JP2001294936A - Method for strengthening steel - Google Patents
Method for strengthening steelInfo
- Publication number
- JP2001294936A JP2001294936A JP2000110998A JP2000110998A JP2001294936A JP 2001294936 A JP2001294936 A JP 2001294936A JP 2000110998 A JP2000110998 A JP 2000110998A JP 2000110998 A JP2000110998 A JP 2000110998A JP 2001294936 A JP2001294936 A JP 2001294936A
- Authority
- JP
- Japan
- Prior art keywords
- steel
- cold
- temperature
- cold working
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、鋼材の強化方法に
関する。詳しくは、例えば、ボルト、ナットなどに用い
られる棒鋼や線材、自動車の構造部材などに用いられる
鋼管や鋼板、更には、ワイヤロープ、スチールコードな
どに用いられる鋼線など、各種鋼材の強化方法に関す
る。[0001] The present invention relates to a method for strengthening a steel material. More specifically, for example, it relates to a method of strengthening various steel materials such as steel bars and wires used for bolts and nuts, steel pipes and steel plates used for structural members of automobiles, and further, wire ropes and steel wires used for steel cords and the like. .
【0002】[0002]
【従来の技術】鋼材の強化方法、つまり、鋼材を高強度
化するための方法としては、鋼材の素材鋼に各種の合金
元素を含有させる方法や、鋼材を熱処理する方法が一般
的である。更に、所謂「冷間加工」を施して鋼材を加工
硬化させ、強度を上昇させる手法もよく用いられる。2. Description of the Related Art As a method of strengthening a steel material, that is, a method of increasing the strength of a steel material, a method of including various alloying elements in a steel material of the steel material and a method of heat-treating the steel material are generally used. Further, a technique of performing so-called “cold working” to work-harden a steel material to increase the strength is often used.
【0003】上記鋼材の強化方法のうちで冷間加工は、
熱間鍛造や熱間圧延などの熱間加工と比較して、鋼材の
寸法を精度よく調整できる。このため、冷間加工には切
削加工などコストが嵩む工程を省略できるという利点が
あるので、例えば、自動車の足周り部品やステアリング
部品などに用いられるボルトやナットは、近年、冷間伸
線及び冷間鍛造で成型すると同時に、強度を高めて製造
されることが多くなっている。[0003] Among the above methods for strengthening steel materials, cold working is
Compared with hot working such as hot forging and hot rolling, the dimensions of steel materials can be adjusted with high accuracy. For this reason, the cold working has an advantage that a costly process such as cutting can be omitted.For example, bolts and nuts used for a vehicle's undercarriage parts, steering parts, and the like have recently been cold drawn and drawn. At the same time as molding by cold forging, it is often manufactured with increased strength.
【0004】又、自動車のラジアルタイアの補強材とし
て用いられるスチールコード用極細鋼線は、最終製造工
程で強冷間伸線が施され、3000MPa以上の大きな
引張強さが確保されている。[0004] Further, ultra-fine steel wires for steel cords used as reinforcing materials for radial tires of automobiles are subjected to strong cold drawing in the final production process, and a large tensile strength of 3000 MPa or more is secured.
【0005】しかしながら、鋼材に冷間加工を施すだけ
では必ずしも所要の高強度が得られるというわけではな
い。したがって、産業界には、鋼材に一層の高強度を確
実に付与することが可能な強化方法に対する強い要望が
ある。[0005] However, simply performing cold working on steel does not always provide the required high strength. Therefore, there is a strong demand in the industry for a strengthening method that can surely impart higher strength to steel.
【0006】こうした要望に対して、冷間加工後の熱処
理によって強度を高める技術が、例えば、特開平10−
306345号公報や特開平7−90495号公報に提
案されている。[0006] In response to such demands, a technique for increasing the strength by heat treatment after cold working is disclosed in, for example, Japanese Patent Application Laid-Open No. 10-1998.
306345 and JP-A-7-90495.
【0007】特開平10−306345号公報には、
「歪時効特性に優れた冷間鍛造用線材・棒鋼及びその製
造方法」が開示されている。しかし、この公報で提案さ
れた技術を用いて冷間加工と熱処理(歪時効処理)を施
しても、その実施例にあるように、硬化量はビッカース
硬度で高々35程度でしかない。[0007] JP-A-10-306345 discloses that
A "wire and bar for cold forging having excellent strain aging characteristics and a method for producing the same" is disclosed. However, even when cold working and heat treatment (strain aging treatment) are performed by using the technique proposed in this publication, the amount of hardening is only about 35 at most in Vickers hardness as in the embodiment.
【0008】特開平7−90495号公報には、「高強
度鋼線及びその製造方法」が開示されている。この公報
で提案された技術は、減面率で60〜98%の線引加工
を施し、更に300〜500℃に加熱するものである。
しかし、この方法を用いても、熱処理によって2次硬化
して上昇する引張強度(以下、「引張強度」を「TS」
という)は、上記公報の実施例の図2に記載されている
ように20kgf/mm2 未満の小さいもので、十分な
強化が達成されるとはいえない。[0008] Japanese Patent Application Laid-Open No. 7-90495 discloses a "high-strength steel wire and a method for producing the same". The technique proposed in this publication is to perform wire drawing at a reduction of area of 60 to 98% and further heat to 300 to 500 ° C.
However, even when this method is used, the tensile strength that is increased by secondary curing by heat treatment (hereinafter, “tensile strength” is referred to as “TS”)
) Is as small as less than 20 kgf / mm 2 as shown in FIG. 2 of the embodiment of the above publication, and it cannot be said that sufficient reinforcement is achieved.
【0009】前記の特開平10−306345号公報や
特開平7−90495号公報で提案された技術を用いれ
ば、一応は高強度の鋼材を得ることができる。しかし、
既に述べたように、これらの技術によって達成される高
強度化は必ずしも十分なものではない。By using the techniques proposed in the above-mentioned Japanese Patent Application Laid-Open Nos. 10-306345 and 7-90495, a high-strength steel material can be obtained. But,
As already mentioned, the high strength achieved by these techniques is not always sufficient.
【0010】[0010]
【発明が解決しようとする課題】本発明は、上記現状に
鑑みなされたもので、その目的は、例えば、ボルト、ナ
ットなどに用いられる棒鋼や線材、自動車の構造部材な
どに用いられる鋼管や鋼板、更には、ワイヤロープ、ス
チールコードなどに用いられる鋼線など、各種鋼材の強
化方法を提供することである。具体的には、各種鋼材に
冷間加工だけを施した場合の強化量の指標としてのTS
の増加量(以下、この冷間加工だけを施した場合のTS
の増加量を△TS1 という)の15%以上の高強度化が
可能な鋼材の強化方法を提供することである。SUMMARY OF THE INVENTION The present invention has been made in view of the above situation, and has as its object to provide, for example, steel bars and wires used for bolts and nuts, and steel pipes and steel plates used for structural members of automobiles. It is still another object of the present invention to provide a method for reinforcing various steel materials such as a steel wire used for a wire rope, a steel cord, and the like. Specifically, TS as an index of the amount of reinforcement when only cold working is performed on various steel materials
(Hereinafter, TS when only this cold working is performed)
It is an object of the present invention to provide a method of strengthening a steel material capable of increasing the strength by 15% or more of the amount of increase of (と い う TS1).
【0011】[0011]
【課題を解決するための手段】本発明の要旨は、下記
(1)〜(6)に示す鋼材の強化方法にある。The gist of the present invention resides in a method for strengthening a steel material as shown in the following (1) to (6).
【0012】(1)質量%で、0.010〜1.5%の
C+Nを含有する鋼材に、各回の減面率が5%以上とな
るn回の冷間加工を行い、1〜(n−1)回目の冷間加
工の少なくともいずれかの冷間加工中に被加工鋼材を1
20〜500℃に昇温させることを特徴とする鋼材の強
化方法。ここで、nは2以上の整数である。(1) A steel material containing 0.010 to 1.5% by mass of C + N by mass% is subjected to n times of cold working so that the area reduction rate is 5% or more each time. -1) During the cold work of at least one of the first cold work,
A method for strengthening a steel material, wherein the temperature is raised to 20 to 500 ° C. Here, n is an integer of 2 or more.
【0013】(2)質量%で、0.010〜1.5%の
C+Nを含有する鋼材に、各回の減面率が5%以上とな
るn回の冷間加工を行い、1〜(n−1)回目の冷間加
工の少なくともいずれかの冷間加工中に被加工鋼材を1
20〜500℃に昇温させ、更にn回目の冷間加工中に
も120〜500℃に昇温させることを特徴とする鋼材
の強化方法。ここで、nは2以上の整数である。(2) A steel material containing 0.010 to 1.5% by mass of C + N by mass% is cold-worked n times so that a reduction in area is 5% or more each time. -1) During the cold work of at least one of the first cold work,
A method for strengthening a steel material, wherein the temperature is raised to 20 to 500 ° C, and further to 120 to 500 ° C during the n-th cold working. Here, n is an integer of 2 or more.
【0014】(3)質量%で、0.010〜1.5%の
C+Nを含有する鋼材に、各回の減面率が5%以上とな
るn回の冷間加工を行い、1〜(n−1)回目の冷間加
工の少なくともいずれかの冷間加工中に被加工鋼材を1
20〜500℃に昇温させ、n回目の冷間加工後、更に
120〜500℃に昇温させることを特徴とする鋼材の
強化方法。ここで、nは2以上の整数である。 (4)質量%で、0.010〜1.5%のC+Nを含有
する鋼材に、各回の減面率が5%以上となるn回の冷間
加工を行い、前記冷間加工の(n−1)回の合間の少な
くともいずれかの合間で被加工鋼材を120〜500℃
に昇温させることを特徴とする鋼材の強化方法。ここ
で、nは2以上の整数である。(3) A steel material containing 0.010 to 1.5% by mass of C + N by mass% is cold-worked n times so that the area reduction rate is 5% or more each time. -1) During the cold work of at least one of the first cold work,
A method for strengthening a steel material, wherein the temperature is raised to 20 to 500 ° C, and after the nth cold working, the temperature is further raised to 120 to 500 ° C. Here, n is an integer of 2 or more. (4) A steel material containing 0.010 to 1.5% of C + N in mass% is subjected to n cold workings in which the area reduction rate is 5% or more each time. -1) The steel material to be processed is at 120 to 500 ° C. in at least one of the intervals.
A method for strengthening a steel material, wherein the temperature is raised to a predetermined temperature. Here, n is an integer of 2 or more.
