
点として極めて容易に求めることができる。
That is, a characteristic display device in which the above heat source side characteristic straight line is drawn in a state where the heat source side heat exchange amount is corrected by the ratio of the heat medium flow amount of the load heat exchanger to the heat medium flow amount of the heat source heat exchanger. By simply adding a load-side characteristic line representing the load-side heat medium temperature-heat exchange amount characteristic on the coordinate system, the invention according to claim 3 makes it extremely easy to use the equilibrium state point as an intersection of the characteristic lines. You can ask.

【0037】また、熱源側特性直線を上記補正前の状態
で描いた特性表示具では、負荷側の熱媒温度―熱交換量
特性を表す負荷側特性直線を座標系上に描き加えること
で、その表示具上で請求項4に係る発明の解放手順を実
施して、熱源熱交換器の必要並列数を極めて容易に求め
ることができる。
In the characteristic display device in which the heat source side characteristic straight line is drawn in the state before the correction, the load side characteristic line representing the load side heat medium temperature-heat exchange amount characteristic is drawn on the coordinate system. By performing the release procedure of the invention according to claim 4 on the display, the required number of parallel heat source heat exchangers can be obtained very easily.

【0038】なお、上記の特性表示具は、座標系上に熱
源側特性直線を描いた図表を用紙などのシート状体に記
載したもの、あるいは、その図表を映像として画面表示
するもののいずれであってもよい。
The above-mentioned characteristic display device is either a drawing in which a heat source-side characteristic straight line is drawn on a coordinate system in the form of a sheet such as paper, or a display of the drawing as an image on a screen. You may.

【0039】[0039]

【発明の実施の形態】〔第1実施形態〕図1は、地中1
に埋設した地中熱交換器2に熱媒Wを循環させて地中1
から採熱する熱設備(例えば、地中熱交換器2と融雪用
熱交換器との間で熱媒Wを循環させて、地中1からの採
取熱により融雪を行なう熱設備)の構築にあたり、採熱
対象地1について地中熱交換器2でどの程度の熱交換量
q(地中1からの採熱量)が得られるかを予め把握する
ための試験設備を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG.
The heat medium W is circulated through the underground heat exchanger 2 buried in
(For example, a heat facility that circulates the heat medium W between the underground heat exchanger 2 and the heat exchanger for snow melting and heats snow from the underground 1). A test facility for grasping in advance how much heat exchange amount q (heat extraction amount from underground 1) can be obtained in the underground heat exchanger 2 for the heat collection site 1 will be described.

【0040】この試験設備において、3は模擬負荷装置
としての圧縮式ヒートポンプ装置であり、このヒートポ
ンプ装置3の蒸発器3aと地中熱交換器2との間で熱媒
循環路4を通じて熱媒W(水やブライン)を循環させ
る。
In this test facility, reference numeral 3 denotes a compression type heat pump device as a simulated load device, and a heat medium W through a heat medium circulation path 4 between the evaporator 3a and the underground heat exchanger 2 of the heat pump device 3. (Water or brine).

【0041】また、このヒートポンプ装置3には、熱回
収用と放熱用との二つの凝縮器3b,3cを設け、地中
熱交換器2から戻る循環熱媒Wの一部W′については迂
回路5を通じ熱回収用の凝縮器3bに送った上で、再び
熱媒循環路4に戻して他の熱媒Wとともに蒸発器3aに
送る。
The heat pump device 3 is provided with two condensers 3b and 3c for heat recovery and heat radiation, and a part W 'of the circulating heat medium W returning from the underground heat exchanger 2 is bypassed. After being sent to the condenser 3b for heat recovery through the passage 5, it is returned to the heat medium circulation passage 4 again and sent to the evaporator 3a together with another heat medium W.

【0042】つまり、この試験設備では、ヒートポンプ
装置3の蒸発器3aで循環熱媒Wから吸熱した熱量の一
部は熱回収用の凝縮器3bで循環熱媒W′(W)に戻し
て、吸熱熱量の他部のみを放熱用の凝縮器3cから大気
A中へ放熱するようにし、この構成において、三方弁6
により迂回路5への熱媒分流量を調整することで、熱回
収用凝縮器3bでの熱媒W′への戻し熱量を調整(換言
すれば、直列配置の二つの凝縮器3b,3cの放熱量比
を調整)して、ヒートポンプ装置3から地中熱交換器2
に送る熱媒Wの温度t1を調整する。
That is, in this test facility, part of the heat absorbed from the circulating heat medium W by the evaporator 3a of the heat pump device 3 is returned to the circulating heat medium W '(W) by the condenser 3b for heat recovery. Only the other part of the heat absorption amount is radiated from the condenser 3c for radiation to the atmosphere A. In this configuration, the three-way valve 6
By adjusting the flow rate of the heat medium to the bypass 5, the amount of heat returned to the heat medium W 'in the heat recovery condenser 3b is adjusted (in other words, the two condensers 3b, 3c arranged in series are connected to each other). The heat radiation ratio is adjusted), and the underground heat exchanger 2 is
The temperature t1 of the heat medium W sent to is adjusted.

【0043】Fは熱媒循環ポンプ、7は地中熱交換器2
への熱媒循環流量gを計測する流量計、8a,8bは地
中熱交換器2の入口熱媒温度t1及び出口熱媒温度t2
を計測する温度検出器、9は地中熱交換器2に対する熱
媒バイパス路、Vは各部に設けた弁である。
F is a heat medium circulation pump, 7 is an underground heat exchanger 2
Flowmeters 8a and 8b for measuring the heat medium circulation flow rate g to the underground heat exchanger 2 are an inlet heat medium temperature t1 and an outlet heat medium temperature t2.
, A heat medium bypass 9 for the underground heat exchanger 2, and V a valve provided in each section.

【0044】この試験設備を用いた試験については、熱
媒Wを地中熱交換器2とヒートポンプ装置3との間で循
環させて実際に対地熱交換させる熱源試験を、三方弁6
の調整により地中熱交換器2の入口熱媒温度t1を変化
させた複数条件下で実施するとともに、そのように入口
熱媒温度t1を変化させる複数条件下での熱源試験を、
弁Vの調整により地中熱交換器2の熱媒流量gを異なら
せた複数種について実施する。
In the test using this test equipment, a three-way valve 6 is used for a heat source test in which the heat medium W is circulated between the underground heat exchanger 2 and the heat pump device 3 to actually exchange heat with the ground.
The heat source test under a plurality of conditions in which the inlet heat medium temperature t1 is changed while the inlet heat medium temperature t1 of the underground heat exchanger 2 is changed by the adjustment of
The operation is performed for a plurality of types in which the flow rate g of the heat medium of the underground heat exchanger 2 is changed by adjusting the valve V.

