JP2001294688A - Laminate with flexible interfacial layer and method for producing the same - Google Patents
Laminate with flexible interfacial layer and method for producing the sameInfo
- Publication number
- JP2001294688A JP2001294688A JP2000113045A JP2000113045A JP2001294688A JP 2001294688 A JP2001294688 A JP 2001294688A JP 2000113045 A JP2000113045 A JP 2000113045A JP 2000113045 A JP2000113045 A JP 2000113045A JP 2001294688 A JP2001294688 A JP 2001294688A
- Authority
- JP
- Japan
- Prior art keywords
- laminate
- resin
- matrix resin
- glass fiber
- interface layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Reinforced Plastic Materials (AREA)
- Moulding By Coating Moulds (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガラス繊維からな
る補強基材にマトリクス樹脂を含浸させ積層成形するこ
とで得られる積層体及びその製造方法において、特に、
補強基材を構成するガラス繊維表面が低弾性樹脂で被覆
されて柔軟性界面層を有する積層体及びその製造方法に
関するものである。[0001] The present invention relates to a laminate obtained by impregnating a matrix resin into a reinforcing substrate made of glass fiber and forming a laminate, and a method for producing the same.
The present invention relates to a laminate having a flexible interface layer in which the surface of a glass fiber constituting a reinforcing substrate is covered with a low-elastic resin, and a method for producing the same.
【0002】[0002]
【従来の技術】ガラス繊維を補強材とした積層体では、
一般にガラス繊維とマトリクス樹脂の接着力が問題とな
るため、カップリング剤を処理して補強材の表面にカッ
プリング剤の吸着層を形成する方法が採られている。
(例えば、特開平4-192489号公報参照)。2. Description of the Related Art In a laminate using glass fiber as a reinforcing material,
In general, the adhesion between the glass fiber and the matrix resin poses a problem. Therefore, a method has been adopted in which a coupling agent is treated to form an adsorption layer of the coupling agent on the surface of the reinforcing material.
(See, for example, JP-A-4-192489).
【0003】すなわち、補強材とマトリクス樹脂の間に
吸着層を形成させることにより、吸着層と補強材及びマ
トリクス樹脂の各々が化学的に結合し、補強材とマトリ
クス樹脂の接着性が改善されるものとなっている。That is, by forming an adsorbing layer between the reinforcing material and the matrix resin, the adsorbing layer is chemically bonded to the reinforcing material and the matrix resin, and the adhesion between the reinforcing material and the matrix resin is improved. It has become something.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、従来の
耐食用積層体においては、熱的衝撃や応力が負荷される
品質評価試験において、層間剥離やガラスクロス経糸と
緯糸の交叉部での剥離や繊維束内部での繊維樹脂界面で
のデボンディングが生じることがあり、特に、耐食性が
要求される用途の積層体の場合には、層間剥離、デボン
ディングなどの欠陥の発生による製品の信頼性低下が問
題になることがあった。However, in a conventional corrosion resistant laminate, in a quality evaluation test in which a thermal shock or stress is applied, delamination, peeling at a crossing portion between a glass cloth warp and a weft, and a fiber Debonding may occur at the fiber-resin interface inside the bundle, and in particular, in the case of a laminate for applications requiring corrosion resistance, the reliability of the product may decrease due to defects such as delamination and debonding. There was a problem.
【0005】さらに、従来のガラス繊維を補強材とした
積層体では、部品組み立て用の穴あけ加工に際して、補
強材とマトリクス樹脂の接着性が、ドリル加工のような
機械加工に耐え得る程度の強度を有していないため、加
工時にガラス繊維束内部に、図3に示すようなマイクロ
クラック4が発生することがあった。Further, in a conventional laminate using glass fiber as a reinforcing material, the adhesiveness between the reinforcing material and the matrix resin at the time of drilling for assembling parts has a strength enough to withstand mechanical processing such as drilling. Since it did not have, microcracks 4 as shown in FIG. 3 were sometimes generated inside the glass fiber bundle during processing.
【0006】このようなマイクロクラックを有する状態
で薬品にさらされる耐食用途で使用すると、腐食性液が
マイクロクラックにより生じた空隙に浸透するため、ガ
ラス繊維及び界面に直接作用して寿命を低下させる。実
用的にはこれらの要因から逃れるため、多大の安全率を
取って非常に低応力(例えば、安全率10(静的強度の1/1
0))で使用することが必要となっている。When used in a corrosion-resistant application in which a microcrack is exposed to chemicals in the presence of such microcracks, the corrosive liquid penetrates into the voids created by the microcracks, and acts directly on the glass fibers and the interface to shorten the life. . Practically avoiding these factors, it takes a large safety factor to achieve very low stress (for example, a safety factor of 10 (1/1 of static strength).
0)).
【0007】本発明は,上述したような従来技術の課題
を解決し、従来よりも、ドリル加工性及び応力負荷時の
損傷発生に優れた積層体及びその製造方法を提供するこ
とを目的とするものである。SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide a laminate excellent in drilling workability and occurrence of damage when stress is applied, and a method of manufacturing the same. Things.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本願の発明者らは、補強基材にガラス繊維を用いた
ときに生じるこのようなマィクロクラックの発生は、ド
リル加工等の機械的加工負荷あるいは応力負荷により補
強基材とマトリクス樹脂の弾性率の大きな違いにより界
面に応力が発生するためであり、従来のカップリング剤
処理による化学的結合力では、このような応力に耐えら
れないためであると考え、その対策について鋭意研究を
重ねた結果、補強基材とマトリクス樹脂の間に、応力伝
達を吸収できるような弾性率の低い材料から成る柔軟性
界面層を形成することが有効であるということを見出
し、この知見に基づいて本発明を完成した。In order to achieve the above-mentioned object, the inventors of the present application have developed such a microcrack which occurs when glass fiber is used as a reinforcing base material, by using a machine such as a drilling machine. This is because stress is generated at the interface due to a large difference in the elastic modulus between the reinforced base material and the matrix resin due to mechanical processing load or stress load, and the chemical bonding force by the conventional coupling agent treatment can withstand such stress. As a result of extensive research on countermeasures, a flexible interface layer made of a material with a low elastic modulus capable of absorbing stress transmission was formed between the reinforcing base material and the matrix resin. They have found that they are effective, and have completed the present invention based on this finding.