【0015】(5)質量%で、0.010〜1.5%の
C+Nを含有する鋼材に、各回の減面率が5%以上とな
るn回の冷間加工を行い、前記冷間加工の(n−1)回
の合間の少なくともいずれかの合間で被加工鋼材を12
0〜500℃に昇温させ、n回目の冷間加工後、更に1
20〜500℃に昇温させることを特徴とする鋼材の強
化方法。ここで、nは2以上の整数である。 (6)質量%で、0.010〜1.5%のC+Nを含有
する鋼材に、各回の減面率が5%以上となるn回の冷間
加工を行い、前記冷間加工の(n−1)回の合間の少な
くともいずれかの合間で被加工鋼材を120〜500℃
に昇温させ、更にn回目の冷間加工中に120〜500
℃に昇温させることを特徴とする鋼材の強化方法。ここ
で、nは2以上の整数である。なお、C+NはCとNの
質量%での含有量の和を指し、(各回の)「減面率」と
は、加工前の断面積をA0 、加工後の断面積をA1 とし
て(A0−A1)/A0で表されるものをいい、これを1
00倍すれば%表示になる。又、本発明でいう「冷間加
工」とは、加工を行う前の被加工鋼材の温度が100℃
以下であるものをいう。本発明者らは、前記した課題を
解決するために、すなわち、その強化処理後の最終的な
TSの増加量が1.15×△TS1 以上となる高強度化
の達成が可能な鋼材の強化方法を提供するために、冷間
加工と熱処理を組み合わせた場合の鋼材の強度変化につ
いて種々の調査、研究を行った。その結果、下記の知見
を得た。 (a)鋼材を冷間加工した後で低温熱処理を行うと、従
来から知られているように、歪時効により強度が上昇す
るが、1回あるいは多段の加工で冷間加工し、その冷間
加工の終了後に低温熱処理を(1回)行う場合に比べ
て、冷間加工を多段階に分け、少なくともいずれか1回
の冷間加工中に被加工鋼材を特定温度域に昇温させ、そ
の後更に冷間加工を施せば、最終的に得られる強度は、
合計の冷間加工量(減面率)が同じであっても高くな
る。これは、冷間加工中に被加工鋼材を特定温度域に昇
温させれば、転位の周辺にC(炭素)、N(窒素)が固
着されて転位が安定化され、この状態で更に冷間加工を
加えることで転位が複雑に絡み合い、このため、合計の
冷間加工量(減面率)が同じでも強度が高くなるのであ
る。 (b)その冷間加工中に被加工鋼材を特定温度域に昇温
させる冷間加工の回数が多ければ多いほど、合計の冷間
加工量(減面率)が同じでもより高強度になる。 (c)1回あるいは多段の加工で冷間加工し、その冷間
加工の終了後に低温熱処理を(1回)行う場合に比べ
て、冷間加工を多段階に分け、少なくともいずれか1回
の冷間加工の合間に被加工鋼材を特定温度域に昇温さ
せ、その後更に冷間加工を施せば、最終的に得られる強
度は、合計が同じ加工量でも高強度になる。これは、前
記(a)の場合と同様に、冷間加工の合間に被加工鋼材
を特定温度域に昇温させれば、転位の周辺にC、Nが固
着されて転位が安定化され、この状態で更に冷間加工を
加えることで転位が複雑に絡み合い、このため、合計の
冷間加工量(減面率)が同じでも強度が高くなるのであ
る。 (d)被加工鋼材を特定温度域に昇温させる冷間加工の
合間の数が多ければ多いほど、合計の冷間加工量(減面
率)が同じでもより高強度になる。 (e)上記(a)〜(d)の現象は、冷間加工前の被加
工鋼材中にCやNが固溶していないと想定される場合に
も生じ、CとNをその和で特定量含有する鋼材に共通し
て生ずる現象である。 (f)冷間加工における加工量(減面率)が増加する
と、鋼材における炭化物や炭窒化物、窒化物の中に存在
するCやNは、鋼材中の転位の周辺に移動することが可
能になる。このため、鋼材がCとNをその和で特定量含
有しておりさえすれば、上記(a)〜(d)に記載した
現象が生じる。(5) A steel material containing 0.01 to 1.5% by mass of C + N in mass% is subjected to n times of cold working so that the area reduction rate is 5% or more each time. In at least one of the (n-1) times,
The temperature was raised to 0 to 500 ° C., and after the nth cold working,
A method for strengthening a steel material, wherein the temperature is raised to 20 to 500 ° C. Here, n is an integer of 2 or more. (6) A steel material containing 0.010 to 1.5% C + N in mass% is subjected to n cold workings in which the area reduction rate is 5% or more each time. -1) The steel material to be processed is at 120 to 500 ° C. in at least one of the intervals.
And during the n-th cold working,
A method for strengthening a steel material, wherein the temperature is raised to ° C. Here, n is an integer of 2 or more. Note that C + N indicates the sum of the contents of C and N in mass%, and the “area reduction rate” (for each time) is defined as A 0 , the cross-sectional area before processing, and A 1, the cross-sectional area after processing. A 0 -A 1 ) / A 0 is represented by 1
Multiplying by 00 results in% display. The term “cold working” as used in the present invention means that the temperature of a steel material to be processed before working is 100 ° C.
Refers to the following. In order to solve the above-mentioned problems, the present inventors have sought to strengthen steel materials capable of achieving high strength in which the final increase in TS after the strengthening treatment is 1.15 × ΔTS1 or more. In order to provide a method, various investigations and studies were conducted on the strength change of steel materials when cold working and heat treatment were combined. As a result, the following findings were obtained. (A) When low-temperature heat treatment is performed after cold working a steel material, as conventionally known, the strength increases due to strain aging. However, cold working is performed once or in multiple stages, and the cold working is performed. Compared to the case of performing low-temperature heat treatment (one time) after the end of working, cold working is divided into multiple stages, and the steel material to be processed is heated to a specific temperature range during at least one of the cold working steps. If further cold working is performed, the strength finally obtained is
Even if the total amount of cold working (reduction rate) is the same, it becomes higher. This is because, when the temperature of the steel material to be processed is raised to a specific temperature range during cold working, C (carbon) and N (nitrogen) are fixed around dislocations, and the dislocations are stabilized. By adding cold working, dislocations are complicatedly entangled with each other, so that the strength is increased even if the total cold working amount (area reduction rate) is the same. (B) The greater the number of times of cold working for raising the temperature of the steel material to be processed to a specific temperature range during the cold working, the higher the strength even if the total amount of cold working (area reduction) is the same. . (C) The cold working is divided into multiple stages, and at least one of the cold working is performed in comparison with a case where cold working is performed once or in multiple stages and low-temperature heat treatment is performed (one time) after the completion of the cold working. If the temperature of the steel material to be processed is raised to a specific temperature range during the cold working and then further cold working is performed, the finally obtained strength becomes high even with the same working amount in total. This is because, as in the case of (a), if the steel material to be processed is heated to a specific temperature range during the cold working, C and N are fixed around the dislocation, and the dislocation is stabilized. By further performing cold working in this state, dislocations are complicatedly entangled with each other, so that the strength is increased even if the total amount of cold working (area reduction ratio) is the same. (D) The greater the number of intervals between cold workings in which the temperature of the steel material to be worked is raised to a specific temperature range, the higher the strength, even if the total amount of cold working (area reduction) is the same. (E) The above phenomena (a) to (d) also occur when it is assumed that C or N is not dissolved in the steel material to be processed before cold working, and C and N are obtained by summing C and N. This phenomenon is common to steel materials containing a specific amount. (F) When the working amount (reduction rate) in cold working increases, carbides and carbonitrides in steel materials and C and N present in nitrides can move around dislocations in steel materials. become. Therefore, as long as the steel material contains a specific amount of C and N in the sum thereof, the phenomena described in the above (a) to (d) occur.
【0016】本発明は、上記の知見に基づいて完成され
たものである。The present invention has been completed based on the above findings.
【0017】[0017]
【発明の実施の形態】以下、本発明の各要件について詳
しく説明する。なお、各元素の含有量の「%」表示は
「質量%」を意味する。 (A)化学組成 本発明が対象とする鋼材は、熱間鍛造や熱間圧延などの
熱間加工後に、冷間加工と昇温の工程を経て、所望の特
性(強度、延性、耐食性など)及び最終的なTSの増加
量が1.15×△TS1 以上となる高強度を付与され
る。ここで、△TS1 が冷間加工だけを施した場合のT
Sの増加量を指すことは既に述べたとおりである。DESCRIPTION OF THE PREFERRED EMBODIMENTS Each requirement of the present invention will be described in detail below. In addition, "%" of the content of each element means "% by mass". (A) Chemical composition The steel material to which the present invention is applied is subjected to the desired properties (strength, ductility, corrosion resistance, etc.) after hot working such as hot forging and hot rolling, and then through cold working and heating. In addition, high strength is provided so that the final increase amount of TS is 1.15 × ΔTS1 or more. Here, △ TS1 is T when only cold working is performed.
Pointing to the increase in S is as described above.
【0018】本発明においては、上記の特性の付与と、
冷間加工性の確保及び工業的な生産性を確保する意味合
いから、鋼材の化学組成としてC+Nの含有量のみを下
記の範囲に限定する。In the present invention, the above-mentioned properties are provided,
From the viewpoint of ensuring cold workability and industrial productivity, only the content of C + N as the chemical composition of the steel is limited to the following range.
【0019】C+N:0.010〜1.5% CとNは、冷間加工中や冷間加工後に鋼材を後述する温
度に昇温させた場合に、鋼材中の転位周辺に固着して転
位を安定化させ、この状態で更に冷間加工を加えること
で、鋼材の強度を大きく高める効果を有する。この効果
は、CとNが単独で含有されるか複合して含有されるか
に拘わらず得られる。しかし、CとNの含有量の和が
0.010%未満では最終的なTSの増加量が1.15
×△TS1以上となる高強度が得られない。一方、Cと
Nの含有量がその和で1.5%を超えると、鋼が凝固す
る際に巨大な共晶型の炭化物や炭窒化物が生成して、高
温で長時間の均質化熱処理を行っても、共晶型の炭化物
や炭窒化物が消失し難いため、冷間加工中のトラブル
(例えば、伸線中の断線や鍛造中の割れ)が多発する。
したがって、CとNの含有量の和であるC+Nを0.0
10〜1.5%とした。なお、CとNの含有量の和であ
るC+Nの量は0.10〜1.2%とすることが好まし
い。C + N: 0.010-1.5% C and N are fixed around dislocations in the steel material during the cold working or after the cold working and when the temperature of the steel material is raised to a temperature described later, dislocations are formed. Is stabilized, and further cold working is performed in this state, which has the effect of greatly increasing the strength of the steel material. This effect is obtained irrespective of whether C and N are contained alone or in combination. However, when the sum of the C and N contents is less than 0.010%, the final TS increase is 1.15.
× △ High strength of TS1 or more cannot be obtained. On the other hand, when the content of C and N exceeds 1.5% in total, huge eutectic carbides and carbonitrides are generated when the steel solidifies, and the homogenization heat treatment is performed at a high temperature for a long time. However, since eutectic carbides and carbonitrides are unlikely to be lost, troubles during cold working (for example, disconnection during drawing or cracking during forging) frequently occur.
Therefore, C + N, which is the sum of the contents of C and N, is 0.0
10% to 1.5%. The amount of C + N, which is the sum of the contents of C and N, is preferably 0.10 to 1.2%.
