JP2001294983A - Rolled steel and its producing method - Google Patents

Rolled steel and its producing method

Info

Publication number
JP2001294983A
JP2001294983A JP2000111072A JP2000111072A JP2001294983A JP 2001294983 A JP2001294983 A JP 2001294983A JP 2000111072 A JP2000111072 A JP 2000111072A JP 2000111072 A JP2000111072 A JP 2000111072A JP 2001294983 A JP2001294983 A JP 2001294983A
Authority
JP
Japan
Prior art keywords
less
strain
steel
phase
nominal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000111072A
Other languages
Japanese (ja)
Other versions
JP3632559B2 (en
Inventor
Shinji Mitao
眞司 三田尾
Hiroyasu Yokoyama
泰康 横山
Hiroyuki Sumi
博幸 角
Masayoshi Kurihara
正好 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2000111072A priority Critical patent/JP3632559B2/en
Publication of JP2001294983A publication Critical patent/JP2001294983A/en
Application granted granted Critical
Publication of JP3632559B2 publication Critical patent/JP3632559B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide rolled steel excellent in resistance to local buckling caused in the beam member of a steel structure and to destruction caused by welding defects in the beam edges or the like in case of a big earthquake. SOLUTION: This steel has a composition containing, by mass, 0.05 to 0.20% C, <=0.6% Si, 0.5 to 1.6% Mn, <=0.020% P, <=0.015% S and 0.01 to 0.05% Al, in which the content of Nb is controlled to <0.005%, N to <=0.0080% and H to <=4 ppm, and, further, Ceq is regulated to <=0.40%, and the balance substantially Fe with inevitable impurities, and the flange has a metallic structure of the mixed one composed of a ferritic phase as a soft phase and a hard phase containing a bainitic phase, in which the volume ratio of the soft phase is controlled to >50 to 80%, the average grain size to >=10 μm, and the aspect ratio of the hard phase is controlled to <=3, yield elongation to 0.8 to 3.0%, yield ratio which is the ratio between the upper yield point and tensile strength to <=70%, and the strain hardening index (n value) in nominal strain of 2 to 5% is controlled to >=0.20.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、圧延形鋼の製造方
法に関し、特に、高層建築物における鉄鋼構造物の梁材
に適した耐局部座屈性および耐破壊性能に優れたものの
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled section steel, and more particularly, to a method for producing a steel beam having excellent local buckling resistance and fracture resistance suitable for a beam of a steel structure in a high-rise building. .

【0002】[0002]

【従来の技術】今日の高層建築物には、大地震に見舞わ
れた時、梁部材の塑性変形により地震エネルギーを吸収
させ、大崩壊を回避する人的安全性を重視した限界状態
設計法が適用される。建築物の梁部材には大地震の際、
大きな引張り、圧縮応力が加わり局部座屈を起こし、座
屈した場所から亀裂が発生し崩壊に至る場合がある。従
って、限界状態設計法で使用される梁部材には優れた耐
座屈性および靭性が要求される。
2. Description of the Related Art In today's high-rise buildings, when a large earthquake is hit, a limit state design method that emphasizes human safety, which absorbs seismic energy by plastic deformation of a beam member and avoids a large collapse. Applied. In the event of a major earthquake,
A large tensile or compressive stress is applied to cause local buckling, and a crack may be generated from the buckled location, leading to collapse. Therefore, beam members used in the limit state design method are required to have excellent buckling resistance and toughness.

【0003】圧延形鋼の一つであるH形鋼は、大量にか
つ安定して製造できるため、その優れた経済性とあいま
って、建築・土木用の梁材として広く用いられている。
これまで建築用の圧延形鋼については、特開平5−25
588号公報、特開平5−345915号公報に低降伏
比の観点から耐震性を向上させる技術が開示されてい
る。しかし、梁部材の局部座屈は、材料の引張強度に遥
かに及ばない低歪側で生じるため、耐局部座屈性の指標
としての降伏比の有効性は明確になっていない。また、
大地震の際、局部座屈と共に、問題となる梁端の破断に
関する指標についても不明確である。
[0003] H-section steel, one of the rolled steel sections, can be manufactured stably in large quantities, and is widely used as a beam for construction and civil engineering in combination with its excellent economic efficiency.
Until now, Japanese Patent Application Laid-Open No. 5-25 / 1993
JP-A-588-58 and JP-A-5-345915 disclose a technique for improving earthquake resistance from the viewpoint of a low yield ratio. However, since local buckling of the beam member occurs on the low strain side which is far below the tensile strength of the material, the effectiveness of the yield ratio as an index of local buckling resistance has not been clarified. Also,
In addition to local buckling in the event of a large earthquake, it is unclear about the indicators related to beam end fracture, which is a problem.

【0004】一方、圧延H形鋼の製造方法としては、非
調質で低降伏比かつ優れた靭性と溶接性を備えたH形鋼
の製造方法が特開平6−240350号公報で提案され
ている。Nbを必須添加元素とし、熱間圧延中にオース
テナイト粒を微細化し、靭性を向上させるとともに、圧
延終了後、フェライトが30%以上析出するまで、放冷
し、t/4(t:板厚)を0.3℃/s以上5℃/s以
下の冷却速度で、600℃以下まで冷却し、フェライト
とベイナイトを含む組織とする。
On the other hand, as a method for producing a rolled H-section steel, a method for producing an H-section steel having a non-heat-treated, low yield ratio, and excellent toughness and weldability has been proposed in Japanese Patent Application Laid-Open No. Hei 6-240350. I have. Using Nb as an essential additive element, refine austenite grains during hot rolling to improve toughness, and after rolling, allow to cool until ferrite precipitates by 30% or more, t / 4 (t: plate thickness) Is cooled at a cooling rate of 0.3 ° C./s or more and 5 ° C./s or less to 600 ° C. or less to obtain a structure containing ferrite and bainite.

【0005】しかしながら本技術は、極厚H形鋼の製造
を主に対象とするものと考えられ、必須元素であるNb
はフランジ板厚中心、フィレット部の靭性を確保するた
めに添加されていると推察され、、建築梁用部材として
多用される8mm以上40mm以下の比較的薄いフラン
ジ厚を対象とするものではない。
However, it is considered that the present technology is mainly intended for the production of an extremely thick H-section steel, and the essential element Nb
Is presumed to be added in order to secure the toughness of the center of the flange plate and the fillet portion, and does not cover a relatively thin flange thickness of 8 mm or more and 40 mm or less frequently used as a member for building beams.

【0006】[0006]

【発明が解決しようとする課題】上述したように、H形
鋼の耐局部座屈性、耐梁破断特性を向上させるための鋼
組成、組織形態など材質的な指標は十分把握されおら
ず、また、梁部材として多用される8mm以上40mm
以下の比較的薄いフランジ厚を対象とする製造方法も明
らかになっていない。
As described above, the material indexes such as the steel composition and microstructure for improving the local buckling resistance and the beam fracture resistance of the H-section steel are not sufficiently grasped. In addition, 8 mm or more and 40 mm often used as beam members
The following manufacturing method for relatively thin flange thickness is not disclosed.

【0007】そこで、本発明は、梁材の軸方向に作用す
る圧縮応力による耐局部座屈性、耐梁破断特性と材質特
性の関係を把握し、大地震の際に、局部座屈を起こしに
くく、かつ、梁端などで破壊しにくいため、建築構造物
を倒壊から防止する性能の高い圧延形鋼を提供する。
Therefore, the present invention grasps the relationship between the local buckling resistance due to the compressive stress acting on the beam in the axial direction and the relationship between the beam fracture resistance and the material properties, and causes local buckling in the event of a large earthquake. Provided is a rolled section steel that is hard to break and hard to break at a beam end or the like, and has high performance of preventing a building structure from being collapsed.

【0008】[0008]

【課題を解決するための手段】本発明者らは、引張試験
で得られる諸特性と、耐局部座屈性、耐梁破断特性の関
係を把握することを検討した。その結果、耐局部座屈性
に関してはH形鋼の圧縮試験における座屈発生限界歪み
が、破断が生じるような高い歪領域ではなく、概ね2〜
5%公称歪みであることを見出し、引張試験における2
〜5%公称歪における加工硬化指数(n値)、降伏伸び
と良い相関にあることを把握した。
Means for Solving the Problems The present inventors have studied to understand the relationship between various characteristics obtained in a tensile test and the local buckling resistance and the beam fracture resistance. As a result, regarding the local buckling resistance, the buckling occurrence limit strain in the compression test of the H-section steel is not in a high strain region where a fracture occurs, but is approximately 2 to 2.
It was found that the strain was 5% nominal,
It was found that there is a good correlation with the work hardening index (n value) and the yield elongation at 歪 5% nominal strain.