【0009】すなわち、本発明は、補強基材となるガラ
ス繊維にマトリクス樹脂を含浸させたプリプレグを用い
て積層成形することで得られる積層体及びその製造方法
において、特に、補強基材を構成するガラス繊維が低弾
性樹脂で覆われている積層体及びその製造方法を提供す
るものである。That is, the present invention relates to a laminate obtained by laminating and molding a prepreg obtained by impregnating a matrix resin into glass fibers serving as a reinforcing substrate, and a method for producing the same, particularly, the reinforcing substrate. An object of the present invention is to provide a laminate in which glass fibers are covered with a low elasticity resin and a method for producing the laminate.
【0010】以下、本発明を詳しく説明する。Hereinafter, the present invention will be described in detail.
【0011】本発明の請求項1に係る積層体は、ガラス
繊維からなる補強基材にマトリクス樹脂を含浸させたプ
リプレグを積層した積層体において、前記補強基材を構
成するガラス繊維表面を前記マトリクス樹脂の50%以下
の弾性率を有する低弾性樹脂で被覆して柔軟性界面層を
形成したことを特徴とする。A laminate according to claim 1 of the present invention is a laminate in which a prepreg in which a matrix resin is impregnated on a reinforcing substrate made of glass fiber is laminated, wherein the surface of the glass fiber constituting the reinforcing substrate is formed by the matrix. The flexible interface layer is formed by coating with a low elastic resin having an elastic modulus of 50% or less of the resin.
【0012】このような積層体によれば、マトリクス樹
脂と補強基材の間に低弾性樹脂を介した構造になるた
め、ドリル加工等の機械的加工負荷時及び応力負荷時
に、補強基材とマトリクス樹脂の弾性率の差異により界
面に発生する応力が緩和される。According to such a laminate, a structure in which a low elasticity resin is interposed between the matrix resin and the reinforcing base material is used. The stress generated at the interface is reduced by the difference in the elastic modulus of the matrix resin.
【0013】また、請求項2に係る積層体は、前記低弾
性樹脂の引張弾性率が1.OGPa以下、あるいは引張破断ひ
ずみが20%以上のいずれかであって、マトリクス樹脂の
引張弾性率が2.0GPa以上、あるいは引張破断ひずみが10
%以下のいずれかあることを特徴とする。Further, in the laminate according to claim 2, the low elasticity resin has a tensile elasticity of 1.OGPa or less or a tensile breaking strain of 20% or more, and the matrix resin has a tensile elasticity of not less than 20%. 2.0 GPa or more, or tensile breaking strain of 10
% Or any of the following:
【0014】このような積層体によれば、熱的衝撃負荷
や機械的加工負荷時及び応力負荷時に発生する界面の応
力が特に有効に緩和されるので、補強基材とマトリクス
樹脂との弾性率の差異により発生する層間剥離やデボン
ディング等の欠陥の防止効果が顕著である。According to such a laminate, the stress at the interface generated at the time of a thermal shock load, a mechanical processing load, and a stress load is particularly effectively reduced, so that the elastic modulus between the reinforcing base material and the matrix resin is reduced. The effect of preventing defects such as delamination and debonding caused by the difference is remarkable.
【0015】また、請求項3に係る積層体は、低弾性樹
脂の引張弾性率がポリプロピレングリコールで変性され
たイソ系不飽和ポリエステル樹脂であることを特徴とす
る。The laminate according to claim 3 is characterized in that the low elasticity resin is an iso-unsaturated polyester resin modified with polypropylene glycol in tensile modulus.
【0016】このような積層体によれば、低弾性樹脂の
引張弾性率が1.OGPa以下、あるいは引張破断ひずみが20
%以上のいずれかの特性を示すため、熱的衝撃負荷や機
械的加工負荷時及び応力負荷時に発生する界面の応力が
特に有効に緩和される。According to such a laminate, the tensile modulus of the low-elasticity resin is 1.OGPa or less, or the tensile breaking strain is 20%.
%, The stress at the interface generated at the time of thermal shock load, mechanical processing load, and stress load is particularly effectively reduced.
【0017】また、請求項4に係る積層体は、前記低弾
性樹脂のガラス繊維表面への付着率が0.1〜3.5%、好ま
しくは0.4〜2.0%であることを特徴とする。The laminate according to a fourth aspect is characterized in that the adhesion rate of the low elasticity resin to the glass fiber surface is 0.1 to 3.5%, preferably 0.4 to 2.0%.
【0018】このような積層体によれば、付着率が0.1%
以下のときに発生する機械的加工及び負荷ひずみ0.2%
以上でのマイクロクラックの発生を低減・防止すること
ができる。According to such a laminate, the adhesion rate is 0.1%.
Mechanical processing and load strain of 0.2% when:
The occurrence of microcracks as described above can be reduced and prevented.
【0019】また、請求項5に係る積層体は、積層体に
加工を施す場合であって、加工時に損傷が生じやすい部
位に前記プリプレグを配することを特徴とする。[0019] The laminate according to claim 5 is a case where the laminate is processed, and the prepreg is arranged at a portion where damage is likely to occur during the processing.