【0020】本発明が対象とする鋼材のC+N以外の他
の化学成分の組成に関しては特別な限定を加える必要は
ない。最終製品において要求される特性及び最終的なT
Sの増加量が1.15×△TS1 以上となる高強度の付
与が可能であり、且つ、冷間加工性の確保及び工業的な
生産性の確保ができるような成分範囲でありさえすれば
よい。There is no particular limitation on the composition of the chemical components other than C + N of the steel material targeted by the present invention. Properties required in final product and final T
As long as it is possible to provide high strength in which the increase amount of S is 1.15 × △ TS1 or more, and the component range is such that the cold workability and the industrial productivity can be ensured. Good.
【0021】具体的には、例えば、C+N以外の元素と
して、Si:2.0%以下、Mn:3.0%以下、C
u:2.0%以下、Ni:3.0%以下、Cr:3.0
%以下、Mo:2.0%以下、W:1.0%以下、V:
0.5%以下、Nb:0.5%以下、Ti:0.5%以
下、Zr:0.2%以下、Al:0.1%以下、B:
0.005%以下、Pb:0.3%以下、希土類元素:
0.1%以下、Ca:0.01%以下、Mg:0.01
%以下を含有し、残部はFeと不純物からなり、不純物
としてのPが0.05%以下、Sが0.05%以下のも
のであればよい。Specifically, for example, as elements other than C + N, Si: 2.0% or less; Mn: 3.0% or less;
u: 2.0% or less, Ni: 3.0% or less, Cr: 3.0
% Or less, Mo: 2.0% or less, W: 1.0% or less, V:
0.5% or less, Nb: 0.5% or less, Ti: 0.5% or less, Zr: 0.2% or less, Al: 0.1% or less, B:
0.005% or less, Pb: 0.3% or less, rare earth element:
0.1% or less, Ca: 0.01% or less, Mg: 0.01
% Or less, and the balance is composed of Fe and impurities, as long as P as impurities is 0.05% or less and S is 0.05% or less.
【0022】なお、鋼材又は最終製品における特性向上
などを目的に、C+N以外の元素を追加含有させる場合
には、各元素について、Si:0.1〜2.0%、M
n:0.1〜3.0%、Cu:0.05〜2.0%、N
i:0.2〜3.0%、Cr:0.1〜3.0%、M
o:0.05〜2.0%、W:0.05〜1.0%、
V:0.02〜0.5%、Nb:0.01〜0.5%、
Ti:0.01〜0.5%、Zr:0.005〜0.2
%、Al:0.005〜0.1%、B:0.0003〜
0.005%、Pb:0.02〜0.3%、希土類元
素:0.02〜0.1%、Ca:0.0005〜0.0
1%、Mg:0.0005〜0.01%の含有量とする
ことが好ましい。更に、不純物としてのPは0.05%
以下、Sは0.05%以下とすることが好ましい。When elements other than C + N are additionally contained for the purpose of improving the properties of steel materials or final products, for each element, Si: 0.1 to 2.0%, M:
n: 0.1 to 3.0%, Cu: 0.05 to 2.0%, N
i: 0.2 to 3.0%, Cr: 0.1 to 3.0%, M
o: 0.05-2.0%, W: 0.05-1.0%,
V: 0.02 to 0.5%, Nb: 0.01 to 0.5%,
Ti: 0.01-0.5%, Zr: 0.005-0.2
%, Al: 0.005 to 0.1%, B: 0.0003 to
0.005%, Pb: 0.02 to 0.3%, rare earth element: 0.02 to 0.1%, Ca: 0.0005 to 0.0
The content is preferably 1% and Mg: 0.0005 to 0.01%. Further, P as an impurity is 0.05%
Hereinafter, S is preferably set to 0.05% or less.
【0023】CとN以外の各元素の含有量の範囲を上記
のようにした理由を以下に述べる。The reason why the range of the content of each element other than C and N is set as described above will be described below.
【0024】Si:Siは添加しなくてもよいが、添加
すれば、強度を高める作用がある。更に、脱酸作用も有
する。こうした効果を確実に得るには、Siは0.1%
以上の含有量とすることが望ましい。しかし、その含有
量が2.0%を超えると冷間加工性が大きく低下し、冷
間伸線中の断線や冷間鍛造中の割れが多発する。したが
って、Si含有量は2.0%以下とするのがよく、添加
する場合には0.1〜2.0%の含有量とするのがよ
い。Si: Si need not be added, but if added, has the effect of increasing the strength. Furthermore, it also has a deoxidizing effect. To ensure these effects, 0.1% of Si
It is desirable to set the content as described above. However, if the content exceeds 2.0%, the cold workability is greatly reduced, and disconnection during cold drawing and cracking during cold forging occur frequently. Therefore, the Si content is preferably set to 2.0% or less, and when added, the content is preferably set to 0.1 to 2.0%.
【0025】Mn:Mnは添加しなくてもよいが、添加
すれば、強度を高める作用及び鋼中のSをMnSとして
固定して熱間脆性を防止する作用を有する。これらの効
果を確実に得るには、Mnは0.1%以上の含有量とす
ることが好ましい。しかし、Mnは偏析しやすい元素で
あり、その含有量が3.0%を超えると特に鋼材中心部
への偏析傾向が大きくなり、冷間加工性を低下させるた
め、冷間伸線中の断線や冷間鍛造中の割れが多発する。
したがって、Mnの含有量は3.0%以下とするのがよ
く、添加する場合には0.1〜3.0%の含有量とする
のがよい。Mn: Mn may not be added, but if added, it has an effect of increasing strength and an effect of fixing S in steel as MnS to prevent hot brittleness. In order to surely obtain these effects, the content of Mn is preferably set to 0.1% or more. However, Mn is an element that tends to segregate, and if its content exceeds 3.0%, the tendency of segregation particularly to the center of the steel material becomes large, and the cold workability is reduced, so that disconnection during cold drawing is performed. And cracking during cold forging occur frequently.
Therefore, the content of Mn is preferably set to 3.0% or less, and when added, the content is preferably set to 0.1 to 3.0%.
【0026】Cu:Cuは添加しなくてもよいが、添加
すれば、耐食性を高める作用がある。この効果を確実に
得るには、Cuは0.05%以上の含有量とすることが
好ましい。しかし、その含有量が2.0%を超えると結
晶粒界に偏析して鋼塊の分塊圧延や線材の熱間圧延など
熱間加工時における割れや疵の発生が顕著になる。した
がって、Cuの含有量は2.0%以下とするのがよく、
添加する場合には0.05〜2.0%の含有量とするの
がよい。Cu: Cu need not be added, but if added, has the effect of increasing the corrosion resistance. To ensure this effect, it is preferable that the content of Cu be 0.05% or more. However, if the content exceeds 2.0%, segregation occurs at crystal grain boundaries, and cracks and flaws become noticeable during hot working such as bulk rolling of steel ingots and hot rolling of wires. Therefore, the content of Cu is preferably 2.0% or less,
When added, the content is preferably 0.05 to 2.0%.
【0027】Ni:Niも添加しなくてもよいが、添加
すれば、フェライト中に固溶してフェライトの靱性を向
上させる効果を発揮する。この効果を確実に得るには、
Niは0.2%以上の含有量とすることが好ましい。一
方、3.0%を超えて含有させても前記の効果は飽和
し、コストが嵩むばかりである。したがって、Niの含
有量は3.0%以下とするのがよく、添加する場合には
0.2〜3.0%の含有量とするのがよい。Ni: Ni may not be added, but if added, it has the effect of forming a solid solution in the ferrite and improving the toughness of the ferrite. To ensure this effect,
Preferably, the content of Ni is 0.2% or more. On the other hand, if the content exceeds 3.0%, the above effect is saturated, and the cost increases. Therefore, the content of Ni is preferably set to 3.0% or less, and when added, the content is preferably set to 0.2 to 3.0%.
【0028】Cr:Crは添加しなくてもよいが、添加
すれば、パーライトのラメラ間隔を小さくしたり、鋼中
に固溶することによって鋼材の強度を高める作用があ
る。こうした効果を確実に得るには、Crは0.1%以
上の含有量とすることが望ましい。しかし、Crは偏析
しやすい元素であり、3.0%を超えると特に鋼材中心
部への偏析傾向が大きくなり、冷間加工性を低下させる
ので、冷間伸線中の断線や冷間鍛造中の割れが多発す
る。したがって、Crの含有量は3.0%以下とするの
がよく、添加する場合には0.1〜3.0%の含有量と
するのがよい。Cr: Cr need not be added, but if added, it has the effect of reducing the lamella spacing of pearlite and increasing the strength of the steel material by forming a solid solution in the steel. In order to surely obtain such an effect, it is desirable that the content of Cr is 0.1% or more. However, Cr is an element that is easily segregated, and if it exceeds 3.0%, the tendency of segregation particularly to the center of the steel material is increased, and the cold workability is reduced, so that disconnection during cold drawing and cold forging are performed. Many cracks occur inside. Therefore, the content of Cr is preferably set to 3.0% or less, and when added, the content is preferably set to 0.1 to 3.0%.
【0029】Mo:Moは添加しなくてもよいが、添加
すれば、熱処理で微細な炭化物として析出し強度と疲労
特性を高める作用がある。この効果を確実に得るには、
Moは0.05%以上の含有量とすることが好ましい。
しかし、Moを2.0%を超えて含有させても前記の効
果は飽和し、コストが嵩むばかりである。したがって、
Moの含有量は2.0%以下とするのがよく、添加する
場合には0.05〜2.0%の含有量とするのがよい。Mo: Mo need not be added, but if added, it precipitates as fine carbides by heat treatment and has the effect of increasing strength and fatigue properties. To ensure this effect,
Mo is preferably set to a content of 0.05% or more.
However, even if Mo is contained in excess of 2.0%, the above-mentioned effects are saturated and the cost is increased. Therefore,
The content of Mo is preferably 2.0% or less, and when added, the content is preferably 0.05 to 2.0%.
【0030】W:Wも添加しなくてもよいが、添加すれ
ば、熱処理で微細な炭化物として析出し強度を高める効
果がある。又、Wは耐食性の向上にも有効に作用する。
これらの効果を確実に得るには、Wは0.05%以上の
含有量とすることが好ましい。しかし、Wを1.0%を
超えて含有させても前記の効果は飽和し、コストが嵩む
ばかりである。したがって、Wの含有量は1.0%以下
とするのがよく、添加する場合には0.05〜1.0%
の含有量とするのがよい。W: W need not be added, but if added, it has the effect of precipitating as fine carbides by heat treatment and increasing the strength. W also effectively acts to improve corrosion resistance.
In order to surely obtain these effects, the content of W is preferably set to 0.05% or more. However, even if W is contained in excess of 1.0%, the above effects are saturated and the cost is only increased. Therefore, the content of W is preferably set to 1.0% or less, and when added, 0.05 to 1.0%.
Is preferably set as the content.
【0031】V:Vは添加しなくてもよいが、添加すれ
ば、炭化物、窒化物を生成して、オーステナイト結晶粒
を微細化させ、延性及び靱性を高める作用を有する。こ
の効果を確実に得るには、Vは0.02%以上の含有量
とすることが好ましい。しかし、0.5%を超えてVを
含有させても前記の効果は飽和し、コストが嵩むばかり
である。したがって、Vの含有量は0.5%以下とする
のがよく、添加する場合には0.02〜0.5%の含有
量とするのがよい。V: V may not be added. However, if V is added, it has an effect of generating carbides and nitrides, making austenite crystal grains fine, and improving ductility and toughness. To ensure this effect, it is preferable that the content of V be 0.02% or more. However, even if V is contained in an amount exceeding 0.5%, the above effect is saturated and the cost is increased. Therefore, the content of V is preferably 0.5% or less, and when added, the content is preferably 0.02 to 0.5%.