【0009】また、フランジ、ウエブの特性を種々変更
したH形鋼について調査した結果、耐局部座屈性には、
フランジの特性の影響が大きく、ウエブの特性は殆ど影
響を与えないことも知見した。
Further, as a result of investigating H-section steels having variously changed flange and web properties, the local buckling resistance was as follows.
It was also found that the properties of the flange had a large effect, and the properties of the web had little effect.

【0010】そして、耐梁破断特性は、実際の破断が梁
端部等の構造上の形状不連続などによる応力集中部や、
溶接欠陥による破断であることから、これらを想定した
解析モデルを作成し、材質特性との関係を調査した。解
析モデルは、長さa,深さdの表面欠陥を有する断面A
´に対し、直角方向に荷重Pを負荷した場合とした。
[0010] The beam rupture resistance characteristics include the fact that the actual rupture is caused by stress concentration portions due to structural discontinuities in the beam end and the like,
Since the fracture was caused by welding defects, an analytical model was created assuming these, and the relationship with the material properties was investigated. The analysis model is a section A having a surface defect of length a and depth d.
′, A load P was applied in a direction perpendicular to the direction.

【0011】断面A´の平均応力σA´が破壊限界応力
σC(但し、σC=TSと仮定)に達した場合におい
て、正常部断面A(表面切欠きがない場合の全断面)と
断面A´の力の釣り合い(σA=σA´×(1−ad/
Wt)、(σA:正常部断面における応力、W:全幅、
t:全厚)と、応力ー歪み曲線に関するSwiftの
式:σ=(α/(1+ε)){β+ln(1+ε)}
(ここで、σ:公称応力、ε:公称歪、α、β:定数,
n:加工硬化指数)から、破壊条件式として、次式が得
られる。
When the average stress .sigma.A 'of the section A' reaches a breaking limit stress .sigma.C (provided that .sigma.C = TS), the section A of the normal portion (all sections without surface notch) and the section A ' Force balance (σA = σA ′ × (1-ad /
Wt), (σA: stress at normal section, W: full width,
t: total thickness) and Swif's equation for the stress-strain curve: σ = (α / (1 + ε)) {β + ln (1 + ε)} n
(Where σ: nominal stress, ε: nominal strain, α, β: constant,
n: work hardening index), the following equation is obtained as a fracture condition equation.

【0012】(α/(1+ε)){β+ln(1+
ε)}=TS×(1−ad/Wt) この式に基づき、n値、降伏比など材質特性を広範囲に
変化させた材料を用い、表面欠陥を付与した引張試験片
を作成して、引張試験を行った。その結果、破断歪みは
材質特性と欠陥寸法によって整理されること、及び、許
容欠陥寸法を向上させる材質因子について指針を得た。
(Α / (1 + ε)) {β + ln (1+
ε)} n = TS × (1-ad / Wt) Based on this equation, a tensile test piece having a surface defect is prepared by using a material in which material properties such as n value and yield ratio are changed in a wide range. A tensile test was performed. As a result, it was found that the fracture strain was arranged by the material properties and the defect size, and that the guideline was given as to the material factor for improving the allowable defect size.

【0013】本発明は以上の知見を基に更に検討を加え
てなされたものである。すなわち、本発明は、 1. 質量%で、C:0.05〜0.20%、Si:
0.6%以下、Mn:0.5〜1.6%、Al:0.0
1〜0.05%、P:0.020%以下、S:0.01
5%以下を含有し、Nb:0.005%未満、N:0.
0080%以下、H:4ppm以下に規制し、更に
(1)式によるCeq:0.40%以下で残部が実質的
にFe及び不可避不純物よりなる鋼で、フランジ長手方
向の引張特性が、降伏伸び:0.8〜3.0%、降伏
比:70%以下、及び、公称歪み2〜5%における
(2)式による加工硬化指数(n値)が0.20以上で
ある圧延形鋼。
The present invention has been made based on the above findings and further studied. That is, the present invention provides: In mass%, C: 0.05 to 0.20%, Si:
0.6% or less, Mn: 0.5 to 1.6%, Al: 0.0
1 to 0.05%, P: 0.020% or less, S: 0.01
5% or less, Nb: less than 0.005%, N: 0.
0080% or less, H: 4 ppm or less, and Ceq: 0.40% or less according to the formula (1), the balance being substantially Fe and unavoidable impurities. : 0.8-3.0%, yield ratio: 70% or less, and a rolled section steel having a work hardening index (n value) of 0.20 or more according to the equation (2) at a nominal strain of 2 to 5%.

【0014】 Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/1 4・・・・・・・・・(1) n=(lnσ5−lnσ2)/(lnε5−lnε2)・・・・・・・・・(2) σ5=1.05×σN5,σ2=1.02×σN2,ε5=ln(1.05), ε2=ln(1.02) 但し、σ5:公称歪5%における真応力、σ2:公称歪2
%における真応力、ε 5:公称歪み5%における真歪、
ε2:公称歪み2%における真歪、σN5:公称歪み5%
における公称応力、σN2:公称歪み2%における公称応
力 ln:自然対数 2. 鋼組成として、更に、Cu:0.6%以下、N
i:1%以下、Cr:0.5%以下の一種または二種以
上を含有する1記載の圧延形鋼。
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 1 4 (1) n = (lnσFive−lnσTwo) / (LnεFive−lnεTwo)... (2) σFive= 1.05 × σN5, ΣTwo= 1.02 × σN2, ΕFive= Ln (1.05), εTwo= Ln (1.02) where σFive: True stress at a nominal strain of 5%, σTwo: Nominal distortion 2
True stress in%, ε Five: True strain at a nominal strain of 5%,
εTwo: True strain at a nominal strain of 2%, σN5: Nominal distortion 5%
Nominal stress at σN2: Nominal response at 2% nominal distortion
Force ln: natural logarithm 2. As a steel composition, further, Cu: 0.6% or less, N
i: 1% or less, Cr: 0.5% or less, one or more types
2. The rolled steel section according to 1, which contains:

【0015】3. 鋼組成として、更に、V:0.2%
以下、Ti:0.03%以下の一種または二種を含有す
る1または2記載の圧延形鋼。
3. V: 0.2% as steel composition
The rolled section steel according to 1 or 2, containing one or two kinds of Ti: 0.03% or less.

【0016】4. フランジの金属組織が、軟質相のフ
ェライト相と硬質相のベイナイト相、またはベイナイト
相を含む硬質相よりなる混合組織で、軟質相の体積率が
50%超え〜80%以下、平均粒径10μm以上、硬質
相のアスペクト比が3以下であることを特徴とする1乃
至3の何れかに記載の圧延形鋼。
4. The metal structure of the flange is a mixed structure of a ferrite phase of a soft phase and a bainite phase of a hard phase, or a hard phase containing a bainite phase, wherein the volume fraction of the soft phase is more than 50% to 80% or less, and the average particle size is 10 μm or more. The rolled section steel according to any one of claims 1 to 3, wherein the aspect ratio of the hard phase is 3 or less.

【0017】5. 1乃至3の何れかに記載の鋼成分を
有する鋳片または鋼片を1050〜1300℃以下に加
熱し、Ar3点以上で圧延を終了し、5℃/s以下の冷
却速度で、600〜700℃に冷却後、フランジ外面ま
たはフランジ外面と内面の双方をフランジ厚さの1/4
における冷却速度で5℃/s以上となるように加速冷却
し、冷却停止温度550℃以下とすることを特徴とする
圧延形鋼の製造方法。
5. A slab or a slab having the steel component according to any one of 1 to 3 is heated to 1050 to 1300 ° C or less, rolling is completed at an Ar3 point or more, and 600 to 700 at a cooling rate of 5 ° C / s or less. After cooling to ℃, the outer surface of the flange or both the outer and inner surfaces of the flange are 1/4 of the flange thickness
A method for producing a rolled section steel, wherein accelerated cooling is performed at a cooling rate of 5 ° C./s or more at a cooling rate of 550 ° C. and a cooling stop temperature is 550 ° C. or less.

