JP2001292982A - Evaluation system of stiffness in shoulders - Google Patents

Evaluation system of stiffness in shoulders

Info

Publication number
JP2001292982A
JP2001292982A JP2000109790A JP2000109790A JP2001292982A JP 2001292982 A JP2001292982 A JP 2001292982A JP 2000109790 A JP2000109790 A JP 2000109790A JP 2000109790 A JP2000109790 A JP 2000109790A JP 2001292982 A JP2001292982 A JP 2001292982A
Authority
JP
Japan
Prior art keywords
oxygen saturation
tissue
total hemoglobin
shoulder
stiffness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000109790A
Other languages
Japanese (ja)
Inventor
Noriko Osaki
紀子 大崎
Tatsushi Ochiai
龍史 落合
Ichiro Tokimitsu
一郎 時光
Isamu Watanabe
勇 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2000109790A priority Critical patent/JP2001292982A/en
Publication of JP2001292982A publication Critical patent/JP2001292982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To evaluate a stiffness in the shoulders objectively and reliably by measuring the circulatory kinetics in the deep inside the muscular tissue around the shoulders. SOLUTION: This evaluation system of a stiffness in the shoulders comprises a deep part circulatory kinetics measuring means 10. The deep part circulatory kinetics measuring means 10 receives the near infrared rays irradiated from the skin surface S around the shoulders to the muscular tissue and scattered in the muscular tissue, and finds the absorbance of the muscular tissue and the tissue oxygen saturation or the total hemoglobin quantity based on the absorbance. It is preferable that the tissue oxygen saturation or the total hemoglobin quantity should be corrected according to the thickness of the subcutaneous fat of a subject.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、肩こりの程度を測
定値に基づいて客観的に評価することを可能とする肩こ
り評価システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a shoulder stiffness evaluation system capable of objectively evaluating the degree of shoulder stiffness based on measured values.

【0002】[0002]

【従来の技術】従来、肩こりの程度は、被験者の自己申
告や触診に基づいて評価されている。しかしながら、こ
のような評価方法は客観性が低く、再現性も低い。
2. Description of the Related Art Conventionally, the degree of shoulder stiffness has been evaluated based on self-report and palpation of a subject. However, such an evaluation method has low objectivity and low reproducibility.

【0003】触診に変わる肩こりの評価方法としては、
肩周辺部の硬さの測定値に基づく方法が知られている
(全日本鍼灸学会雑誌,41(2),1991、特開昭60−40
034号公報)。しかしながら、生体の硬さは脂肪や筋
肉等の影響により大きく変化するため、肩周辺部の硬さ
の測定値と自己申告による肩こりの評価との間に高い相
関を得ることが難しい。
[0003] As a method of evaluating stiff shoulders instead of palpation,
A method based on the measured value of the hardness around the shoulder is known (Journal of the Japanese Society of Acupuncture and Moxibustion, 41 (2), 1991, Japanese Patent Application Laid-Open No. 60-40)
No. 034). However, since the hardness of a living body greatly changes due to the influence of fat, muscle, and the like, it is difficult to obtain a high correlation between the measured value of the hardness of the shoulder peripheral portion and the self-reported evaluation of shoulder stiffness.

【0004】[0004]

【発明が解決しようとする課題】一方、肩こりの一要因
に、肩周辺部の筋肉組織深部の循環不良があると言われ
ている。そこで、肩周辺部の筋肉組織中の深部循環動態
(即ち、組織酸素飽和度、総ヘモグロビン量、血流量)
を測定することが考えられる。
On the other hand, it is said that one factor of shoulder stiffness is poor circulation in deep muscle tissue around the shoulder. Therefore, deep circulation dynamics in muscle tissue around the shoulder (ie, tissue oxygen saturation, total hemoglobin amount, blood flow)
It is conceivable to measure

【0005】深部循環動態のうち、血流量は、血管を一
度閉鎖した際の血液の量の単位時間あたりの変化から測
定することができるが、肩周辺部ではそのような血管の
閉鎖は難しいため、血流量の測定も難しい。
[0005] In the deep circulatory dynamics, the blood flow can be measured from the change in the amount of blood per unit time when a blood vessel is closed once. However, it is difficult to close such a blood vessel around the shoulder. It is also difficult to measure blood flow.

【0006】また、深部循環動態の測定方法としては、
直接筋肉内に針を刺し、水素クリアランス法により測定
する方法がある。水素クリアランス法によれば、測定し
たい部位の循環動態を直接測定することができる。しか
しながら、水素クリアランス法は痛みを伴い、また人体
に針を刺す行為は医師以外に行うことができないという
制限もある。
[0006] As a method of measuring the deep circulation dynamics,
There is a method in which a needle is pierced directly into a muscle and measured by a hydrogen clearance method. According to the hydrogen clearance method, the circulatory dynamics of a site to be measured can be directly measured. However, the hydrogen clearance method is painful, and there is also a limitation that the act of sticking a needle into a human body can only be performed by a doctor.