【0032】Nb:Nbは添加しなくてもよいが、添加
すれば、炭化物、窒化物を生成して、オーステナイト結
晶粒を微細化させ、延性及び靱性を高める作用を有す
る。この効果を確実に得るには、Nbは0.01%以上
の含有量とすることが好ましい。しかし、Nbを0.5
%を超えて含有させても前記の効果は飽和し、コストが
嵩むばかりである。したがって、Nbの含有量は0.5
%以下とするのがよく、添加する場合には0.01〜
0.5%の含有量とするのがよい。Nb: Nb does not have to be added, but if added, it has the effect of generating carbides and nitrides, making austenite crystal grains finer, and improving ductility and toughness. In order to surely obtain this effect, the content of Nb is preferably set to 0.01% or more. However, if Nb is 0.5
%, The effect is saturated and the cost is increased. Therefore, the content of Nb is 0.5
% Or less, and 0.01 to
The content is preferably 0.5%.
【0033】Ti:Tiは添加しなくてもよいが、添加
すれば、炭化物、窒化物を生成して、オーステナイト結
晶粒を微細化させ、延性及び靱性を高める作用を有す
る。この効果を確実に得るには、Tiは0.01%以上
の含有量とすることが好ましい。しかし、0.5%を超
えてTiを含有させても前記の効果は飽和し、コストが
嵩むばかりである。したがって、Tiの含有量は0.5
%以下とするのがよく、添加する場合には0.01〜
0.5%の含有量とするのがよい。 Zr:Zrも添加しなくてもよいが、添加すれば、炭化
物、窒化物を生成して、オーステナイト結晶粒を微細化
させ、延性及び靱性を高める作用を有する。この効果を
確実に得るには、Zrは0.005%以上の含有量とす
ることが好ましい。しかし、0.2%を超えてZrを含
有させても前記の効果は飽和し、コストが嵩むばかりで
ある。したがって、Zrの含有量は0.2%以下とする
のがよく、添加する場合には0.005〜0.2%の含
有量とするのがよい。Ti: Ti need not be added, but if added, it has the effect of generating carbides and nitrides, making austenite crystal grains finer, and improving ductility and toughness. To ensure this effect, it is preferable that the content of Ti be 0.01% or more. However, even if the content of Ti exceeds 0.5%, the above effect is saturated and the cost is increased. Therefore, the content of Ti is 0.5
% Or less, and 0.01 to
The content is preferably 0.5%. Zr: Zr may not be added, but when added, it has an effect of generating carbides and nitrides, making austenite crystal grains finer, and improving ductility and toughness. To ensure this effect, the content of Zr is preferably set to 0.005% or more. However, even if Zr is contained in an amount exceeding 0.2%, the above effect is saturated, and the cost is only increased. Therefore, the content of Zr is preferably 0.2% or less, and when added, the content is preferably 0.005 to 0.2%.
【0034】Al:Alは添加しなくてもよいが、添加
すれば、脱酸作用がある。この効果を確実に得るには、
Alは0.005%以上の含有量とすることが好まし
い。しかし、Alの含有量が0.1%を超えると、伸線
加工中に断線が多発する。したがって、Alの含有量は
0.1%以下とするのがよく、添加する場合には0.0
05〜0.1%の含有量とするのがよい。 B:Bは添加しなくてもよいが、添加すれば、パーライ
ト中のセメンタイトの成長を促進させて線材の延性を高
める作用を有する。この効果を確実に得るには、Bは
0.0003%以上の含有量とすることが好ましい。し
かし、その含有量が0.005%を超えると、熱間や温
間での加工時に割れが生じ易くなる。したがって、Bの
含有量は0.005%以下とするのがよく、添加する場
合には0.0003〜0.005%の含有量とするのが
よい。 Pb:Pbは添加しなくてもよいが、添加すれば、被削
性を高める作用を有する。この効果を確実に得るには、
Pbは0.02%以上の含有量とすることが好ましい。
しかし、その含有量が0.3%を超えると、熱間加工性
が低下して熱間での加工時に割れが生じ易くなる。した
がって、Pbの含有量は0.3%以下とするのがよく、
添加する場合には0.02〜0.3%の含有量とするの
がよい。Al: Al need not be added, but if added, it has a deoxidizing effect. To ensure this effect,
Preferably, the content of Al is 0.005% or more. However, when the Al content exceeds 0.1%, disconnection frequently occurs during wire drawing. Therefore, the content of Al is preferably 0.1% or less, and when it is added, it is 0.0%.
The content is preferably in the range of 0.5 to 0.1%. B: B need not be added, but if added, it has the effect of promoting the growth of cementite in pearlite and increasing the ductility of the wire. To ensure this effect, the content of B is preferably set to 0.0003% or more. However, if the content exceeds 0.005%, cracks are likely to occur during hot or warm working. Therefore, the content of B is preferably set to 0.005% or less, and when added, the content is preferably set to 0.0003 to 0.005%. Pb: Pb may not be added, but if added, has the effect of improving machinability. To ensure this effect,
It is preferable that the content of Pb is 0.02% or more.
However, if the content exceeds 0.3%, the hot workability is reduced, and cracks are likely to occur during hot working. Therefore, the content of Pb is preferably 0.3% or less,
When added, the content is preferably 0.02 to 0.3%.
【0035】希土類元素:希土類元素は添加しなくても
よいが、添加すれば、熱間加工性を高める作用を有す
る。この効果を確実に得るには、希土類元素は0.02
%以上の含有量とすることが好ましい。しかし、希土類
元素を0.1%を超えて含有させても前記の効果は飽和
し、コストが嵩むばかりである。したがって、希土類元
素の含有量は0.1%以下とするのがよく、添加する場
合には0.02〜0.1%の含有量とするのがよい。な
お、本発明でいう「希土類元素の含有量」は、「希土類
元素の合計の含有量」を指す。Rare earth element: The rare earth element need not be added, but if added, it has the effect of increasing hot workability. To ensure this effect, the rare earth element should be 0.02
% Is preferable. However, even if the rare earth element is contained in an amount exceeding 0.1%, the above effect is saturated and the cost is increased. Therefore, the content of the rare earth element is preferably 0.1% or less, and when added, the content is preferably 0.02 to 0.1%. The “content of the rare earth element” in the present invention indicates “the total content of the rare earth element”.
【0036】Ca:Caは添加しなくてもよいが、添加
すれば、熱間加工性を高める作用を有する。又、被削性
を高める作用も有する。これらの効果を確実に得るに
は、Caは0.0005%以上の含有量とすることが好
ましい。しかし、Caを0.01%を超えて含有させて
も前記の効果は飽和し、コストが嵩むばかりである。し
たがって、Caの含有量は0.01%以下とするのがよ
く、添加する場合には0.005〜0.01%の含有量
とするのがよい。Ca: Ca may not be added, but if added, has the effect of enhancing hot workability. It also has the effect of enhancing machinability. In order to surely obtain these effects, the content of Ca is preferably 0.0005% or more. However, even if Ca is contained in an amount exceeding 0.01%, the above-mentioned effect is saturated, and the cost is increased. Therefore, the content of Ca is preferably set to 0.01% or less, and when added, the content is preferably set to 0.005 to 0.01%.
【0037】Mg:Mgも添加しなくてもよいが、添加
すれば、熱間加工性を高める作用を有する。又、被削性
を高める作用も有する。これらの効果を確実に得るに
は、Mgは0.0005%以上の含有量とすることが好
ましい。しかし、Mgを0.01%を超えて含有させて
も前記の効果は飽和し、コストが嵩むばかりである。し
たがって、Mgの含有量は0.01%以下とするのがよ
く、添加する場合には0.0005〜0.01%の含有
量とするのがよい。なお、鋼材が前記した各元素のうち
Mo、W、V、Nb、TiやZrを含有する場合には、
NとAlの含有量に応じて、下記の関係式を満足する含
有量とするのがよい。Mg: Mg need not be added, but if added, has the effect of improving hot workability. It also has the effect of enhancing machinability. In order to ensure these effects, it is preferable that the content of Mg is 0.0005% or more. However, even if Mg is contained in an amount exceeding 0.01%, the above effect is saturated and the cost is increased. Therefore, the content of Mg is preferably set to 0.01% or less, and when added, the content is preferably set to 0.0005 to 0.01%. When the steel material contains Mo, W, V, Nb, Ti or Zr among the above-described elements,
According to the contents of N and Al, it is preferable that the content satisfy the following relational expression.
【0038】N(%)−0.52Al(%)の値が0
以上の場合:C+0.86(N−0.52Al)−0.
13Mo−0.065W−0.24V−0.13Nb−
0.25Ti−0.13Zr≦0.01。ここで前記関
係式における各元素記号は、その元素の含有量を表す。The value of N (%)-0.52Al (%) is 0
In the above case: C + 0.86 (N-0.52Al) -0.
13Mo-0.065W-0.24V-0.13Nb-
0.25Ti-0.13Zr ≦ 0.01. Here, each element symbol in the above relational expression represents the content of that element.
【0039】N(%)−0.52Al(%)の値が0
未満の場合:C−0.13Mo−0.065W−0.2
4V−0.13Nb−0.25Ti−0.13Zr≦
0.01。ここで前記関係式における各元素記号も、そ
の元素の含有量を表す。The value of N (%)-0.52 Al (%) is 0
If less than: C-0.13Mo-0.065W-0.2
4V-0.13Nb-0.25Ti-0.13Zr ≦
0.01. Here, each element symbol in the above relational expression also indicates the content of that element.
【0040】P:不純物としてのPは、冷間加工時の変
形能を低下させてしまう。特に、Pの含有量が0.05
%を超えると、冷間加工時の変形能の低下が著しくな
る。したがって、不純物元素としてのPの含有量は0.
05%以下とするのがよい。P: P as an impurity lowers the deformability during cold working. In particular, when the content of P is 0.05
%, The deformability during cold working is significantly reduced. Therefore, the content of P as an impurity element is 0.1.
It is good to make it below 05%.
【0041】S:不純物としてのSも、冷間加工時の変
形能を低下させてしまう。特に、Sの含有量が0.05
%を超えると、冷間加工時の変形能の低下が著しくな
る。したがって、不純物元素としてのSの含有量は0.
05%以下とするのがよい。S: S as an impurity also reduces the deformability during cold working. In particular, when the content of S is 0.05
%, The deformability during cold working is significantly reduced. Therefore, the content of S as an impurity element is 0.
It is good to make it below 05%.
【0042】なお、ボルト、ナットなどに用いられる棒
鋼や線材の用途に対しては、例えば、C:0.1〜0.