【0018】[0018]

【発明の実施の形態】以下、本発明で規定する成分組
成、機械的特性および製造条件について、詳細に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the component composition, mechanical properties and production conditions specified in the present invention will be described in detail.

【0019】1.成分組成 C:0.05〜0.20% Cは、鋼の強度を確保するため、0.05%以上添加す
るが、0.20%を超えて多量に含有すると靭性あるい
は溶接性が劣化するため、0.05〜0.20%(0.
05%以上、0.20%以下)とする。
1. Ingredient composition C: 0.05 to 0.20% C is added in an amount of 0.05% or more in order to secure the strength of steel. However, if contained in a large amount exceeding 0.20%, toughness or weldability deteriorates. Therefore, 0.05 to 0.20% (0.
05% or more and 0.20% or less).

【0020】Si:0.6%以下 Siは、脱酸のため鋼に必然的に含まれ、強度を向上さ
せるが、0.6%を超えると鋼の焼入れ性が過度に増加
し、HAZ靭性及び溶接性の観点から好ましくないため
0.6%以下とする。
Si: 0.6% or less Si is inevitably contained in steel due to deoxidation and improves the strength, but if it exceeds 0.6%, the hardenability of the steel excessively increases, and the HAZ toughness increases. And 0.6% or less because it is not preferable from the viewpoint of weldability.

【0021】Mn:0.5〜1.6% Mnは、鋼材の強度、靭性の向上ならびに、FeSの生
成抑制のため0.5%以上添加する。1.6%を超える
と、鋼の焼入れ性の増加を引き起こすため、溶接時に硬
化層が出現し、割れ感受性が劣化するため、0.5〜
1.6%とする。
Mn: 0.5 to 1.6% Mn is added in an amount of 0.5% or more to improve the strength and toughness of the steel material and to suppress the production of FeS. If it exceeds 1.6%, the hardenability of the steel will increase, so that a hardened layer will appear during welding and crack susceptibility will deteriorate.
1.6%.

【0022】Al:0.01〜0.05% Alは、安価で強力な脱酸材であり、0.01%以上添
加するが、0.05%を超えると鋼の清浄度が低下し溶
接部の靭性が劣化するため、0.01〜0.05%とす
る。
Al: 0.01-0.05% Al is an inexpensive and powerful deoxidizer, and is added in an amount of 0.01% or more. Since the toughness of the part is deteriorated, the content is set to 0.01 to 0.05%.

【0023】N:0.0080%以下 Nは、鋼中に含まれる不可避的不純物である。含有量が
多くなるとHAZ靭性の劣化、経時劣化、あるいは連続
鋳造スラブ疵の発生を助長するため、0.0080%以
下とする。
N: 0.0080% or less N is an unavoidable impurity contained in steel. When the content is increased, the HAZ toughness is deteriorated, the deterioration with time is promoted, or the generation of flaws in the continuously cast slab is promoted.

【0024】H:4ppm以下 Hは、鋼中に含まれる不可避的不純物である。含有量が
多くなると圧延後の割れや遅れ破壊を生じるため、4p
pm以下とする。
H: 4 ppm or less H is an unavoidable impurity contained in steel. If the content increases, cracking and delayed fracture occur after rolling.
pm or less.

【0025】P:0.020%以下、S:0.015%
以下 P,Sは、鋼中に混入する不純物として不可避的に存在
する。Pの低減はHAZにおける粒界破壊の防止に有効
なため、0.020%以下とする。Sの低減はHAZに
おける水素割れ防止に有効であるため、0.015%以
下とする。
P: 0.020% or less, S: 0.015%
Hereinafter, P and S are inevitably present as impurities mixed into steel. Since reduction of P is effective in preventing grain boundary destruction in HAZ, it is set to 0.020% or less. Since reduction of S is effective in preventing hydrogen cracking in HAZ, it is set to 0.015% or less.

【0026】Ceq:0.40以下 Ceq(=C+Mn/6+Si/24+Ni/40+C
r/5+Mo/4+V/14)は、0.40を超える
と、母材および溶接部における靭性が損なわれる場合が
あるため、0.40以下とする。
Ceq: 0.40 or less Ceq (= C + Mn / 6 + Si / 24 + Ni / 40 + C
If (r / 5 + Mo / 4 + V / 14) exceeds 0.40, the toughness of the base material and the welded portion may be impaired.

【0027】本発明では、更に特性を向上させるため、
Cu,Ni,Cr、V,Tiの一種または二種以上を添
加させることが可能である。
In the present invention, in order to further improve the characteristics,
One, two or more of Cu, Ni, Cr, V, and Ti can be added.

【0028】Cu,Ni,Crの一種または二種以上 Cu,Ni,Crは、固溶強化により鋼材を強化する。
また、Cuは耐候性を向上させる効果がある。しかし、
必要以上の添加は靭性、溶接性を大きく低下させるた
め、添加する場合は、Cu:0.6%以下、Ni:1%
以下、Cr:0.5%以下とする。
One or more of Cu, Ni, and Cr Cu, Ni, and Cr strengthen steel by solid solution strengthening.
Further, Cu has an effect of improving weather resistance. But,
If added more than necessary, toughness and weldability are greatly reduced, so when added, Cu: 0.6% or less, Ni: 1%
Hereinafter, Cr: 0.5% or less.

【0029】V,Tiの一種または二種 V,Tiは、固溶強化とともに析出による強化を行う。
しかし、必要以上の添加は靭性、あるいは、溶接性を低
下させるため、添加する場合は、V:0.2%以下、T
i:0.03%以下とする。
One or two types of V and Ti V and Ti are strengthened by precipitation together with solid solution strengthening.
However, excessive addition lowers toughness or weldability, so if added, V: 0.2% or less, T
i: 0.03% or less.

【0030】尚、本発明における成分組成上の特徴は、
一般的に鋼材の強度及び靭性を向上させることを目的
に、添加されることが多いNbを含有せず、不可避不純
物として混入した場合でも、0.005%未満に規制す
る点にある。Nbが含有された場合、熱間圧延における
未再結晶領域が高温側に拡大され、例えばフランジ厚が
8mm以上、40mm以下の形鋼の圧延においては、未
再結晶域での大幅な圧下により、必要以上にオーステナ
イト粒径が微細化され、最終変態組織が微細化し、降伏
点が上昇する。そのため、公称歪み:2〜5%における
n値が低下し、座屈限界発生歪みは小さくなり、本発明
が目的とする作用効果が得られない。
The characteristics of the composition of the present invention are as follows:
In general, for the purpose of improving the strength and toughness of a steel material, it does not contain Nb, which is often added, and regulates it to less than 0.005% even when it is mixed as an unavoidable impurity. When Nb is contained, the unrecrystallized region in the hot rolling is expanded to a high temperature side. For example, in the rolling of a section steel having a flange thickness of 8 mm or more and 40 mm or less, due to a significant reduction in the unrecrystallized region, The austenite grain size is refined more than necessary, the final transformed structure is refined, and the yield point increases. Therefore, the n value at a nominal strain of 2 to 5% decreases, the buckling limit occurrence strain decreases, and the effect and effect intended by the present invention cannot be obtained.

【0031】2.機械特性 本願発明では、機械的特性として引張特性について規定
する。
2. Mechanical Properties In the present invention, tensile properties are defined as mechanical properties.

【0032】降伏伸び:0.8〜3.0% 降伏伸びは、局部座屈に至る過程において、部材全体の
変形を促進するため、局部的な座屈の発生による低歪座
屈を抑え、鋼材全体としてのエネルギー吸収を大きくし
て耐局部座屈性を改善し、また、耐破壊性能も改善す
る。
Yield elongation: 0.8 to 3.0% Yield elongation promotes deformation of the entire member in the process of local buckling, so that low strain buckling due to local buckling is suppressed. It increases the energy absorption of the steel as a whole, improves the local buckling resistance, and also improves the fracture resistance.

【0033】0.8%より小さいと、その効果が不十分
で、3.0%より大きいと加工硬化の生じないまま、降
伏の段階で座屈が生じる可能性があるため、降伏伸びを
0.8〜3.0%とする。
If it is less than 0.8%, the effect is insufficient, and if it is more than 3.0%, buckling may occur at the yielding stage without causing work hardening. 0.8 to 3.0%.