【0007】深部循環動態の測定方法としては、近赤外
光を皮膚表面から一定距離の筋肉組織内に照射し、その
筋肉組織からの散乱光を受光することにより、皮膚表面
から一定距離の筋肉組織における深部循環動態を測定す
る近赤外分光法がある。この方法は無侵襲であるため、
痛みを伴わず、簡便に測定することができる。しかしな
がら、近赤外分光法では皮膚表面からの測定距離が一定
値に固定されており、一方、皮膚直下の皮下脂肪の厚み
は被験者ごとに異なるため、得られる測定値は、皮膚直
下の脂肪の影響を大きく受ける。そのため、深部循環動
態の測定値と、自己申告や触診に基づく肩こりの評価と
の間に高い相関を得ることが難しく、それ故、この近赤
外分光法を用いても肩こりを信頼性高く評価するのは困
難である。
[0007] As a method of measuring deep circulation dynamics, a near-infrared light is irradiated into a muscle tissue at a certain distance from the skin surface, and scattered light from the muscle tissue is received, whereby the muscle at a certain distance from the skin surface is received. There is near-infrared spectroscopy to measure deep circulation dynamics in tissues. Because this method is non-invasive,
It can be measured easily without pain. However, in near-infrared spectroscopy, the measurement distance from the skin surface is fixed at a constant value, while the thickness of the subcutaneous fat directly under the skin varies from subject to subject, so the measured value obtained is Affected significantly. Therefore, it is difficult to obtain a high correlation between measurements of deep hemodynamics and self-reported or palpation-based assessment of shoulder stiffness, and therefore this shoulder infrared stiffness can be reliably evaluated. It is difficult to do.

【0008】このように、これまでのところ、肩こりを
客観的に簡便に評価する手法は存在せず、肩こりの評価
方法も確立されていない。そのため、肩こりの原因を追
及することが難しく、治療方法もまちまちになってい
る。
As described above, there has been no method for objectively and simply evaluating shoulder stiffness, and a method for evaluating shoulder stiffness has not been established. For this reason, it is difficult to find the cause of stiff shoulders, and treatment methods are also varied.

【0009】そこで、本発明は、肩周辺部の筋肉組織中
の深部循環動態を測定して肩こりを評価するにあたり、
簡便な測定操作で客観的に信頼性高い評価値を得られる
ようにすることを目的とする。
Accordingly, the present invention provides a method for measuring deep circulatory dynamics in muscle tissue around the shoulder to evaluate stiff shoulders.
It is an object of the present invention to be able to objectively obtain a highly reliable evaluation value by a simple measurement operation.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、近赤外光を肩周辺部の皮膚表面から筋肉
組織に照射し、筋肉組織内で散乱された光を受光して該
筋肉組織の吸光度を求め、その吸光度に基づいて肩周辺
部の筋肉中の組織酸素飽和度又は総ヘモグロビン量を求
める深部循環動態測定手段を備えた肩こり評価システム
を提供する。
In order to achieve the above object, the present invention irradiates near infrared light to the muscle tissue from the skin surface around the shoulder and receives light scattered in the muscle tissue. The present invention provides a shoulder stiffness evaluation system including deep circulatory dynamics measuring means for determining the absorbance of the muscle tissue and obtaining the tissue oxygen saturation or the total hemoglobin amount in the muscle around the shoulder based on the absorbance.

【0011】特に、この肩こり評価システムとして、吸
光度に基づいて算出した組織酸素飽和度又は総ヘモグロ
ビン量をBody Mass Index(BMI)に応じて補正し、
BMIに依存しない組織酸素飽和度又は総ヘモグロビン
量の補正値を出力する態様や、吸光度に基づいて算出し
た組織酸素飽和度又は総ヘモグロビン量を皮下脂肪厚に
応じて補正し、皮下脂肪厚に依存しない組織酸素飽和度
又は総ヘモグロビン量の補正値を出力する態様を提供す
る。この組織酸素飽和度又は総ヘモグロビン量の補正値
は、自己申告や触診に基づく肩こりの評価との間に高い
相関を有するので、この補正値を用いると、肩こりの評
価の信頼性を高めることができる。
In particular, as this shoulder stiffness evaluation system, the tissue oxygen saturation or the total hemoglobin amount calculated based on the absorbance is corrected according to the Body Mass Index (BMI),
A mode in which a correction value of the tissue oxygen saturation or the total hemoglobin amount that does not depend on the BMI is output, or the tissue oxygen saturation or the total hemoglobin amount calculated based on the absorbance is corrected according to the subcutaneous fat thickness, and depends on the subcutaneous fat thickness. The present invention provides a mode for outputting a correction value of the tissue oxygen saturation or the total hemoglobin amount that is not used. Since the correction value of the tissue oxygen saturation or the total hemoglobin amount has a high correlation with the self-reported or palpation-based evaluation of shoulder stiffness, the use of this correction value can increase the reliability of the evaluation of shoulder stiffness. it can.

【0012】[0012]

【発明の実施の形態】以下、図面を参照しつつ本発明を
詳細に説明する。なお、各図中、同一符号は同一又は同
等の構成要素を表している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the drawings. In each of the drawings, the same reference numerals represent the same or equivalent components.

【0013】本発明の肩こり評価システムは、肩周辺部
の筋肉組織中の深部循環動態として、筋肉組織中の組織
酸素飽和度及び総ヘモグロビン量を測定する深部循環動
態測定手段を備えている。
[0013] The shoulder stiffness evaluation system of the present invention is provided with a deep circulatory dynamics measuring means for measuring tissue oxygen saturation and total hemoglobin amount in the muscular tissue as the deep circulatory dynamics in the muscle tissue around the shoulder.

【0014】深部循環動態測定手段10は、例えば図1
のブロック図に示したように、所定波長の近赤外光を肩
周辺部の皮膚表面Sから筋肉組織内に照射する発光部1
と、筋肉組織内で散乱された光を受光する受光部2と、
受光された光に基づいて筋肉組織の吸光度を求め、その
吸光度に基づいて組織酸素飽和度又は総ヘモグロビン量
を算出する演算処理部3から形成することができる。
The deep circulatory dynamics measuring means 10 is, for example, shown in FIG.
As shown in the block diagram of FIG. 1, a light emitting unit 1 for irradiating near infrared light of a predetermined wavelength from a skin surface S around a shoulder to muscle tissue.
And a light receiving unit 2 for receiving light scattered in the muscle tissue;
It can be formed from the arithmetic processing unit 3 which calculates the absorbance of muscle tissue based on the received light and calculates the tissue oxygen saturation or the total hemoglobin amount based on the absorbance.

【0015】ここで、発光部1及び受光部2は、それぞ
れ特開平10−94527号公報に示されている血流量
データ測定装置の発光部、受光部と同様に構成すること
ができるが、本発明においては発光部1と受光部2との
距離d0を0.5〜4.0cmの範囲で少なくとも2通
りの距離d1、d2に可変設定できるものとする。
Here, the light-emitting unit 1 and the light-receiving unit 2 can be configured similarly to the light-emitting unit and the light-receiving unit of the blood flow data measuring device disclosed in Japanese Patent Application Laid-Open No. Hei 10-94527, respectively. in the invention shall be variably set the distance d 0 at a distance d 1, d 2 of at least two ways in a range of 0.5~4.0cm between the light emitting portion 1 and the light receiving portion 2.

【0016】発光部1と受光部2との距離d0は、被験
者の肥満あるいは痩身の程度、皮下脂肪厚等に応じて定
めることが好ましく、例えば、WHOの肥満判定基準の
指標となるBody Mass Index(BMI)(ここで、BM
I=体重(kg)/身長(m)2)について、被験者の
BMIが18.5以上25未満のとき、d1=0.5〜
1.5cm、d2=2.0〜3.0cmとすることが好
ましい。
The distance d 0 between the light-emitting unit 1 and the light-receiving unit 2 is preferably determined according to the degree of obesity or leanness of the subject, the thickness of the subcutaneous fat, and the like. Index (BMI) (where BM
I = weight (kg) / height (m) 2 ), when the subject has a BMI of 18.5 or more and less than 25, d 1 = 0.5 to
It is preferable to set 1.5 cm and d 2 = 2.0 to 3.0 cm.

【0017】また、発光部1は、波長700〜850n
mの範囲で任意の3波長の近赤外光を照射できるように
することが好ましい。
The light emitting section 1 has a wavelength of 700 to 850 n.
It is preferable that near-infrared light of any three wavelengths can be irradiated in the range of m.

【0018】演算処理部3には、パソコン等を使用する
ことができる。
A personal computer or the like can be used for the arithmetic processing unit 3.

【0019】図2は、図1の深部循環動態測定手段10
で肩周辺部の筋肉中の組織酸素飽和度と総ヘモグロビン
量を算出する原理の説明図である。
FIG. 2 shows the deep circulatory dynamics measuring means 10 of FIG.
FIG. 4 is an explanatory diagram of the principle of calculating the tissue oxygen saturation and the total hemoglobin amount in muscle around the shoulder.

【0020】即ち、肩周辺部において、発光部1によっ
て皮膚表面Sから筋肉組織内へ所定波長λの光(光量I
0( λ ))を入射させ、発光部1から距離d1にある受光部
2で筋肉組織からの散乱光を受光する(光量
1( λ ))。同様に、発光部1から距離d2にある受光部
2で筋肉組織からの散乱光を受光する(光量
2( λ ))。このとき、次式がなりたつ。
That is, in the vicinity of the shoulder, the light (light amount I) of a predetermined wavelength λ is introduced into the muscle tissue from the skin surface S by the light emitting section 1.
0 (λ)) is incident, receiving scattered light from the muscle tissue in the light receiving section 2 from the light-emitting portion 1 at a distance d 1 (light intensity I 1 (λ)). Similarly, receiving scattered light from the muscle tissue in the light receiving section 2 from the light-emitting portion 1 at a distance d 2 (light intensity I 2 (λ)). At this time, the following equation is obtained.

【0021】[0021]

【数1】 A1-2( λ )=log(I1( λ )/I2( λ )) =εa( λ )・Ca・d+εb( λ )・Cb・d+At( λ ) (式中、A1-2( λ ):皮膚表面から距離d2と距離d1
の間にある組織(図2においてドットを付した組織部
分)の波長λにおける吸光度 εa( λ ):波長λにおける酸化ヘモグロビンの分子吸光
係数 εb( λ ):波長λにおける還元ヘモグロビンの分子吸光
係数 Ca:酸化ヘモグロビンの濃度 Cb:還元ヘモグロビンの濃度 d:組織中の、発光部1からの距離d2と距離d1との間
の平均光路長 At( λ ):波長λにおいて、皮膚表面から距離d2と距離
1との間にある組織の吸光度から血液の吸光度を除い
た吸光度(血液以外の組織由来の吸光度))
A1-2 ( λ ) = log (I1 ( λ ) / I2 ( λ ) ) = εa ( λ ) · Ca · d + εb ( λ ) · Cb · d + At ( λ ) (wherein, a 1-2 (λ): the absorbance at a wavelength lambda of tissue between the skin surface and the distance d 2 and a distance d 1 (tissue portions denoted a dot in FIG. 2) ε a (λ): Molecular extinction coefficient of oxyhemoglobin at wavelength λ ε b ( λ ) : Molecular extinction coefficient of reduced hemoglobin at wavelength λ C a : Concentration of oxyhemoglobin C b : Concentration of reduced hemoglobin d: Distance from light emitting part 1 in tissue Average optical path length between d 2 and distance d 1 At ( λ ) : Absorbance at wavelength λ obtained by removing the absorbance of blood from the absorbance of tissue between distance d 2 and distance d 1 from the skin surface ( Absorbance derived from tissues other than blood))

【0022】この式のAt( λ )は、極近い3波長の近赤
外光で測定すると非常に小さくなり、無視することがで
きる。このため、3波長で吸光度測定をすることによ
り、C a・d及びCb・dを算出でき、これらの和から総
ヘモグロビン量を算出することができる。また、組織酸
素飽和度をCa・d/(Ca+Cb)d×100(%)か
ら算出することができる。
A in this equationt ( λ )Is the near red of three wavelengths
When measured with external light, it becomes very small and can be ignored.
Wear. Therefore, measuring the absorbance at three wavelengths
C a・ D and CbD can be calculated, and the sum of
The amount of hemoglobin can be calculated. Also, tissue acid
Elementary saturation is Ca・ D / (Ca+ Cb) D × 100 (%)
It can be calculated from:

【0023】深部循環動態測定手段10を用いて被験者
を測定する場合、被験者は座位安静状態とすることが好
ましい。また、測定時間は、0.5〜5分とすることが
好ましい。測定時間が短すぎると測定値が安定せず、長
すぎると被験者に負担がかかり、正確な測定ができな
い。
When measuring the subject using the deep circulatory dynamics measuring means 10, it is preferable that the subject be in a sitting resting state. The measurement time is preferably set to 0.5 to 5 minutes. If the measurement time is too short, the measured value will not be stable, and if it is too long, the burden will be placed on the subject, and accurate measurement will not be possible.

【0024】本発明においては、上述のようにして算出
した組織酸素飽和度あるいは総ヘモグロビン量に対して
皮下脂肪による影響を補正し、組織酸素飽和度あるいは
総ヘモグロビン量が、被験者の皮下脂肪の厚さの大小に
よらず、肩こりの程度の良好な指標となるようにするこ
とが好ましく、かかる補正処理を演算処理部3で行える
ようにすることが好ましい。
In the present invention, the effect of subcutaneous fat on the tissue oxygen saturation or the total hemoglobin amount calculated as described above is corrected, and the tissue oxygen saturation or the total hemoglobin amount is determined based on the thickness of the subcutaneous fat of the subject. Regardless of the magnitude, it is preferable to provide a good index of the degree of shoulder stiffness, and it is preferable that such correction processing can be performed by the arithmetic processing unit 3.

【0025】例えば、被験者の皮下脂肪の厚さを超音波
診断装置、CT等により別途測定し、測定された皮下脂
肪の厚さによって、d1、d2の値を変更する。
For example, the thickness of the subcutaneous fat of the subject is separately measured by an ultrasonic diagnostic apparatus, CT, or the like, and the values of d 1 and d 2 are changed according to the measured thickness of the subcutaneous fat.

【0026】また、皮下脂肪の厚さの直接的な測定値に
よらず、身長と体重から補正してもよい。例えば、d1
=1.0cm、d2=2.5cmの場合、被験者の身長
と体重からBMIを求め、次式により補正することが好
ましい。なお、この式は、照射波長700nm、750
nm、830nmを使用した場合に、N=300とし
て、本発明者らが統計的に算出したものである。また、
式中、[totalHb]0、[totalHb]1は、それぞれ補正前、補
正後の総ヘモグロビン量であり、[StO2]0、[StO2]1は、
それぞれ補正前、補正後の組織酸素飽和度である。
Further, the correction may be made based on the height and weight without depending on the direct measurement value of the thickness of the subcutaneous fat. For example, d 1
= 1.0 cm, d 2 = 2.5 cm, it is preferable to obtain the BMI from the height and weight of the subject and correct it by the following formula. It should be noted that this equation is given by the following equation:
In the case where nm and 830 nm are used, N = 300 and the present inventors have statistically calculated. Also,
In the formula, [totalHb] 0 and [totalHb] 1 are the total hemoglobin amounts before and after correction, respectively, and [StO 2 ] 0 and [StO 2 ] 1 are
The tissue oxygen saturation before and after correction, respectively.

【0027】[0027]

【数2】BMI<18.5の場合 [totalHb]1=[totalHb]0*(BMI/(21.7±0.5)) [StO2]1=[StO2]0*(1.02±0.02) 18.5≦BMI<25の場合 [totalHb]1=[totalHb]0*(BMI/(21.7±0.5)) [StO2]1=[StO2]0*1.0 25≦BMIの場合 [totalHb]1=[totalHb]0*(BMI/(21.7±0.5)) [StO2]1=[StO2]0*(0.98±0.02)[Equation 2] When BMI <18.5 [totalHb] 1 = [totalHb] 0 * (BMI / (21.7 ± 0.5)) [StO 2 ] 1 = [StO 2 ] 0 * (1.02 ± 0.02) 18.5 ≦ BMI <25 For [totalHb] 1 = [totalHb] 0 * (BMI / (21.7 ± 0.5)) [StO 2 ] 1 = [StO 2 ] 0 * 1.0 For 25 ≦ BMI [totalHb] 1 = [totalHb] 0 * ( BMI / (21.7 ± 0.5)) [StO 2 ] 1 = [StO 2 ] 0 * (0.98 ± 0.02)