5%、Si:0.1〜1.0%、Mn:0.1〜1.5
%、Cu:0.5%以下、Ni:2.0%以下、Cr:
1.5%以下、Mo:0.5%以下、W:0.5%以
下、V:0.2%以下、Nb:0.1%以下、Ti:
0.1%以下、Al:0.005〜0.05%、N:
0.003〜0.02%、B:0.003%以下、P:
0.05%以下、S:0.05%以下の化学組成の鋼を
素材鋼とすればよい。For applications of steel bars and wires used for bolts and nuts, for example, C: 0.1 to 0.1.
5%, Si: 0.1 to 1.0%, Mn: 0.1 to 1.5
%, Cu: 0.5% or less, Ni: 2.0% or less, Cr:
1.5% or less, Mo: 0.5% or less, W: 0.5% or less, V: 0.2% or less, Nb: 0.1% or less, Ti:
0.1% or less, Al: 0.005 to 0.05%, N:
0.003 to 0.02%, B: 0.003% or less, P:
Steel having a chemical composition of 0.05% or less and S: 0.05% or less may be used as the material steel.
【0043】又、自動車の構造部材などに用いられる鋼
管や鋼板の用途に対しては、例えば、C:0.03〜
0.3%、Si:0.1〜1.5%、Mn:0.1〜
2.0%、Cu:0.5%以下、Ni:2.0%以下、
Cr:1.5%以下、Mo:1.0%以下、W:1.0
%以下、V:0.2%以下、Nb:0.1%以下、T
i:0.1%以下、Al:0.003〜0.03%、
N:0.003〜0.02%、B:0.005%以下、
P:0.05%以下、S:0.05%以下の化学組成の
鋼を素材鋼とすればよい。For applications of steel pipes and steel plates used for structural members of automobiles, for example, C: 0.03 to 0.03
0.3%, Si: 0.1 to 1.5%, Mn: 0.1 to
2.0%, Cu: 0.5% or less, Ni: 2.0% or less,
Cr: 1.5% or less, Mo: 1.0% or less, W: 1.0
%, V: 0.2% or less, Nb: 0.1% or less, T
i: 0.1% or less, Al: 0.003 to 0.03%,
N: 0.003 to 0.02%, B: 0.005% or less,
Steel having a chemical composition of P: 0.05% or less and S: 0.05% or less may be used as the material steel.
【0044】更に、ワイヤロープ、スチールコードなど
に用いられる鋼線の用途に対しては、例えば、C:0.
6〜1.2%、Si:0.1〜1.5%、Mn:0.1
〜1.0%、Cu:0.5%以下、Ni:1.0%以
下、Cr:1.0%以下、Mo:0.5%以下、W:
0.5%以下、V:0.2%以下、Nb:0.1%以
下、Ti:0.1%以下、Al:0.03%以下、N:
0.02%以下、B:0.002%以下、P:0.05
%以下、S:0.05%以下の化学組成の鋼を素材鋼と
すればよい。 (B)冷間加工 最終的なTSの増加量が1.15×△TS1 以上となる
高強度を鋼材に付与するためには、冷間加工をn回に分
け、少なくともいずれか1回の冷間加工中に被加工鋼材
を後述の温度域に昇温させるか、少なくともいずれか1
回の冷間加工の合間に被加工鋼材を後述の温度域に昇温
させ、前記の昇温後更に冷間加工を施す必要がある。こ
のため冷間加工回数であるnを2以上の整数とした。Further, for applications of steel wires used for wire ropes, steel cords, etc., for example, C: 0.
6 to 1.2%, Si: 0.1 to 1.5%, Mn: 0.1
1.0%, Cu: 0.5% or less, Ni: 1.0% or less, Cr: 1.0% or less, Mo: 0.5% or less, W:
0.5% or less, V: 0.2% or less, Nb: 0.1% or less, Ti: 0.1% or less, Al: 0.03% or less, N:
0.02% or less, B: 0.002% or less, P: 0.05
% Or less, S: steel having a chemical composition of 0.05% or less may be used as the material steel. (B) Cold work In order to impart high strength to a steel material such that the final increase in TS is 1.15 × △ TS1 or more, the cold work is divided into n times and at least one of the cold work is performed. During the hot working, the temperature of the steel material to be processed is raised to a temperature range described later, or at least one of
It is necessary to raise the temperature of the steel material to be processed to a temperature range to be described later between cold workings, and to perform further cold working after the above-mentioned temperature raising. Therefore, n, which is the number of times of cold working, is an integer of 2 or more.
【0045】上記n回の冷間加工における各回の減面率
を5%以上としたのは、5%未満では冷間加工と昇温と
を組み合わせる方法によっても鋼材に所望の高強度(最
終的なTSの増加量が1.15×△TS1 以上となる高
強度)を付与できないからである。なお、(各回の)
「減面率」が、加工前の断面積をA0 、加工後の断面積
をA1 として(A0−A1)/A0 で表されるものをい
い、これを100倍すれば%表示になることは既に述べ
たとおりである。The reason why the surface reduction rate in each of the n times of cold working is set to 5% or more is that if it is less than 5%, the desired high strength (final strength) can be obtained even by a method of combining cold working and heating. This is because a high strength at which the amount of increase in TS is 1.15 × △ TS1 or more cannot be provided. In addition, (each time)
"Reduction of area" is the cross-sectional area before processing A 0, the cross-sectional area after working as A 1 (A 0 -A 1) / A refers to those represented by 0, which 100 multiplied by Invite% The display is as described above.
【0046】冷間加工の回数及び減面率に関し、その上
限値については特に制限はない。最初の冷間加工を行う
前の鋼材の寸法・形状及び最終製品の寸法・形状、並び
に設備能力を勘案して、加工回数と減面率とを適宜決定
すればよい。冷間加工の方法も特に制限はなく、必要に
応じて、ダイスによる冷間伸線、圧延機による冷間圧
延、金型を用いた冷間鍛造など、いずれの方法を用いて
もよい。 (C)昇温処理 本発明においては、冷間加工中や冷間加工後に行う昇温
処理の温度は、120〜500℃とする必要がある。前
記昇温処理における温度が120℃を下回る場合には、
所望の高強度(最終的なTSの増加量が1.15×△T
S1 以上となる高強度)が極めて得難い。所望の高強度
が得られる場合でも、鋼材を長時間その温度に保持する
必要が生じ工業的な生産性の面で極めて劣ってしまう。
一方、前記昇温処理における温度が500℃を上回る場
合には、その温度での保持時間を短くしても強度低下が
大きく、前記した所望の高強度が得られない。したがっ
て、冷間加工中や冷間加工後に行う昇温処理の温度を1
20〜500℃とした。なお、前記昇温処理の温度が3
50℃を超える場合には、その温度での保持時間によっ
て強度のバラツキが大きくなる場合があるため、冷間加
工中や冷間加工後に行う昇温処理の温度は、120〜3
50℃とすることが好ましい。なお、前記(B)冷間加
工の項で述べたように、最終的なTSの増加量が1.1
5×△TS1 以上となる高強度を鋼材に付与するために
は、冷間加工をn回に分け、少なくともいずれか1回の
冷間加工中に被加工鋼材を120〜500℃に昇温させ
るか、少なくともいずれか1回の冷間加工の合間に被加
工鋼材を120〜500℃に昇温させ、前記の昇温後更
に冷間加工を施す必要があるが、この冷間加工中や冷間
加工の合間に行う昇温処理は1回以上(n−1)回まで
何回行ってもよい。但し、昇温処理を冷間加工の合間に
行う場合には、工業的な生産性の面からその回数は4回
以下とすることが望ましい。又、昇温処理を冷間加工中
に行う場合には、最終のn回目の冷間加工中にも120
〜500℃に昇温させてもよい。There is no particular upper limit on the number of times of cold working and the area reduction rate. The number of working times and the area reduction rate may be appropriately determined in consideration of the size and shape of the steel material before the first cold working, the size and shape of the final product, and the equipment capacity. The method of the cold working is not particularly limited, and any method such as cold drawing by a die, cold rolling by a rolling mill, and cold forging using a mold may be used as necessary. (C) Temperature raising process In the present invention, the temperature of the temperature raising process performed during the cold working or after the cold working needs to be 120 to 500 ° C. When the temperature in the heating process is lower than 120 ° C.,
Desired high strength (final TS increment is 1.15 × ΔT
S1 or higher strength) is extremely difficult to obtain. Even when a desired high strength is obtained, it is necessary to maintain the steel material at that temperature for a long time, which is extremely inferior in industrial productivity.
On the other hand, when the temperature in the temperature raising treatment exceeds 500 ° C., even if the holding time at that temperature is shortened, the strength is greatly reduced, and the desired high strength cannot be obtained. Therefore, the temperature of the heating process performed during or after cold working is set to 1
20 to 500 ° C. It should be noted that the temperature of the heating process is 3
If the temperature exceeds 50 ° C., the strength may vary greatly depending on the holding time at that temperature. Therefore, the temperature of the temperature raising treatment performed during or after cold working is 120 to 3 ° C.
The temperature is preferably set to 50 ° C. As described in the section of (B) Cold working, the final increase in TS is 1.1.
In order to impart a high strength of 5 × △ TS1 or more to the steel material, the cold working is divided into n times, and the steel material to be processed is heated to 120 to 500 ° C. during at least one of the cold working. Alternatively, it is necessary to raise the temperature of the steel material to be processed to 120 to 500 ° C. during at least one of the cold workings, and to perform further cold working after the above-mentioned temperature rise. The temperature raising process performed between the cold workings may be performed any number of times from one to (n-1) times. However, in the case where the temperature raising treatment is performed between the cold workings, the number of times is preferably four or less from the viewpoint of industrial productivity. In addition, when the temperature raising process is performed during the cold working, 120 ° is also used during the final n-th cold working.
The temperature may be raised to 500 ° C.
【0047】n回すべての冷間加工を終了した後、更
に、120〜500℃に昇温させれば、一層の高強度化
が可能である。このため、n回目の冷間加工後、更に1
20〜500℃に昇温させてもよい。このn回目の冷間
加工後に行う120〜500℃への昇温処理は、n回目
の冷間加工中に120〜500℃に昇温させない場合に
行うことで大きな効果が得られる。n回目の冷間加工中
に120〜500℃に昇温させた後、更にこの120〜
500℃への昇温処理を行ってもよいが、この場合には
加工後の120〜500℃への昇温処理の効果は小さ
い。冷間加工の合間に行う昇温処理の加熱は、熱処理炉
加熱、高周波加熱、通電加熱、赤外線加熱など通常の方
法で行えばよい。If the temperature is further raised to 120 to 500 ° C. after all the cold working has been completed n times, the strength can be further increased. For this reason, after the n-th cold working,
The temperature may be raised to 20 to 500 ° C. A great effect can be obtained by performing the heating process to 120 to 500 ° C. after the n-th cold working if the temperature is not raised to 120 to 500 ° C. during the n-th cold working. After the temperature was raised to 120 to 500 ° C. during the n-th cold working,
Although the temperature raising treatment to 500 ° C. may be performed, in this case, the effect of the temperature raising treatment to 120 to 500 ° C. after processing is small. Heating in the temperature raising treatment performed between the cold workings may be performed by a normal method such as heat treatment furnace heating, high frequency heating, electric heating, and infrared heating.