【0034】降伏比:70%以下 降伏比は、耐破壊性能に強い影響を与えるため規定す
る。降伏比を低下させた場合、破断歪みは増加する。降
伏比70%とした場合、引張強度500MPa,n値
0.20の鋼材で、断面積の10%に相当する欠陥によ
る破断歪みは約4.8%となり、建築用低降伏比鋼に関
するSN規格の上限降伏比80%における破断歪みであ
る約2.5%に対し、優れた耐破壊性能を示す。
Yield ratio: 70% or less The yield ratio is specified because it has a strong influence on the fracture resistance. When the yield ratio is reduced, the strain at break increases. When the yield ratio is 70%, a steel material having a tensile strength of 500 MPa and an n value of 0.20 has a fracture strain due to a defect corresponding to 10% of the cross-sectional area of about 4.8%, which is an SN standard for low yield ratio steel for building. It exhibits excellent fracture resistance with respect to a fracture strain of about 2.5% at an upper limit yield ratio of 80%.

【0035】従って、本発明では、降伏比70%以下と
する。尚、降伏比は引張試験で得られる応力ー歪み線図
に応じて、上降伏点と引張強度の比などとして求めれば
よい。
Therefore, in the present invention, the yield ratio is set to 70% or less. The yield ratio may be determined as a ratio between the upper yield point and the tensile strength according to the stress-strain diagram obtained in the tensile test.

【0036】n値:0.20以上 n値は、耐局部座屈性、耐破壊性能に影響を及ぼすた
め、規定する。H形鋼梁の座屈は、局部座屈部の歪みが
公称歪み2〜5%において生ずるため、この範囲におけ
るn値(加工硬化指数)を規定する。n値が大きい場
合、歪みを受けた部分の硬化領域が大きく広がり、歪み
は鋼材全体に分布し,その部分の局所的変形が抑制さ
れ、耐局部座屈性が向上する。このような効果は、公称
歪み2〜5%におけるn値を0.20とした場合、顕著
となるため、本発明では公称歪み2〜5%におけるn値
を0.20以上とする。
N value: 0.20 or more The n value is specified because it affects the local buckling resistance and the fracture resistance. The buckling of the H-shaped steel beam defines the n value (work hardening index) in this range since the strain at the local buckling portion occurs at a nominal strain of 2 to 5%. When the n value is large, the hardened region of the strained portion is greatly expanded, the strain is distributed throughout the steel material, local deformation of the portion is suppressed, and the local buckling resistance is improved. Such an effect becomes remarkable when the n value at a nominal strain of 2 to 5% is 0.20. Therefore, in the present invention, the n value at a nominal strain of 2 to 5% is 0.20 or more.

【0037】また、n値を大きくした場合、耐破壊性能
が向上する。引張り強さ:500MPa,表面欠陥断面
積率:3%と比較的、欠陥寸法が小さい場合の鋼材にお
いて、降伏比:70%、n値:0.20の鋼材の破断歪
みは約10%であるが、降伏比:80%、n値:0.1
5である鋼材の破断歪みは約6%となり、破断歪みは低
下し、耐破壊性能に劣る。
Further, when the n value is increased, the breaking resistance is improved. Tensile strength: 500 MPa, surface defect cross-sectional area ratio: 3% In a steel material having a relatively small defect size, the fracture strain of a steel material having a yield ratio of 70% and an n value of 0.20 is about 10%. Has a yield ratio of 80% and an n value of 0.1.
The fracture strain of the steel material of No. 5 was about 6%, the fracture strain was reduced, and the fracture resistance was poor.

【0038】3.組織形態 本発明による建築梁用H形鋼に望ましい金属組織は、軟
質相であるフェライトと硬質相であるベイナイト、また
はベイナイトを含む硬質相(例えば、ベイナイト+パー
ライト)の混合組織であり、軟質相と硬質相の混合組織
とすることにより、軟質相/硬質相の界面において軟質
相側を降伏させながら、硬質相で全体の強度を上昇さ
せ、降伏比を低減させる。
3. Microstructure Desirable metallographic structure for the H-beam for building beams according to the present invention is a soft phase of ferrite and a hard phase of bainite or a mixed structure of a hard phase containing bainite (for example, bainite + pearlite). With the mixed structure of the hard phase and the hard phase, the soft phase side is yielded at the interface between the soft phase and the hard phase, while increasing the overall strength of the hard phase and reducing the yield ratio.

【0039】軟質相の体積率:50%超え、80%以下 軟質相の体積率は、フランジ長手引張試験において、降
伏比70%以下、降伏伸び0.8%以上とするため、5
0%超えとする。一方、80%を超えると引張強度が4
90N/mm2級を満足しないため、50%超え、80
%以下とする。尚、体積率は2次元断面において観察し
たフェライト面積率を、体積率に等しいものと仮定し
た。
The volume ratio of the soft phase is more than 50% and 80% or less. The volume ratio of the soft phase is set to 5% or less in the longitudinal tensile test of the flange because the yield ratio is 70% or less and the yield elongation is 0.8% or more.
Be more than 0%. On the other hand, if it exceeds 80%, the tensile strength becomes 4
Because it does not satisfy 90N / mm2 class, it exceeds 50%, 80
% Or less. The volume fraction was assumed to be equal to the ferrite area ratio observed in the two-dimensional cross section.

【0040】軟質相の平均粒径:10μm以上 軟質相の平均粒径は、10μm未満の場合、降伏応力が
上昇し、降伏比が高くなるため、10μm以上とする。
Average particle size of soft phase: 10 μm or more When the average particle size of the soft phase is less than 10 μm, the yield stress increases and the yield ratio increases, so that the average particle size is 10 μm or more.

【0041】硬質相のアスペクト比:3以下 硬質相のアスペクト比が3を超えた場合、降伏伸びが低
下するため、3以下とする。アスペクト比は、フランジ
圧延方向に平行に切断した断面において、各硬質相の圧
延方向に沿った長さと、板厚方向に沿った長さとの比と
して求めた。アスペクト比が大きい程、組織が圧延方向
に伸長していることを示す。 4.製造方法 スラブ加熱温度:1050℃以上、1300℃以下 スラブ加熱温度が1050℃未満の場合、熱間変形抵抗
の増大により、断面形状が劣化し、圧延割れを生じ、鋳
片を用いた場合は均質化が不十分となり特性が劣化す
る。1300℃を超えると、結晶粒が粗大化し、靭性が
劣化するため、1050℃以上、1300℃以下とす
る。
Aspect ratio of hard phase: 3 or less When the aspect ratio of the hard phase exceeds 3, the yield elongation decreases, so that it is 3 or less. The aspect ratio was determined as a ratio of the length of each hard phase along the rolling direction to the length along the thickness direction in a cross section cut parallel to the flange rolling direction. The higher the aspect ratio, the more the structure extends in the rolling direction. 4. Manufacturing method Slab heating temperature: 1050 ° C. or more, 1300 ° C. or less When the slab heating temperature is less than 1050 ° C., the cross-sectional shape is deteriorated due to an increase in hot deformation resistance, and rolling cracks are generated. Insufficiency results in deterioration of characteristics. If the temperature exceeds 1300 ° C., the crystal grains become coarse and the toughness deteriorates.

【0042】圧延終了温度:Ar3点以上 圧延終了温度は、Ar3点未満の場合、フェライト相に
歪みが蓄積され、降伏点を上昇させ、降伏比を高くし、
また、硬質相のアスペクト比を増大させ、降伏伸びを低
下させるため、Ar3点以上とする。Ar3点は例えば、
Ar3=910−310C−80Mn−20Cu−15
Cr−55Ni−80Mo+0.35(t−8),但
し、tは板厚、フランジ厚(mm)である。
Rolling end temperature: Ar3 point or higher If the rolling end temperature is lower than the Ar3 point, strain is accumulated in the ferrite phase, the yield point is raised, and the yield ratio is increased.
Further, in order to increase the aspect ratio of the hard phase and decrease the yield elongation, the Ar point is set to 3 or more. The Ar3 point is, for example,
Ar3 = 910-310C-80Mn-20Cu-15
Cr-55Ni-80Mo + 0.35 (t-8), where t is a plate thickness and a flange thickness (mm).