【0020】このような積層体によれば、加工時に損傷
が生じやすい部位に、前記プリプレグを配するので、熱
的衝撃や機械的加工負荷時及び荷重負荷時に発生するデ
ボンディングや層間剥離、マイクロクラックの発生を減
少・防止することができるとともに、低弾性樹脂の添加
による積層体としての耐熱性低下を最小限に抑えること
ができる。According to such a laminate, the prepreg is disposed at a portion where damage is likely to occur during processing. The generation of cracks can be reduced and prevented, and the decrease in heat resistance of the laminate due to the addition of the low elastic resin can be minimized.
【0021】また、請求項6に係る積層体は、前記積層
体を耐食性用途で、構造部材に用いることを特徴とす
る。The laminate according to claim 6 is characterized in that the laminate is used as a structural member for corrosion resistance.
【0022】このような積層体によれば、部品組み立て
のためのドリル穴あけなどの機械加工時や、高い応力、
補強基材とマトリクス樹脂の接着性に起因する種々の不
良を低減・防止させることができるので、製品の信頼性
を高めることができる。According to such a laminate, high mechanical stress, such as drilling for assembling parts or the like, can be obtained.
Since various defects caused by the adhesion between the reinforcing base material and the matrix resin can be reduced and prevented, the reliability of the product can be improved.
【0023】また、請求項7に係る積層体の製造方法
は、前記補強基材を構成するガラス繊維表面に柔軟性界
面層を形成した後、プリプレグをマトリックス樹脂に積
層してハンドレイアッップ、RTM、プレス成形を行う
ことにより積層体を成形する方法において、マトリクス
樹脂に対して弾性率の小さいあるいは引張破断ひずみの
大きい樹脂でガラス繊維からなる補強基材を被覆する工
程と、前記低弾性樹脂を乾燥させる工程と、前記補強基
材間に前記マトリクス樹脂を含浸させる工程と、前記マ
トリクス樹脂を前記低弾性樹脂とともに硬化させる工程
とを含む工程で積層物を製造することを特徴とする。Further, according to a seventh aspect of the present invention, there is provided a method for manufacturing a laminate, comprising: forming a flexible interface layer on the surface of glass fiber constituting the reinforcing base material; In a method of molding a laminate by performing press molding, a step of coating a reinforcing substrate made of glass fiber with a resin having a small elastic modulus or a large tensile breaking strain with respect to a matrix resin, and The laminated body is manufactured by a step including a step of drying, a step of impregnating the matrix resin between the reinforcing base materials, and a step of curing the matrix resin together with the low elasticity resin.
【0024】このような積層体の製造方法によれば、熱
的衝撃負荷や機械的加工負荷時及び使用応力負荷時に発
生する界面の応力が有効に緩和される積層体を連続的に
製造することができる。According to such a method of manufacturing a laminate, it is possible to continuously produce a laminate in which the stress at the interface generated when a thermal shock load, a mechanical working load, and a use stress is applied is effectively alleviated. Can be.
【0025】また、請求項8に係る積層体の製造方法
は、柔軟性界面層は室温では反応が進まず、マトリック
ス樹脂に相溶することで接着性を上げ、FRPとして成
形後、後硬化時に柔軟性界面層の硬化が始まる様にする
ことを特徴とする。In the method for manufacturing a laminate according to claim 8, the reaction of the flexible interface layer does not proceed at room temperature, increases the adhesiveness by being compatible with the matrix resin, and is formed during FRP molding and post-curing. It is characterized in that curing of the flexible interface layer is started.
【0026】このような積層体の製造方法によれば、柔
軟性界面層の形成に用いる樹脂(例えば、FK2000(商
品名:昭和高分子株式会社製))には、高温で硬化が開
始する硬化剤(例えば、t-ブチルベンゾエート)が配
合されており、溶剤が揮発することで補強基材に付着す
るが、室温では硬化は進行しない(プリプレグ状態)。
また、柔軟性界面層を形成処理した強化基材(プリプレ
グ)を積層してマトリックス樹脂を含浸させると、柔軟
性界面層の形成に用いる低弾性樹脂とマトリックス樹脂
(例えば、R806(商品名:昭和高分子株式会社製))と
が相溶して接着性の優れた積層体となり、高温硬化(例
えば、100℃で 1〜3時間)することで、一体化した積層
体を得る。According to such a method for producing a laminate, the resin used for forming the flexible interface layer (for example, FK2000 (trade name: manufactured by Showa Polymer Co., Ltd.)) is cured at a high temperature. An agent (for example, t-butyl benzoate) is compounded and adheres to the reinforcing base material by volatilization of the solvent, but hardening does not proceed at room temperature (prepreg state).
When a reinforced substrate (prepreg) having a flexible interface layer formed thereon is laminated and impregnated with a matrix resin, a low-elastic resin and a matrix resin (for example, R806 (trade name: Showa (Manufactured by Kobunshi Co., Ltd.) are compatible with each other to form a laminate having excellent adhesiveness, and cured at a high temperature (for example, at 100 ° C. for 1 to 3 hours) to obtain an integrated laminate.
【0027】なお、柔軟性界面層が先に硬化している
と、積層工程で賦形が困難になり、また、柔軟性界面層
とマトリックス樹脂との確実な接着性が得られない。If the flexible interface layer has been cured first, it becomes difficult to form in the laminating step, and reliable adhesion between the flexible interface layer and the matrix resin cannot be obtained.
【0028】[0028]
【発明の実施の形態】以下、本発明の実施の形態を実施
例及び比較例により詳細に説明するが、本発明はこれら
によって限定されるものではない。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited by these.