【0048】昇温処理を冷間加工中に行う場合の加熱に
は、加工発熱を利用すればよいが、安定且つ均一に鋼材
を加熱するためには、例えば、通電加熱を利用してロー
ルやダイスを通じた補助的な昇温を行うことが好まし
い。Heating during the cold working during the temperature raising treatment may be achieved by utilizing the heat generated by working. However, in order to heat the steel material stably and uniformly, for example, the roll or It is preferable to perform auxiliary temperature rise through a die.
【0049】以下、実施例により本発明を詳しく説明す
る。Hereinafter, the present invention will be described in detail with reference to examples.
【0050】[0050]
【実施例】表1に示す化学組成を有する鋼A〜Mを通常
の方法によって150kg真空炉を用いて溶製した。EXAMPLES Steels A to M having the chemical compositions shown in Table 1 were melted by a usual method using a 150 kg vacuum furnace.
【0051】表1における鋼B〜Mは化学組成が本発明
で規定する範囲内にある本発明例、鋼Aは化学組成が本
発明で規定する含有量の範囲から外れた比較例である。In Table 1, steels B to M are examples of the present invention in which the chemical composition is within the range specified in the present invention, and steel A is a comparative example in which the chemical composition is out of the range of the content specified in the present invention.
【0052】[0052]
【表1】 (実施例1)上記のようにして溶製した鋼のうち、表1
に示す鋼A〜Cの鋼塊を1200℃に加熱した後、通常
の方法で熱間鍛造して厚さ40mmの鋼片とした。次い
で、上記の各鋼片を1100℃に加熱した後、圧延仕上
げ温度800℃、巻取り温度650℃となるように熱間
圧延し、板厚4.0mmの鋼板とした。[Table 1] (Example 1) Among the steels smelted as described above, Table 1
After heating the steel ingots of the steels A to C shown in (1) to 1200 ° C., they were hot forged by a usual method to obtain a steel slab having a thickness of 40 mm. Next, each of the above steel pieces was heated to 1100 ° C., and then hot-rolled to a rolling finish temperature of 800 ° C. and a winding temperature of 650 ° C. to obtain a steel sheet having a thickness of 4.0 mm.
【0053】このようにして得た板厚4.0mmの鋼板
を通常の方法で酸洗した後、1パス当たり0.5mmず
つ冷間圧延して減厚し、計6パスの冷間圧延により板厚
1.0mmの冷延鋼板を得た。冷間圧延速度は0.5m
/分以下として、圧延中に鋼板の温度が100℃以上に
ならないように管理した。なお、冷間圧延の際、圧延機
に入る直前及び圧延機から出た直後の鋼板の温度を放射
式温度計で測定し、このうち圧延機から出た直後に測定
した鋼板の温度を冷間圧延中の鋼板の温度として管理し
た。The steel sheet having a thickness of 4.0 mm thus obtained was pickled by a usual method, then cold-rolled by 0.5 mm per pass to reduce the thickness, and cold-rolled by a total of 6 passes. A cold-rolled steel sheet having a thickness of 1.0 mm was obtained. Cold rolling speed is 0.5m
/ Min or less was controlled so that the temperature of the steel sheet did not become 100 ° C. or more during rolling. During cold rolling, the temperature of the steel sheet immediately before entering the rolling mill and immediately after leaving the rolling mill was measured with a radiation thermometer, and the temperature of the steel sheet measured immediately after leaving the rolling mill was measured. It was controlled as the temperature of the steel sheet during rolling.
【0054】前記6パスの冷間圧延の各パスにおける減
面率は1パス目から順に13%、14%、17%、20
%、25%、33%である。The area reduction rate in each of the 6-pass cold rolling passes is 13%, 14%, 17%, and 20% in order from the first pass.
%, 25% and 33%.
【0055】上記の冷間圧延を行うに際し、一部のパス
の後で表2に記載の条件で熱処理を施した。この熱処理
には通常の電気炉を用いた。In performing the above cold rolling, heat treatment was performed under the conditions shown in Table 2 after some passes. A normal electric furnace was used for this heat treatment.
【0056】熱間圧延したままの板厚4.0mmの鋼
板、及び、表2に記載の処理を施した板厚1.0mmの
鋼板からそれぞれJIS Z 2201に記載の13B号引張試験
片を採取し、引張試験を行った。表2に、引張試験の結
果を併せて示す。なお、表2における△TSは、最終処
理後の鋼板のTSと冷間圧延前(つまり熱間圧延したま
ま)の鋼板のTSとの差を示す。熱処理、つまり昇温処
理せずに本発明で定義する冷間圧延(圧延を行う前の被
圧延鋼材の温度が100℃以下である圧延)だけを施し
た試験番号1、5、10の△TSは、既に述べた△TS
1 に相当する。A 13B tensile test piece described in JIS Z 2201 was collected from a hot-rolled steel sheet having a thickness of 4.0 mm and a steel sheet having a thickness of 1.0 mm subjected to the treatment shown in Table 2. Then, a tensile test was performed. Table 2 also shows the results of the tensile test. Note that ΔTS in Table 2 indicates the difference between the TS of the steel sheet after the final treatment and the TS of the steel sheet before cold rolling (that is, while hot rolling). ΔTS of Test Nos. 1, 5, and 10 subjected to only heat treatment, that is, only cold rolling (rolling in which the temperature of a steel material to be rolled before rolling is 100 ° C. or less) defined in the present invention without performing a temperature raising treatment. △ TS already mentioned
Equivalent to 1.
【0057】[0057]
【表2】 表2から、C+Nの量が本発明の条件を満たす鋼を用い
て、本発明に係る条件で冷間圧延と熱処理(昇温処理)
を行った試験番号7〜9、12〜14の場合には、所望
の高強度(1.15×△TS1 以上となる高強度)が得
られることが明らかである。これに対して、比較例の鋼
AはC+Nの量が0.010%を下回るため、この鋼を
用いた試験番号2〜4の場合、たとえ本発明に係る条件
で冷間圧延と熱処理(昇温処理)を行っても(試験番号
3、4)所望の高強度を達成できない。[Table 2] From Table 2, cold rolling and heat treatment (heating treatment) under the conditions according to the present invention, using a steel whose C + N amount satisfies the conditions of the present invention.
It is clear that in the case of Test Nos. 7 to 9 and 12 to 14 in which the test was performed, a desired high strength (high strength not less than 1.15 × ΔTS1) was obtained. On the other hand, since the amount of C + N of the steel A of the comparative example is less than 0.010%, in the case of Test Nos. 2 to 4 using this steel, cold rolling and heat treatment (elevation) were performed under the conditions according to the present invention. (Test Nos. 3 and 4) cannot achieve the desired high strength.
【0058】又、試験番号6、10は、C+Nの量が本
発明の条件を満たす鋼B、Cを用いているが、処理条件
が本発明の規定を満たさないので所望の高強度が達成で
きていない。 (実施例2)前記のようにして溶製した鋼のうち、表1
に示す鋼D〜Iの鋼塊を1200℃に加熱した後、通常
の方法で熱間鍛造して直径80mmの丸棒とした。次い
で、上記の各丸棒を1150℃に加熱した後、圧延仕上
げ温度が880℃となるように熱間圧延し、直径10.
5mmの線材とした。なお、鋼D、G、H、Iを用いた
場合の仕上げ圧延後の冷却は放冷(自然冷却)とし、鋼
E、Fを用いた場合の仕上げ圧延後の冷却は空冷とし
た。このようにして得た直径10.5mmの線材を通常
の方法で酸洗した後、リン酸塩皮膜処理を施し、仕上げ
直径が8.8mmと7.6mmの2つのダイスを用い
て、直径7.6mmまで2パスで冷間伸線した。なお、
上記の2つのダイスはいずれもダイス角度が14度の超
硬ダイスである。Test Nos. 6 and 10 used steels B and C in which the amount of C + N satisfies the conditions of the present invention. However, the desired high strength can be achieved because the processing conditions do not satisfy the requirements of the present invention. Not. (Example 2) Among the steels melted as described above, Table 1
After heating the steel ingots of steels D to I shown in (1) to 1200 ° C., they were hot forged by a usual method to obtain round bars having a diameter of 80 mm. Next, each of the above-mentioned round bars was heated to 1150 ° C., and then hot-rolled so that the rolling finishing temperature was 880 ° C., and the diameter was 10.
A 5 mm wire was used. The cooling after the finish rolling in the case of using the steels D, G, H, and I was allowed to cool (natural cooling), and the cooling after the finish rolling in the case of using the steels E and F was air-cooled. The thus obtained wire having a diameter of 10.5 mm was pickled by a usual method, subjected to a phosphate coating treatment, and finished with a die having a diameter of 7 mm using two dies having finish diameters of 8.8 mm and 7.6 mm. Cold drawing was performed in two passes to 0.6 mm. In addition,
Each of the above two dies is a carbide die having a dice angle of 14 degrees.
【0059】冷間伸線速度は0.5m/分以下として、
伸線中に線材の温度が100℃以上にならないように管
理した。なお、冷間伸線の際、ダイスに入る直前及びダ
イスから出た直後の線材の温度を放射式温度計で測定
し、このうちダイスから出た直後に測定した線材の温度
を冷間伸線中の線材の温度として管理した。The cold drawing speed is set to 0.5 m / min or less.
During the drawing, the temperature of the wire was controlled so as not to be 100 ° C. or higher. During cold drawing, the temperature of the wire immediately before entering the die and immediately after leaving the die was measured with a radiation thermometer, and the temperature of the wire measured immediately after leaving the die was cold drawn. It was controlled as the temperature of the middle wire.
【0060】上記の冷間伸線を行うに際し、一部のパス
の後で表3及び表4に記載の条件で熱処理を施した。こ
の熱処理には通常の電気炉を用いた。In performing the above cold drawing, heat treatment was performed under the conditions shown in Tables 3 and 4 after some passes. A normal electric furnace was used for this heat treatment.
【0061】熱間圧延したままの直径10.5mmの線
材、及び、表3、表4に記載の処理を施した直径7.6
mmの線材からそれぞれJIS Z 2201に記載の9A号引張
試験片を採取し、引張試験を行った。表3及び表4に、
引張試験の結果を併せて示す。なお、表3、表4におけ
る△TSも、最終処理後の線材のTSと冷間伸線前(つ
まり熱間圧延したまま)の線材のTSとの差を示す。熱
処理(つまり昇温処理)せずに冷間伸線だけを施した試
験番号15、19、24、29、32、35の△TS
は、既に述べた△TS1 に相当する。A wire rod having a diameter of 10.5 mm as hot rolled and a diameter of 7.6 subjected to the treatment described in Tables 3 and 4
A 9A tensile test piece described in JIS Z 2201 was sampled from each mm wire and subjected to a tensile test. In Tables 3 and 4,
The results of the tensile test are also shown. Note that ΔTS in Tables 3 and 4 also indicates the difference between the TS of the wire after the final treatment and the TS of the wire before cold drawing (that is, as it is hot-rolled). ΔTS of Test Nos. 15, 19, 24, 29, 32 and 35 in which only cold drawing was performed without heat treatment (that is, temperature increase treatment)
Corresponds to ΔTS1 already described.