【0043】冷却条件 冷却はフランジ外面、あるいは外面と内面の双方から行
なうが、冷却による歪み発生防止及びフランジ厚さ方向
の特性の均一性の観点からは、内外面双方から冷却する
ことが望ましい。圧延終了後、低冷却速度で700℃以
下600℃以上に冷却し、その後、高冷却速度で引続き
550℃以下まで冷却する2段冷却とする。
Cooling conditions Cooling is performed from the outer surface of the flange, or from both the outer surface and the inner surface. From the viewpoint of preventing distortion due to cooling and uniformity of the characteristics in the flange thickness direction, it is desirable to cool from both the inner and outer surfaces. After the rolling is completed, the cooling is performed at a low cooling rate to 700 ° C. or less and 600 ° C. or more, and then a two-stage cooling is performed at a high cooling rate to continuously cool to 550 ° C. or less.

【0044】圧延終了後の自然放冷も含む低冷却速度に
よる冷却は、板厚方向に均一、且つ十分な量のフェライ
ト相と十分にアスペクト比の小さな硬質相を得るために
行うもので、冷却停止温度が700℃より高いとその後
の水冷後の変態組織として、十分な量のフェライト相が
得られず、一方、600℃より低いとパーライト変態が
進行し、所望の機械的特性が得られない。
The cooling at a low cooling rate including the natural cooling after the completion of the rolling is performed in order to obtain a uniform ferrite phase in the thickness direction and a sufficient amount of a ferrite phase and a hard phase having a sufficiently small aspect ratio. If the stop temperature is higher than 700 ° C., a sufficient amount of ferrite phase cannot be obtained as a transformed structure after water cooling, while if the stop temperature is lower than 600 ° C., pearlite transformation proceeds, and desired mechanical properties cannot be obtained. .

【0045】冷却速度は5℃/sを超えるとフランジの
厚さ方向の組織が不均一となりやすく所望の組織形態に
制御することが困難となるので、5℃/s以下とする。
尚、上述したように5℃/s以下の冷却には自然放冷の
場合も含むものとする。
If the cooling rate exceeds 5 ° C./s, the structure in the thickness direction of the flange tends to be nonuniform and it is difficult to control the structure to a desired structure.
As described above, cooling at 5 ° C./s or less includes the case of natural cooling.

【0046】引き続いて行う高冷却速度による冷却は、
硬質相を得るためで、冷却速度が5℃/sより小さい
と、硬質相の硬さが不十分で、所望の機械的特性が得ら
れないため、5℃/s以上とする。冷却停止温度は55
0℃より高い場合、硬質相の硬さが不十分となるため、
550℃以下とする。冷却停止温度の下限は特に規定し
ないが、200℃より低いと、靭性が損なわれる可能性
があるため、200℃以上で停止し、その後、自然放冷
することが望ましい。
The subsequent cooling at a high cooling rate
If the cooling rate is lower than 5 ° C./s in order to obtain the hard phase, the hardness of the hard phase is insufficient and desired mechanical properties cannot be obtained. Cooling stop temperature is 55
If the temperature is higher than 0 ° C., the hardness of the hard phase becomes insufficient,
550 ° C. or lower. Although the lower limit of the cooling stop temperature is not particularly defined, if the temperature is lower than 200 ° C., the toughness may be impaired.

【0047】尚、いずれの冷却速度もフランジ厚さ:t
2(図1参照)の外面側の(1/4)t2において規定
する。
Incidentally, the flange thickness: t
2 (see FIG. 1) at (1/4) t2 on the outer surface side.

【0048】本発明における形鋼のフランジ厚は、8m
m以上、40mm以下がその効果を得る上で最も望まし
い。8mmより薄い場合、圧延後の断面形状を良好に確
保することが困難で、40mmより厚い場合は、フラン
ジ板厚中心で所望の金属組織に制御することが難しくな
る。また、強度は、その望ましいミクロ組織から、引張
強度490N/mm2級が主たる対象となるが、限定さ
れるわけではない。
The flange thickness of the section steel in the present invention is 8 m.
m or more and 40 mm or less are most desirable for obtaining the effect. When the thickness is less than 8 mm, it is difficult to secure a good cross-sectional shape after rolling. When the thickness is more than 40 mm, it is difficult to control the metal structure to a desired metal structure at the center of the flange plate thickness. In addition, the strength is mainly targeted at a tensile strength of 490 N / mm 2 class from the desirable microstructure, but is not limited.

【0049】[0049]

【実施例】(実施例1)表1に示す成分組成の鋼を溶製
後、連続鋳造により鋳片とした。鋼A、Bは、仕上圧延
後、フランジを水冷し、JISG3136 SN490
B鋼相当の機械的特性を目標とした成分組成である。鋼
Bは、Nbが添加され、本発明範囲外となっている。
EXAMPLES (Example 1) After smelting steel having the composition shown in Table 1, it was made into a slab by continuous casting. Steels A and B were subjected to finish-rolling and then water-cooled on the flange to obtain JIS G3136 SN490.
It is a component composition aimed at mechanical properties equivalent to steel B. Steel B has Nb added and is outside the scope of the present invention.

【0050】鋳片を1250℃に加熱後、圧延終了温度
800℃とする圧延で、300×300×10×15
(mm)(H×B×t1×t2、図1参照)のH形鋼と
した。
After the slab was heated to 1250 ° C., it was rolled at a rolling end temperature of 800 ° C. to obtain 300 × 300 × 10 × 15
(Mm) (H × B × t1 × t2, see FIG. 1).

【0051】圧延終了後、表2に示す冷却条件で冷却を
行った。冷却法1は、水冷開始温度780℃、冷却停止
温度500℃でその後常温まで自然放冷するもので、冷
却法2は、圧延後、660℃まで自然放冷後、水冷を開
始し、440℃で冷却停止後、常温まで自然放冷する2
段冷却法である。冷却速度はいずれの冷却法でも、水冷
時のフランジ厚さ(t2)の1/4で、60℃/sとし
た。尚、冷却法1は水冷開始温度が高く、本発明範囲外
と成っている。
After the completion of rolling, cooling was performed under cooling conditions shown in Table 2. The cooling method 1 is a method in which the water cooling start temperature is 780 ° C., the cooling stop temperature is 500 ° C., and then the mixture is naturally cooled to room temperature. After cooling is stopped, let it cool naturally to room temperature 2
It is a step cooling method. The cooling rate was 60 ° C./s at 1 / of the flange thickness (t2) during water cooling in any cooling method. The cooling method 1 has a high water-cooling start temperature, which is outside the scope of the present invention.

【0052】冷却後、製造した各H形鋼より、引張試験
片、衝撃試験片を採取し、機械的特性を調査した。図1
に試験片採取位置の概略位置を示す。引張試験は、フラ
ンジ幅方向1/4の位置から圧延方向を長手方向とし、
JISZ2201 1A号引張試験片(平行部幅:40
mm,ゲージ長:200mm)を3本採取し、常温にお
ける引張特性、公称歪みで2〜5%におけるn値を求め
た。衝撃試験は板厚中心(1/2t)よりJISZ22
02 Vノッチ衝撃片を3本採取し、試験温度0℃で衝
撃吸収エネルギを求めた。
After cooling, tensile test pieces and impact test pieces were collected from each of the manufactured H-section steels, and mechanical properties were examined. FIG.
Fig. 2 shows the approximate positions of the test specimens. In the tensile test, the rolling direction is set to the longitudinal direction from the position of 1/4 of the flange width direction,
JISZ2201 1A tensile test piece (parallel width: 40
mm, gauge length: 200 mm), and the tensile properties at room temperature and the n value at 2 to 5% were determined by nominal strain. Impact test is based on JISZ22 from center of thickness (1 / 2t)
Three impact strips of 02 V notch were collected, and the impact absorption energy was determined at a test temperature of 0 ° C.

【0053】表3に引張試験、衝撃試験の結果を示す。
いずれのサンプルも、引張強度、衝撃特性に関してはS
N490Bの規格を満足する特性がえられているが、鋼
組成または冷却法のいずれか、または双方が本発明範囲
外で比較例となっているサンプルNo.11、13、1
4は、降伏伸び、降伏比またはn値が本発明範囲外とな
っている。サンプルNo.12は、鋼組成、冷却法共に
本発明範囲内で、優れた特性が得られている。
Table 3 shows the results of the tensile test and the impact test.
All the samples have S in terms of tensile strength and impact properties.
Although the characteristics satisfying the standard of N490B are obtained, any one or both of the steel composition and the cooling method are out of the range of the present invention and are comparative examples. 11, 13, 1
In No. 4, the yield elongation, the yield ratio or the n value is out of the range of the present invention. Sample No. No. 12, excellent properties were obtained in both the steel composition and the cooling method within the scope of the present invention.