【0029】本発明に係る積層体の実施例を図面を参照
して説明する。An embodiment of the laminate according to the present invention will be described with reference to the drawings.
【0030】図1(a)、(b)、(c)は、本発明の
実施の形態における積層体の概略的構成図であり、図1
(a)は積層体の一部斜視図、図1(b)は補強基材の
一部斜視図、図1(c)は補強基材を構成するガラス繊
維束の端面図である。FIGS. 1 (a), 1 (b) and 1 (c) are schematic structural views of a laminate according to an embodiment of the present invention.
1A is a partial perspective view of a laminate, FIG. 1B is a partial perspective view of a reinforcing base, and FIG. 1C is an end view of a glass fiber bundle constituting the reinforcing base.
【0031】図において、積層体1は、多数のガラス繊
維10からなるガラス繊維束12を経糸と緯糸とし、これら
が交叉するように積層された織布状形態の補強基材11
に、マトリクス樹脂3を含浸させたもので、補強基材11を
構成するガラス繊維10の表面には、図1(c)に示すよ
うに、低弾性樹脂2を被覆してなる柔軟性界面層が形成
されており、マトリクス樹脂3と補強基材11間に低弾性
樹脂2を介した構造となっている。In the figure, a laminated body 1 is composed of a glass fiber bundle 12 composed of a large number of glass fibers 10 as a warp and a weft, and a reinforcing substrate 11 in the form of a woven cloth laminated so that they intersect.
In addition, as shown in FIG. 1 (c), a flexible interface layer is formed by impregnating a matrix resin 3 on a surface of a glass fiber 10 constituting a reinforcing base material 11, as shown in FIG. Are formed, and a low elastic resin 2 is interposed between the matrix resin 3 and the reinforcing base material 11.
【0032】本発明で用いるマトリクス樹脂3としては
特に限定されず、一般的にFRP用のマトリクス樹脂と
して使用されてきたものが使用可能である。しかし、積
層体1の成形の容易さ、硬化温度及びその他の要求物性
等の観点から不飽和ポリエステル、ビニルエステル樹
脂、エポキシ樹脂、フェノール樹脂が好ましい。The matrix resin 3 used in the present invention is not particularly limited, and those generally used as matrix resins for FRP can be used. However, unsaturated polyester, vinyl ester resin, epoxy resin, and phenol resin are preferable from the viewpoint of ease of molding of the laminate 1, curing temperature, and other required physical properties.
【0033】また、本発明に係る積層体1を耐食用途に
用いる場合には、マトリクス樹脂3としてビスフェノー
ル型不飽和ポリエステル樹脂及びビニルエステル樹脂を
含むものが好適に使用される。When the laminate 1 according to the present invention is used for corrosion resistance, a matrix resin 3 containing a bisphenol-type unsaturated polyester resin and a vinyl ester resin is preferably used.
【0034】本発明で柔軟性界面層の形成に用いる低弾
性樹脂2は、マトリクス樹脂3の50%以下の弾性率であれ
ばよく、その範囲内では特に限定されないが、補強基材
11及びマトリクス樹脂3との接着性等の観点から不飽和
ポリエステル樹脂が好ましい。The low elastic resin 2 used for forming the flexible interface layer in the present invention may have an elastic modulus of 50% or less of the matrix resin 3, and is not particularly limited within the range.
Unsaturated polyester resins are preferred from the viewpoint of adhesion to 11 and the matrix resin 3 and the like.
【0035】これら以外にもビニルエステル樹脂を用い
ても本発明の効果を得ることができる。The effect of the present invention can be obtained by using a vinyl ester resin in addition to the above.
【0036】さらに、マトリクス樹脂3と低弾性樹脂2の
組み合わせは、低弾性樹脂2の引張弾性率が1.0GPa以
下、あるいは引張破断ひずみが20%以上のいずれかであ
って、マトリクス樹脂3の引張弾性率が2.0GPa以上、あ
るいは引張破断ひずみが10%以下のいずれかあればよい
が、低弾性樹脂2の引張弾性率が0.5GPa以下、あるいは
引張破断ひずみが40%以上のいずれかであってマトリク
ス樹脂3の引張弾性率が2.5GPa以上、あるいは引張破断
ひずみが5%以下のいずれかあれば好ましく、低弾性樹脂
2の引張弾性率が0.3GPa以下、あるいは引張破断ひずみ
が60%以上のいずれかであって、マトリクス樹脂3の引張
弾性率が3・5GPa以上、あるいは引張破断ひずみが5%以下
のいずれかあればさらに好ましい。Further, the combination of the matrix resin 3 and the low elastic resin 2 is such that the tensile elastic modulus of the low elastic resin 2 is 1.0 GPa or less, or the tensile breaking strain is 20% or more. The elastic modulus is 2.0 GPa or more, or the tensile breaking strain may be any one of 10% or less, but the tensile elastic modulus of the low elastic resin 2 is 0.5 GPa or less, or the tensile breaking strain is any of 40% or more. Preferably, the matrix resin 3 has a tensile modulus of 2.5 GPa or more, or a tensile strain at break of 5% or less.
(2) The tensile elastic modulus is 0.3 GPa or less, or the tensile breaking strain is 60% or more, and the tensile elastic modulus of the matrix resin 3 is 3.5 GPa or more, or the tensile breaking strain is 5% or less. Is more preferred.
【0037】また、マトリクス樹脂3と低弾性樹脂2の組
み合わせにおいて、低弾性樹脂2の弾性率がマトリクス
樹脂3の弾性率の50%以上の場合は、上述したような本発
明の効果が安定して得られないことが実験的に確認され
た。In the combination of the matrix resin 3 and the low elastic resin 2, when the elastic modulus of the low elastic resin 2 is 50% or more of the elastic modulus of the matrix resin 3, the effect of the present invention as described above becomes stable. It was confirmed experimentally that it could not be obtained.
【0038】さらに、低弾性樹脂2として硬化後も固化
せずにゲル状にしかならないような樹脂を用いた場合に
は、マトリクス樹脂3の含浸時に溶液によって補強基材1
1表面から低弾性樹脂2が除去されて所望の付着率が得ら
れないことが確認された。Further, when the low elastic resin 2 is a resin which does not solidify even after curing and becomes only a gel, when the matrix resin 3 is impregnated, the reinforcing substrate 1 is impregnated with a solution.
It was confirmed that the low elastic resin 2 was removed from the surface of 1 and a desired adhesion rate could not be obtained.
【0039】また、本発明における補強基材11の形態と
しては、織布、不織布、マット形態のものが好ましい。The form of the reinforcing substrate 11 in the present invention is preferably a woven cloth, a nonwoven cloth, or a mat form.
【0040】以下、本発明に係る積層体の製造方法を、
図5を参照しながら詳述する。Hereinafter, the method for producing a laminate according to the present invention will be described.
This will be described in detail with reference to FIG.
【0041】A: まず、硬化剤として高温で反応する
t-ブチルベンゾエートを含む柔軟性樹脂FK2000(商
品名:昭和高分子株式会社製)をスチレンモノマーに溶
かし込んだ溶液をつくる。A: First, a solution is prepared by dissolving a flexible resin FK2000 (trade name, manufactured by Showa Polymer Co., Ltd.) containing t-butyl benzoate which reacts at a high temperature as a curing agent in a styrene monomer.
【0042】B: この溶液にガラス繊維からなる織布
状構造の補強基材を浸漬含浸させる。B: The solution is immersed and impregnated with a reinforcing substrate having a woven fabric structure made of glass fiber.
【0043】C: この後、室温、好ましくは15〜20℃
で10〜60分間、好ましくは20〜30分間乾燥させて溶媒成
分の揮発及び低弾性樹脂の増粘を行い、補強基材を構成
するガラス繊維表面に低弾性樹脂の柔軟性界面層を形成
する。C: Thereafter, room temperature, preferably 15 to 20 ° C.
For 10 to 60 minutes, preferably for 20 to 30 minutes, to evaporate the solvent component and increase the viscosity of the low-elastic resin, thereby forming a flexible interface layer of the low-elastic resin on the glass fiber surface constituting the reinforcing substrate. .
【0044】D: 得られた補強基材を複数枚を重ねて
硬化剤として室温で反応するメチルエチルケトンパーオ
キサイドを含有するビニルエステル樹脂マトリックスに
てハンドレイアップ法にて積層一体化させて積層体を得
る。D: A plurality of the obtained reinforcing base materials are laminated and integrated by a hand lay-up method using a vinyl ester resin matrix containing methyl ethyl ketone peroxide which reacts at room temperature as a curing agent. obtain.
【0045】なお、この段階ではマトリックス樹脂は一
部硬化するが完全ではなく、また、柔軟性樹脂はこの段
階では硬化が進まず、その結果マトリクス樹脂と良く相
溶し、接着性を確保する。その後、100℃で1〜3時間の
後硬化を図り、柔軟性樹脂層(界面層)及びマトリック
ス層を完全硬化させた積層体を得る。 (実施例1)硬化剤としてt-ブチルベンゾエートを含
む柔軟性樹脂FK2000(商品名:昭和高分子株式会社
製)をスチレンモノマーに溶かし込んで1wt%濃度にした
溶液に、ガラス繊維からなる織布状構造の補強基材を浸
漬含浸させた後、25分間乾燥させて溶媒成分の揮発及び
低弾性樹脂の増粘を行い、補強基材表面に低弾性樹脂を
被覆して柔軟性界面層を形成し、厚さ0.18mmのプリプレ
グを得、こうして得られたプリプレグを10枚重ねて、硬
化剤としてメチルエチルケトンパーオキサイドを含有す
るビニルエステル樹脂R806(商品名:昭和高分子株式
会社製)をマトリックスとしてハンドレイアップ法にて
積層一体化させ、厚さ2.0mmの積層体を得た。 (比較例1)硬化剤としてメチルエチルケトンパーオキ
サイドを含有するビニルエステル樹脂R806(商品名:
昭和高分子株式会社製)をマトリックスにてハンドレイ
アップ法にて積層一体化させ、厚さ2.0mmの積層体を得
た。At this stage, the matrix resin partially cures but is not complete, and the flexible resin does not cure at this stage, and as a result, it is well compatible with the matrix resin and secures adhesiveness. Thereafter, post-curing is performed at 100 ° C. for 1 to 3 hours to obtain a laminate in which the flexible resin layer (interface layer) and the matrix layer are completely cured. (Example 1) A woven fabric made of glass fiber was added to a solution obtained by dissolving a flexible resin FK2000 (trade name, manufactured by Showa Polymer Co., Ltd.) containing t-butyl benzoate as a curing agent in a styrene monomer to a concentration of 1 wt%. After immersion and impregnation of a reinforcing substrate with a linear structure, it is dried for 25 minutes to volatilize the solvent component and thicken the low elastic resin, and coat the low elastic resin on the surface of the reinforcing substrate to form a flexible interface layer Then, a prepreg having a thickness of 0.18 mm was obtained, and ten prepregs thus obtained were laminated, and a vinyl ester resin R806 (trade name: Showa Polymer Co., Ltd.) containing methyl ethyl ketone peroxide as a curing agent was used as a matrix. The laminate was integrated by a lay-up method to obtain a laminate having a thickness of 2.0 mm. (Comparative Example 1) Vinyl ester resin R806 containing methyl ethyl ketone peroxide as a curing agent (trade name:
(Manufactured by Showa Polymer Co., Ltd.) were laminated and integrated by a hand lay-up method using a matrix to obtain a laminate having a thickness of 2.0 mm.
【0046】上記する実施例1及び比較例1で得た各積
層体に対して引張試験を行い、その途中のAE(アコース
ティックエミッション)を調べた。その試験で得られた
結果を図2に示す。Each of the laminates obtained in Example 1 and Comparative Example 1 was subjected to a tensile test, and an AE (acoustic emission) during the tensile test was examined. FIG. 2 shows the results obtained in the test.
【0047】なお、引張試験は毎分1mmの速度でインス
トロン社製の引張試験機を用い、AEはPAC社製の測定機
を用いて試験を行った。この場合のAEは引張試験途中の
微小破壊(損傷の発生)に対応していると考えられる。The tensile test was performed at a speed of 1 mm per minute using a tensile tester manufactured by Instron, and the AE was performed using a measuring machine manufactured by PAC. It is considered that the AE in this case corresponds to microfracture (generation of damage) during the tensile test.
【0048】図2の結果から、比較例1の積層体に対
し、実施例1の積層体は、引張強度、弾性率の低下はほ
とんど見られないが、しかし、応力による損傷発生抵抗
性に優れおり、補強基材とマトリクス樹脂の界面に、低
弾性樹脂からなる柔軟性界面層を介在させることによ
り、応力負荷時の損傷発生を防止することができ、ま
た、機械的な加工により衝撃が負荷された場合でもマイ
クロクラックの発生を減少あるいは防止できることが確
認された。From the results shown in FIG. 2, the laminate of Example 1 shows almost no decrease in tensile strength and elastic modulus as compared with the laminate of Comparative Example 1, but is superior in resistance to damage caused by stress. By interposing a flexible interface layer made of a low elasticity resin at the interface between the reinforcing base material and the matrix resin, it is possible to prevent the occurrence of damage when stress is applied. It was confirmed that the occurrence of microcracks could be reduced or prevented even in the case where the cracking was performed.
【0049】比較例1の積層体の試験途中で、試験を停
止した時の試験片断面における補強基材とマトリクス樹
脂との電子顕微鏡観察した結果の模式図を、図3
(a)、(b)に示す。FIG. 3 is a schematic diagram showing the results of electron microscopic observation of the reinforcing base material and the matrix resin in the cross section of the test piece when the test was stopped during the test of the laminate of Comparative Example 1.
(A) and (b) show.
【0050】図3の結果から、積層体のガラス繊維束内
から損傷4、5が発生することが確認された。 (実施例2)本発明に係る積層体の曲げ強度の処理濃度
依存性を調べるために、硬化剤としてt-ブチルベンゾ
エートを含む柔軟性樹脂FK2000(商品名:昭和高分子
株式会社製)をスチレンモノマーに溶かし込んで濃度を
0〜5wt%に変えた溶液(0、1、3、5wt%)に、ガラス繊維か
らなる織布状構造である補強基材を浸漬含浸させた後、
25分間乾燥させて溶媒成分の揮発及び低弾性樹脂の増粘
を行い、補強基材表面に低弾性樹脂層を形成させて厚さ
0.18mmのプリプレグを得、こうして得られたプリプレグ
を10枚重ねて、硬化剤としてメチルエチルケトンパーオ
キサイドを含有するビニルエステル樹脂R806(商品
名:昭和高分子株式会社製)をマトリックスとしてハン
ドレイアップ法にて積層一体化させ、厚さ2.0mmの積層
体を得た。From the results shown in FIG. 3, it was confirmed that damages 4 and 5 occurred in the glass fiber bundle of the laminate. Example 2 In order to examine the dependence of the bending strength of the laminate according to the present invention on the treatment concentration, a flexible resin FK2000 (trade name: Showa Kogaku Co., Ltd.) containing t-butyl benzoate as a curing agent was treated with styrene. Dissolve in monomer and increase concentration
After impregnating a solution (0, 1, 3, 5 wt%) changed to 0 to 5 wt% with a reinforcing base material, which is a woven fabric structure made of glass fiber,
Dry for 25 minutes to evaporate the solvent component and thicken the low elastic resin, and form a low elastic resin layer on the reinforcing
A 0.18 mm prepreg was obtained, and ten prepregs thus obtained were stacked, and a hand lay-up method was performed using a vinyl ester resin R806 (product name: Showa Kogaku Co., Ltd.) containing methyl ethyl ketone peroxide as a curing agent as a matrix. To obtain a laminate having a thickness of 2.0 mm.
【0051】溶液濃度の異なる実施例2で得た各積層体
に対し、曲げ強度を測定した結果を図4に示す。曲げ試
験は室温にて3点曲げ試験(評点間距離32mm、試験速度1
mm)により行った。FIG. 4 shows the results of measuring the bending strength of each of the laminates obtained in Example 2 having different solution concentrations. The bending test is a three-point bending test at room temperature (distance between marks: 32 mm, test speed: 1
mm).
【0052】図4の結果から、実施例2において、各積
層体は共に曲げ強度及び曲げ弾性率は、実施例2で示す
同じ処理を行っても、比較例1である溶液濃度の0wt%の
ものと比べ、弾性率はわずかに低下するものの、曲げ強
度はわずかに向上する傾向を示した。From the results shown in FIG. 4, it can be seen that in each of the laminates in Example 2, the bending strength and the flexural modulus of each laminate were the same as those in Comparative Example 1 even when the same treatment shown in Example 2 was performed. Compared to those, the elastic modulus slightly decreased, but the bending strength tended to slightly increase.
【0053】これは実施例2で示す柔軟性樹脂層(界面
層)の形成により、繊維/樹脂界面での応力集中を緩和
することに寄与したものと考える。It is considered that the formation of the flexible resin layer (interface layer) shown in Example 2 contributed to alleviating the stress concentration at the fiber / resin interface.
【0054】[0054]
【発明の効果】本発明は、以上説明したような形態で実
施され、本発明によれば、補強基材を構成するガラス繊
維の表面を柔軟性樹脂層(界面層)で覆うことにより、
熱的衝撃負荷や機械的加工時及び使用応力負荷時に発生
する界面の応力が有効に緩和されるので、結果として損
傷の発生を抑制し、信頼性の高い複合材料の積層体が提
供できる。According to the present invention, the surface of the glass fiber constituting the reinforcing substrate is covered with a flexible resin layer (interface layer).
Since the stress at the interface generated at the time of thermal shock load, mechanical processing, and application stress load is effectively relieved, damage can be suppressed as a result, and a highly reliable composite material laminate can be provided.
【図1】(a)、(b)、(c)は、本発明の実施の形
態における積層体の概略的構成図である。FIGS. 1A, 1B, and 1C are schematic structural views of a laminate according to an embodiment of the present invention.
【図2】比較例1及び実施例1における引張応力−時間
−AE線図を示すグラフである。FIG. 2 is a graph showing a tensile stress-time-AE diagram in Comparative Example 1 and Example 1.
【図3】(a)、(b)は、比較例1の積層体における
引張試験時の損傷発生箇所を示す積層体の概略的断面図
とガラス繊維束の端面図である。3 (a) and 3 (b) are a schematic cross-sectional view of a laminated body of a laminate of Comparative Example 1 showing damage occurrence points during a tensile test and an end view of a glass fiber bundle.
【図4】本発明の実施の形態における積層体の曲げ強度
の処理濃度依存性を比較したグラフである。.FIG. 4 is a graph comparing the processing concentration dependence of the bending strength of the laminate according to the embodiment of the present invention. .
【図5】本発明の実施の形態におけるプリプレグの製造
を行うプロセスの構成を示す概略図である。FIG. 5 is a schematic diagram showing a configuration of a process for manufacturing a prepreg according to the embodiment of the present invention.
1 積層体 2 低弾性樹脂 3 マトリクス樹脂 4 マイクロクラック 5 繊維束間はく離部 10 ガラス繊維 11 補強基材 12 ガラス繊維束 DESCRIPTION OF SYMBOLS 1 Laminated body 2 Low elastic resin 3 Matrix resin 4 Micro crack 5 Separation part between fiber bundles 10 Glass fiber 11 Reinforcement base material 12 Glass fiber bundle
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F072 AA01 AA04 AA06 AA07 AB09 AB28 AB29 AC08 AD13 AD23 AD38 AG03 AG16 AG17 AH02 AH22 AJ04 AK05 AK13 AK14 AL09 4F205 AD04 AD16 AD34 HA03 HA12 HA14 HA22 HA35 HB01 HC16 HF05 4L033 AA09 AB01 AC02 AC15 CA45 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 4F072 AA01 AA04 AA06 AA07 AB09 AB28 AB29 AC08 AD13 AD23 AD38 AG03 AG16 AG17 AH02 AH22 AJ04 AK05 AK13 AK14 AL09 4F205 AD04 AD16 AD34 HA03 HA12 HA14 HA22 HA35 HB01 HC16 ACO4 AC15 CA45
Claims (8)
樹脂を含浸させたプリプレグを積層した積層体におい
て、前記補強基材を構成するガラス繊維表面を前記マト
リクス樹脂の50%以下の弾性率を有する低弾性樹脂で被
覆して柔軟性界面層を形成したことを特徴とする積層
体。1. A laminate in which a prepreg in which a matrix resin is impregnated with a reinforcing substrate made of glass fiber is laminated, wherein the surface of the glass fiber constituting the reinforcing substrate has an elastic modulus of 50% or less of the matrix resin. A laminate comprising a flexible interface layer formed by coating with a low elasticity resin.
下、あるいは引張破断ひずみが20%以上のいずれかであ
って、前記マトリクス樹脂の引張弾性率が2.0 GPa以
上、あるいは引張破断ひずみが10%以下のいずれかの特
性を有することを特徴とする請求項1記載の積層体。2. The low elasticity resin has a tensile modulus of not more than 1.OGPa or a tensile breaking strain of 20% or more, and the matrix resin has a tensile modulus of not less than 2.0 GPa or a tensile breaking strain. Has a characteristic of 10% or less.
ルで変性されたイソフタル酸系樹脂であることを特徴と
する請求項1又は2記載の積層体。3. The laminate according to claim 1, wherein the low elasticity resin is an isophthalic acid-based resin modified with polypropylene glycol.
付着率が0.1〜3.5%であることを特徴とする請求項1〜
3のいずれか1項に記載の積層体。4. The method according to claim 1, wherein the adhesion rate of the low elasticity resin to the surface of the glass fiber is 0.1 to 3.5%.
4. The laminate according to any one of items 3.
に損傷が生じやすい部位に前記プリプレグを配すること
を特徴とする請求項1〜4のいずれか1項に記載の積層
体。5. The laminate according to claim 1, wherein the prepreg is disposed at a portion where the laminate is likely to be damaged during the processing.
いることを特徴とする請求項1〜5のいずれか1項に記
載の積層体。6. The laminate according to claim 1, wherein the laminate is used as a structural member for corrosion resistance.
柔軟性界面層を形成した後、前記プリプレグをマトリッ
クス樹脂とともに積層してハンドレイアップ、RTM、
プレス成形を行うことにより積層体を成形する方法にお
いて、マトリクス樹脂に対して弾性率の小さいあるいは
引張破断ひずみの大きい樹脂でガラス繊維からなる補強
基材を被覆する工程と、前記低弾性樹脂を乾燥させる工
程と、前記補強基材間に前記マトリクス樹脂を含浸させ
る工程と、前記マトリクス樹脂を低弾性樹脂と共に硬化
させる工程とを含むことを特徴とする積層体の製造方
法。7. After forming a flexible interface layer on the surface of the glass fiber constituting the reinforcing substrate, the prepreg is laminated with a matrix resin to perform hand lay-up, RTM,
In a method of molding a laminate by performing press molding, a step of coating a reinforcing substrate made of glass fiber with a resin having a low elastic modulus or a large tensile breaking strain with respect to a matrix resin, and drying the low elastic resin A method of manufacturing a laminate, comprising: a step of impregnating the matrix resin between the reinforcing base materials; and a step of curing the matrix resin together with a low elasticity resin.
トリックス樹脂に相溶することで接着性を上げ、FRP
として成形後、後硬化時に柔軟性界面層の硬化が始まる
様にすることを特徴とする請求項7記載の積層体の製造
方法。8. The reaction of the flexible interface layer does not proceed at room temperature, but increases the adhesiveness by being compatible with the matrix resin.
The method for producing a laminate according to claim 7, wherein after the molding, the curing of the flexible interface layer is started at the time of post-curing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000113045A JP2001294688A (en) | 2000-04-14 | 2000-04-14 | Laminate with flexible interfacial layer and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000113045A JP2001294688A (en) | 2000-04-14 | 2000-04-14 | Laminate with flexible interfacial layer and method for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001294688A true JP2001294688A (en) | 2001-10-23 |
Family
ID=18625088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000113045A Pending JP2001294688A (en) | 2000-04-14 | 2000-04-14 | Laminate with flexible interfacial layer and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001294688A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003047830A1 (en) * | 2001-12-06 | 2003-06-12 | Toray Industries, Inc. | Fiber-reinforced composite material and method for production thereof |
KR101051634B1 (en) * | 2009-04-28 | 2011-07-26 | 제일모직주식회사 | Flexible substrate for display panel and manufacturing method thereof |
CN102173062A (en) * | 2011-02-28 | 2011-09-07 | 陈晓宇 | Glass fiber reinforced polypropylene compounding method |
-
2000
- 2000-04-14 JP JP2000113045A patent/JP2001294688A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003047830A1 (en) * | 2001-12-06 | 2003-06-12 | Toray Industries, Inc. | Fiber-reinforced composite material and method for production thereof |
US7208220B2 (en) | 2001-12-06 | 2007-04-24 | Toray Industries, Inc. | Fiber-reinforced composite material and method for production thereof |
KR101051634B1 (en) * | 2009-04-28 | 2011-07-26 | 제일모직주식회사 | Flexible substrate for display panel and manufacturing method thereof |
CN102173062A (en) * | 2011-02-28 | 2011-09-07 | 陈晓宇 | Glass fiber reinforced polypropylene compounding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jawaid et al. | Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites | |
US20170232702A1 (en) | Molded object and method of manufacturing same | |
Sarikanat | The influence of oligomeric siloxane concentration on the mechanical behaviors of alkalized jute/modified epoxy composites | |
KR101659591B1 (en) | Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby | |
WO1998026912A1 (en) | Carbon fiber prepreg and method of production thereof | |
KR960000558B1 (en) | Oriented prepreg and carbon fiber reinforced composite | |
JP2017119936A (en) | Sizing agent coated carbon fiber, manufacturing method of sizing agent coated carbon fiber, prepreg and carbon fiber reinforced composite material | |
Yaghoobi et al. | Mechanical performance of a novel environmentally friendly basalt‐elium® thermoplastic composite and its stainless steel‐based fiber metal laminate | |
WO2016144629A1 (en) | Structured flock fiber reinforced layer | |
JPH0575575B2 (en) | ||
Paglicawan et al. | Water uptake and tensile properties of plasma treated abaca fiber reinforced epoxy composite | |
JP2001294688A (en) | Laminate with flexible interfacial layer and method for producing the same | |
JP2017203107A (en) | Molding material and fiber-reinforced composite material | |
JP2002212320A (en) | Prepreg and very low temperature tank | |
El-Wazery | Mechanical characterization of glass-basalt-carbon/polyester hybrid composites | |
JP4863630B2 (en) | Carbon fiber reinforced resin | |
JP2017155372A (en) | Sizing agent applied carbon fiber, manufacturing method of sizing agent applied carbon fiber, prepreg and carbon fiber reinforced composite material | |
JP6015027B2 (en) | Sizing agent, carbon fiber bundle and method for producing carbon fiber bundle | |
JP2004169260A (en) | Carbon fiber strand | |
Manap et al. | Effect of fibre treatment on longitudinal and transverse tensile properties of unidirectional kenaf composite | |
Sham et al. | Effects of coupling agent concentration and hygrothermal ageing on the fracture behaviour of glass woven fabric-reinforced vinyl ester laminates | |
Guruprasad et al. | Influence on mechanical properties of epoxy polymer matrix composites reinforced with surface treated woven strand mat E-glass fibers | |
JP2012251043A (en) | Thread, sheet-like reinforcing fiber base material, preform and method for manufacturing fiber reinforced composite material | |
JP2001138426A (en) | Laminate and method of manufacturing the same | |
JP5582777B2 (en) | Tubular fiber reinforced composite material with corrosion resistant layer |