【0062】[0062]
【表3】 [Table 3]
【表4】 表3、表4から、C+Nの量が本発明の条件を満たす鋼
を用いて、本発明に係る条件で冷間伸線と熱処理(昇温
処理)を行った試験番号17、22、27、30、3
1、33、36、37の場合には、所望の高強度(1.
15×△TS1 以上となる高強度)が得られることが明
らかである。これに対して、C+Nの量が本発明の条件
を満たす鋼を用いても、処理条件が本発明の規定を満た
さない試験番号16、18、20、21、23、25、
26、28、34の場合には所望の高強度が達成できて
いない。 (実施例3)前記のようにして溶製した鋼のうち、表1
に示す鋼J及び鋼Kの鋼塊を1200℃に加熱した後、
通常の方法で熱間鍛造して直径80mmの丸棒とした。
次いで、上記の各丸棒を1150℃に加熱した後、圧延
仕上げ温度が880℃となるように熱間圧延し、直径1
0.5mmの線材とした。なお、鋼Kを用いた場合の仕
上げ圧延後の冷却は放冷(自然冷却)とし、鋼Jを用い
た場合の仕上げ圧延後の冷却は空冷とした。このように
して得た直径10.5mmの線材を通常の方法で酸洗し
た後、リン酸塩皮膜処理を施し、各ダイスでの減面率が
19%となるパススケジュールで6パスの冷間伸線を行
い、直径5.5mmの線材にした。なお、伸線に用いた
6個のダイスはいずれもダイス角度が14度の超硬ダイ
スである。[Table 4] From Tables 3 and 4, from the test numbers 17, 22, 27, which were subjected to cold drawing and heat treatment (heating treatment) under the conditions according to the present invention, using steel whose C + N amount satisfies the conditions of the present invention. 30, 3
In the case of 1, 33, 36, 37, the desired high strength (1.
It is clear that high strength (15 × △ TS1 or more) can be obtained. On the other hand, even when using steel whose amount of C + N satisfies the conditions of the present invention, test numbers 16, 18, 20, 21, 23, 25, where the processing conditions do not satisfy the requirements of the present invention.
In the case of 26, 28 and 34, the desired high strength was not achieved. (Example 3) Of the steels produced as described above, Table 1
After heating the steel ingots of steel J and steel K shown in
A round bar having a diameter of 80 mm was formed by hot forging by a usual method.
Next, each of the above-mentioned round bars was heated to 1150 ° C., and then hot-rolled to a rolling finish temperature of 880 ° C.
A 0.5 mm wire was used. The cooling after finish rolling when steel K was used was allowed to cool (natural cooling), and the cooling after finish rolling when steel J was used was air cooling. The thus obtained wire having a diameter of 10.5 mm is pickled by a usual method, subjected to a phosphate coating treatment, and subjected to a cold pass of 6 passes on a pass schedule in which the reduction in area at each die is 19%. Drawing was performed to obtain a wire having a diameter of 5.5 mm. The six dies used for wire drawing were all carbide dies having a dice angle of 14 degrees.
【0063】冷間伸線速度は0.5〜400m/分とし
た。なお、冷間伸線の際、ダイスに入る直前及びダイス
から出た直後の線材の温度を放射式温度計で測定し、こ
のうちダイスから出た直後に測定した線材の温度を冷間
伸線中の線材の温度とした。表5に記載のいずれの試験
番号の場合にも、各ダイスに入る直前の線材の温度は2
0〜50℃と低いものであった。The cold drawing speed was 0.5 to 400 m / min. During cold drawing, the temperature of the wire immediately before entering the die and immediately after leaving the die was measured with a radiation thermometer, and the temperature of the wire measured immediately after leaving the die was cold drawn. The temperature of the middle wire was used. In any of the test numbers shown in Table 5, the temperature of the wire immediately before entering each die was 2
The temperature was as low as 0 to 50 ° C.
【0064】熱間圧延したままの直径10.5mmの線
材、及び、表5に記載の条件で冷間伸線した直径5.5
mmの線材からそれぞれJIS Z 2201に記載の9A号引張
試験片を採取し、引張試験を行った。表5に、引張試験
の結果を併せて示す。なお、表5における△TSも、伸
線処理後の線材のTSと冷間伸線前(つまり熱間圧延し
たまま)の線材のTSとの差を示す。冷間伸線中に被加
工鋼材が100℃を超える温度に達していない試験番号
38、39、42の△TSは、既に述べた△TS1 に相
当する。なお、表5においては鋼Jに係る試験番号3
8、39のうち試験番号38の場合を△TS1 として記
載した。A wire having a diameter of 10.5 mm as hot-rolled, and a diameter 5.5 having been cold-drawn under the conditions shown in Table 5
A 9A tensile test piece described in JIS Z 2201 was sampled from each mm wire and subjected to a tensile test. Table 5 also shows the results of the tensile test. Note that ΔTS in Table 5 also indicates the difference between the TS of the wire after the wire drawing treatment and the TS of the wire before the cold drawing (that is, as it is hot-rolled). The ΔTS of Test Nos. 38, 39, and 42 in which the workpiece does not reach a temperature exceeding 100 ° C. during cold drawing corresponds to ΔTS1 described above. In Table 5, test number 3 for steel J was used.
The cases of Test No. 38 out of 8 and 39 were described as ΔTS1.
【0065】[0065]
【表5】 表5から、C+Nの量が本発明の条件を満たす鋼を用い
て、本発明に係る条件で冷間伸線中に昇温させた試験番
号40、41、43、44の場合には、所望の高強度
(1.15×△TS1 以上となる高強度)が達成できる
ことが明らかである。これに対して、C+Nの量が本発
明の条件を満たす鋼を用いても、処理条件が本発明の規
定を満たさない試験番号45の場合には所望の高強度が
達成できていない。 (実施例4)前記のようにして溶製した鋼のうち、表1
に示す鋼L及び鋼Mの鋼塊を1200℃に加熱した後、
通常の方法で熱間鍛造して直径80mmの丸棒とした。
次いで、上記の各丸棒を1150℃に加熱した後、圧延
仕上げ温度が880℃となるように熱間圧延し、直径
5.5mmの線材とした。なお、鋼Kを用いた場合の仕
上げ圧延後の冷却は放冷(自然冷却)とし、鋼Lを用い
た場合の仕上げ圧延後の冷却は空冷とした。このように
して得た直径5.5mmの線材に通常の方法で、酸洗、
リン酸塩皮膜処理、冷間伸線を施して直径1.2mmの
鋼線にし、次いで、パテンティング処理を行った。な
お、パテンティング処理は、鋼線が980℃で20秒間
保持されるように加熱炉で加熱した後、570℃の鉛浴
中に30秒間浸漬して行った。パテンティング処理後は
酸洗し、次いで、通常の方法でブラスメッキを行った
後、各ダイスでの減面率が16%となるパススケジュー
ルで20パスの湿式伸線を行い、直径0.20mmの鋼
線にした。なお、湿式伸線に用いた20個のダイスはい
ずれもダイス角度が14度のダイヤモンドダイスであ
る。[Table 5] From Table 5, in the case of Test Nos. 40, 41, 43, and 44 in which the amount of C + N satisfies the conditions of the present invention and the temperature was raised during cold drawing under the conditions of the present invention, the desired values were obtained. It is clear that high strength (high strength of 1.15 × ΔTS1 or more) can be achieved. On the other hand, even if a steel having an amount of C + N that satisfies the conditions of the present invention is used, the desired high strength cannot be achieved in the case of Test No. 45 in which the processing conditions do not satisfy the requirements of the present invention. (Example 4) Among the steels produced as described above, Table 1
After heating the steel ingots of steel L and steel M shown in
A round bar having a diameter of 80 mm was formed by hot forging by a usual method.
Next, each of the above-mentioned round bars was heated to 1150 ° C., and then hot-rolled so that the rolling finishing temperature was 880 ° C., to obtain a wire rod having a diameter of 5.5 mm. The cooling after finish rolling when steel K was used was allowed to cool (natural cooling), and the cooling after finish rolling when steel L was used was air cooling. The thus obtained wire having a diameter of 5.5 mm is pickled by a usual method,
A phosphate film treatment and cold drawing were performed to obtain a steel wire having a diameter of 1.2 mm, and then a patenting treatment was performed. The patenting treatment was performed by heating the steel wire at 980 ° C. for 20 seconds in a heating furnace and then immersing the steel wire in a 570 ° C. lead bath for 30 seconds. After the patenting treatment, the sheet was pickled and then brass-plated by a usual method. Then, 20 passes of wet drawing were performed on a pass schedule in which the area reduction rate in each die was 16%, and the diameter was 0.20 mm. Of steel wire. Each of the 20 dice used in the wet drawing was a diamond dice having a dice angle of 14 degrees.
【0066】湿式伸線速度は巻取り部で1m/分とし、
伸線中の加工発熱のために鋼線温度が100℃以上にな
ることを避けた。なお、湿式伸線の際、ダイスに入る直
前及びダイスから出た直後の鋼線の温度を放射式温度計
で測定し、このうちダイスから出た直後に測定した鋼線
の温度を湿式伸線中の鋼線の温度とした。The wet drawing speed was 1 m / min at the winding section.
The steel wire temperature was prevented from becoming 100 ° C. or higher due to the heat generated during the drawing. During wet drawing, the temperature of the steel wire immediately before entering the die and immediately after exiting the die was measured with a radiation thermometer, and the temperature of the steel wire measured immediately after exiting the die was used for wet drawing. The temperature of the middle steel wire was used.
【0067】上記の湿式伸線を行うに際し、一部のダイ
スの後方位置に高周波加熱装置を設置し、表6に記載の
条件で伸線加工の合間で適宜加熱処理を施した。In performing the above-mentioned wet drawing, a high-frequency heating device was installed at a position behind some of the dies, and a heat treatment was appropriately performed between drawing operations under the conditions shown in Table 6.
【0068】パテンティング処理したままの直径1.2
mmの鋼線、及び、表6に記載の条件で湿式伸線した直
径0.2mmの鋼線からそれぞれJIS Z 2201に記載の9
A号引張試験片を採取し、引張試験を行った。表6に、
引張試験の結果を併せて示す。なお、表6における△T
Sは、湿式伸線処理後の鋼線のTSと湿式伸線前(つま
りパテンティング処理したまま)の鋼線のTSとの差を
示す。熱処理(つまり昇温処理)せずに湿式伸線だけを
施した試験番号46、50の△TSは、既に述べた△T
S1 に相当する。Diameter 1.2 as patented
from a steel wire of 0.2 mm in diameter and a steel wire of 0.2 mm in diameter which was wet drawn under the conditions shown in Table 6.
A No. A tensile test piece was collected and subjected to a tensile test. In Table 6,
The results of the tensile test are also shown. Note that ΔT in Table 6
S indicates a difference between the TS of the steel wire after the wet drawing and the TS of the steel wire before the wet drawing (that is, as it is after the patenting). The ΔTS of Test Nos. 46 and 50 in which only the wet drawing was performed without performing the heat treatment (that is, the temperature raising treatment) is the ΔT described above.
It corresponds to S1.