【0028】以上のようにして得られた組織酸素飽和度
と総ヘモグロビン量との関係を実際の肩こりの症例と態
様させることにより、深部循環動態測定手段10で測定
した組織酸素飽和度、又は被験者の肥満度などにより必
要に応じて算出された組織酸素飽和度の補正値が75%
以下の場合、被験者には深部循環不良による肩こりがあ
ると判定できる。また、深部循環動態測定手段10で測
定した総ヘモグロビン量、又は被験者の肥満度などによ
り必要に応じて算出された総ヘモグロビン量の補正値が
300g・cm/L以下の場合にも、被験者には深部循
環不良による肩こりがあると判定できる。
By making the relationship between the tissue oxygen saturation obtained as described above and the total hemoglobin amount as that of an actual case of stiff shoulder, the tissue oxygen saturation measured by the deep circulatory dynamics measuring means 10 or the subject The correction value of the tissue oxygen saturation calculated as necessary depending on the degree of obesity of the subject is 75%
In the following cases, it can be determined that the subject has stiff shoulders due to poor deep circulation. In addition, even when the correction value of the total hemoglobin amount measured by the deep circulatory dynamics measuring means 10 or the total hemoglobin amount calculated as necessary depending on the obesity degree of the subject is 300 g · cm / L or less, It can be determined that there is stiff shoulder due to poor deep circulation.

【0029】[0029]

【実施例】以下、本発明を実施例に基づいて具体的に説
明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be specifically described below based on embodiments.

【0030】実施例1 (1)測定 成人139名の両肩周辺部(天りょう穴相当部:サンプ
ル数n=278)の組織酸素飽和度及び総ヘモグロビン
量を測定した。
Example 1 (1) Measurement Tissue oxygen saturation and total hemoglobin content of 139 adults were measured at the periphery of both shoulders (corresponding to a hole in the ceiling: sample number n = 278).

【0031】測定方法は、近赤外分光法を用いた組織酸
素飽和度・ヘモグロビンモニター(PSA-IIIN バイ
オメディカルサイエンス社製)を使用し、座位安静状態
で2分間測定し、安定した値を測定値とした。この場
合、測定値の1の位が5秒以上動かなかった時に、測定
値が安定したと判断した。
The measurement was performed using a tissue oxygen saturation / hemoglobin monitor (manufactured by PSA-IIIN Biomedical Science) using near-infrared spectroscopy. Value. In this case, when the ones digit of the measured value did not move for 5 seconds or more, it was determined that the measured value was stabilized.

【0032】発光部と受光部との距離は1.0cm、
2.5cmの2通りとした。また、発光部からの照射波
長は700nm、750nm、830nmの3通りとし
た。
The distance between the light emitting part and the light receiving part is 1.0 cm,
Two types of 2.5 cm were used. Further, the irradiation wavelength from the light emitting portion was set to three types of 700 nm, 750 nm, and 830 nm.

【0033】一方、各被験者の身長と体重を測定し、B
MIを算出した。
On the other hand, the height and weight of each subject were measured, and
MI was calculated.

【0034】被験者自らによる肩こりの評価は、次のA
〜Eの5段階の自己申告によった。 A:凄く凝っている B:凝っている C:やや凝っている D:あまり凝っていない E:凝っていない
The evaluation of the stiff shoulder by the subject himself is as follows.
-E self-report in five stages. A: very elaborate B: elaborate C: somewhat elaborate D: not very elaborate E: not elaborate

【0035】触診による肩こりの評価は、一人の医師に
より、次のa〜dの4段階とした。 a:非常に強い凝り b:強い凝り c:凝り d:凝りなし
The evaluation of shoulder stiffness by palpation was performed by one physician in the following four grades a to d. a: very strong stiffness b: strong stiffness c: stiffness d: no stiffness

【0036】(2)組織酸素飽和度の測定値あるいは総
ヘモグロビン量の測定値とBMIとの関係 被験者自らの肩こりの評価において、凝っていないと評
価し、かつ医師による触診評価において凝りがないと評
価された健常者について、組織酸素飽和度の測定値とB
MIとの関係、総ヘモグロビン量の測定値とBMIとの
関係をそれぞれ図3(a)、図3(b)に示す。同図か
ら、組織酸素飽和度の測定値と総ヘモグロビン量の測定
値は、それぞれBMIと相関があり、皮下脂肪厚の影響
を受けることが確認できた。
(2) Relationship between the measured value of tissue oxygen saturation or the measured value of total hemoglobin amount and BMI If the subject's own stiff shoulder is evaluated as not stiff, and if the physician does not have stiffness in the palpation evaluation, the stiffness is evaluated. For the evaluated healthy individuals, the measured values of tissue oxygen saturation and B
FIGS. 3A and 3B show the relationship with MI and the relationship between the measured value of the total hemoglobin amount and BMI, respectively. From this figure, it was confirmed that the measured value of the tissue oxygen saturation and the measured value of the total hemoglobin amount were each correlated with the BMI and were affected by the subcutaneous fat thickness.

【0037】組織酸素飽和度の測定値[StO2]0と総ヘモ
グロビン量の測定値[totalHb]0を、BMIの値に応じて
それぞれ次式のように補正し、組織酸素飽和度の補正値
[StO 2]1と総ヘモグロビン量の補正値[totalHb]1を得
た。
Measured value of tissue oxygen saturation [StOTwo]0And total hemo
Measured value of globin amount [totalHb]0According to the value of BMI
The correction values for tissue oxygen saturation are corrected as shown below.
[StO Two]1And total hemoglobin correction value [totalHb]1Get
Was.

【0038】[0038]

【数3】BMI<18.5の場合 [totalHb]1=[totalHb]0*(BMI/21.75) [StO2]1=[StO2]0*1.02 18.5≦BMI<25の場合 [totalHb]1=[totalHb]0*(BMI/21.75) [StO2]1=[StO2]0*1.0 25≦BMIの場合 [totalHb]1=[totalHb]0*(BMI/21.75) [StO2]1=[StO2]0*0.98[Equation 3] When BMI <18.5 [totalHb] 1 = [totalHb] 0 * (BMI / 21.75) [StO 2 ] 1 = [StO 2 ] 0 * 1.02 When 18.5 ≦ BMI <25 [totalHb] 1 = [ totalHb] 0 * (BMI / 21.75) [StO 2 ] 1 = [StO 2 ] 0 * 1.0 When 25 ≦ BMI [totalHb] 1 = [totalHb] 0 * (BMI / 21.75) [StO 2 ] 1 = [StO 2 ] 2 ] 0 * 0.98

【0039】組織酸素飽和度の補正値とBMIとの関
係、総ヘモグロビン量の補正値とBMIとの関係をそれ
ぞれ図4(a)、図4(b)に示す。同図から、組織酸
素飽和度の補正値と総ヘモグロビン量の補正値は、いず
れもBMIと相関のないことがが確認できた。
FIGS. 4A and 4B show the relationship between the correction value of the tissue oxygen saturation and the BMI, and the relationship between the correction value of the total hemoglobin amount and the BMI, respectively. From this figure, it was confirmed that neither the correction value of the tissue oxygen saturation nor the correction value of the total hemoglobin amount had a correlation with BMI.

【0040】(3)被験者の意識と補正後の深部循環動
態との関係 被験者自らの肩こりの評価と組織酸素飽和度の補正値[S
tO2]1との関係、被験者自らの肩こりの評価と総ヘモグ
ロビン量の補正値[totalHb]1との関係を、それぞれ図5
(a)、図5(b)に示す。
(3) Relationship between Subject's Consciousness and Corrected Deep Circulation Dynamics Subject's own stiff shoulder evaluation and tissue oxygen saturation correction value [S
FIG. 5 shows the relationship between tO 2 ] 1 and the relationship between the evaluation of the subject's own stiff shoulder and the correction value [totalHb] 1 of the total hemoglobin amount.
(A) and FIG. 5 (b).

【0041】「凝っていない」と自己評価した者に比し
て「凄く凝っている」と自己申告した者は、組織酸素飽
和度の補正値と総ヘモグロビン量の補正値が有意に低下
していた。
Those who self-reported that they were "extremely stiff" compared to those who self-evaluated "not stiff" had significantly lower correction values for tissue oxygen saturation and total hemoglobin. Was.

【0042】(4)医師の触診による評価と補正後の深
部循環動態との関係 医師の触診による肩こりの評価と織酸素飽和度の補正値
[StO2]1との関係、医師の触診による肩こりの評価と総
ヘモグロビン量の補正値[totalHb]1との関係を、それぞ
れ図6(a)、図6(b)に示す。
(4) Relationship between evaluation by physician palpation and corrected deep circulatory dynamics Evaluation of shoulder stiffness by palpation by physician and correction value of weaving oxygen saturation
6 (a) and 6 (b) show the relationship with [StO 2 ] 1 and the relationship between the evaluation of shoulder stiffness by palpation of a doctor and the correction value [totalHb] 1 of the total hemoglobin amount, respectively.

【0043】医師の触診により「凝りなし」と評価され
者に比して「非常に強い凝り」と評価された者は、組織
酸素飽和度の補正値と総ヘモグロビン量の補正値が有意
に低下していた。
Those who were evaluated as "no stiffness" by palpation of a physician and evaluated as "very strong stiffness" had significantly lower correction values for tissue oxygen saturation and total hemoglobin amount. Was.

【0044】以上の(2)、(3)、(4)から、組織
酸素飽和度の補正値[StO2]1と総ヘモグロビン量の補正
値[totalHb]1を用いることにより、被験者の自己申告に
よる評価や医師の触診による評価と整合性よく、肩こり
の程度を客観的に評価できることがわかる。
The above (2), (3), (4), by using the correction value [totalHb] 1 of the correction value [StO 2] 1 to the total amount of hemoglobin tissue oxygen saturation, self-reported subject It can be understood that the degree of shoulder stiffness can be objectively evaluated, with good consistency with the evaluation by palpation and the evaluation by palpation of a doctor.

【0045】(5)温熱の深部循環動態への影響 被験者自らの肩こりの評価において、凄く凝っている又
は凝っていると評価した者5名について、肩周辺部を乾
熱温熱(42℃60分)、あるいは湿熱温熱(42℃6
0分)した場合のそれぞれの温熱処置前後での組織酸素
飽和度の補正値[StO2]1、総ヘモグロビン量の補正値[to
talHb]1、被験者の自己申告による肩こりの評価を求め
た。ここで、自己申告による肩こりの評価値は、前述の
A〜Eの5段階の被験者自らの肩こり評価を次のように
点数化し、その平均をとった。
(5) Influence of Heat on Deep Circulation Dynamics In the evaluation of the subject's own stiff shoulders, for the five persons who evaluated that they were extremely stiff or stiff, the area around their shoulders was heated to dry heat (42 ° C. for 60 minutes). ) Or moist heat (42 ° C 6
0 minutes), the corrected value of the tissue oxygen saturation before and after each thermal treatment [StO 2 ] 1 , the corrected value of the total hemoglobin amount [to
talHb] 1 , required self-reported evaluation of stiff shoulders. Here, the self-reported shoulder stiffness evaluation value was obtained by scoring the subject's own shoulder stiffness evaluation in the five stages A to E described above and taking the average.

【0046】 A:凄く凝っている…5点 B:凝っている…4点 C:やや凝っている…3点 D:あまり凝っていない…2点 E:凝っていない…1点A: Very elaborate ... 5 points B: Elaborate ... 4 points C: Slightly elaborate ... 3 points D: Not very elaborate ... 2 points E: Not elaborate ... 1 point

【0047】結果を表1に示す。Table 1 shows the results.

【0048】[0048]

【表1】 温熱前 温熱60分後 [StO2]1 [totalHb]1 自己 [StO2]1 [totalHb]1 自己 (%) (g ・cm/L) 申告 (%) (g・cm/L) 申告 乾熱温熱 72.6±1.8 292.5±94.2 4.5 74.8±2.02 313.6±95.9 2.9 湿熱温熱 74.3±1.5 295.3±39.3 4.6 77.0±1.7 317.4±42.6 2.1 [Table 1] Before thermal heat 60 minutes after [StO 2] 1 [totalHb] 1 self [StO 2] 1 [totalHb] 1 Self (%) (g · cm / L) declaration (%) (g · cm / L) reported dry heat Heat 72.6 ± 1.8 292.5 ± 94.2 4.5 74.8 ± 2.02 313.6 ± 95.9 2.9 Wet heat 74.3 ± 1.5 295.3 ± 39.3 4.6 77.0 ± 1.7 317.4 ± 42.6 2.1

【0049】表1から、乾熱温熱あるいは湿熱温熱する
ことにより、被験者の肩こりの意識が和らぎ、また深部
循環動態の評価結果も改善することがわかる。したがっ
て、この結果から、深部循環動態の測定により、肩こり
を良好に評価できること、また、深部循環動態の測定に
より、肩こり治療の効果を評価できること、よって、深
部循環動態の測定を肩こり治療のスクリーニング手段と
して利用できることがわかる。
It can be seen from Table 1 that the heating of the dry heat or the wet heat eases the stiffness of the subject and improves the evaluation results of the deep circulation. Therefore, from these results, it is possible to satisfactorily evaluate shoulder stiffness by measuring deep circulatory dynamics, and to evaluate the effect of stiff shoulder treatment by measuring deep circulatory dynamics. It can be seen that it can be used as.

【0050】[0050]

【発明の効果】本発明によれば、肩周辺部の筋肉組織の
深部循環動態として、組織酸素飽和度あるいは総ヘモグ
ロビン量を測定するので、簡便な測定操作で客観的に信
頼性高く肩こりの程度を評価することが可能となる。
According to the present invention, the tissue oxygen saturation or the total hemoglobin amount is measured as the deep circulation dynamics of the muscle tissue around the shoulder, so that the degree of stiffness can be objectively and reliably measured by a simple measurement operation. Can be evaluated.

【0051】したがって、本発明の肩こり評価システム
を用いることにより、各種物理処理や化学処理後が肩こ
りへ及ぼす治療効果を調べることができる。また、本発
明の肩こり評価システムは、肩こり治療のスクリーニン
グ手段として利用することができる。
Therefore, by using the shoulder stiffness evaluation system of the present invention, it is possible to examine the effect of various physical treatments or chemical treatments on shoulder stiffness. Further, the stiff shoulder evaluation system of the present invention can be used as a screening means for stiff shoulder treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 深部循環動態測定手段のブロック図である。FIG. 1 is a block diagram of a deep circulatory dynamics measuring means.

【図2】 組織酸素飽和度及び総ヘモグロビン量の算出
原理の説明図である。
FIG. 2 is an explanatory diagram of a calculation principle of a tissue oxygen saturation and a total hemoglobin amount.

【図3】 組織酸素飽和度又は総ヘモグロビン量の測定
値(補正前)とBMIとの関係図である。
FIG. 3 is a graph showing a relationship between a measured value of tissue oxygen saturation or a total hemoglobin amount (before correction) and BMI.

【図4】 補正後の組織酸素飽和度又は総ヘモグロビン
量とBMIとの関係図である。
FIG. 4 is a graph showing the relationship between the corrected tissue oxygen saturation or total hemoglobin amount and BMI.

【図5】 被験者の自己申告による肩凝りの程度と、補
正後の組織酸素飽和度又は総ヘモグロビン量との関係図
である。
FIG. 5 is a diagram showing the relationship between the degree of shoulder stiffness due to self-report of a subject and the corrected tissue oxygen saturation or total hemoglobin amount.

【図6】 医師の触診による肩凝りの程度と、補正後の
組織酸素飽和度又は総ヘモグロビン量との関係図であ
る。
FIG. 6 is a diagram showing the relationship between the degree of shoulder stiffness by palpation of a doctor and the corrected tissue oxygen saturation or total hemoglobin amount.

【符号の説明】[Explanation of symbols]

1 発光部 2 受光部 3 演算処理部 10 深部循環動態測定手段 DESCRIPTION OF SYMBOLS 1 Light-emitting part 2 Light-receiving part 3 Operation processing part 10 Deep circulation dynamics measuring means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 時光 一郎 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 (72)発明者 渡邉 勇 栃木県芳賀郡市貝町赤羽2606 花王株式会 社研究所内 Fターム(参考) 4C038 KK00 KK01 KL07 KM01  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Ichiro Tokiko 2606 Kabane-cho, Akaga-cho, Haga-gun, Tochigi Pref. In Kao Corporation Research Institute (72) Inventor Isamu Watanabe 2606, Kaiga-cho, Akabane-cho, Haga-gun, Tochigi Pref. Term (reference) 4C038 KK00 KK01 KL07 KM01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 近赤外光を肩周辺部の皮膚表面から筋肉
組織に照射し、筋肉組織内で散乱された光を受光して該
筋肉組織の吸光度を求め、その吸光度に基づいて肩周辺
部の筋肉中の組織酸素飽和度又は総ヘモグロビン量を求
める深部循環動態測定手段を備えた肩こり評価システ
ム。
1. A muscle tissue is irradiated with near-infrared light from the skin surface around the shoulder, the light scattered in the muscle tissue is received, the absorbance of the muscle tissue is determined, and the shoulder area is determined based on the absorbance. A shoulder stiffness evaluation system including a deep circulatory dynamics measuring means for obtaining tissue oxygen saturation or total hemoglobin amount in muscles of the head.
【請求項2】 吸光度に基づいて算出した組織酸素飽和
度又は総ヘモグロビン量をBody Mass Index(BMI)
に応じて補正し、BMIに依存しない組織酸素飽和度又
は総ヘモグロビン量の補正値を出力する請求項1記載の
肩こり評価システム。
2. Tissue oxygen saturation or total hemoglobin amount calculated based on absorbance is measured using a Body Mass Index (BMI).
2. The shoulder stiffness evaluation system according to claim 1, wherein the correction is performed in accordance with the following formula, and a correction value of the tissue oxygen saturation or the total hemoglobin amount that is independent of the BMI is output.
【請求項3】 吸光度に基づいて算出した組織酸素飽和
度又は総ヘモグロビン量を皮下脂肪厚に応じて補正し、
皮下脂肪厚に依存しない組織酸素飽和度又は総ヘモグロ
ビン量の補正値を出力する請求項1記載の肩こり評価シ
ステム。
3. Tissue oxygen saturation or total hemoglobin amount calculated based on absorbance is corrected according to subcutaneous fat thickness,
The shoulder stiffness evaluation system according to claim 1, wherein a correction value of the tissue oxygen saturation or the total hemoglobin amount independent of the subcutaneous fat thickness is output.
JP2000109790A 2000-04-11 2000-04-11 Evaluation system of stiffness in shoulders Pending JP2001292982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000109790A JP2001292982A (en) 2000-04-11 2000-04-11 Evaluation system of stiffness in shoulders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000109790A JP2001292982A (en) 2000-04-11 2000-04-11 Evaluation system of stiffness in shoulders

Publications (1)

Publication Number Publication Date
JP2001292982A true JP2001292982A (en) 2001-10-23

Family

ID=18622421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000109790A Pending JP2001292982A (en) 2000-04-11 2000-04-11 Evaluation system of stiffness in shoulders

Country Status (1)

Country Link
JP (1) JP2001292982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110347A (en) * 2004-10-11 2006-04-27 Samsung Electronics Co Ltd Body fat thickness measuring device and body fat thickness measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006110347A (en) * 2004-10-11 2006-04-27 Samsung Electronics Co Ltd Body fat thickness measuring device and body fat thickness measuring method

Similar Documents

Publication Publication Date Title
Yamaya et al. Validity of pulse oximetry during maximal exercise in normoxia, hypoxia, and hyperoxia
Wright et al. Non-invasive methods and stimuli for evaluating the skin's microcirculation
Gabriely et al. Transcutaneous glucose measurement using near-infrared spectroscopy during hypoglycemia.
Mancini et al. Respiratory muscle deoxygenation during exercise in patients with heart failure demonstrated with near-infrared spectroscopy
Ryan et al. A comparison of exercise type and intensity on the noninvasive assessment of skeletal muscle mitochondrial function using near-infrared spectroscopy
US20070244376A1 (en) Physiological signal apparatus with digital real time calibration
Miyatake et al. A new air displacement plethysmograph for the determination of Japanese body composition
Cai et al. Evaluation of near infrared spectroscopy in monitoring postoperative regional tissue oxygen saturation for fibular flaps
JP2003533261A (en) Method and apparatus for non-invasive quantification of hemoglobin and hematocrit
KR20090016744A (en) Measuring tissue oxygenation
Tsai et al. A noncontact skin oxygen-saturation imaging system for measuring human tissue oxygen saturation
Zonios et al. Pulse oximetry theory and calibration for low saturations
Bhambhani et al. Muscle oxygenation during incremental arm and leg exercise in men and women
US10595777B2 (en) Method and device for hydration monitoring
Kawaguchi et al. Do the kinetics of peripheral muscle oxygenation reflect systemic oxygen intake?
Couch et al. Effect of skin pigmentation on near infrared spectroscopy
Bhambhani et al. Quadriceps muscle deoxygenation during functional electrical stimulation in adults with spinal cord injury
Huang et al. Quantitative evaluation of rehabilitation effect on peripheral circulation of diabetic foot
Agbangla et al. Assessing muscular oxygenation during incremental exercise using near-infrared spectroscopy: comparison of three different methods
Moalla et al. Muscle oxygenation and EMG activity during isometric exercise in children
van Hooff et al. Test–retest reliability of skeletal muscle oxygenation measurement using near‐infrared spectroscopy during exercise in patients with sport‐related iliac artery flow limitation
Soller et al. Noninvasive determination of exercise-induced hydrodgen ion threshold through direct optical measurement
Miura et al. Skeletal muscle deoxygenation during exercise assessed by near-infrared spectroscopy and its relation to expired gas analysis parameters
KOMIYAMA et al. Comparison of two spatially resolved near-infrared photometers in the detection of tissue oxygen saturation: poor reliability at very low oxygen saturation
JP2001292982A (en) Evaluation system of stiffness in shoulders

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050118