【0054】次にこれらの形鋼の耐局部座屈特性を評価
するため、長さ500mmとした形鋼サンプルの圧縮試
験により、座屈を生じる歪み(座屈発生限界歪み)を求
めた。図2に圧縮試験の状況を模式的に示す。また、耐
破壊性能を評価するため、平行部に平行部断面の10%
に相当する切欠きを有する引張試験片を用い、引張試験
により破断歪みを測定した。表4に、圧縮試験、切欠き
付き引張試験の結果を示す。座屈発生限界歪み、破断歪
み共に鋼組成、冷却条件のいずれもが本発明範囲内とな
るサンプルNo.12では、比較例であるサンプルN
o.11,13,14に対し、優れた特性となってい
る。尚、これらの試験におけるサンプルNo.12の特
性は、490MPa級鋼のAs roll材で得られる
特性よりも優れたものとなっている。座屈発生限界歪み
は、490MPa級鋼のAs roll材では0.51
%で、50%向上したとしても0.77%であり、サン
プルNo.12に及ばない。破断歪みは、490MPa
級鋼のAs roll材では3.2%で、50%向上し
たとしても4.8%であり、サンプルNo.12に及ば
ない。上述したように、Nbを含有し、本発明範囲外の
組成となる鋼では、降伏伸び、降伏比、n値の何れかが
本発明の規定外となり、耐局部座屈特性および耐破壊性
能に優れた特性は得られない。
Next, in order to evaluate the local buckling resistance of these section steels, the strain causing buckling (buckling generation limit strain) was determined by a compression test of a section steel sample having a length of 500 mm. FIG. 2 schematically shows the state of the compression test. In order to evaluate the fracture resistance, the parallel portion was 10% of the cross section of the parallel portion.
Using a tensile test piece having a notch corresponding to, the breaking strain was measured by a tensile test. Table 4 shows the results of the compression test and the notched tensile test. Sample No. 1 in which both the steel composition and the cooling conditions are within the range of the present invention for both the buckling limit strain and the breaking strain. In the sample No. 12, a sample N as a comparative example
o. It has excellent characteristics with respect to 11, 13, and 14. The sample No. in these tests was used. The characteristics of No. 12 are superior to those obtained with the As roll material of 490 MPa grade steel. The buckling limit strain is 0.51 for As roll material of 490 MPa class steel.
%, Which is 0.77% even if it is improved by 50%. Less than 12. The breaking strain is 490MPa
In the case of As roll material of As-grade steel, it is 3.2%, and even if it is improved by 50%, it is 4.8%. Less than 12. As described above, in steel containing Nb and having a composition outside the range of the present invention, the yield elongation, the yield ratio, or the n value is out of the range of the present invention, and the local buckling resistance and the fracture resistance are reduced. Excellent characteristics cannot be obtained.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【表3】 [Table 3]

【0058】[0058]

【表4】 [Table 4]

【0059】(実施例2)表1の鋼Aを溶製後、連続鋳
造により鋳片とし、1250℃に加熱後、300×30
0×10×15(mm)のH形鋼に圧延した。圧延後、
表5に示す製造条件で圧延、冷却を行った。その後、各
H形鋼より、実施例1と同様に、引張試験片、衝撃試験
片を採取し、機械的特性を調査した。引張試験は、フラ
ンジ幅方向1/4の位置から圧延方向を長手方向とし、
JISZ2201 1A号引張試験片(平行部幅:40
mm,ゲージ長:200mm)を3本採取し、常温にお
ける引張特性、公称歪みで2〜5%におけるn値を求め
た。衝撃試験は板厚中心(1/2t)よりJISZ22
02 Vノッチ衝撃片を3本採取し、試験温度0℃で衝
撃吸収エネルギを求めた。
(Example 2) After smelting steel A shown in Table 1, it was made into a slab by continuous casting, heated to 1250 ° C, and then 300 × 30
It was rolled into a 0 × 10 × 15 (mm) H-section steel. After rolling,
Rolling and cooling were performed under the manufacturing conditions shown in Table 5. Thereafter, a tensile test piece and an impact test piece were collected from each H-shaped steel in the same manner as in Example 1, and the mechanical properties were examined. In the tensile test, the rolling direction is set to the longitudinal direction from the position of 1/4 of the flange width direction,
JISZ2201 1A tensile test piece (parallel width: 40
mm, gauge length: 200 mm), and the tensile properties at room temperature and the n value at 2 to 5% were determined by nominal strain. Impact test is based on JISZ22 from center of thickness (1 / 2t)
Three impact strips of 02 V notch were collected, and the impact absorption energy was determined at a test temperature of 0 ° C.

【0060】表6に引張試験、衝撃試験の結果を示す。
本発明範囲内の製造条件によるNo.21,22,28
は、引張り特性に関する本発明の規定を全て満足する
が、本発明範囲外の製造条件により製造されるサンプル
No.23〜27、29、30は、いずれかの規定が本
発明範囲外となる。また、本発明例であるNo.21,
22,28と,比較例24,26,29でSN490B
規格を満足する引張強度が得られた。
Table 6 shows the results of the tensile test and the impact test.
According to the production conditions within the scope of the present invention, 21, 22, 28
The sample No. which satisfies all the requirements of the present invention regarding the tensile properties, but is manufactured under manufacturing conditions outside the scope of the present invention. Any of 23 to 27, 29, and 30 fall outside the scope of the present invention. In addition, No. 1 of the present invention example. 21,
22,490 and Comparative Examples 24,26,29
Tensile strength satisfying the standard was obtained.

【0061】次に、引張強度がSN490B規格を満足
する本発明例であるNo.21,22,28と,比較例
24,26,29について耐局部座屈特性を評価するた
め、長さ500mmとした形鋼サンプルの圧縮試験によ
り、座屈を生じる歪み(座屈発生限界歪み)を求めた。
また、更に、耐破壊性能を評価するため、平行部に平行
部断面の10%に相当する切欠きを有する引張試験片を
用い、引張試験により破断歪みを測定した。圧縮試験お
よび切欠き付き引張試験は実施例1と同様にした。表7
に、圧縮試験、切欠き付き引張試験の結果を示す。座屈
発生限界歪みは、降伏伸び,降伏比、n値の全てが本発
明の規定を満足するサンプルNo.21,22,28で
は優れた特性が得られている。また、比較例サンプルN
o.24,26,29において、降伏伸びと降伏比が本
発明範囲外であるが、n値が本発明の規定を満足するサ
ンプルNo.26はサンプルNo.24,29と比較し
て座屈発生限界歪みが良好で、本発明例と同等の特性が
得られ、耐局部座屈性におけるn値の影響の大きいこと
が認められた。
Next, No. 1 of the present invention, whose tensile strength satisfies the SN490B standard, was used. In order to evaluate the local buckling resistance of 21, 22, and 28 and Comparative Examples 24, 26, and 29, distortion that causes buckling (buckling generation limit strain) was performed by a compression test of a shaped steel sample having a length of 500 mm. I asked.
Further, in order to evaluate the fracture resistance, a tensile test piece having a notch corresponding to the parallel portion at 10% of the cross section of the parallel portion was used to measure the breaking strain by a tensile test. The compression test and the notched tensile test were the same as in Example 1. Table 7
Shows the results of the compression test and the notched tensile test. The buckling limit strain is the sample No. 1 in which all of the yield elongation, the yield ratio, and the n value satisfy the requirements of the present invention. Excellent characteristics were obtained in 21, 22, and 28. Also, Comparative Example Sample N
o. In Sample Nos. 24, 26, and 29, the yield elongation and the yield ratio were out of the range of the present invention, but the n value satisfied the definition of the present invention. 26 is sample No. 26; The buckling limit strain was better than those of Examples 24 and 29, and the same characteristics as those of the present invention were obtained. It was recognized that the influence of the n value on the local buckling resistance was large.

【0062】破断歪みは、本発明例のサンプルNo.2
1,22,28は比較例のサンプルNo.24,26,
29に対し、優れた特性となっている。比較例はいずれ
も降伏比が70%以上となっているが、比較的降伏比の
低いNo.26のサンプルでは、本発明例には及ばない
ものの、破断歪みが大きく、降伏比の影響が大きいこと
が認められた。
The breaking strain was measured for the sample No. of the present invention. 2
Sample Nos. 1, 22, and 28 are sample Nos. Of Comparative Examples. 24, 26,
29 is excellent. In all of the comparative examples, the yield ratio is 70% or more, but No. 2 having a relatively low yield ratio. In the case of the sample No. 26, it was recognized that the breaking strain was large and the yield ratio had a large effect, though it was inferior to the examples of the present invention.