【0069】[0069]
【表6】 表6から、C+Nの量が本発明の条件を満たす鋼を用い
て、本発明に係る条件で湿式伸線と熱処理(昇温処理)
を行った試験番号48、49、52、53の場合には、
所望の高強度(1.15×△TS1 以上となる高強度)
が得られることが明らかである。これに対して、C+N
の量が本発明の条件を満たす鋼を用いても、処理条件が
本発明の規定を満たさない試験番号47、51の場合に
は所望の高強度が達成できていない。[Table 6] From Table 6, it is understood that the wet drawing and the heat treatment (temperature increasing treatment) are performed under the conditions according to the present invention using the steel in which the amount of C + N satisfies the conditions of the present invention.
In the case of test numbers 48, 49, 52, and 53 where
Desired high strength (high strength of 1.15 × △ TS1 or more)
It is clear that is obtained. On the other hand, C + N
Even if a steel having an amount satisfying the conditions of the present invention is used, in the case of Test Nos. 47 and 51 in which the processing conditions do not satisfy the requirements of the present invention, a desired high strength cannot be achieved.
【0070】[0070]
【発明の効果】本発明の方法によれば、各種鋼材を比較
的容易に大きく強化することができるので産業上の効果
は大きい。According to the method of the present invention, various steel materials can be strengthened relatively easily and greatly, so that the industrial effect is great.
フロントページの続き Fターム(参考) 4K032 AA01 AA04 AA05 AA06 AA07 AA11 AA12 AA14 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA37 AA39 BA01 BA02 BA03 CA03 CB02 CC03 CE02 CG02 CH04 4K037 EA01 EA02 EA05 EA06 EA07 EA08 EA09 EA11 EA13 EA14 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA24 EA25 EA27 EA28 EA31 EA32 EA33 EA35 EA36 EB06 EB07 EB08 EB09 FA02 FC03 FE02 FG10 FJ04 JA02 Continued on the front page F-term (reference) 4K032 AA01 AA04 AA05 AA06 AA07 AA11 AA12 AA14 AA16 AA19 AA21 AA22 AA23 AA24 AA27 AA29 AA31 AA32 AA35 AA36 AA37 AA39 BA01 BA02 BA03 CA03 EA02 CB02 CC03 EA02 EA13 EA14 EA15 EA16 EA17 EA18 EA19 EA20 EA23 EA24 EA25 EA27 EA28 EA31 EA32 EA33 EA35 EA36 EB06 EB07 EB08 EB09 FA02 FC03 FE02 FG10 FJ04 JA02
Claims (6)
を含有する鋼材に、各回の減面率が5%以上となるn回
の冷間加工を行い、1〜(n−1)回目の冷間加工の少
なくともいずれかの冷間加工中に被加工鋼材を120〜
500℃に昇温させることを特徴とする鋼材の強化方
法。ここで、nは2以上の整数である。(1) C + N of 0.010 to 1.5% by mass
Is performed n times on the steel material containing at least 5% or more of the area reduction rate during each cold working in at least one of the first to (n-1) th cold working. 120 to steel
A method for strengthening a steel material, comprising raising the temperature to 500 ° C. Here, n is an integer of 2 or more.
を含有する鋼材に、各回の減面率が5%以上となるn回
の冷間加工を行い、1〜(n−1)回目の冷間加工の少
なくともいずれかの冷間加工中に被加工鋼材を120〜
500℃に昇温させ、更にn回目の冷間加工中にも12
0〜500℃に昇温させることを特徴とする鋼材の強化
方法。ここで、nは2以上の整数である。2. A C + N content of 0.010 to 1.5% by mass.
Is performed n times on the steel material containing at least 5% or more of the area reduction rate during each cold working in at least one of the first to (n-1) th cold working. 120 to steel
The temperature was raised to 500 ° C and 12
A method for strengthening a steel material, wherein the temperature is raised to 0 to 500 ° C. Here, n is an integer of 2 or more.
を含有する鋼材に、各回の減面率が5%以上となるn回
の冷間加工を行い、1〜(n−1)回目の冷間加工の少
なくともいずれかの冷間加工中に被加工鋼材を120〜
500℃に昇温させ、n回目の冷間加工後、更に120
〜500℃に昇温させることを特徴とする鋼材の強化方
法。ここで、nは2以上の整数である。3. C + N of 0.010 to 1.5% by mass%
Is performed n times on the steel material containing at least 5% or more of the area reduction rate during each cold working in at least one of the first to (n-1) th cold working. 120 to steel
After the temperature was raised to 500 ° C., and after the nth cold working,
A method for strengthening a steel material, wherein the temperature is raised to 500 ° C. Here, n is an integer of 2 or more.
を含有する鋼材に、各回の減面率が5%以上となるn回
の冷間加工を行い、前記冷間加工の(n−1)回の合間
の少なくともいずれかの合間で被加工鋼材を120〜5
00℃に昇温させることを特徴とする鋼材の強化方法。
ここで、nは2以上の整数である。4. An amount of C + N of 0.010 to 1.5% by mass.
The steel material containing is subjected to n times of cold working such that the reduction in area of each time becomes 5% or more, and the steel material to be processed is provided at least during any of the (n-1) times of the cold working. 120-5
A method for strengthening a steel material, wherein the temperature is raised to 00 ° C.
Here, n is an integer of 2 or more.
を含有する鋼材に、各回の減面率が5%以上となるn回
の冷間加工を行い、前記冷間加工の(n−1)回の合間
の少なくともいずれかの合間で被加工鋼材を120〜5
00℃に昇温させ、n回目の冷間加工後、更に120〜
500℃に昇温させることを特徴とする鋼材の強化方
法。ここで、nは2以上の整数である。5. C + N of 0.010 to 1.5% by mass
The steel material containing is subjected to n times of cold working such that the reduction in area of each time becomes 5% or more, and the steel material to be processed is provided at least during any of the (n-1) times of the cold working. 120-5
After the temperature was raised to 00 ° C., and after the nth cold working,
A method for strengthening a steel material, comprising raising the temperature to 500 ° C. Here, n is an integer of 2 or more.
を含有する鋼材に、各回の減面率が5%以上となるn回
の冷間加工を行い、前記冷間加工の(n−1)回の合間
の少なくともいずれかの合間で被加工鋼材を120〜5
00℃に昇温させ、更にn回目の冷間加工中に120〜
500℃に昇温させることを特徴とする鋼材の強化方
法。ここで、nは2以上の整数である。6. 0.01 to 1.5% of C + N by mass%
The steel material containing is subjected to n times of cold working such that the reduction in area of each time becomes 5% or more, and the steel material to be processed is provided at least during any of the (n-1) times of the cold working. 120-5
The temperature was raised to 00 ° C, and during the n-th cold working,
A method for strengthening a steel material, comprising raising the temperature to 500 ° C. Here, n is an integer of 2 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000110998A JP3867471B2 (en) | 2000-04-12 | 2000-04-12 | Strengthening method of steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000110998A JP3867471B2 (en) | 2000-04-12 | 2000-04-12 | Strengthening method of steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001294936A true JP2001294936A (en) | 2001-10-26 |
JP3867471B2 JP3867471B2 (en) | 2007-01-10 |
Family
ID=18623416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000110998A Expired - Fee Related JP3867471B2 (en) | 2000-04-12 | 2000-04-12 | Strengthening method of steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3867471B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058035A (en) * | 2009-09-08 | 2011-03-24 | Sumitomo Electric Ind Ltd | Hard-drawn wire |
CN105220056A (en) * | 2015-09-09 | 2016-01-06 | 滁州迪蒙德模具制造有限公司 | A kind of manufacture method of mould for plastics |
KR101676201B1 (en) * | 2015-12-07 | 2016-11-15 | 주식회사 포스코 | High carbon steel wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof |
JP2017106097A (en) * | 2015-12-11 | 2017-06-15 | ポスコPosco | High carbon steel wire material excellent in strength and corrosion resistance, high carbon steel wire and manufacturing method therefor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102467201B1 (en) * | 2020-12-18 | 2022-11-16 | 주식회사 포스코 | Wire rod for high strength steel fiber, high strength steel fiber and manufacturing method thereof |
KR102556266B1 (en) * | 2020-12-21 | 2023-07-14 | 주식회사 포스코 | High strength steel wire rod and steel wire with excellent oxidation resistance and method for manufacturing the same |
-
2000
- 2000-04-12 JP JP2000110998A patent/JP3867471B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011058035A (en) * | 2009-09-08 | 2011-03-24 | Sumitomo Electric Ind Ltd | Hard-drawn wire |
CN105220056A (en) * | 2015-09-09 | 2016-01-06 | 滁州迪蒙德模具制造有限公司 | A kind of manufacture method of mould for plastics |
KR101676201B1 (en) * | 2015-12-07 | 2016-11-15 | 주식회사 포스코 | High carbon steel wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof |
JP2017106097A (en) * | 2015-12-11 | 2017-06-15 | ポスコPosco | High carbon steel wire material excellent in strength and corrosion resistance, high carbon steel wire and manufacturing method therefor |
Also Published As
Publication number | Publication date |
---|---|
JP3867471B2 (en) | 2007-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3464662B1 (en) | Method for producing a twip steel sheet having an austenitic microstructure | |
US6547890B2 (en) | Steel wire rod for cold forging and method for producing the same | |
CN114686777A (en) | Flat steel product with good aging resistance and method for the production thereof | |
WO2017094870A1 (en) | Rolling rod for cold-forged thermally refined article | |
JP6226085B2 (en) | Rolled steel bar or wire rod for cold forging parts | |
EP2801636A1 (en) | High carbon hot-rolled steel sheet and method for producing same | |
JP6819198B2 (en) | Rolled bar for cold forged tempered products | |
KR20180033202A (en) | A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel | |
EP2883974B1 (en) | Wire rod having good strength and ductility and method for producing same | |
EP3464661B1 (en) | Method for the manufacture of twip steel sheet having an austenitic matrix | |
RU2463360C1 (en) | Method to produce thick-sheet low-alloyed strip | |
JP3572993B2 (en) | Steel wire, steel wire, and method of manufacturing the same | |
JP3536684B2 (en) | Steel wire with excellent wire drawing workability | |
JP3867471B2 (en) | Strengthening method of steel | |
JP3277878B2 (en) | Wire drawing reinforced high-strength steel wire and method of manufacturing the same | |
JP2001131697A (en) | Steel wire rod, steel wire and producing method therefor | |
JP3422865B2 (en) | Method for producing high-strength martensitic stainless steel member | |
CN108350550B (en) | High-strength cold-rolled steel sheet having excellent shear workability and method for producing same | |
WO2018008703A1 (en) | Rolled wire rod | |
JP2002194495A (en) | Hot rolled steel wire rod for cold heating and method for producing cold heading article using the same | |
EP3553197B1 (en) | High strength steel wire having excellent corrosion resistance and method for manufacturing same | |
JPH0526850B2 (en) | ||
JPH09202921A (en) | Production of wire for cold forging | |
JP2000319757A (en) | Steel wire rod, steel wire and its production | |
JPH08291362A (en) | Steel material excellent in cold workability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060627 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060919 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061002 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3867471 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091020 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101020 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111020 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121020 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131020 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |