JP2001294490A - Method of producing ceramic porous body - Google Patents

Method of producing ceramic porous body

Info

Publication number
JP2001294490A
JP2001294490A JP2000109657A JP2000109657A JP2001294490A JP 2001294490 A JP2001294490 A JP 2001294490A JP 2000109657 A JP2000109657 A JP 2000109657A JP 2000109657 A JP2000109657 A JP 2000109657A JP 2001294490 A JP2001294490 A JP 2001294490A
Authority
JP
Japan
Prior art keywords
firing
porous body
producing
ceramic porous
final shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000109657A
Other languages
Japanese (ja)
Inventor
Shunichi Suzuki
俊一 鈴木
Tatsuya Nakano
達也 中野
Yasuhito Nakajima
泰仁 中島
Hirokazu Matsumoto
浩和 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2000109657A priority Critical patent/JP2001294490A/en
Publication of JP2001294490A publication Critical patent/JP2001294490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a ceramic porous body, by which the ceramic porous body uniform in density and high in dimensional precision can be produced in various forms even when the ceramic porous body has partially projecting or recessed parts or different thicknesses. SOLUTION: In the method of producing the ceramic porous body having partially projecting or recessed parts or different thicknesses, the partially projecting or recessed parts or the part having different thicknesses are formed in such a manner that the forms of these parts are larger than the final forms, and at the stage when a formed body or a calcined body is produced and before firing, the formed body or the calcined body is subjected to cutting processing so as to make it a final form, and thereafter fired. For example, a thick part or bottom part of the formed body is worked so as to make it a final form using a lathe 15, or the like. A final product is obtained by firing the formed body subjected to the working in an electric furnace or a gas furnace.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はセラミックス多孔体
の製造方法に係り、特に寸法精度の良好なセラミックス
多孔体を製造する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a porous ceramic body, and more particularly to a method for manufacturing a porous ceramic body having good dimensional accuracy.

【0002】[0002]

【従来の技術】各種燃焼機器から排出される排ガスに含
まれる煤塵等を除去するセラミックスフィルタとして、
特開昭55−119413号公報に示されるような有底
筒状体で開口端近傍の隔壁が他の隔壁よりも厚い環状肉
厚部を形成する形状のものがある。このフィルタは前記
開口端近傍の環状肉厚部が懸架支持部として用いられて
いる。
2. Description of the Related Art As a ceramic filter for removing dust and the like contained in exhaust gas discharged from various combustion equipment,
There is a bottomed cylindrical body as disclosed in Japanese Patent Application Laid-Open No. 55-119413, in which a partition wall near an opening end forms an annular thick portion that is thicker than other partition walls. In this filter, an annular thick portion near the opening end is used as a suspension support.

【0003】このフィルタは、連続した多数の細孔から
なる多孔質セラミックスから構成され、平均細孔径で1
0μm〜100μm、気孔率で25〜60%程度のもの
が用いられている。
[0003] This filter is composed of a porous ceramic having a large number of continuous fine pores, and has an average pore diameter of 1 μm.
A material having a porosity of about 0 to 100 μm and a porosity of about 25 to 60% is used.

【0004】このようなセラミックスフィルタの製造方
法としては主に以下の2つの方法が用いられている。 (1) ランマー成形 特公昭63−56816号に示されているような成形型
内下方に成形原料を徐々に充填し、同時に、ランマーを
上下動させて一定の圧密度に圧縮成形する方法である。 (2) CIP成形 変形可能な成形型(ゴム型など)に原料粉体を充填し、
これにパスカルの原理に基づき水、油などの液体を加圧
媒体にして前記成形型を静水圧にて圧縮して成形する方
法である。
The following two methods are mainly used as a method for manufacturing such a ceramic filter. (1) Rammer molding This is a method of gradually filling the lower part of a molding die with a molding material as described in JP-B-63-56816, and simultaneously moving the rammer up and down to compression-mold to a constant pressure density. . (2) CIP molding A raw material powder is filled in a deformable mold (such as a rubber mold),
On the other hand, based on Pascal's principle, a method is used in which a liquid such as water or oil is used as a pressurized medium and the mold is compressed under hydrostatic pressure to form the liquid.

【0005】なお、成形原料の違いにより、多孔体は、 上記細孔径、気孔率を得るために粒度50μm〜1
000μmの骨材粒子と、これら骨材粒子を結合させる
セラミックス系融材、又はガラス系融材から成る粒子結
合型の多孔体; 焼成過程の焼結反応を利用して上記細孔径、気孔率
を得る反応焼結型の多孔体;に分類される。
[0005] In order to obtain the above pore diameter and porosity, the porous body has a particle size of 50 μm to
000 μm aggregate particles, and a particle-bonded porous body composed of a ceramic-based or glass-based fusion material that binds the aggregate particles; the above-described pore diameter and porosity are determined by using a sintering reaction in a firing process. The reaction-sintered porous body to be obtained.

【0006】[0006]

【発明が解決しようとする課題】以上の成形方法には以
下に示す問題点がある。 (1) ランマー成形 成形原料を徐々に充填し、圧密させる操作を繰り返
すために成形が完了するまでの時間がかかり、製造コス
トが大きくなる。 原料充填と圧密の操作が繰り返されるために、圧密
操作ごとの境界面の不均一、密度むらが生じ、それらに
起因する変形、乾燥キレ、焼成キレが生じ歩留まりの低
下の原因となる。 従来の成形方法では、開口端近傍の環状肉厚部の形
状は、図1に示したフィルタ11のような、開口端に向
かって外方に拡大する傾斜面形状にする必要がある。こ
れは従来の成形法が成形体の肉厚の違いに起因した密度
の不均一が生じ易いためであり、特に傾斜面を有しない
図2のフィルタ12のような形状では、従来の成形方法
では肉厚部隔壁の密度が他の肉厚部隔壁に比べ低くな
り、成形が不可能であった。
The above-mentioned molding methods have the following problems. (1) Rammer molding Since the operation of gradually filling the molding raw material and consolidating is repeated, it takes time until the molding is completed, and the production cost increases. Since the operations of material filling and consolidation are repeated, non-uniformity and uneven density of the boundary surface occur in each consolidation operation, resulting in deformation, drying cracks, and firing cracks, which lowers the yield. In the conventional molding method, the shape of the annular thick portion near the opening end needs to be an inclined surface shape that expands outward toward the opening end, such as the filter 11 shown in FIG. This is because the conventional molding method is liable to cause non-uniform density due to the difference in the thickness of the molded body. Particularly, in the case of the shape such as the filter 12 of FIG. The density of the thick wall partition was lower than that of the other thick wall partitions, and molding was impossible.

【0007】このように従来のランマー成形法では、成
形体密度の不均一を回避するために成形可能な形状が限
定されてしまうという欠点がある。
As described above, the conventional rammer molding method has a disadvantage that the shape that can be molded is limited in order to avoid unevenness in the density of the molded body.

【0008】(2) CIP成形 (Cold Isostatic Pre
ssing:冷間静水圧成形) CIP成形は密度の均一な成形体が得られる点で前記ラ
ンマー成形に比べて優れた成形法である。
(2) CIP molding (Cold Isostatic Pre
(Ssing: cold isostatic pressing) CIP molding is a molding method superior to the rammer molding in that a molded article having a uniform density can be obtained.

【0009】しかしながら、このCIP成形法では、型
の変形を利用して成形するために、開口端近傍の環状肉
厚部の形状がゴム型の変形可能な形状に限定され、この
ため得られる製品形状は、図3に示すフィルタ13のよ
うに丸みを帯びた形状になり、図2に示すようなシャー
プな形状のフィルタ形状を成形することが困難であっ
た。
However, in this CIP molding method, the shape of the annular thick portion near the opening end is limited to the deformable shape of the rubber mold because molding is performed by utilizing the deformation of the mold. The shape was rounded like the filter 13 shown in FIG. 3, and it was difficult to form a sharp filter shape as shown in FIG.

【0010】また、フィルタの底部形状についても、肉
厚の異なる部分の成形は圧縮度がそれぞれ異なるため
に、最終形状のものを得るためにはゴム型設計に多大な
時間、労力を要する。また、図2に近い形状のものが得
られたとしても、原料粉体の種類・性状(特に平均粒径
・圧縮比)が変わった場合には異なる型を使用する必要
がありコストアップの原因となっていた。
Regarding the shape of the bottom portion of the filter, since the molding of portions having different wall thicknesses has different compression degrees, it takes a lot of time and effort to design the rubber mold to obtain the final shape. Even if a shape close to that shown in FIG. 2 is obtained, it is necessary to use a different mold if the type and properties of the raw material powder (especially the average particle size and compression ratio) change, which causes an increase in cost. Had become.

【0011】本発明は、このような問題点を解決し、部
分的な凸部を有するセラミックス多孔体を高寸法精度に
て製造することができるセラミックス多孔体の製造方法
を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide a method for manufacturing a ceramic porous body capable of manufacturing a ceramic porous body having a partially convex portion with high dimensional accuracy. I do.

【0012】[0012]

【課題を解決するための手段】本発明のセラミックス多
孔体の製造方法は、少なくとも一部分を最終形状よりも
大き目に成形し、焼成前の成形体、若しくは仮焼体の段
階で切削加工して最終形状とし、その後焼成することを
特徴とするものである。
According to the method for producing a porous ceramic body of the present invention, at least a portion is formed into a larger shape than the final shape, and is cut at the stage of a formed body before firing or a calcined body. It is characterized in that it is shaped and then fired.

【0013】かかる本発明のセラミックス多孔体の製造
方法は、例えば該凸部となる部分、凹部となる部分、あ
るいは肉厚が変化する部分については最終形状よりも大
き目又は浅目に成形し、次いで切削して最終形状とする
ため、寸法精度の良い成形体が得られる。
In the method for producing a porous ceramic body according to the present invention, for example, the convex portion, the concave portion, or the portion where the thickness changes are formed to be larger or shallower than the final shape, Since it is cut into the final shape, a molded body with good dimensional accuracy can be obtained.

【0014】なお、セラミックス多孔体の場合、最終の
焼成体で加工すると加工の際の削り粉が製品の多孔質部
分に侵入し目詰まりの原因となり、本来の多孔質フィル
タとしての機能が得られなくなるという問題を生じるの
に対し、焼成前の成形体や仮焼体で加工する場合、特に
焼成の際の反応により多孔性が発現する反応焼結型の多
孔体(特許2823140、特許2800134、特公
平2−12899記載の多孔体)では、削り粉が成形体
の中に侵入したとしても、焼成の際の反応により多孔性
が発現するため、先の削り粉の影響は非常に少ない。従
って、本発明は反応焼結体の多孔体の製造方法に適用す
るのに好適である。
In the case of a porous ceramic body, when processing is performed with the final fired body, shavings generated during the processing enter the porous portion of the product and cause clogging, and the original function as a porous filter can be obtained. On the other hand, in the case of processing with a molded body or a calcined body before firing, a reaction sintered type porous body that develops porosity due to a reaction at the time of firing (Japanese Patent No. 2823140, Japanese Patent No. 2800134, In the case of the porous body described in Japanese Patent Publication No. Hei 2-12899), even if the shavings enter the molded body, the effect of the shavings is very small because the reaction at the time of firing develops porosity. Therefore, the present invention is suitable for application to a method for producing a porous body of a reaction sintered body.

【0015】粒子結合型の多孔体の場合は、特に100
μm以上の孔径の大きい多孔体を得る場合には、成形体
の孔径と焼成の後の孔径がほとんど変わらないため、成
形体の段階で加工した場合、成形体の孔を塞いだ削り粉
は焼成の後も残存し、焼成後に加工する場合と同様に目
詰まりなどの問題が生じ、また、500μm以上の粗大
粒子を骨材に用いる場合、成形体の強度が弱く加工が困
難なことや、骨材粒子の剥落による面状の悪化などが生
じるので、孔径が100μm未満としたり骨材粒子を5
00μm未満とするのが好ましい。
[0015] In the case of a particle-bound type porous body, particularly 100
When obtaining a porous body having a large pore diameter of μm or more, the pore diameter of the compact and the pore diameter after firing hardly change, so when processing at the stage of the compact, the shaving powder that closed the pores of the compact was fired. After the baking, problems such as clogging occur as in the case of processing after firing, and when coarse particles of 500 μm or more are used for the aggregate, the strength of the molded body is weak and processing is difficult, Since the surface condition may be deteriorated due to the peeling of the aggregate particles, the pore size may be reduced to less than 100 μm or the aggregate particles may be reduced to 5 μm.
Preferably it is less than 00 μm.

【0016】[0016]

【発明の実施の形態】以下、図面を参照して実施の形態
について説明する。この実施の形態においては図2に示
す形状のセラミックスフィルタを成形する。この成形体
は、一端が開放し、他端が閉じ、この他端側に厚肉状に
鍔部ないしはフランジ部を有した形状である。
Embodiments of the present invention will be described below with reference to the drawings. In this embodiment, a ceramic filter having the shape shown in FIG. 2 is formed. This molded body has a shape in which one end is open, the other end is closed, and the other end side has a thick flange or flange.

【0017】(1) まず、図5(1)のように原料粉
体を型に充填する。原料を充填した型(図5(2))を
成形機に挿入し成形する(図5(3))。この場合、成
形終了後の成形体が、図4に示す成形体14のように、
最終的に開口端肉厚部、及び底部になる部分を最終形状
よりも大きくなるように成形する。
(1) First, a raw material powder is filled in a mold as shown in FIG. The mold filled with the raw material (FIG. 5 (2)) is inserted into a molding machine and molded (FIG. 5 (3)). In this case, the molded body after the completion of the molding is similar to the molded body 14 shown in FIG.
Finally, the opening end thick portion and the bottom portion are formed so as to be larger than the final shape.

【0018】なお、図5(1)では、芯金4がラバーモ
ールド5に同軸的に内挿され、両者の間の下部が下蓋1
bによって閉鎖されている。上蓋1aは外されており、
芯金4とラバーモールド5との間に原料ホッパー2から
原料粉体が供給される。原料を充填した後、図5(2)
のように上蓋1aを装着し、これを図5(3)のように
加圧具22の保持ケース6内にセットし、締付具7a,
7bによって上下から挟みつける。加圧具22は、保持
ケース6の内部に加圧筒体9が内嵌されている。保持ケ
ース6は、剛体の外筒23と、加圧筒体9をバックアッ
プする内筒21とからなり、外筒23と内筒21の間に
環状の圧力室24が形成されている。そして、加圧液体
供給口10を介して加圧筒体9と内筒21との間に加圧
液体8が供給される。加圧液体8の流入とともに、加圧
筒体9を介してラバーモールド5を外側から強力に加圧
し、CIP成形する。
In FIG. 5A, the core 4 is coaxially inserted into the rubber mold 5, and the lower part between the two is the lower lid 1.
b. The upper lid 1a has been removed,
Raw material powder is supplied from the raw material hopper 2 between the metal core 4 and the rubber mold 5. After filling the raw materials, FIG.
The upper lid 1a is attached as shown in FIG. 5, and this is set in the holding case 6 of the pressing tool 22 as shown in FIG.
7b sandwich it from above and below. The pressurizing tool 22 has the pressurized cylindrical body 9 fitted inside the holding case 6. The holding case 6 includes a rigid outer cylinder 23 and an inner cylinder 21 for backing up the pressure cylinder 9, and an annular pressure chamber 24 is formed between the outer cylinder 23 and the inner cylinder 21. Then, the pressurized liquid 8 is supplied between the pressurized cylinder 9 and the inner cylinder 21 via the pressurized liquid supply port 10. With the inflow of the pressurized liquid 8, the rubber mold 5 is strongly pressurized from the outside via the pressurized cylindrical body 9 to perform CIP molding.

【0019】(2) このようにCIP成形することに
より得られた成形体を、図6の如く、旋盤15による加
工などで最終形状の肉厚部、底部に加工する。なお、こ
の加工は、図6にあっては、成形体14の両端を保持具
15a,15bによって保持し、成形体14をその軸心
回りに回転させて不要部分14a,14bをバイト15
cによって切削除去している。成形体強度によっては、
最終焼成温度よりも低い温度で仮焼した後に行ってもよ
い。
(2) The molded body obtained by the CIP molding as described above is processed into a thick part and a bottom part of the final shape by processing with a lathe 15, as shown in FIG. In this process, in FIG. 6, both ends of the molded body 14 are held by holders 15a and 15b, and the molded body 14 is rotated around its axis to remove unnecessary portions 14a and 14b.
Cutting is removed by c. Depending on the strength of the compact,
It may be performed after calcining at a temperature lower than the final firing temperature.

【0020】(3) 加工した成形体を電気炉、若しく
はガス炉などで焼成し最終製品を得る。
(3) The formed product is fired in an electric furnace or a gas furnace to obtain a final product.

【0021】[0021]

【実施例】以下、具体的な実施例について説明する。Embodiments Hereinafter, specific embodiments will be described.

【0022】実施例1 反応焼結型多孔体 所定粒度に調整した珪質ろう石、石灰石、粘土を重量割
合で70.2:22.1:7.7の割合に調合(CaO
14.0重量%、SiO74重量%、Al
2重量%)した原料調合物に水を外割で80重量%、分
散剤を約5%添加し混合し、ボールミリング混合し、こ
れに有機バインダーとしてPVA(ポリビニールアルコ
ール)を加え、スプレードライヤーで乾燥・造粒し原料
粉を得た。これを図5に示したゴム型に充填した後、ゴ
ム型を成形機に挿入し、成形圧力200kgf/cm
の圧力で成形した。得られた成形体(図4の形状のも
の。長さ1500mm)を旋盤加工で図2の形状に加工
し、これを焼成炉で最高温度1200℃に1時間保持し
て焼成した。これにより、主結晶相がクォーツ(石英
(SiO)、一部クリストバライトへ転移)、平均細
孔径40μm、気孔率35%の多孔質フィルタが得られ
た。このフィルタは、クラックの発生がなく、焼成によ
る変形も非常に少ない良好なものであった。
Example 1 Reactive sintered porous body Silica-bearing stone, limestone and clay adjusted to a predetermined particle size are divided by weight.
In a ratio of 70.2: 22.1: 7.7 in total (CaO
 14.0% by weight, SiO274% by weight, Al 2O31
2% by weight) and 80% by weight of water
Add about 5% powder and mix, mix with ball milling,
PVA (polyvinyl alcohol) as an organic binder
), Dried and granulated with a spray drier
Powder was obtained. After filling this into the rubber mold shown in FIG.
Insert the mold into the molding machine and press the molding pressure 200kgf / cm3
At a pressure of Obtained molded product (the shape of FIG.
of. (Length 1500mm) by lathe processing into the shape of Fig. 2
Then, this is kept in a firing furnace at a maximum temperature of 1200 ° C. for one hour.
And fired. This makes the main crystal phase quartz (quartz)
(SiO2), Partly transferred to cristobalite), average fine
A porous filter having a pore size of 40 μm and a porosity of 35% can be obtained.
Was. This filter has no cracks and is fired.
The deformation was very good.

【0023】実施例2 反応焼結型多孔体 原料を合成ムライト、滑石(タルク)、珪石とし、これ
らの重量割合を53:39:8としたこと以外は実施例
1と同様に原料を調製し成形、加工したものを焼成炉で
最高温度1420℃に1時間保持して焼成した。得られ
た焼成体は、主結晶がコーディエライトで一部ムライト
から成り、平均細孔径30μm、気孔率35%の多孔質
フィルタであり、この場合もクラックの発生がなく、焼
成による変形も非常に少ない良好なものであった。
Example 2 A raw material was prepared in the same manner as in Example 1 except that the reaction sintering type porous material was synthetic mullite, talc (talc), and silica stone, and the weight ratio thereof was 53: 39: 8. The molded and processed product was held in a firing furnace at a maximum temperature of 1420 ° C. for 1 hour and fired. The obtained fired body is a porous filter whose main crystal is cordierite and is partially composed of mullite and has an average pore diameter of 30 μm and a porosity of 35%. Was less favorable.

【0024】実施例3 粒子結合型多孔体 原料を電融アルミナ(平均粒径50μm)、珪石(平均
粒径1μm)とし、これらの重量割合を95:5とした
こと以外は実施例1と同様に原料を調製し成形、加工し
たものを焼成炉で最高温度1600℃に1時間保持して
焼成した。得られた焼成体は、主結晶がコランダムで一
部ムライトから成り、平均細孔径15μm、気孔率40
%の多孔質フィルタであり、この場合もクラックの発生
がなく、焼成による変形も非常に少ない良好なものであ
った。
Example 3 The same as Example 1 except that the fused alumina (average particle size 50 μm) and silica (average particle size 1 μm) were used as raw materials and the weight ratio thereof was 95: 5. The raw material was prepared, molded and processed, and was fired at a maximum temperature of 1600 ° C. for 1 hour in a firing furnace. In the obtained fired body, the main crystal was made of corundum and partly made of mullite, the average pore diameter was 15 μm, and the porosity was 40.
% Of the porous filter. In this case as well, no crack was generated and the deformation due to firing was very small.

【0025】[0025]

【発明の効果】以上のように、本発明のセラミックス多
孔体の製造方法によると、次の効果が得られる。 (1) 凸部、凹部あるいは肉厚が変化する部分を有す
るセラミックス多孔体の成形方法に関して、従来の成形
方法に比べて寸法精度が良く、密度の均一な製品を得る
ことができる。 (2) 開口端肉厚部や底部の形状が変わったり、原料
の種類、性状が変化しても、型を変更することなく成形
体の加工で任意の形状に対応が可能となりコスト的に有
利である。 (3) 従来の成形方法では不可能な例えば図3に示す
ような開口端肉厚部の形状のものであっても製造するこ
とができる。
As described above, according to the method for manufacturing a porous ceramic body of the present invention, the following effects can be obtained. (1) With respect to a method of forming a porous ceramic body having a convex portion, a concave portion, or a portion where the thickness changes, a product having better dimensional accuracy and uniform density can be obtained as compared with a conventional forming method. (2) Even if the shape of the thick portion or the bottom of the opening end changes or the type or properties of the raw material change, it is possible to respond to an arbitrary shape by processing the molded body without changing the mold, which is advantageous in cost. It is. (3) For example, it is possible to manufacture even the shape of the thick portion at the opening end as shown in FIG. 3 which is impossible by the conventional molding method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】セラミックス多孔体としてのセラミックスフィ
ルタの一例を示す断面図である。
FIG. 1 is a sectional view showing an example of a ceramic filter as a ceramic porous body.

【図2】セラミックス多孔体としてのセラミックスフィ
ルタの一例を示す断面図である。
FIG. 2 is a sectional view showing an example of a ceramic filter as a ceramic porous body.

【図3】セラミックス多孔体としてのセラミックスフィ
ルタの一例を示す断面図である。
FIG. 3 is a sectional view showing an example of a ceramic filter as a ceramic porous body.

【図4】CIP成形体(加工前)の断面図である。FIG. 4 is a sectional view of a CIP molded body (before processing).

【図5】CIP成形方法を示す断面図である。FIG. 5 is a sectional view showing a CIP molding method.

【図6】成形体の加工方法を示す断面図である。FIG. 6 is a cross-sectional view illustrating a method for processing a molded body.

【符号の説明】[Explanation of symbols]

11,12,13 セラミックスフィルタ 14 成形体 15 旋盤 11, 12, 13 Ceramics filter 14 Molded product 15 Lathe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中島 泰仁 愛知県常滑市鯉江本町5丁目1番地 株式 会社イナックス内 (72)発明者 松本 浩和 愛知県常滑市鯉江本町5丁目1番地 株式 会社イナックス内 Fターム(参考) 4D019 AA01 BA05 BA06 BA07 BB06 CA03 CB06 4G019 GA01 4G030 AA08 AA36 AA37 CA09 GA05 GA14 GA16 HA05 HA06 HA25 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yasuhito Nakajima 5-1-1 Koiehonmachi, Tokoname-shi, Aichi Prefecture Inax Corporation (72) Inventor Hirokazu Matsumoto 5-1-1 Koiehonmachi, Tokoname-city, Aichi Prefecture Inax Corporation F term (reference) 4D019 AA01 BA05 BA06 BA07 BB06 CA03 CB06 4G019 GA01 4G030 AA08 AA36 AA37 CA09 GA05 GA14 GA16 HA05 HA06 HA25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 セラミックス多孔体を製造する方法にお
いて、少なくとも一部分を最終形状よりも大き目に成形
し、焼成前の成形体、若しくは仮焼体の段階で切削加工
して最終形状とし、その後焼成することを特徴とするセ
ラミックス多孔体の製造方法。
In a method of manufacturing a porous ceramic body, at least a part is formed into a larger shape than a final shape, and is cut into a final shape by cutting at a stage of a green body before calcining or a calcined body, and then calcined. A method for producing a porous ceramic body, comprising:
【請求項2】 請求項1において、部分的に突出した凸
部を有するセラミックス多孔体を製造する方法であっ
て、該凸部となる部分を最終形状よりも大き目に成形
し、焼成前の成形体、若しくは仮焼体の段階で切削加工
して最終形状とし、その後焼成することを特徴とするセ
ラミックス多孔体の製造方法。
2. The method according to claim 1, wherein the step of forming the convex portion is made larger than the final shape, and the forming is performed before firing. A method for producing a porous ceramic body, comprising cutting at the stage of a body or a calcined body to obtain a final shape, followed by firing.
【請求項3】 請求項1において、部分的に凹陥した凹
部を有するセラミックス多孔体を製造する方法であっ
て、該凹部となる部分を最終形状よりも浅目に成形し、
焼成前の成形体、若しくは仮焼体の段階で切削加工して
最終形状とし、その後焼成することを特徴とするセラミ
ックス多孔体の製造方法。
3. The method according to claim 1, wherein the porous ceramic body has a partially recessed concave portion, wherein the concave portion is formed to be shallower than a final shape.
A method for producing a porous ceramic body, comprising cutting a molded body or a calcined body before firing into a final shape, and then firing.
【請求項4】 請求項1において、部分的に肉厚が変化
した部分を有するセラミックス多孔体を製造する方法で
あって、該部分を最終形状よりも大き目に成形し、焼成
前の成形体、若しくは仮焼体の段階で切削加工して最終
形状とし、その後焼成することを特徴とするセラミック
ス多孔体の製造方法。
4. The method for producing a porous ceramic body according to claim 1, wherein the ceramic body has a portion having a partially changed thickness, wherein the portion is formed to be larger than a final shape, Alternatively, a method for producing a porous ceramic body, characterized in that a cutting process is performed at a stage of a calcined body to obtain a final shape, and thereafter, a firing is performed.
JP2000109657A 2000-04-11 2000-04-11 Method of producing ceramic porous body Pending JP2001294490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000109657A JP2001294490A (en) 2000-04-11 2000-04-11 Method of producing ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000109657A JP2001294490A (en) 2000-04-11 2000-04-11 Method of producing ceramic porous body

Publications (1)

Publication Number Publication Date
JP2001294490A true JP2001294490A (en) 2001-10-23

Family

ID=18622316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109657A Pending JP2001294490A (en) 2000-04-11 2000-04-11 Method of producing ceramic porous body

Country Status (1)

Country Link
JP (1) JP2001294490A (en)

Similar Documents

Publication Publication Date Title
JPH03275309A (en) Manufacture of ceramic honeycomb structure
CN101186052A (en) Filter-press molding mold of ceramic component and filter-press molding method
EP0300681B1 (en) Shaping molds and shaping of ceramic bodies by using such shaping molds
EP1063005B1 (en) Ceramic membrane
CN1268584C (en) Process for preparing gradient porous ceramic filter element
CN106588073A (en) Process for preparing novel laminated porous ceramic
EP0395203A2 (en) Refractory supports
JP2001294490A (en) Method of producing ceramic porous body
CN114988848B (en) Ceramic tile with dovetail back texture structure and preparation method thereof
KR20200040339A (en) Ceramic filter manufacturing method by mixed ceramic slurry injection molding
JP2006513841A (en) Method of manufacturing filter element and filter element obtained by the method
EP0704414A1 (en) Alumina fiber granules, process for producing the granules and a process for producing a porous article using the granules
RU2170715C2 (en) Method of preparing products from sintered glass crystalline lithium alumosilicate material
JP2788182B2 (en) Ceramic raw materials
JPH08169767A (en) Ceramic preform and production of ceramic product utilizing same
CN115180928B (en) Porous ceramic blank and preparation method thereof, porous ceramic material and application thereof
Kennard Ceramic Component Fabrication
JPH04325473A (en) Production of high strength porous alumina sintered body
JP3155660B2 (en) Manufacturing method of ceramic casting mold
JPS63221010A (en) Molding die, molding method of article by using said die and pressure casting molding method
RU2208001C1 (en) Method of manufacturing hollow ceramic filter element
CN117069507A (en) Formula and production process of collision-resistant reinforced porcelain
JPH01239071A (en) Production of ceramic porous material
JPH042704A (en) Wet-type compacting die for metal powder
JPH02238905A (en) Manufacture of ceramic product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061031