【0063】以上の試験結果から明らかなように、降伏
伸び、降伏比およびn値の全てが本発明の規定を満足し
た場合、優れた耐局部座屈性と耐破壊性能が得られる。
As is clear from the above test results, when all of the yield elongation, the yield ratio and the n value satisfy the requirements of the present invention, excellent local buckling resistance and fracture resistance are obtained.

【0064】[0064]

【表5】 [Table 5]

【0065】[0065]

【表6】 [Table 6]

【0066】[0066]

【表7】 [Table 7]

【0067】(実施例3)表1に示す成分組成の鋼を溶
製後、連続鋳造により鋳片とした。鋳片を1250℃に
加熱後、圧延終了温度800℃とする圧延で、300×
300×10×15(mm)(H×B×t1×t2、図
1参照)のH形鋼とした。圧延終了後、表8に示す圧
延、冷却条件により製造した。サンプルNo.33は、
圧延終了後、常温まで自然放冷した。尚、自然放冷の冷
却速度は、800〜500℃までの平均で約0.8℃/
sであった。
(Example 3) Steel having the component composition shown in Table 1 was melted and then cast into a slab by continuous casting. After the slab was heated to 1250 ° C, the rolling was completed at a rolling end temperature of 800 ° C.
An H-section steel of 300 × 10 × 15 (mm) (H × B × t1 × t2, see FIG. 1) was used. After the completion of the rolling, it was manufactured under the rolling and cooling conditions shown in Table 8. Sample No. 33 is
After the end of the rolling, it was naturally cooled to room temperature. The cooling rate of the natural cooling is about 0.8 ° C./800 to 500 ° C. on average.
s.

【0068】これらの形鋼で、ミクロ組織が引張り特
性、衝撃特性および耐局部座屈性、耐破壊性能に及ぼす
影響を調査した。ミクロ組織は、フランジ幅方向1/4
の位置における長手に沿った断面で、フランジ厚さ中心
の光学顕微鏡組織、走査型電子顕微鏡組織を観察し、線
分法により、フェライトの体積率と平均粒径を求めた。
硬質相については、その組織形態および圧延方向と板厚
方向の長さを求め、その比の値として、アスペクト比を
算出した。
The effects of the microstructure on the tensile properties, impact properties, local buckling resistance, and fracture resistance of these section steels were investigated. The microstructure is 1/4 in the flange width direction
The optical microscopic structure and the scanning electron microscopic structure at the center of the flange thickness were observed in the cross section along the longitudinal direction at the position of, and the volume fraction of ferrite and the average particle size were determined by the line segment method.
Regarding the hard phase, the structure form, the length in the rolling direction and the length in the sheet thickness direction were determined, and the aspect ratio was calculated as a value of the ratio.

【0069】表9にミクロ組織の観察結果を示す。鋼組
成、製造条件が本発明範囲内のサンプルNo.31,3
2,38はミクロ組織に関する本発明の規定を全て満足
するが、サンプルNo.33,34,35,36,3
7,39,40はミクロ組織に関する本発明の規定のい
ずれかを満足しない。
Table 9 shows the observation results of the microstructure. Sample No. whose steel composition and manufacturing conditions are within the scope of the present invention. 31,3
Sample Nos. 2 and 38 satisfy all the requirements of the present invention regarding the microstructure. 33, 34, 35, 36, 3
7, 39, 40 do not satisfy any of the provisions of the present invention relating to microstructure.

【0070】次に、実施例1,2と同様に、引張試験、
シャルピー衝撃試験を行った。表10にそれらの結果を
示す。ミクロ組織に関する本発明の規定のいずれかを満
足しないサンプルNo.33,34,35,36,3
7,39,40は、降伏伸び、降伏比およびn値の何れ
かが、本発明範囲外となる。一方、本発明例であるサン
プルNo.31,32,38は、ミクロ組織に関する本
発明の規定を満足し、降伏伸び、降伏比およびn値の何
れもが、本発明範囲内となる。
Next, in the same manner as in Examples 1 and 2, a tensile test
A Charpy impact test was performed. Table 10 shows the results. Sample No. does not satisfy any of the provisions of the present invention regarding the microstructure. 33, 34, 35, 36, 3
In Nos. 7, 39 and 40, any one of the yield elongation, the yield ratio and the n value is out of the range of the present invention. On the other hand, Sample No. Nos. 31, 32 and 38 satisfy the requirements of the present invention regarding the microstructure, and all of the yield elongation, the yield ratio, and the n value fall within the scope of the present invention.

【0071】更に、引張強度490MPa以上であるサ
ンプルNo.31,32,34,35,37,38につ
いて、耐局部座屈性、耐破壊性能を実施例1,2と同様
な方法により求めた。
Further, Sample No. having a tensile strength of 490 MPa or more. With respect to 31, 32, 34, 35, 37, and 38, the local buckling resistance and the fracture resistance were determined in the same manner as in Examples 1 and 2.

【0072】表11に座屈発生限界歪みと破断歪みの測
定値を示す。本発明で規定する組織形態を有するサンプ
ルNo.31,32,38では両者で優れた特性がえら
れたのに対し、軟質相、硬質相における規定を満足しな
いサンプルでは、何れか、又は両者の特性が劣ってい
た。
Table 11 shows the measured values of buckling limit strain and rupture strain. Sample No. having the tissue morphology defined in the present invention. In the samples 31, 32 and 38, excellent characteristics were obtained in both cases, whereas in the samples not satisfying the requirements for the soft phase and hard phase, one or both of the characteristics were inferior.

【0073】上述したように、鋼組成、製造条件が本発
明の規定を満足する圧延H形鋼で得られるミクロ組織
は、耐局部座屈性、耐破壊性能に優れた特性を示した。
As described above, the microstructure obtained from the rolled H-section steel having the steel composition and the manufacturing conditions satisfying the requirements of the present invention exhibited characteristics excellent in local buckling resistance and fracture resistance.

【0074】[0074]

【表8】 [Table 8]

【0075】[0075]

【表9】 [Table 9]

【0076】[0076]

【表10】 [Table 10]

【0077】[0077]

【表11】 [Table 11]

【0078】[0078]

【発明の効果】上述したように、本発明の圧延形鋼は、
大地震の際、建築物の梁部材に負荷される大きな引張、
圧縮により生じる局部座屈を起こしにくく、また、座屈
した部分の亀裂や梁端の溶接欠陥による破壊に対する抵
抗力が優れているため、大地震の際、梁部材の塑性変形
により地震エネルギーを吸収し大崩壊を回避する限界状
態設計法に最適で、大地震に対し、安全な鋼構造物を提
供し、産業社会上、その効果は極めて大きい。
As described above, the rolled section steel of the present invention is
In the event of a major earthquake, a large tensile force applied to the building beam members,
It is hard to cause local buckling caused by compression, and has excellent resistance to fracture due to cracks in buckled parts and welding defects at beam ends, so in the event of a large earthquake, the seismic energy is absorbed by plastic deformation of the beam members It is most suitable for the critical state design method to avoid large collapse and provides a steel structure that is safe against a large earthquake, and its effect is extremely large in industrial society.

【図面の簡単な説明】[Brief description of the drawings]

【図1】圧延H形鋼の引張試験片の採取位置およびミク
ロ組織の観察位置を示す模式図。
FIG. 1 is a schematic view showing a sampling position of a tensile test specimen of a rolled H-section steel and an observation position of a microstructure.

【図2】耐局部座屈性を評価するための圧縮試験の概要
を示す図。
FIG. 2 is a diagram showing an outline of a compression test for evaluating local buckling resistance.