【0045】そして、これらの熱源試験において温度検
出器8a,8bにより測定された各温度データt1,t
2と各熱源試験での地中熱交換器2の熱媒流量gとに基
づき、各条件下で得られた採熱量q(=g×(t2―t
1))を算出し、これに続き、熱源側特性の判定とし
て、図2に示す如く、算出した採熱量qと各採熱量qが
得られたときの熱媒温度条件を示す代表箇所の熱媒温度
t2(本例では地中熱交換器2の出口熱媒温度を採用)
との間に存在する線形相関の回帰直線m1〜m3を各熱
媒流量g1〜g3ごとに求める。
The temperature data t1, t measured by the temperature detectors 8a, 8b in these heat source tests.
2 and the heat extraction amount q (= g × (t2−t) obtained under each condition based on the heat medium flow rate g of the underground heat exchanger 2 in each heat source test.
1)), and subsequently, as a determination of the heat source side characteristics, as shown in FIG. 2, the heat at a representative location indicating the calculated heat extraction amount q and the heat medium temperature condition when each heat extraction amount q is obtained. Medium temperature t2 (in this example, the temperature of the outlet heat medium of the underground heat exchanger 2 is used)
Are obtained for each of the heat medium flow rates g1 to g3.

【0046】つまり、これら回帰直線m1〜m2は、地
中熱交換器2が有する熱源側の熱媒温度―熱交換量特性
をt2−q座標系上で各熱媒流量g1〜g3ごとに表す
熱源側特性直線である。
In other words, these regression lines m1 to m2 represent the heat medium temperature-heat exchange characteristic on the heat source side of the underground heat exchanger 2 for each heat medium flow rate g1 to g3 on the t2-q coordinate system. This is a heat source side characteristic straight line.

【0047】なお、上記熱源試験では、試験条件の変更
として三方弁6の調整により地中熱交換器2の入口熱媒
温度t1を変更したとき、図3に示す如く各部の熱媒温
度t1,t2及び採熱量qが安定するまでに相当の長時
間を要することに対し、三方弁6による入口熱媒温度t
1の変更操作後、上記の採熱量算出に採用する熱媒温度
t1,t2の測定データを採取するまでの間に待機時間
Tmを設け、この待機時間Tmとして、構築予定の熱設
備で予測される最大の連続採熱運転時間Ta(例えば4
時間程度の時間)以上で、かつ、前記線形相関の相関係
数が設定値(例えば0.7や0.8といった値)以上と
なる測定データが得られる時間を採るようにする。
In the above heat source test, when the inlet heat medium temperature t1 of the underground heat exchanger 2 is changed by adjusting the three-way valve 6 as a test condition change, as shown in FIG. It takes a considerable amount of time for t2 and the amount of heat q to stabilize.
After the change operation of 1, a standby time Tm is provided until the measurement data of the heat medium temperatures t1 and t2 adopted in the above-mentioned heat collection amount calculation is collected, and the standby time Tm is predicted by the thermal equipment to be constructed. Maximum continuous heating operation time Ta (for example, 4
(Time of about time) or more, and a time during which measurement data in which the correlation coefficient of the linear correlation is equal to or more than a set value (for example, a value such as 0.7 or 0.8) is obtained.

【0048】また、地中熱交換器2が長尺で熱媒Wが地
中熱交換器2の入口から出口に至るまでにかなりの時間
Teを要することに対し、温度検出器8a,8bによる
地中熱交換器2の入出口熱媒温度t1,t2の測定値と
熱媒流量gとに基づき上記採熱量qを算出するのに、地
中熱交換器2の入口から出口に至るまでに要する熱媒通
過時間Teだけ、熱源熱交換器2の出口熱媒温度t2の
方が入口熱媒温度t1よりも測定時点の遅い入出口熱媒
温度t1,t2の測定値を用いるようにする。
In contrast to the fact that the underground heat exchanger 2 is long and the heat medium W requires a considerable time Te from the entrance to the exit of the underground heat exchanger 2, the temperature detectors 8 a and 8 b In order to calculate the above heat extraction amount q based on the measured values of the heat medium temperatures t1 and t2 at the inlet and outlet of the underground heat exchanger 2 and the heat medium flow rate g, it is necessary to calculate from the inlet to the outlet of the underground heat exchanger 2. For the required heat medium passage time Te, the measured values of the inlet and outlet heat medium temperatures t1 and t2 at the measurement time point of the outlet heat medium temperature t2 of the heat source heat exchanger 2 are later than the inlet heat medium temperature t1.

【0049】次に上記熱源試験の試験結果に基づき、地
中熱交換器2と負荷熱交換器との間での実際の熱媒循環
運転でどのような熱的平衡状態が現出されるかを把握し
て、構築予定の熱設備を設計するにあたっては、次の
(a1)〜(a4)の手法を採る。
Next, based on the test results of the heat source test, what kind of thermal equilibrium state appears in the actual heat medium circulation operation between the underground heat exchanger 2 and the load heat exchanger In designing the thermal equipment to be constructed by grasping the above, the following methods (a1) to (a4) are employed.

【0050】(a1)熱源側特性直線としての上記回帰
直線m1〜m3を、図4に示す如く、地中熱交換器2の
熱媒流量g(1器当たり熱媒流量)に対する負荷熱交換
器の熱媒流量Gの比値(G/g)分だけ採熱量qを補正
(q×G/g=Q)した補正回帰直線M1〜M3の形
で、各熱媒流量g1〜g3ごとにt2−Q座標系上に描
く。
(A1) As shown in FIG. 4, the regression lines m1 to m3 as the heat source side characteristic lines are used to determine the load heat exchanger with respect to the heat medium flow rate g (the heat medium flow rate per unit) of the underground heat exchanger 2. T2 for each heat medium flow rate g1 to g3 in the form of a corrected regression line M1 to M3 in which the heat collection amount q is corrected (q × G / g = Q) by the ratio value (G / g) of the heat medium flow rate G -Draw on the Q coordinate system.

【0051】(a2)一方、接続予定の負荷熱交換器が
有する負荷側の熱媒温度―熱交換量特性(すなわち、負
荷側熱交換量Q′(放熱量)と熱媒温度t2(負荷熱交
換器の入口熱媒温度)との間に存在する線形相関)をモ
デル上の演算や実際に熱媒Wを通過させる試験等により
求めておく。
(A2) On the other hand, the load-side heat medium temperature-heat exchange amount characteristic of the load heat exchanger to be connected (that is, the load-side heat exchange amount Q '(radiation amount) and the heat medium temperature t2 (load heat The linear correlation existing between the heat medium and the inlet of the exchanger) is obtained by calculation on a model, a test for actually passing the heat medium W, and the like.

【0052】(a3)熱源側特性と負荷側特性との照合
として、上記負荷側の熱媒温度―熱交換量特性を表す負
荷側特性直線Kを、上記の補正回帰直線M1〜M3とと
もにt2−Q座標系上に描き、この負荷側特性直線Kに
対する各補正回帰直線M1〜M3の交点P1〜P3を求
める。
(A3) As a comparison between the heat source side characteristic and the load side characteristic, the load side characteristic line K representing the heat medium temperature-heat exchange amount characteristic on the load side is calculated by using t2- Draw on the Q coordinate system, and find intersections P1 to P3 of the corrected regression lines M1 to M3 with respect to the load-side characteristic line K.

【0053】つまり、これら交点P1〜P3は、地中熱
交換器2の熱媒流量gがg1〜g3の各々の場合につい
て、熱源側及び負荷側の熱媒温度―熱交換量特性上で地
中熱交換器2の1器当たりの採熱量q(熱源側熱交換
量)と負荷熱交換器の放熱量Q′(負荷側熱交換量)と
が同一の熱媒温度条件に対し、 q=Q′×(g/G) …………(イ) 上記(イ)式を満たす関係となる平衡状態点であり、地
中熱交換器2の熱媒流量qがg1〜g3の各々の場合に
ついての地中熱交換器2と負荷熱交換器との間での熱媒
循環運転における熱的平衡状態(すなわち、夫々が固有
の熱媒温度―熱交換量特性を有する熱源側と負荷側との
熱的なバランス関係から決まる運転状態)を示す点とな
る。
In other words, these intersections P1 to P3 indicate that the heat medium flow rate g of the underground heat exchanger 2 is g1 to g3, and that the heat medium flow-temperature characteristics on the heat source side and the load side are different from each other. For a heat medium temperature condition in which the amount of heat q per unit of the intermediate heat exchanger 2 (heat source side heat exchange amount) and the amount of heat radiation Q '(load side heat exchange amount) of the load heat exchanger are the same, q = Q ′ × (g / G) (a) It is an equilibrium state point that satisfies the above equation (a), and the heat medium flow rate q of the underground heat exchanger 2 is g1 to g3. Thermal equilibrium state in the heat medium circulation operation between the underground heat exchanger 2 and the load heat exchanger (ie, the heat source side and the load side each having a specific heat medium temperature-heat exchange amount characteristic). Operating condition determined from the thermal balance relationship of the two).

【0054】(a4)そして、これら交点P1〜P3
(平衡状態点)の夫々における放熱量Q′(換言すれば
採熱量Q)と、構築予定熱設備での必要放熱量Qs(必
要負荷側熱交換量)との比較により、構築予定熱設備で
の地中熱交換器2の1器当たり熱媒流量g及び必要並列
数nを決定する。つまり、図4に示す例では、交点P2
における放熱量Q′が必要放熱量Qsにほぼ合致するこ
とから、地中熱交換器2の1器当たり熱媒流量g及び必
要並列数nとしてg≒g2,n≒G/g2を採用する。
(A4) The intersection points P1 to P3
By comparing the heat release amount Q '(in other words, the heat extraction amount Q) at each of the (equilibrium state points) and the required heat release amount Qs (necessary load-side heat exchange amount) of the planned thermal equipment, Of the heat medium flow rate g per unit of the underground heat exchanger 2 and the required parallel number n are determined. That is, in the example shown in FIG.
Since the heat radiation amount Q ′ in the above approximately matches the required heat radiation amount Qs, g ≒ g2 and n ≒ G / g2 are adopted as the heat medium flow rate g per unit of the underground heat exchanger 2 and the required parallel number n.

【0055】なお、t2−Q座標系上に補正回帰直線M
1〜M3及び負荷側特性直線Kを描いた図表をもって上
記の交点P1〜P3(平衡状態点)を求めるのに、その
図表は用紙などのシート状体に記載したもの、あるい
は、コンピュータのモニタ画面などに映像として表示し
たもののいずれであってもよい。
The corrected regression line M is plotted on the t2-Q coordinate system.
In order to obtain the intersection points P1 to P3 (equilibrium state points) using a chart depicting the load characteristic curve K and the load side characteristic straight line K, the chart is described on a sheet such as paper or a monitor screen of a computer. For example, any of the images displayed as images may be used.

【0056】〔第2実施形態〕第1実施形態では、地中
熱交換器2と負荷熱交換器との間での熱媒循環運転で現
出される熱的平衡状態を、熱源側熱交換量qについて補
正を行った熱源側特性直線M1〜M3(補正回帰直線)
と負荷側特性直線Kとの交点P1〜P3から把握して、
設備設計を行なう例を示したが、本第2実施形態では、
次の(b1)〜(b4)の如き設計手法を採る。
[Second Embodiment] In the first embodiment, the thermal equilibrium state that appears in the heat medium circulating operation between the underground heat exchanger 2 and the load heat exchanger is referred to as the heat source side heat exchange. Heat source-side characteristic straight lines M1 to M3 corrected for the quantity q (corrected regression line)
From the intersections P1 to P3 of the load characteristic line K and
Although the example in which the facility design is performed has been described, in the second embodiment,
The following design methods (b1) to (b4) are employed.

【0057】(b1)地中熱交換器2の入口熱媒温度t
1を変化させる前述と同様の熱源試験を地中熱交換器2
の熱媒流量gに所定流量g2′(定格値的な流量)を採
用した状態で実施し、この試験結果に基づき、熱源側熱
媒温度―熱交換量特性の判定として、地中熱交換器2の
1器当たり採熱量qと地中熱交換器2の出口熱媒温度t
2との間に存在する線形相関の回帰直線m2′(すなわ
ち、熱源側特性直線)を図5に示す如くt2−q座標系
上に描く。
(B1) Inlet heat medium temperature t of underground heat exchanger 2
1 and the same heat source test as described above was performed in the underground heat exchanger 2
The test was carried out in a state where a predetermined flow rate g2 '(flow rate at a rated value) was adopted as the heat medium flow rate g of the underground heat exchanger based on the test results. 2 and the heat medium temperature t at the outlet of the underground heat exchanger 2
A regression line m2 '(that is, a heat source side characteristic line) of a linear correlation existing between the two is drawn on the t2-q coordinate system as shown in FIG.

【0058】(b2)一方、接続予定の負荷熱交換器が
有する負荷側の熱媒温度―熱交換量特性(負荷側熱交換
量Q′(放熱量)と熱媒温度t2(負荷熱交換器の入口
熱媒温度)との間に存在する線形相関)をモデル上の演
算や実際に熱媒Wを通過させる試験等により求めてお
き、この負荷側の熱媒温度―熱交換量特性を表す負荷側
特性直線Kを上記回帰直線m2′とともにt2−q座標
系上に描く。
(B2) On the other hand, the load-side heat medium temperature-heat exchange amount characteristic of the load heat exchanger to be connected (load side heat exchange amount Q '(heat release amount) and heat medium temperature t2 (load heat exchanger) Of the heat medium at the load side is calculated by calculation on the model or by a test for actually passing the heat medium W, and the heat medium temperature-heat exchange characteristic on the load side is expressed. A load-side characteristic line K is drawn on the t2-q coordinate system together with the regression line m2 '.

【0059】(b3)このt2−q座標系において、負
荷側特性直線K上で必要放熱量Qs(必要負荷側熱交換
量)が得られる熱媒温度tsを求めるとともに、回帰直
線m2′上で、その求めた熱媒温度taに対応する採熱
量qs(熱源側熱交換量)を求める。
(B3) In this t2-q coordinate system, the heat transfer medium temperature ts at which the required heat radiation amount Qs (the required load-side heat exchange amount) is obtained on the load-side characteristic line K is obtained, and on the regression line m2 ' Then, a heat extraction amount qs (heat source side heat exchange amount) corresponding to the obtained heat medium temperature ta is obtained.

【0060】つまり、この対応採熱量qsは、予定の負
荷熱交換器において必要な放熱量Qsが得られる熱媒温
度条件の下での地中熱交換器2の1器当たり採熱量を示
すものである。
That is, the corresponding heat extraction amount qs indicates the heat extraction amount per unit of the underground heat exchanger 2 under the heat medium temperature condition under which the required heat release amount Qs is obtained in the planned load heat exchanger. It is.

【0061】(b4)そして、この求めた対応採熱量q
sで必要放熱量Qsを除した値Qs/qs(具体的に
は、その値を切り上げにより整数化した値)を、構築予
定熱設備での地中熱交換器2の必要並列数nとする。
(B4) Then, the obtained corresponding heat quantity q
The value Qs / qs (specifically, a value obtained by dividing the required heat release amount Qs by s and rounded up to an integer) is defined as the required parallel number n of the underground heat exchangers 2 in the heat facility to be constructed. .

【0062】なお、上記の如く決定した必要並列数nを
採用する場合、熱源側と負荷側との熱媒流量バランス上
の制約から、地中熱交換器2の1器当たり熱媒流量gが
熱源試験段階の流量g2′と多少異なるものとなる、又
は、負荷熱交換器の熱媒流量Gが上記負荷側特性直線K
を判定した際の流量と多少異なるものとなるといった誤
差が生じることもあるが、これに対し、厳密な設計が要
求される場合には、前述の第1実施形態と同様、地中熱
交換器2の熱媒流量gを異ならせた複数種の熱源試験に
より、地中熱交換器2の熱媒流量gが異なる場合の熱源
側熱媒温度―熱交換量特性を予め判定しておき、そし
て、これら複数の熱源側熱媒温度―熱交換量特性に基づ
き、地中熱交換器2の1器当たり熱媒流量gが上記の如
く流量バランス上の制約から異なった場合の熱源側熱媒
温度―熱交換量特性を求めるようにして、その求めた新
たな熱源側熱媒温度―熱交換量特性を用いて上記方法を
繰り返すといった補正処置、あるいは、負荷熱交換器の
熱媒流量Gが上記の如く流量バランス上の制約から異な
った場合の負荷側熱媒温度―熱交換量特性を用いて上記
方法を繰り返すといった補正処置を行なう。
When the required parallel number n determined as described above is adopted, the heat medium flow rate g per underground heat exchanger 2 is reduced due to the restriction on the heat medium flow balance between the heat source side and the load side. It may be slightly different from the flow rate g2 'in the heat source test stage, or the heat medium flow rate G of the load heat exchanger may be different from the load side characteristic straight line K.
May be slightly different from the flow rate when the determination is made. On the other hand, when a strict design is required, as in the first embodiment, the underground heat exchanger is used. 2, a heat source side heat medium temperature-heat exchange amount characteristic when the heat medium flow rate g of the underground heat exchanger 2 is different is determined in advance by a plurality of types of heat source tests with different heat medium flow rates g, On the basis of the plurality of heat source side heat medium temperature-heat exchange characteristics, the heat source side heat medium temperature when the heat medium flow rate g per unit of the underground heat exchanger 2 is different due to the restriction on the flow rate balance as described above. -The heat exchange amount characteristic is obtained, and the correction method of repeating the above method using the obtained new heat source side heat medium temperature-the heat exchange amount characteristic, or the heat medium flow rate G of the load heat exchanger is Load side heat when the flow rate is different due to the flow balance Temperature - perform corrective actions, such as repeating the above-described method using a heat exchange quantity characteristic.

【0063】〔別実施形態〕前述の各実施形態では、熱
媒Wを対地熱交換させて地中1から採熱する地中熱交換
器2を熱源熱交換器とする例を示したが、本発明は、熱
媒Wを対地熱交換させて地中1へ放熱する地中熱交換器
2を熱源熱交換器とする場合にも適用でき、また、河川
水、湖沼水、海水、地下水、下水などの液体や大気空気
などの気体を熱源体とする採熱用ないし放熱用の各種形
式の熱交換器を熱源熱交換器とする場合にも適用でき
る。
[Other Embodiments] In each of the above-described embodiments, an example has been described in which the underground heat exchanger 2 that exchanges heat with the heat medium W to collect heat from the underground 1 is used as a heat source heat exchanger. The present invention can be applied to a case where the underground heat exchanger 2 that causes the heat medium W to exchange heat with the ground and radiates heat to the underground 1 is used as a heat source heat exchanger. In addition, river water, lake water, seawater, groundwater, The present invention can also be applied to a case where various types of heat exchangers for heat collection or heat radiation using a liquid such as sewage or a gas such as atmospheric air as a heat source body are used as heat source heat exchangers.

【0064】そしてまた、地中熱交換器を熱源熱交換器
とする場合、その地中熱交換器は2重管式やU字管式の
ものなど、どのような形式のものであってもよい。
When the underground heat exchanger is a heat source heat exchanger, the underground heat exchanger may be of any type, such as a double pipe type or a U-tube type. Good.

【0065】熱源熱交換器と接続する予定の負荷熱交換
器は、融雪対象地に敷設する融雪用熱交換器に限られる
ものではなく、空調用の熱交換器や、物品の加熱ないし
冷却に用いる熱交換器、あるいは、温熱ないし冷熱を需
要先に供給するヒートポンプ装置の熱源側熱交換器な
ど、どのような用途・形式の熱交換器であってもよい。
The load heat exchanger to be connected to the heat source heat exchanger is not limited to the snow melting heat exchanger laid in the snow melting target area, but may be used for air conditioning heat exchangers or heating or cooling of articles. The heat exchanger used may be any type of heat exchanger, such as a heat exchanger used, or a heat source side heat exchanger of a heat pump device that supplies hot or cold heat to a demand destination.

【0066】前述の第1実施形態では、熱源側特性直線
M1〜M3(補正回帰直線)に対する1つの負荷側特性
直線Kの交点P1〜P3を平衡状態点として求めるよう
にしたが、負荷熱交換器の候補が複数ある場合には、こ
れら複数の負荷熱交換器についての各負荷側特性直線K
と熱源特性直線M1〜M3との交点を求めるようにすれ
ばよく、また、熱源側特性直線M1〜M3も3本に限ら
れるものではない。
In the first embodiment, the intersections P1 to P3 of one load-side characteristic line K with respect to the heat-source-side characteristic lines M1 to M3 (correction regression line) are determined as equilibrium points. When there are a plurality of heat exchanger candidates, each load-side characteristic straight line K
And the intersection of the heat source characteristic lines M1 to M3 may be determined, and the number of heat source side characteristic lines M1 to M3 is not limited to three.

【0067】一方の座標軸に熱媒温度条件を示す適当箇
所の熱媒温度を採り、かつ、他方の座標軸に熱源熱交換
器及び負荷熱交換器夫々の熱交換量を採った座標系上
に、熱源側特性直線M1〜M3,m2′と負荷特性直線
Kとを描くのに、前述の各実施形態では熱媒温度条件を
示す適当箇所の熱媒温度として熱源熱交換器の出口熱媒
温度t2(すなわち、負荷熱交換器の入口熱媒温度)を
用いた例を示したが、熱媒温度条件を示す適当箇所の熱
媒温度は、熱源熱交換器の入口熱媒温度t1(負荷熱交
換器の出口熱媒温度)や、熱源熱交換器の入出口熱媒温
度t1,t2の平均温度、あるいは、熱媒循環系におけ
る他の箇所の熱媒温度であってもよい。
On a coordinate system in which the heat medium temperature at an appropriate position indicating the heat medium temperature condition is taken on one coordinate axis and the heat exchange amounts of the heat source heat exchanger and the load heat exchanger are taken on the other coordinate axis, To draw the heat source side characteristic lines M1 to M3, m2 'and the load characteristic line K, in each of the above-described embodiments, the heat medium temperature at the outlet of the heat source heat exchanger is defined as the heat medium temperature at an appropriate location indicating the heat medium temperature condition. Although an example using (ie, the heat medium temperature at the inlet of the load heat exchanger) is shown, the heat medium temperature at an appropriate point indicating the heat medium temperature condition is determined by the heat medium temperature t1 at the inlet of the heat source heat exchanger (load heat exchange temperature). (The temperature of the heat medium at the outlet of the heat exchanger), the average temperature of the heat medium temperatures t1 and t2 at the inlet and the outlet of the heat source heat exchanger, or the temperature of the heat medium at another point in the heat medium circulation system.

【0068】また、前述の第1実施形態では、負荷特性
直線Kとの交点P1〜P3を求める熱源側特性直線M1
〜M3を、熱源熱交換器の熱媒流量g(1器当たり流
量)に対する負荷熱交換器の熱媒流量Gの比値G/g分
だけ熱源側熱交換量qを補正した補正直線の形で描くよ
うにしたが、逆に、負荷側特性直線Kの方を補正直線の
形で描くようにしてもよい。
In the above-described first embodiment, the heat source side characteristic straight line M1 for finding intersections P1 to P3 with the load characteristic straight line K is described.
To M3 is a correction straight line shape in which the heat source side heat exchange amount q is corrected by the ratio G / g of the heat medium flow rate G of the load heat exchanger to the heat medium flow rate g (flow rate per unit) of the heat source heat exchanger. However, the load-side characteristic straight line K may be drawn in the form of a correction straight line.

【0069】熱源側特性直線M1〜M3,m2′と負荷
側特性直線Kとを用紙などへ記載表示したり映像として
画面表示して、その表示上で前記平衡状態点P1〜P3
や熱源熱交換器の必要並列数を求めるに代え、請求項1
又は2に係る発明や請求項4い係る発明を演算手段によ
る演算処理上で実施して前記平衡状態点P1〜P3や熱
源熱交換器の必要並列数を求めるようにしてもよい。
The heat source-side characteristic straight lines M1 to M3, m2 'and the load-side characteristic straight line K are displayed on paper or the like or displayed on a screen, and the equilibrium points P1 to P3 are displayed on the display.
Claim 1 instead of finding the required number of parallel heat exchangers and heat source heat exchangers
Alternatively, the invention according to the second aspect or the invention according to the fourth aspect may be carried out on the arithmetic processing by the arithmetic means to obtain the equilibrium state points P1 to P3 and the necessary number of parallel heat source heat exchangers.

【図面の簡単な説明】[Brief description of the drawings]

【図1】試験設備の設備構成を示す図FIG. 1 is a diagram showing a facility configuration of a test facility.

【図2】熱源側における線形相関の回帰直線を示すグラ
FIG. 2 is a graph showing a regression line of a linear correlation on a heat source side.

【図3】熱源試験での熱媒温度及び採熱量の経時変化を
示すグラフ
FIG. 3 is a graph showing a change with time of a heat medium temperature and a heat collection amount in a heat source test.

【図4】熱源側の補正回帰直線と負荷側特性直線とを示
すグラフ
FIG. 4 is a graph showing a correction regression line on the heat source side and a characteristic line on the load side.

【図5】熱源側の回帰直線と負荷側特性直線とを示すグ
ラフ
FIG. 5 is a graph showing a regression line on the heat source side and a characteristic line on the load side.

【符号の説明】[Explanation of symbols]

1 熱源体 2 熱源熱交換器,地中熱交換器 g 熱源熱交換器の熱媒流量 G 負荷熱交換器の熱媒流量 q,Q 熱源側熱交換量 Q′ 負荷側熱交換量 Qs 必要負荷側熱交換量 K 負荷側特性,負荷側特性直線 M1〜M3 熱源側特性,熱源側特性直線 n 熱源熱交換器の必要並列数 P1〜P3 平衡状態点,交点 t1 熱源熱交換器の入口熱媒温度 t2 熱源熱交換器の出口熱媒温度 Te 熱媒通過時間 Tm 待機時間 W 熱媒 1 Heat source body 2 Heat source heat exchanger, underground heat exchanger g Heat medium flow rate of heat source heat exchanger G Heat medium flow rate of load heat exchanger q, Q Heat source side heat exchange quantity Q 'Load side heat exchange quantity Qs Required load Side heat exchange amount K Load side characteristic, load side characteristic straight line M1 to M3 Heat source side characteristic, heat source side characteristic straight line n Required number of parallel heat source heat exchangers P1 to P3 Equilibrium state point, intersection point t1 Temperature t2 Heat medium temperature at exit of heat source heat exchanger Te Heat medium passage time Tm Standby time W Heat medium

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 熱媒を熱源熱交換器に通過させて熱源体
と熱交換させる熱源試験を、前記熱源熱交換器の入口熱
媒温度を変化させた複数条件下で実施し、 この熱源試験で得た熱媒温度の測定データと熱媒流量と
に基づき、前記熱源熱交換器が有する熱源側の熱媒温度
―熱交換量特性を判定し、 この判定した熱源側の熱媒温度―熱交換量特性と、前記
熱源熱交換器との間での熱媒循環を予定する負荷熱交換
器が有する負荷側の熱媒温度―熱交換量特性とを照合
し、 この照合において、前記熱源側及び負荷側の熱媒温度―
熱交換量特性上で熱源側の熱交換量と負荷側の熱交換量
とが同一の熱媒温度条件に対して、 q=Q′×(g/G) …………(イ) 但し q:熱源側熱交換量(熱源熱交換器1器当たり) Q′:負荷側熱交換量 g:熱源熱交換器の熱媒流量(熱源熱交換器1器当た
り) G:負荷熱交換器の熱媒流量 上記(イ)式を満たす関係となる平衡状態点を求める熱
源評価方法。
1. A heat source test in which a heat medium is passed through a heat source heat exchanger to exchange heat with a heat source body is performed under a plurality of conditions in which the temperature of an inlet heat medium of the heat source heat exchanger is changed. Based on the measurement data of the heat medium temperature and the heat medium flow rate obtained in the above, the heat medium temperature-heat exchange amount characteristic of the heat source side of the heat source heat exchanger is determined. The exchange amount characteristic is compared with a heat medium temperature-heat exchange amount characteristic on a load side of a load heat exchanger that is supposed to circulate a heat medium between the heat source heat exchanger and the heat source side. And the heat medium temperature on the load side
Under the heat medium temperature condition where the amount of heat exchange on the heat source side and the amount of heat exchange on the load side are the same on the heat exchange amount characteristic, q = Q ′ × (g / G) (a) where q : Heat source side heat exchange amount (per heat source heat exchanger) Q ': load side heat exchange amount g: heat medium flow rate of heat source heat exchanger (per heat source heat exchanger) G: heat of load heat exchanger Medium flow rate A heat source evaluation method for finding an equilibrium state point satisfying the above equation (a).
【請求項2】 前記熱源熱交換器の熱媒流量を異ならせ
た複数種の前記熱源試験を実施することで、前記熱源熱
交換器の熱媒流量が異なる場合の夫々について前記熱源
側の熱媒温度―熱交換量特性を判定し、 これら判定した複数の熱源側熱媒温度―熱交換量特性の
夫々について前記照合を行なうことで、前記熱源熱交換
器の熱媒流量が異なる場合の夫々について前記平衡状態
点を求め、 これら複数の平衡状態点の夫々における負荷側熱交換量
と必要な負荷側熱交換量との比較により、前記熱源熱交
換器の適正熱媒流量及び必要並列数を決定する請求項1
記載の熱源評価方法。
2. Performing a plurality of types of heat source tests in which the heat medium flow rates of the heat source heat exchangers are different from each other to obtain heat on the heat source side when the heat medium flow rates of the heat source heat exchangers are different. By determining the medium temperature-heat exchange amount characteristic, and performing the above-mentioned comparison on each of the plurality of determined heat source side heat medium temperature-heat exchange amount characteristics, each of the cases where the heat medium flow rate of the heat source heat exchanger is different. The above-mentioned equilibrium state points are obtained, and by comparing the load-side heat exchange amount and the required load-side heat exchange amount at each of the plurality of equilibrium state points, the appropriate heat medium flow rate and the necessary parallel number of the heat source heat exchanger are determined. Claim 1 to be determined
The described heat source evaluation method.
【請求項3】 前記照合として、前記熱源熱交換器の出
口熱媒温度又は入口熱媒温度又はそれら入出口熱媒温度
の平均温度を一方の座標変数とし、かつ、熱交換量を他
方の座標変数とする座標系上で、 前記熱源側の熱媒温度―熱交換量特性を表す熱源側特性
直線を、前記熱源熱交換器の熱媒流量に対する前記負荷
熱交換器の熱媒流量の比値分だけ熱源側熱交換量を補正
した状態で描くとともに、前記負荷側の熱媒温度―熱交
換量特性を表す負荷側特性直線を描き、 これら特性直線の交点として前記平衡状態点を求める請
求項1又は2記載の熱源評価方法。
3. The method according to claim 1, wherein the temperature of the heat medium at the outlet of the heat source heat exchanger, the temperature of the heat medium at the inlet, or the average temperature of the heat medium at the inlet and the outlet of the heat source heat exchanger is defined as one coordinate variable, and the heat exchange amount is defined as the other coordinate. On a coordinate system as a variable, the heat source side characteristic line representing the heat medium temperature-heat exchange amount characteristic on the heat source side is a ratio of the heat medium flow rate of the load heat exchanger to the heat medium flow rate of the heat source heat exchanger. Claims are drawn with the amount of heat exchange on the heat source side corrected, and a load-side characteristic line representing the heat medium temperature-heat exchange amount characteristic on the load side is drawn, and the equilibrium point is obtained as an intersection of these characteristic lines. 3. The heat source evaluation method according to 1 or 2.
【請求項4】 熱媒を熱源熱交換器に通過させて熱源体
と熱交換させる熱源試験を、前記熱源熱交換器の入口熱
媒温度を変化させた複数条件下で実施し、 この熱源試験で得た熱媒温度の測定データと熱媒流量と
に基づき、前記熱源熱交換器が有する熱源側の熱媒温度
―熱交換量特性を判定し、 一方、前記熱源熱交換器との間での熱媒循環を予定する
負荷熱交換器が有する負荷側の熱媒温度―熱交換量特性
に基づき、必要な負荷側熱交換量が得られる熱媒温度条
件を判定し、 前記判定した熱源側の熱媒温度―熱交換量特性上で、前
記判定した熱媒温度条件に対応する熱源側の熱交換量を
求め、 この求めた対応の熱源側の熱交換量と前記必要な負荷側
熱交換量との比較により、前記熱源熱交換器の必要並列
数を決定する熱源評価方法。
4. A heat source test in which a heat medium is passed through a heat source heat exchanger to exchange heat with a heat source body is performed under a plurality of conditions in which the temperature of an inlet heat medium of the heat source heat exchanger is changed. Based on the measurement data of the heat medium temperature and the heat medium flow rate obtained in the above, the heat medium temperature on the heat source side of the heat source heat exchanger-heat exchange amount characteristic is determined, while between the heat source heat exchanger Based on the load-side heat medium temperature-heat exchange amount characteristic of the load heat exchanger that is scheduled to circulate the heat medium, determine the heat medium temperature condition at which the required load-side heat exchange amount is obtained, and determine the determined heat source side. On the heat medium temperature-heat exchange amount characteristic of the above, the heat exchange amount on the heat source side corresponding to the determined heat medium temperature condition is obtained, and the obtained heat exchange amount on the heat source side and the necessary heat exchange on the load side are obtained. A heat source evaluation method for determining the required number of parallel heat source heat exchangers by comparing the amount with the heat source heat exchanger.
【請求項5】 前記熱源試験で得た前記熱源熱交換器の
入出口熱媒温度の測定値と熱媒流量とに基づき熱源側の
熱交換量を算出するのに、前記熱源熱交換器の入口から
出口に至るまでに要する熱媒通過時間だけ前記熱源熱交
換器の出口熱媒温度の方が入口熱媒温度よりも測定時点
の遅い入出口熱媒温度の測定値を用いる請求項1〜4の
いずれか1項に記載の熱源評価方法。
5. A heat source-side heat exchanger for calculating a heat exchange amount on a heat source side based on a measured value of an inlet / outlet heat medium temperature of the heat source heat exchanger obtained in the heat source test and a heat medium flow rate. The measured value of the inlet / outlet heat medium temperature at the time of measurement where the outlet heat medium temperature of the heat source heat exchanger is later than the inlet heat medium temperature for the heat medium passage time required from the inlet to the outlet is used. 5. The heat source evaluation method according to any one of 4.
【請求項6】 熱媒を地中で対地熱交換させる地中熱交
換器を前記熱源熱交換器とする前記熱源試験において、 前記熱源側の熱媒温度―熱交換量特性の判定に用いる熱
媒温度の測定データを、前記熱源熱交換器の入口熱媒温
度を変化させた各条件下で採取するのに、前記熱源熱交
換器の入口熱媒温度の変更後、前記測定データとして採
用する熱媒温度を採取するまでの間に待機時間を設け、 この待機時間を、熱媒温度と熱源側熱交換量との間の線
形相関の相関係数が設定値以上となる測定データが得ら
れる時間とする請求項1〜5のいずれか1項に記載の熱
源評価方法。
6. In the heat source test, wherein the underground heat exchanger that causes the heat medium to exchange heat with the ground is used as the heat source heat exchanger, the heat used to determine the heat medium temperature-heat exchange amount characteristic on the heat source side. The measurement data of the medium temperature is taken as the measurement data after the temperature of the inlet heat medium of the heat source heat exchanger is changed, in order to collect the measurement data of the temperature of the heat source heat exchanger under various conditions in which the temperature of the heat medium of the heat source heat exchanger is changed. A waiting time is provided before the heating medium temperature is sampled, and the waiting time is used to obtain measurement data in which a correlation coefficient of a linear correlation between the heating medium temperature and the heat source side heat exchange amount is equal to or greater than a set value. The heat source evaluation method according to any one of claims 1 to 5, wherein the method is time.
【請求項7】 前記熱源熱交換器の出口熱媒温度又は入
口熱媒温度又はそれら入出口熱媒温度の平均温度を一方
の座標変数とし、かつ、熱交換量を他方の座標変数とす
る座標系上で、 前記熱源側の熱媒温度―熱交換量特性を表す熱源側特性
直線を、前記熱源熱交換器の熱媒流量に対する前記負荷
熱交換器の熱媒流量の比値分だけ熱源側熱交換量を補正
した状態で、又は、その補正前の状態で描いてある請求
項3又は4記載の熱源評価方法に用いる特性表示具。
7. A coordinate in which the temperature of the outlet heat medium or the temperature of the inlet heat medium or the average temperature of the inlet and outlet heat medium of the heat source heat exchanger is defined as one coordinate variable, and the amount of heat exchange is defined as the other coordinate variable. In the system, the heat source side characteristic line representing the heat medium temperature-heat exchange amount characteristic on the heat source side is calculated by the ratio of the heat medium flow rate of the load heat exchanger to the heat medium flow rate of the heat source heat exchanger. The characteristic indicator used in the heat source evaluation method according to claim 3 or 4, which is drawn in a state where the heat exchange amount is corrected or before the correction.
JP2000110983A 2000-04-12 2000-04-12 Heat source evaluation method and characteristics display device Withdrawn JP2001296073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110983A JP2001296073A (en) 2000-04-12 2000-04-12 Heat source evaluation method and characteristics display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110983A JP2001296073A (en) 2000-04-12 2000-04-12 Heat source evaluation method and characteristics display device

Publications (1)

Publication Number Publication Date
JP2001296073A true JP2001296073A (en) 2001-10-26

Family

ID=18623402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110983A Withdrawn JP2001296073A (en) 2000-04-12 2000-04-12 Heat source evaluation method and characteristics display device

Country Status (1)

Country Link
JP (1) JP2001296073A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118851A (en) * 2004-09-22 2006-05-11 Hokkaido Univ Performance prediction program and performance prediction system for ground source heat pump system
WO2014078438A3 (en) * 2012-11-13 2014-08-28 Braun Intertec Geothermal, Llc Equipment and methods for designing geothermal heat exchange systems
JP2015081719A (en) * 2013-10-22 2015-04-27 大和ハウス工業株式会社 Heat source system
JPWO2014054310A1 (en) * 2012-10-05 2016-08-25 三菱電機株式会社 Heat pump equipment
JP2016525669A (en) * 2013-07-30 2016-08-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft A method of thermotechnically connecting a geothermal source to a district heat supply network.
JP2017048972A (en) * 2015-09-02 2017-03-09 荏原冷熱システム株式会社 Earth thermal heat source machine system, command determination method, and operational method for the earth thermal heat source machine system
WO2019082267A1 (en) * 2017-10-24 2019-05-02 三菱電機株式会社 Geothermal heat pump system and control method for geothermal heat pump system
KR102551376B1 (en) * 2023-02-01 2023-07-04 (주)동호엔지니어링 Geothermal heating and cooling system having variable water volume control function, and the controling method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118851A (en) * 2004-09-22 2006-05-11 Hokkaido Univ Performance prediction program and performance prediction system for ground source heat pump system
JP4565506B2 (en) * 2004-09-22 2010-10-20 国立大学法人北海道大学 Performance prediction program and performance prediction system for soil heat source heat pump system
JPWO2014054310A1 (en) * 2012-10-05 2016-08-25 三菱電機株式会社 Heat pump equipment
WO2014078438A3 (en) * 2012-11-13 2014-08-28 Braun Intertec Geothermal, Llc Equipment and methods for designing geothermal heat exchange systems
JP2016525669A (en) * 2013-07-30 2016-08-25 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft A method of thermotechnically connecting a geothermal source to a district heat supply network.
JP2015081719A (en) * 2013-10-22 2015-04-27 大和ハウス工業株式会社 Heat source system
JP2017048972A (en) * 2015-09-02 2017-03-09 荏原冷熱システム株式会社 Earth thermal heat source machine system, command determination method, and operational method for the earth thermal heat source machine system
WO2019082267A1 (en) * 2017-10-24 2019-05-02 三菱電機株式会社 Geothermal heat pump system and control method for geothermal heat pump system
JPWO2019082267A1 (en) * 2017-10-24 2020-01-16 三菱電機株式会社 Geothermal heat pump system and control method for geothermal heat pump system
KR102551376B1 (en) * 2023-02-01 2023-07-04 (주)동호엔지니어링 Geothermal heating and cooling system having variable water volume control function, and the controling method thereof

Similar Documents

Publication Publication Date Title
Liu et al. A theoretical model to predict frosting limits in cross-flow air-to-air flat plate heat/energy exchangers
Zou et al. Refrigerant distribution in the vertical header of the microchannel heat exchanger–Measurement and visualization of R410A flow
Matkovic et al. Experimental study on condensation heat transfer inside a single circular minichannel
Shin et al. An experimental study of condensation heat transfer inside a mini-channel with a new measurement technique
Vakili-Farahani et al. Experimental study on flow boiling heat transfer of multiport tubes with R245fa and R1234ze (E)
Ye et al. Performance prediction of a fin-and-tube heat exchanger considering air-flow reduction due to the frost accumulation
Cavallini et al. Condensation heat transfer and pressure losses of high-and low-pressure refrigerants flowing in a single circular minichannel
Solanki et al. Two-phase flow condensation heat transfer characteristic of R-600a inside the horizontal smooth and dimpled helical coiled tube in shell type heat exchanger
Bansal et al. Design and modelling of hot-wall condensers in domestic refrigerators
Zhang et al. Experimental investigation on steam-water two-phase flow boiling heat transfer in a staggered horizontal rod bundle under cross-flow condition
JP2001296073A (en) Heat source evaluation method and characteristics display device
Li et al. Flow condensation heat transfer of CO2 in a horizontal tube at low temperatures
Kang et al. Condensation heat transfer characteristics of CO2 in a horizontal smooth tube
Wahl et al. Heat transfer correlation for sCO2 cooling in a 2 mm tube
Lee et al. Determination of airside heat transfer coefficient on wire-on-tube type heat exchanger
Ferreira et al. R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes
Rousseau et al. Detailed simulation of fluted tube water heating condensers
Nellis et al. Heat transfer coefficient measurements for mixed gas working fluids at cryogenic temperatures
CN107729600B (en) Evaporator simulation calculation method
Park et al. Effect of heat conduction through the fins of a microchannel serpentine gas cooler of transcritical CO2 system
Simon III et al. An experimentally validated evaporative phase change heat transfer model for low mass flux applications using R134a in plate heat exchangers
Bohdal Bubbly boiling of environment-friendly refrigerating media
Gong et al. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions
Belghazi et al. Experimental study and modelling of heat transfer during condensation of pure fluid and binary mixture on a bundle of horizontal finned tubes
Wen et al. Improving two-phase refrigerant distribution in the manifold of the refrigeration system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040430

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20051221