JP2001295601A - Power generating turbine - Google Patents

Power generating turbine

Info

Publication number
JP2001295601A
JP2001295601A JP2000110926A JP2000110926A JP2001295601A JP 2001295601 A JP2001295601 A JP 2001295601A JP 2000110926 A JP2000110926 A JP 2000110926A JP 2000110926 A JP2000110926 A JP 2000110926A JP 2001295601 A JP2001295601 A JP 2001295601A
Authority
JP
Japan
Prior art keywords
chamber
turbine
pipe
chambers
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000110926A
Other languages
Japanese (ja)
Inventor
Zenichi Tabuchi
善市 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000110926A priority Critical patent/JP2001295601A/en
Publication of JP2001295601A publication Critical patent/JP2001295601A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a turbine, capable of securing a large quantity of generation with a small supply pressure by eliminating the energy loss in a conventional integration type turbine, having the problem where the energy loss and the wastage of the material increase as the turbine itself becomes larger. SOLUTION: A rotary shaft 2 is provided with a generator 4 and a turbine casing 3, and disks 5 are provided in the turbine casing 3 so as to divide the inside into multiple chambers 6. Each chamber is divided into several parts by vanes 7 provided in each disk. A discharge opening of each chamber is communicated with an inlet opening of the adjacent chamber via communicating pipe 8. An inlet opening of the first chamber among the chambers is provided with a lead-in pipe 9, and a discharge opening of the last chamber is provided with a discharge pipe 10, and the discharge opening of the last chamber is provided with a discharge pipe passing via each chamber from the first chamber.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、発電用ターヒ゛ンに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation turbine.

【0002】[0002]

【従来の技術】従来のターヒ゛ンケーシンク゛(ケーシンク゛とする)に
羽根板(羽根車)を装備し、この羽根板の回転を利用し
て同軸の発電機を駆動する発電用ターヒ゛ンは周知である。
しかし、この種のターヒ゛ンでは、大型のケーシンク゛内に一基の
羽根板を装備する構成となっているので、この一基の羽
根板を回転するのに、大きなエネルキ゛ーを要することから、
エネルキ゛ーロスがある。また大型のケーシンク゛においては、多量の
駆動流体(蒸気、空気等)が供給される構成となってい
る。従って、羽根板に対して大きな圧力がかかり、当該
羽根板に衝撃を与えること、及び損傷が激しいこと、等
の課題がある。一方、この種の課題を解消する手段とし
て羽根板の板厚等を厚くするとエネルキ゛ーロスの発生、材料の
ムタ゛となる等の別の課題が生ずる。
2. Description of the Related Art It is well known that a conventional turbine sink (hereinafter referred to as a casing) is provided with a blade (impeller) and a coaxial generator is driven by using the rotation of the blade.
However, in this type of turbine, a large blade sink is equipped with a single blade, so a large energy key is required to rotate this single blade.
There is energicus. In a large casing ゛, a large amount of driving fluid (steam, air, etc.) is supplied. Therefore, there is a problem that a large pressure is applied to the blade plate to give an impact to the blade plate and that the blade plate is severely damaged. On the other hand, if the thickness of the blade plate is increased as a means for solving this kind of problem, other problems such as generation of energy loss and waste of material occur.

【0003】前記の課題を解消するためには、ケーシンク゛を
各チャンハ゛ーに区画し、各チャンハ゛ーにそれぞれ羽根板を装備す
る構成(技術思想)が考えられる。この技術思想を基とす
る内容、即ち、ターヒ゛ンを各チャンハ゛ーに区画し、この各チャンハ゛
ーに羽根板を内装する構成としては、特開昭60ー85203号
の蒸気ターヒ゛ンの蒸気室(文献)がある。この発明は吸排
気室を有するケーシンク゛に区画して設けた円筒部材に、ノス゛ル
方向を異にするノス゛ルタ゛イヤフラムを設けた構成であり、特徴
は、前記ノス゛ル方向を異にして、蒸気のスムースな流れを確保
し、効率的にノス゛ルカハ゛ニンク゛運転が行えることにある。
In order to solve the above-mentioned problem, a configuration (technical idea) in which a casing is divided into respective chambers and each of the chambers is provided with a blade is considered. As a configuration based on this technical idea, that is, a configuration in which a turbine is divided into respective chambers and a blade plate is installed in each chamber, there is a steam chamber of a steam turbine disclosed in JP-A-60-85203. . The present invention has a configuration in which a cylindrical member having a different nosple direction is provided on a cylindrical member provided in a casing having an intake / exhaust chamber, and is characterized by a smooth flow of steam with a different nosle direction. To ensure efficient operation of the vehicle.

【0004】[0004]

【発明が解決しようとする課題】前述の如く、従来の一
体型のターヒ゛ンでは、大型になればなる程、エネルキ゛ーロスの拡
大と、材料のムタ゛が大きくなり問題となる。
As described above, in the case of a conventional integrated type of turbine, the larger the size, the larger the energy energy and the greater the material waste.

【0005】また文献は、チャンハ゛ーを区画する構成ではあ
るが、各円筒部材に翼を設ける構成であり、かつ各円筒
部材は連通されている。従って、本質的には一体構造の
チャンハ゛ーと考えられるので、前述の従来の一体型と同様な
問題がある。
[0005] Further, although the literature describes a configuration for partitioning a chamber, it has a configuration in which a wing is provided for each cylindrical member, and each cylindrical member is in communication. Therefore, since it is essentially considered to be an integral-structured chamber, there is a problem similar to that of the above-mentioned conventional integrated type.

【0006】[0006]

【課題を解決するための手段】請求項1の発明は、ターヒ゛ン
ケーシンク゛を複数のチャンハ゛ーに区画することで、エネルキ゛ーロスをな
くし、略80〜90%の効率の達成を図り、かつ小さい供給
圧力で大きな発電量を確保することを目的とする。
According to the first aspect of the present invention, the energy sink is divided into a plurality of chambers to eliminate energy loss, achieve an efficiency of approximately 80 to 90%, and achieve a small supply pressure. The purpose is to secure a large amount of power generation.

【0007】請求項1は、回転軸に発電機及びターヒ゛ンケーシン
ク゛を設け、このターヒ゛ンケーシンク゛内に円盤を設けて多数のチャン
ハ゛ーに区画し、この円盤に設けた羽根板で前記各チャンハ゛ー
を数個の部屋に区画し、またこの各チャンハ゛ーの排出開口部
と隣接する他のチャンハ゛ーの入口開口部との間を連通管を介
してそれぞれ連通し、かつこの各チャンハ゛ーの最初のチャンハ゛ー
の入口開口部に導入管を、最後のチャンハ゛ーの排出開口部に
排出管をそれぞれ設け、前記最初のチャンハ゛ーから各チャンハ゛ー
を経て、最後のチャンハ゛ーの排出開口部に排出管を設けた構
成の発電用ターヒ゛ンである。
According to a first aspect of the present invention, a generator and a turbine sink are provided on a rotating shaft, a disk is provided in the turbine sink to divide the chamber into a number of chambers, and each of the chambers is provided with several blades provided on the disk. It is divided into rooms and communicates between the discharge opening of each chamber and the inlet opening of another adjacent chamber via a communication pipe, and is introduced into the inlet opening of the first chamber of each chamber. This is a power generation terminal having a configuration in which a discharge pipe is provided at a discharge opening of a last chamber, and a discharge pipe is provided at a discharge opening of the last chamber through each of the chambers from the first chamber.

【0008】請求項2の発明は、小さい供給圧力を確保
しつつ、効率的な動力供給を図ることを意図する。
[0008] The invention of claim 2 aims at achieving efficient power supply while ensuring a small supply pressure.

【0009】請求項2は、導入管の内径を連通管の内径
と、同径以上とする構成の発電用ターヒ゛ンである。
A second aspect of the present invention is a power generation turbine having a configuration in which the inner diameter of the introduction pipe is equal to or larger than the inner diameter of the communication pipe.

【0010】請求項3の発明は、回転軸に対する抵抗を
略0に等しくして、効率的な発電を図ることを意図す
る。
[0010] The invention of claim 3 intends to achieve efficient power generation by making the resistance to the rotating shaft substantially equal to zero.

【0011】請求項3は、回転軸を軸受に浮上式に設け
る構成の発電用ターヒ゛ンである。
A third aspect of the present invention is a power generation turbine having a configuration in which a rotating shaft is provided on a bearing in a floating manner.

【0012】[0012]

【発明の実施の形態】以下本発明の実施の形態を説明す
る。
Embodiments of the present invention will be described below.

【0013】最初のチャンハ゛ーには、当該最初のチャンハ゛ーの入
口開口部と略同径の導入管を介して蒸気、空気、水等の
流体が抵抗なく導入されると、この流体の圧力により最
初のチャンハ゛ーの羽根板が高速で、回転される。この最初の
チャンハ゛ーの略2/3に達した段階で、当該流体は、この最初
のチャンハ゛ーの排出開口部から連通管を介して次のチャンハ゛ーに
流体を供給する。この連通管は、この次のチャンハ゛ーの入口
開口部と略同径となっており、かつ前記最初の連通管と
同径以上として、導入抵抗を少なくする構成となってい
る(以下、順次同じとするが、限定されない)。前記の
如く、当該次のチャンハ゛ーへの流体供給で、この次のチャンハ゛ー
は高速に回転される。以下、順次各チャンハ゛ーへの流体供給
を介してこの各チャンハ゛ーが高速回転されることで発電機が
駆動して電力が生成される。働きを終えた流体は、最初
のチャンハ゛ーの排出開口部に連続した排出管を介してターヒ゛ンケ
ーシンク゛外に排出される。この排出管の径は、最初の連通
管の径より略同径以上に構成し、抵抗なくターヒ゛ンケーシンク゛
外に排出する。前記導入される流体の圧力は、ケーシンク゛、
円盤、羽根板等で受止められるが、このケーシンク゛を円盤に
より各チャンハ゛ーに区画したことで、このケーシンク゛、円盤、羽
根板等に対する圧力を軽減できること、またケーシンク゛等の
肉厚、構造の簡略化等に寄与できること、等の実益があ
る。
[0013] When a fluid such as steam, air or water is introduced into the first chamber through a pipe having substantially the same diameter as the inlet opening of the first chamber without resistance, the pressure of this fluid causes the initial chamber to become inactive. The Changha blades are rotated at high speed. When the fluid reaches approximately 2/3 of the first chamber, the fluid supplies the fluid to the next chamber through the discharge pipe from the discharge opening of the first chamber. This communication pipe has substantially the same diameter as the inlet opening of the next chamber, and has the same diameter or more as the first communication pipe so as to reduce the introduction resistance (hereinafter, the same as the same). But not limited). As described above, the next chamber is rotated at a high speed by supplying the fluid to the next chamber. Thereafter, each of the chambers is rotated at a high speed through the supply of fluid to each of the chambers in order, and the generator is driven to generate electric power. The finished fluid is discharged out of the sink cabinet through a discharge pipe connected to the discharge opening of the first chamber. The diameter of the discharge pipe is set to be substantially equal to or larger than the diameter of the first communication pipe, and the discharge pipe is discharged to the outside of the sink sink without resistance. The pressure of the introduced fluid is
It can be received by a disk, a wing plate, etc., but by dividing this case sink into each chamber by a disk, the pressure on the case sink, the disk, the wing plate, etc. can be reduced, and the thickness and structure of the case sink, etc. can be simplified. Has the real benefit of being able to contribute to

【0014】尚、ターヒ゛ンケーシンク゛が回転すると、回転軸は
軸受け又は浮上式の軸受を介して略無抵抗で回転する構
成であり、エネルキ゛ーロスを略0とする。
The rotation shaft rotates substantially without resistance via a bearing or a floating bearing when the turbine sink rotates, and the energy loss is substantially zero.

【0015】[0015]

【実施例】以下、本発明の一実施例を説明する。An embodiment of the present invention will be described below.

【0016】1は軸受けで、この軸受け1には回転軸2が
回転自在に設けられており、この一例では、回転軸2の
抵抗を少なくする目的で、磁石浮上方式の非接触回転が
可能な構造となっている。
Reference numeral 1 denotes a bearing, on which a rotating shaft 2 is rotatably provided. In this example, in order to reduce the resistance of the rotating shaft 2, non-contact rotation of a magnet floating type is possible. It has a structure.

【0017】この回転軸2には、ターヒ゛ンケーシンク゛3(ケーシンク゛)
と、発電機4とが設けられており、このケーシンク゛3は、回転
軸2に設けた数個の円盤5、5、5・・・(以下5とする)によ
り、複数のチャンハ゛ー6、6、6・・・(以下6とする)に区画さ
れている。この円盤5に、例えば、7〜10枚の羽根板7、7、
7・・・(以下7とする)を設け、この羽根板7間に部屋70を
設ける。またこの各チャンハ゛ー6には入口開口部60と排出開
口部61がそれぞれ設けられており、入口開口部60と排出
開口部61は連通管8を介して連通されている。従って、
或るチャンハ゛ー6の部屋70に導入された流体は、羽根板7を回
転方向に移動して、当該チャンハ゛ー6に回転を付与した後、
連通管8を経由して、次のチャンハ゛ー6の部屋70に送られて、
前記と同じ動作をする構造である。尚、最初のチャンハ゛ー6
の入口開口部60に接続する導入管9は、この最初のチャンハ゛
ー6の排出開口部61に接続される連通管8より同径以上と
なっている。また同様に最後のチャンハ゛ー6の入口開口部60
に接続する連通管8は、この最後のチャンハ゛ー6の排出開口部
61に接続される排出管10より同径以上となっている。即
ち、流体の抵抗を回避する構造となっている。図中11は
チャンハ゛ー6に設けた円筒で、回転軸2の近傍のエネルキ゛ーロスをな
くす構造である。
The rotating shaft 2 has a casing 3 (casing).
And a generator 4, and the casing 3 is provided with a plurality of chambers 6, 6, and 5 by several disks 5, 5, 5... 6 (hereinafter referred to as 6). On this disk 5, for example, 7 to 10 blades 7, 7,
7 (hereinafter referred to as 7) are provided, and a room 70 is provided between the blades 7. Each chamber 6 is provided with an inlet opening 60 and a discharge opening 61, respectively, and the inlet opening 60 and the discharge opening 61 are communicated via the communication pipe 8. Therefore,
The fluid introduced into the chamber 70 of a certain chamber 6 moves the blade 7 in the rotation direction, and imparts rotation to the chamber 6,
It is sent to the room 70 of the next Changba 6 via the communication pipe 8,
The structure performs the same operation as described above. The first Changha 6
The introduction pipe 9 connected to the inlet opening 60 of the first chamber has the same diameter or more than the communication pipe 8 connected to the discharge opening 61 of the first chamber 6. Similarly, the entrance opening 60 of the last chamber 6
The communication pipe 8 that connects to the exhaust port of this last chamber 6
It is the same diameter or more than the discharge pipe 10 connected to 61. That is, the structure avoids fluid resistance. In the figure, reference numeral 11 denotes a cylinder provided on the chamber 6, which has a structure for eliminating energy loss near the rotation shaft 2.

【0018】[0018]

【発明の効果】請求項1の発明は、回転軸に発電機及びタ
ーヒ゛ンケーシンク゛を設け、ターヒ゛ンケーシンク゛内に円盤を設けて多数
のチャンハ゛ーに区画し、円盤に設けた羽根板で各チャンハ゛ーを数
個の部屋に区画し、また各チャンハ゛ーの排出開口部と隣接す
る他のチャンハ゛ーの入口開口部との間を連通管を介してそれ
ぞれ連通し、かつ各チャンハ゛ーの最初のチャンハ゛ーの入口開口部
に導入管を、最後のチャンハ゛ーの排出開口部に排出管をそれ
ぞれ設け、前記最初のチャンハ゛ーから各チャンハ゛ーを経て、最後
のチャンハ゛ーの排出開口部に排出管を設けた構成の発電用ター
ヒ゛ンである。従って、ターヒ゛ンケーシンク゛を複数のチャンハ゛ーに区画
することで、エネルキ゛ーロスをなくし、略80〜90%の効率の達
成を図り、かつ小さい供給圧力で大きな発電量が確保で
きる実益がある。
According to the first aspect of the present invention, a generator and a turbine sink are provided on a rotating shaft, a disk is provided in the turbine sink, divided into a large number of chambers, and several blades are provided on the disk to form several chambers. , And communicates between the discharge opening of each chamber and the inlet opening of another adjacent chamber via a communication pipe, and the inlet pipe is connected to the inlet opening of the first chamber of each chamber. And a discharge pipe is provided at the discharge opening of the last chamber, and the discharge pipe is provided at the discharge opening of the last chamber through each of the chambers from the first chamber. Therefore, by partitioning the turbine sink into a plurality of chambers, it is possible to eliminate energy loss, achieve an efficiency of approximately 80 to 90%, and secure a large amount of power generation with a small supply pressure.

【0019】請求項2の発明は、導入管の内径を連通管
の内径と、同径以上とする構成の発電用ターヒ゛ンである。
従って、小さい供給圧力を確保しつつ、効率的な動力供
給が図れる実益がある。
A second aspect of the present invention is a power generation turbine having a configuration in which the inner diameter of the introduction pipe is equal to or larger than the inner diameter of the communication pipe.
Therefore, there is a benefit that efficient power supply can be achieved while securing a small supply pressure.

【0020】請求項3の発明は、回転軸を軸受に浮上式
に設ける構成の発電用ターヒ゛ンである。従って、回転軸に
対する抵抗を略0に等しくして、効率的な発電が図れる
実益がある。
A third aspect of the present invention is a power generation turbine having a configuration in which a rotating shaft is provided on a bearing in a floating manner. Therefore, there is a benefit that the power generation can be efficiently performed by making the resistance to the rotating shaft substantially equal to zero.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の全体の一部欠截の模式図である。FIG. 1 is a schematic view of a part of the present invention in which a part is omitted.

【図2】図1のチャンハ゛ーの一例を示す側面視した断面図であ
る。
2 is a cross-sectional view illustrating an example of the chamber of FIG. 1 as viewed from the side.

【図3】図1のチャンハ゛ーの一例を示す正面視した断面図であ
る。
FIG. 3 is a cross-sectional view illustrating an example of the chamber of FIG. 1 as viewed from the front.

【符号の説明】[Explanation of symbols]

1 軸受 2 回転軸 3 ケーシンク゛ 4 発電機 5 円盤 6 チャンハ゛ー 60 入口開口部 61 排出開口部 7 羽根板 70 部屋 8 連通管 9 導入管 10 排出管 11 円筒 1 Bearing 2 Rotary shaft 3 Case sink 4 Generator 5 Disk 6 Changer 60 Inlet opening 61 Outlet opening 7 Blade plate 70 Room 8 Communication tube 9 Inlet tube 10 Drain tube 11 Cylinder

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転軸に発電機及びターヒ゛ンケーシンク゛を設
け、このターヒ゛ンケーシンク゛内に円盤を設けて多数のチャンハ゛ーに
区画し、この円盤に設けた羽根板で前記各チャンハ゛ーを数個
の部屋に区画し、またこの各チャンハ゛ーの排出開口部と隣接
する他のチャンハ゛ーの入口開口部との間を連通管を介してそ
れぞれ連通し、かつこの各チャンハ゛ーの最初のチャンハ゛ーの入口
開口部に導入管を、最後のチャンハ゛ーの排出開口部に排出管
をそれぞれ設け、前記最初のチャンハ゛ーから各チャンハ゛ーを経
て、最後のチャンハ゛ーの排出開口部に排出管を設けた構成の
発電用ターヒ゛ン。
A generator and a turbine sink are provided on a rotating shaft, a disk is provided in the turbine sink to divide the chamber into a number of chambers, and each of the chambers is partitioned into several rooms by a blade provided on the disk. In addition, a communication pipe is provided between the discharge opening of each chamber and an inlet opening of another adjacent chamber via a communication pipe, and an inlet pipe is provided at an inlet opening of the first chamber of each chamber. A power generation turbine having a configuration in which a discharge pipe is provided at a discharge opening of a last chamber, and a discharge pipe is provided at a discharge opening of a last chamber through each of the chambers from the first chamber.
【請求項2】 上記の導入管の内径を連通管の内径と、
同径以上とする構成の請求項1に記載の発電用ターヒ゛ン。
2. The internal diameter of the introduction pipe is defined as the internal diameter of the communication pipe.
2. The power generation turbine according to claim 1, wherein the power generation turbine is configured to have the same diameter or more.
【請求項3】 上記の回転軸を軸受に浮上式に設ける構
成の請求項1に記載の発電用ターヒ゛ン。
3. The power generating turbine according to claim 1, wherein said rotating shaft is provided on a bearing in a floating manner.
JP2000110926A 2000-04-12 2000-04-12 Power generating turbine Pending JP2001295601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000110926A JP2001295601A (en) 2000-04-12 2000-04-12 Power generating turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000110926A JP2001295601A (en) 2000-04-12 2000-04-12 Power generating turbine

Publications (1)

Publication Number Publication Date
JP2001295601A true JP2001295601A (en) 2001-10-26

Family

ID=18623354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000110926A Pending JP2001295601A (en) 2000-04-12 2000-04-12 Power generating turbine

Country Status (1)

Country Link
JP (1) JP2001295601A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538837B1 (en) * 2009-04-04 2010-09-08 正治 三宅 Combined turbine transmission
JP2013536344A (en) * 2010-07-16 2013-09-19 コン,ヤン Multistage compressed gas engine and automobile
CN107806389A (en) * 2017-10-24 2018-03-16 苗逢春 A kind of combination power device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4538837B1 (en) * 2009-04-04 2010-09-08 正治 三宅 Combined turbine transmission
JP2010242735A (en) * 2009-04-04 2010-10-28 Masaharu Miyake Composite waterwheel motion transmission device
JP2013536344A (en) * 2010-07-16 2013-09-19 コン,ヤン Multistage compressed gas engine and automobile
CN107806389A (en) * 2017-10-24 2018-03-16 苗逢春 A kind of combination power device

Similar Documents

Publication Publication Date Title
JPS58222997A (en) Pumping device
CN101603536B (en) Electric vacuum pump for automobile
KR20090076158A (en) The steam turbine
CN102135104A (en) Turbo compressor
JP2001295601A (en) Power generating turbine
CN201241825Y (en) High pressure and high flow vane type oil pump with porous oil inlet and outlet
CN110345104B (en) Double guide vane through-flow type oil pump
US4826407A (en) Rotary vane pump with ballast port
US3692420A (en) Inlets of centrifugal compressors, blowers and pumps
JP2007175705A (en) Rotary brush for water washing
CN205858670U (en) Single-screw expander screw channel aerofluxus leaving velocity utilizes system
KR20100040154A (en) Electric generator using wind power
CN105736061B (en) A kind of novel turbine
CN205243865U (en) Compound water pump of binary
CN217401194U (en) Air duct structure of electric air pump
CN108087038A (en) A kind of rotary type power machine
JPH0311193A (en) Vacuum pump
CN108412668A (en) A kind of double duct hydraulic turbine electric generator systems
KR100647205B1 (en) 2-stage westco pump
CN211314284U (en) Improved structure of positive displacement pneumatic motor
JP2012082778A (en) Centrifugal pump
JP2000240553A (en) Turbine for power generation
CN213331649U (en) Vertical refrigerant driving device
CN110925205B (en) Individual household closestool vacuum pump
CN2400163Y (en) Gas-liquid contact device by the action of centrifugal force field