【図3】耐破壊性能を評価するための表面切欠き付き引
張試験片(単位:mm)を示す図。
FIG. 3 is a view showing a tensile test piece (unit: mm) with a surface notch for evaluating fracture resistance.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 角 博幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 栗原 正好 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 Fターム(参考) 4K032 AA01 AA04 AA05 AA11 AA14 AA16 AA21 AA22 AA23 AA27 AA29 AA31 AA35 AA36 BA00 CA02 CA03 CB02 CC03 CD02 CD03 CD05 CD06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroyuki Kado 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Inventor Masayoshi Kurihara 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Sun F-term (reference) in this steel pipe Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、C:0.05〜0.20%、
Si:0.6%以下、Mn:0.5〜1.6%、Al:
0.01〜0.05%、P:0.020%以下、S:
0.015%以下を含有し、Nb:0.005%未満、
N:0.0080%以下、H:4ppm以下に規制し、
更に(1)式によるCeq:0.40%以下で残部が実
質的にFe及び不可避不純物よりなる鋼で、フランジ長
手方向の引張特性が、降伏伸び:0.8〜3.0%、降
伏比:70%以下、及び、公称歪み2〜5%における
(2)式による加工硬化指数(n値)が0.20以上で
ある圧延形鋼。 Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/1 4・・・・・・・・・(1) n=(lnσ5−lnσ2)/(lnε5−lnε2)・・・・・・・・・(2) σ5=1.05×σN5,σ2=1.02×σN2,ε5=ln(1.05), ε2=ln(1.02) 但し、σ5:公称歪5%における真応力、σ2:公称歪2
%における真応力、ε 5:公称歪み5%における真歪、
ε2:公称歪み2%における真歪、σN5:公称歪み5%
における公称応力、σN2:公称歪み2%における公称応
力 ln:自然対数
1. A mass% of C: 0.05 to 0.20%,
Si: 0.6% or less, Mn: 0.5 to 1.6%, Al:
0.01-0.05%, P: 0.020% or less, S:
0.015% or less, Nb: less than 0.005%,
N: regulated to 0.0080% or less, H: regulated to 4 ppm or less,
Further, when Ceq according to the equation (1) is 0.40% or less, the balance is actually
Qualitatively made of Fe and unavoidable impurities, flange length
Tensile properties in the hand direction are as follows: yield elongation: 0.8-3.0%, yield
Yield ratio: 70% or less, and at a nominal strain of 2 to 5%
When the work hardening index (n value) according to the equation (2) is 0.20 or more
Some rolled steel sections. Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 1 4 (1) n = (lnσFive−lnσTwo) / (LnεFive−lnεTwo)... (2) σFive= 1.05 × σN5, ΣTwo= 1.02 × σN2, ΕFive= Ln (1.05), εTwo= Ln (1.02) where σFive: True stress at a nominal strain of 5%, σTwo: Nominal distortion 2
True stress in%, ε Five: True strain at a nominal strain of 5%,
εTwo: True strain at a nominal strain of 2%, σN5: Nominal distortion 5%
Nominal stress at σN2: Nominal response at 2% nominal distortion
Force ln: natural logarithm
【請求項2】 鋼組成として、更に、Cu:0.6%以
下、Ni:1%以下、Cr:0.5%以下の一種または
二種以上を含有する請求項1記載の圧延形鋼。
2. The rolled section steel according to claim 1, wherein the steel composition further contains one or more of Cu: 0.6% or less, Ni: 1% or less, and Cr: 0.5% or less.
【請求項3】 鋼組成として、更に、V:0.2%以
下、Ti:0.03%以下の一種または二種を含有する
請求項1または2記載の圧延形鋼。
3. The rolled section steel according to claim 1, wherein the steel composition further contains one or two of V: 0.2% or less and Ti: 0.03% or less.
【請求項4】 フランジの金属組織が、軟質相のフェラ
イト相と硬質相のベイナイト相、またはベイナイト相を
含む硬質相よりなる混合組織で、軟質相の体積率が50
%超え〜80%以下、平均粒径10μm以上、硬質相の
アスペクト比が3以下であることを特徴とする請求項1
乃至3の何れかに記載の圧延形鋼。
4. The metal structure of the flange is a mixed structure comprising a ferrite phase as a soft phase and a bainite phase as a hard phase, or a hard phase containing a bainite phase, and the soft phase has a volume fraction of 50.
%, The average particle size is 10 μm or more, and the aspect ratio of the hard phase is 3 or less.
4. A rolled section steel according to any one of claims 1 to 3.
【請求項5】 請求項1乃至3の何れかに記載の鋼成分
を有する鋳片または鋼片を1050〜1300℃以下に
加熱し、Ar3点以上で圧延を終了し、5℃/s以下の
冷却速度で、600〜700℃に冷却後、フランジ外面
またはフランジ外面と内面の双方をフランジ厚さの1/
4における冷却速度で5℃/s以上となるように加速冷
却し、冷却停止温度550℃以下とすることを特徴とす
る圧延形鋼の製造方法。
5. A slab or a slab having the steel component according to any one of claims 1 to 3, which is heated to 1,050 to 1,300 ° C. or less, rolling is completed at an Ar3 point or more, and 5 ° C./s or less. After cooling at a cooling rate of 600 to 700 ° C., the outer surface of the flange or both of the outer surface and the inner surface of the flange are reduced to 1 / th of the flange thickness.
4. A method for producing a rolled section steel, wherein accelerated cooling is performed at a cooling rate of 5 ° C./s or more at a cooling rate of 4 and a cooling stop temperature is 550 ° C. or less.
JP2000111072A 2000-04-12 2000-04-12 Rolled section steel and method for producing the same Expired - Fee Related JP3632559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000111072A JP3632559B2 (en) 2000-04-12 2000-04-12 Rolled section steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000111072A JP3632559B2 (en) 2000-04-12 2000-04-12 Rolled section steel and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001294983A true JP2001294983A (en) 2001-10-26
JP3632559B2 JP3632559B2 (en) 2005-03-23

Family

ID=18623478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000111072A Expired - Fee Related JP3632559B2 (en) 2000-04-12 2000-04-12 Rolled section steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3632559B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082964A (en) * 2011-10-07 2013-05-09 Jfe Steel Corp Steel stock for welded joint excellent in anti-ductile crack development property and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013082964A (en) * 2011-10-07 2013-05-09 Jfe Steel Corp Steel stock for welded joint excellent in anti-ductile crack development property and method for producing the same

Also Published As

Publication number Publication date
JP3632559B2 (en) 2005-03-23

Similar Documents

Publication Publication Date Title
EP1870484B1 (en) High-strength steel plate and process for production thereof, and high-strength steel pipe
EP0861915B1 (en) High-toughness, high-tensile-strength steel and method of manufacturing the same
JP5499733B2 (en) Thick high-tensile hot-rolled steel sheet excellent in low-temperature toughness and method for producing the same
JP5679114B2 (en) Low yield ratio high strength hot rolled steel sheet with excellent low temperature toughness and method for producing the same
WO2010087511A1 (en) Thick high-tensile-strength hot-rolled steel sheet with excellent low-temperature toughness and process for production of same
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
EP2224028A1 (en) Steel plate for line pipes and steel pipes
JP4858221B2 (en) High-tensile steel with excellent ductile crack initiation characteristics
RU2337976C2 (en) Production method of cold-resistant steel sheets
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP5368820B2 (en) 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
JPH1192858A (en) Steel excellent in ductile crack propagation resistance under repeated large deformation and its production
JP2002053912A (en) Method for producing as rolled, low yield patio high tensile strength steel sheet having little acoustic anisotropy and excellent weldability
JP2001294984A (en) Fire resistant rolled steel and its producing method
JP3371744B2 (en) Low yield ratio steel material and method of manufacturing the same
JP4646719B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP7163777B2 (en) Steel plate for line pipe
JP2001247930A (en) Rolled shape steel excellent in earthquake resistance and fire resistance and its producing method
JP2000045042A (en) H SHAPE STEEL FOR TUNNEL SUPPORT, HAVING TENSILE STRENGTH OF 490 N/mm2 AND ABOVE AND EXCELLENT IN BENDABILITY, AND ITS MANUFACTURE
JP2003268498A (en) H-type steel excellent in fillet section toughness and its production method
JP2000219934A (en) Non-heattreated type low yield ratio high tensile strength steel plate excellent in weldability
JP2003293075A (en) High strength steel pipe stock having low surface hardness and yield ratio after pipe making and production method thereof
JP2001294983A (en) Rolled steel and its producing method
JP2002339037A (en) High tensile strength steel having excellent low temperature joint toughness and ssc resistance, and production method therefor
JP3772696B2 (en) Steel sheet for high-strength steel pipe and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041213

R150 Certificate of patent or registration of utility model

Ref document number: 3632559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees