JP2001291816A - High frequency current suppressing electronic component - Google Patents

High frequency current suppressing electronic component

Info

Publication number
JP2001291816A
JP2001291816A JP2000103025A JP2000103025A JP2001291816A JP 2001291816 A JP2001291816 A JP 2001291816A JP 2000103025 A JP2000103025 A JP 2000103025A JP 2000103025 A JP2000103025 A JP 2000103025A JP 2001291816 A JP2001291816 A JP 2001291816A
Authority
JP
Japan
Prior art keywords
frequency current
electronic component
type electronic
frequency
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000103025A
Other languages
Japanese (ja)
Other versions
JP4398057B2 (en
Inventor
栄▲吉▼ ▲吉▼田
Eikichi Yoshida
Koji Kamei
浩二 亀井
Yuji Ono
裕司 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2000103025A priority Critical patent/JP4398057B2/en
Priority to KR1020010017564A priority patent/KR20010095252A/en
Priority to SG200101994A priority patent/SG96612A1/en
Priority to NO20011677A priority patent/NO20011677L/en
Priority to DE60104470T priority patent/DE60104470T2/en
Priority to EP01108482A priority patent/EP1146637B1/en
Priority to TW090108099A priority patent/TW503495B/en
Priority to CN01119279A priority patent/CN1317829A/en
Priority to MYPI20011616A priority patent/MY128653A/en
Priority to US09/826,436 priority patent/US6635961B2/en
Publication of JP2001291816A publication Critical patent/JP2001291816A/en
Priority to US10/355,593 priority patent/US6903440B2/en
Application granted granted Critical
Publication of JP4398057B2 publication Critical patent/JP4398057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits

Landscapes

  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Lead Frames For Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency current suppressing electronic component which suppresses sufficiently a high frequency current and can prevent generation of electromagnetic interference, when the component is used at a high frequency. SOLUTION: This semiconductor integrated circuit element (IC) 1 is used in a high frequency band and operates at a high speed. High frequency current suppressing members 3 which attenuate high frequency currents flowing in terminals 2 themselves are installed to a prescribed number of the terminals 2. The suppressing members 3 are thin film magnetic substance whose thickness is in the range of 0.3-20 μm and formed on the whole surface up to end portions including mounting parts to be mounted on a printed wiring circuit board 4 for mounting the IC 1 to the surfaces of the respective terminals 2, and connecting parts to conductive patterns 5 arranged on the board 4. By connecting tip portions with the conductive patterns 5 by using solder 6 when the IC 1 is mounted on the board 4, the vicinity of mounting parts exhibits conductivity in the used frequency band of at most several tens MHz.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として高速動作
する半導体集積回路素子(IC),半導体大規模集積回
路素子(LSI),論理回路素子等の半導体能動素子に
代表される所定数の端子を有する回路基板実装用電子部
品であって、詳しくは使用時に端子に流れる高周波電流
を減衰させる機能を備えた高周波電流抑制型電子部品に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a predetermined number of terminals typified by semiconductor active devices such as a semiconductor integrated circuit device (IC), a semiconductor large-scale integrated circuit device (LSI), a logic circuit device, etc. More particularly, the present invention relates to a high-frequency current suppressing type electronic component having a function of attenuating a high-frequency current flowing through a terminal during use.

【0002】[0002]

【従来の技術】近年、電子情報通信分野での電子機器や
情報処理装置等に搭載され、且つ導電性パターンが配備
されたプリント配線回路基板に実装される電子部品に
は、例えばランダムアクセスメモリ(RAM)やリード
オンリーメモリ(ROM)等に代表される半導体記憶装
置、或いはマイクロプロセッサ(MPU),中央演算処
理装置(CPU),画像プロセッサ算術論理演算装置
(IPALU)等に代表される論理回路素子を含む多種
多用な半導体能動素子が用いられている。
2. Description of the Related Art In recent years, electronic components mounted on a printed wiring circuit board provided with a conductive pattern and mounted on an electronic device or an information processing device in the field of electronic information communication, for example, include a random access memory ( RAM), read only memory (ROM), and other semiconductor storage devices, or logic circuit elements such as microprocessors (MPUs), central processing units (CPUs), and image processor arithmetic and logic units (IPALUs) A variety of semiconductor active devices including the following are used.

【0003】これらの半導体能動素子は、製品化に際し
て一般に高い周波数で使用して高速動作を行わせるため
に回路レイアウトに従って大規模な集積化を行って信号
処理用に供される所定数の端子(通常リードフレームと
呼ばれる)を持たせた上で半導体集積回路素子(IC)
や半導体大規模集積回路素子(LSI)のチップとして
構成されている。
[0003] These semiconductor active devices are generally used at a high frequency when commercialized, and in order to perform high-speed operation, a large number of terminals are used for signal processing by performing large-scale integration according to a circuit layout. (Usually called a lead frame) and a semiconductor integrated circuit device (IC)
And a semiconductor large-scale integrated circuit (LSI) chip.

【0004】一方、こうした半導体能動素子では、演算
速度や信号処理速度が日進月歩の勢いで高速化されてお
り、一層高集積化した上で高速動作を行わせるために規
格上において数十MHz〜数GHz帯域の高い周波数で
使用されている。
On the other hand, the operation speed and signal processing speed of such a semiconductor active device are increasing at a rapid pace, and in order to perform high-speed operation after further integration, several tens of MHz to several Used at high frequencies in the GHz band.

【0005】[0005]

【発明が解決しようとする課題】上述した半導体能動素
子に代表される電子部品の場合、高速動作を行わせるた
めに数十MHz〜数GHz帯域の高い周波数で使用する
と、端子を流れる電気信号が高周波(高調波)電流とな
り、この高周波電流が部品間,端子を含む信号経路間,
或いは電子部品が搭載される機器・装置間に伝導するこ
とがある。こうした高周波電流は、部品(回路素子)内
での動作処理に悪影響を及ぼして誤動作を起こしたり、
或いは基本性能を劣化させる等、電磁干渉の要因となる
ため、除去される必要があるが、現状では電子部品にお
いて高周波電流対策が十分に配慮されていないため、高
周波電流が原因となる電磁干渉の発生を防止することが
できないという問題がある。
In the case of electronic components typified by the above-mentioned semiconductor active elements, if they are used at a high frequency of several tens of MHz to several GHz in order to perform a high-speed operation, an electric signal flowing through a terminal becomes It becomes high frequency (harmonic) current, and this high frequency current flows between parts, between signal paths including terminals,
Alternatively, the electric conduction may occur between the devices on which the electronic components are mounted. Such a high-frequency current adversely affects the operation processing in a component (circuit element) and causes a malfunction,
Alternatively, it must be removed because it causes electromagnetic interference, such as deteriorating the basic performance. However, at present, high frequency current countermeasures are not sufficiently considered in electronic components, and electromagnetic interference caused by high frequency current is not considered. There is a problem that occurrence cannot be prevented.

【0006】本発明は、このような問題点を解決すべく
なされたもので、その技術的課題は、数十MHz〜数G
Hz帯域の高い周波数で使用されても高周波電流を十分
に抑制して電磁干渉の発生を防止できる高周波電流抑制
型電子部品を提供することにある。
The present invention has been made in order to solve such problems, and its technical problems are several tens MHz to several G.
It is an object of the present invention to provide a high-frequency current suppression type electronic component capable of sufficiently suppressing a high-frequency current and preventing the occurrence of electromagnetic interference even when used at a high frequency in a Hz band.

【0007】[0007]

【課題を解決するための手段】本発明によれば、信号処
理用に供される所定数の端子を備えた電子部品におい
て、所定数の端子のうちの一部又は全部には、該端子自
体に流れる数十MHz〜数GHz帯域の高周波電流を減
衰させる高周波電流抑制体が設けられた高周波電流抑制
型電子部品が得られる。
According to the present invention, in an electronic component having a predetermined number of terminals provided for signal processing, a part or all of the predetermined number of terminals may be replaced by the terminals themselves. A high-frequency current suppression type electronic component provided with a high-frequency current suppressor that attenuates a high-frequency current in a frequency band of several tens of MHz to several GHz flowing through the electronic device.

【0008】この高周波電流抑制型電子部品において、
高周波電流抑制体は、高周波電流抑制体は、所定数の端
子のうちの一部又は全部の表面に対して少なくとも電子
部品を実装するための回路基板に実装される実装部分、
並びに該回路基板に配備された導電性パターンに対する
接続部分を含む端部を除いた箇所に設けられたこと、更
に、高周波電流抑制体は、少なくとも電子部品を実装す
るための回路基板に実装される実装部分の近傍が数十M
Hz未満の使用周波数帯域で導電性を示すことは好まし
い。
In this high-frequency current suppression type electronic component,
The high-frequency current suppressor has a high-frequency current suppressor mounted on a circuit board for mounting at least an electronic component on a part or the entire surface of a predetermined number of terminals,
In addition, the high-frequency current suppressor is provided on a circuit board for mounting at least an electronic component, except that the high-frequency current suppressor is provided at a location other than an end including a connection portion to the conductive pattern provided on the circuit board. Dozens of M near the mounting part
It is preferable to exhibit conductivity in a working frequency band of less than Hz.

【0009】又、本発明によれば、上記何れか一つの高
周波電流抑制型電子部品において、高周波電流抑制体
は、スパッタリング法により所定数の端子のうちの一部
又は全部の表面上に成膜された高周波電流抑制型電子部
品、或いは高周波電流抑制体は、蒸着法により所定数の
端子のうちの一部又は全部の表面上に成膜された高周波
電流抑制型電子部品が得られる。
According to the present invention, in any one of the above high-frequency current suppressing type electronic components, the high-frequency current suppressing body is formed on a part or all of the surfaces of a predetermined number of terminals by a sputtering method. The obtained high-frequency current suppression type electronic component or high-frequency current suppression body is obtained as a high-frequency current suppression type electronic component formed on a part or all of the surfaces of a predetermined number of terminals by a vapor deposition method.

【0010】更に、本発明によれば、上記何れかの高周
波電流抑制型電子部品において、高周波電流抑制体は、
予め所定数の端子の作製工程に際して用いられる金属性
母材板上の一部又は全体に成膜されて成ること、或いは
高周波電流抑制体は、所定数の端子の作製工程に際して
用いられる金属性母材板を切り出して該所定数の端子と
して形成されたもののうちの一部又は全部の表面上に成
膜されて成ることはそれぞれ好ましい。
Further, according to the present invention, in any of the above high-frequency current suppressing type electronic components, the high-frequency current suppressing body is
The metallic base material plate used in the step of manufacturing the predetermined number of terminals is formed on a part or the whole of the metal base material plate used in the step of manufacturing the predetermined number of terminals. It is preferable that a material plate is cut out and formed on some or all of the surfaces formed as the predetermined number of terminals.

【0011】一方、本発明によれば、信号処理に供され
る所定数の端子を備えた電子部品において、所定数の端
子のうちの一部又は全部は、数十MHz未満の使用周波
数帯域で導電性を示すと共に、該端子自体に流れる数十
MHz〜数GHz帯域の高周波電流を減衰させる高周波
電流抑制体から成る高周波電流抑制型電子部品が得られ
る。
On the other hand, according to the present invention, in an electronic component having a predetermined number of terminals to be used for signal processing, some or all of the predetermined number of terminals are used in a frequency band of use less than several tens of MHz. A high-frequency current suppression type electronic component comprising a high-frequency current suppressor that exhibits conductivity and attenuates a high-frequency current in a band of several tens of MHz to several GHz flowing through the terminal itself is obtained.

【0012】この高周波電流抑制型電子部品において、
高周波電流抑制体はスパッタリング法により作製された
こと、或いは高周波電流抑制体は蒸着法により作製され
たことはそれぞれ好ましい。
In this high-frequency current suppression type electronic component,
It is preferable that the high-frequency current suppressor is manufactured by a sputtering method, or that the high-frequency current suppressor is manufactured by a vapor deposition method.

【0013】これらの何れか一つの高周波電流抑制型電
子部品において、高周波電流抑制体は、厚さが0.3〜
20(μm)の範囲にあることや薄膜磁性体であること
は好ましい。
[0013] In any one of these high-frequency current suppressing electronic components, the high-frequency current suppressing body has a thickness of 0.3 to 0.3 mm.
It is preferable that the thickness be in the range of 20 (μm) or a thin film magnetic material.

【0014】他方、本発明によれば、上記何れか一つの
高周波電流抑制型電子部品において、高周波電流抑制体
は、組成分M(但し、MはFe,Co,Niの少なくと
も一種とする),Y(但し、YはF,N,Oの少なくと
も一種とする),及びX(但し、XはM及びYに含まれ
る元素以外の元素の少なくとも一種とする)の混在物に
よるM−X−Y系の磁気損失材料であって、透磁率特性
における実数部μ′に対する虚数部μ″を周波数との関
係で示した複素透磁率特性上で該虚数部μ″の最大値
μ″max が周波数100MHz〜10GHzの帯域範囲
に存在し、且つ該虚数部μ″にあっての該最大値μ″
max に対して50%以上となる周波数帯域を該周波数帯
域の中心周波数で規格化した半幅分相当の半幅値μ″50
が200%以内である挟帯域磁気損失材料から成る高周
波電流抑制型電子部品が得られる。
On the other hand, according to the present invention, in any one of the above high-frequency current suppressing type electronic components, the high-frequency current suppressing body may have a composition M (where M is at least one of Fe, Co, and Ni), M-X-Y by a mixture of Y (where Y is at least one of F, N and O) and X (where X is at least one element other than the elements contained in M and Y) A magnetic loss material of a system, wherein the maximum value μ ″ max of the imaginary part μ ″ is 100 MHz at a frequency of 100 MHz on the complex magnetic permeability characteristic in which the imaginary part μ ″ with respect to the real part μ ′ in the magnetic permeability characteristic is shown in relation to the frequency. The maximum value μ ″ in the imaginary part μ ″ in the band range of 10 GHz to 10 GHz.
A half-width value μ ″ 50 corresponding to a half-width obtained by standardizing a frequency band that is 50% or more of max with the center frequency of the frequency band.
Is less than 200%, and a high-frequency current suppression type electronic component made of a narrow band magnetic loss material is obtained.

【0015】この高周波電流抑制型電子部品において、
挟帯域磁気損失材料は、飽和磁化の大きさが組成分Mの
みからなる金属磁性体の飽和磁化の80〜60(%)の
範囲にあること、更に挟帯域磁気損失材料は、直流電気
抵抗率が100〜700(μΩ・cm)の範囲にあるこ
とはそれぞれ好ましい。
In this high-frequency current suppression type electronic component,
The narrow band magnetic loss material has a saturation magnetization in the range of 80 to 60 (%) of the saturation magnetization of the metal magnetic material including only the composition M. Further, the narrow band magnetic loss material has a DC electric resistivity. Is preferably in the range of 100 to 700 (μΩ · cm).

【0016】更に、本発明によれば、上記何れか一つの
高周波電流抑制型電子部品において、高周波電流抑制体
は、組成分M(但し、MはFe,Co,Niの少なくと
も一種とする),Y(但し、YはF,N,Oの少なくと
も一種とする),及びX(但し、XはM及びYに含まれ
る元素以外の元素の少なくとも一種とする)の混在物に
よるM−X−Y系の磁気損失材料であって、透磁率特性
における実数部μ′に対する虚数部μ″を周波数との関
係で示した複素透磁率特性上で該虚数部μ″の最大値
μ″max が周波数100MHz〜10GHzの帯域範囲
に存在し、且つ該虚数部μ″にあっての該最大値μ″
max に対して50%以上となる周波数帯域を該周波数帯
域の中心周波数で規格化した半幅分相当の半幅値μ″50
が150%以上である広帯域磁気損失材料から成る高周
波電流抑制型電子部品が得られる。
Further, according to the present invention, in any one of the above high-frequency current suppressing electronic components, the high-frequency current suppressing body may have a composition M (where M is at least one of Fe, Co, and Ni), M-X-Y by a mixture of Y (where Y is at least one of F, N and O) and X (where X is at least one element other than the elements contained in M and Y) A magnetic loss material of a system, wherein the maximum value μ ″ max of the imaginary part μ ″ is 100 MHz at a frequency of 100 MHz on the complex magnetic permeability characteristic in which the imaginary part μ ″ with respect to the real part μ ′ in the magnetic permeability characteristic is shown in relation to the frequency. The maximum value μ ″ in the imaginary part μ ″ in the band range of 10 GHz to 10 GHz.
A half-width value μ ″ 50 corresponding to a half-width obtained by standardizing a frequency band that is 50% or more of max with the center frequency of the frequency band.
, A high-frequency current suppression type electronic component made of a broadband magnetic loss material having a ratio of not less than 150% is obtained.

【0017】この高周波電流抑制型電子部品において、
広帯域磁気損失材料は、飽和磁化の大きさが組成分Mの
みからなる金属磁性体の飽和磁化の60〜35(%)の
範囲にあること、更に広帯域磁気損失材料は、直流電気
抵抗率が500μΩ・cmよりも大きい値であることは
それぞれ好ましい。
In this high-frequency current suppressing type electronic component,
The broadband magnetic loss material has a saturation magnetization in the range of 60 to 35 (%) of the saturation magnetization of the metal magnetic material composed of only the component M. Further, the broadband magnetic loss material has a DC electric resistivity of 500 μΩ. It is preferable that the value is larger than cm.

【0018】加えて、本発明によれば、上記何れか一つ
の高周波電流抑制型電子部品において、挟帯域磁気損失
材料又は広帯域磁気損失材料は、組成分XがC,B,S
i,Al,Mg,Ti,Zn,Hf,Sr,Nb,T
a,及び希土類元素の少なくとも一種である高周波電流
抑制型電子部品か、或いは挟帯域磁気損失材料又は広帯
域磁気損失材料は、組成分Mが組成分X及び組成分Yに
よる化合物のマトリックス中に分散されたグラニュラー
状の形態で存在する高周波電流抑制型電子部品が得られ
る。後者の高周波電流抑制型電子部品において、挟帯域
磁気損失材料又は広帯域磁気損失材料は、グラニュラー
状の形態を有する粒子の平均粒子径が1〜40(nm)
の範囲にあることは好ましい。
In addition, according to the present invention, in any one of the above-described high-frequency current suppressing electronic components, the narrow band magnetic loss material or the wide band magnetic loss material has a composition X of C, B, S.
i, Al, Mg, Ti, Zn, Hf, Sr, Nb, T
a, and a high-frequency current suppressing electronic component or at least one of the rare earth elements, or a narrow band magnetic loss material or a wide band magnetic loss material, wherein the composition M is dispersed in a matrix of a compound composed of the composition X and the composition Y. Thus, a high-frequency current suppression type electronic component existing in a granular form can be obtained. In the latter high-frequency current suppressing type electronic component, the narrow band magnetic loss material or the wide band magnetic loss material has an average particle diameter of particles having a granular shape of 1 to 40 (nm).
Is preferably within the range.

【0019】又、本発明によれば、上記何れか一つの高
周波電流抑制型電子部品において、挟帯域磁気損失材料
又は広帯域磁気損失材料は、異方性磁界が47400A
/m以下である高周波電流抑制型電子部品が得られる。
According to the invention, in any one of the above high-frequency current suppressing electronic components, the narrow band magnetic loss material or the wide band magnetic loss material has an anisotropic magnetic field of 47400 A.
/ M or less.

【0020】更に、本発明によれば、上記何れか一つの
高周波電流抑制型電子部品において、M−X−Y系はF
e−Al−O系である高周波電流抑制型電子部品か、或
いはM−X−Y系はFe−Si−O系である高周波電流
抑制型電子部品が得られる。
Further, according to the present invention, in any one of the above high-frequency current suppressing type electronic components, the MXY system is
An e-Al-O-based high-frequency current suppression type electronic component or an M-XY-based high-frequency current suppression type electronic component is obtained.

【0021】加えて、本発明によれば、上記何れか一つ
の高周波電流抑制型電子部品において、電子部品は、高
い周波数帯域で使用されて高速動作する半導体能動素子
であると共に、半導体集積回路素子,半導体大規模集積
回路素子,及び論理回路素子の何れか一つである高周波
電流抑制型電子部品が得られる。
In addition, according to the present invention, in any one of the above-mentioned high-frequency current suppressing type electronic components, the electronic component is a semiconductor active element used in a high frequency band and operating at high speed, and a semiconductor integrated circuit element. And a high-frequency current suppression type electronic component which is one of a semiconductor large-scale integrated circuit device and a logic circuit device.

【0022】[0022]

【発明の実施の形態】以下に実施例を挙げ、本発明の高
周波電流抑制型電子部品について、図面を参照して詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0023】図1は、本発明の高周波電流抑制型電子部
品の一実施例に係る半導体集積回路素子1の基本構成を
示したもので、同図(a)はプリント配線回路基板4に
実装された状態での一部を透視した斜視図に関するも
の,同図(b)は要部を拡大して一部を断面にした側面
図に関するものである。
FIG. 1 shows the basic structure of a semiconductor integrated circuit device 1 according to one embodiment of the high-frequency current suppression type electronic component of the present invention. FIG. 1A is mounted on a printed circuit board 4. FIG. 2B is a side view in which a main part is enlarged and a part is sectioned.

【0024】この半導体集積回路素子1は、高い周波数
帯域で使用されて高速動作するもので、信号処理用に供
される所定数の端子2には、それぞれ端子自体を流れる
数十MHz〜数GHz帯域の高周波電流を減衰させる高
周波電流抑制体3が設けられている。この高周波電流抑
制体3は、厚さが0.3〜20(μm)の範囲にある薄
膜磁性体であって、各端子2の表面に対して半導体集積
回路素子1を実装するためのプリント配線回路基板4に
実装される実装部分、並びにプリント配線回路基板4に
配備された導電性パターン5に対する接続部分を含む端
部に及んで表面全体に設けられ、半導体集積回路素子1
のプリント配線回路基板4への実装時に各端子2の先端
部を半田6を用いてプリント配線回路基板4の実装面と
は反対側に配備された導電性パターン5に接続すること
により、実装部分の近傍が数十MHz未満の使用周波数
帯域で導電性を示すものとなっている。
The semiconductor integrated circuit device 1 is used in a high frequency band and operates at a high speed. A predetermined number of terminals 2 used for signal processing have tens of MHz to several GHz flowing through the terminals themselves. A high-frequency current suppressor 3 for attenuating a high-frequency current in a band is provided. The high-frequency current suppressor 3 is a thin-film magnetic material having a thickness in the range of 0.3 to 20 (μm), and is a printed wiring for mounting the semiconductor integrated circuit element 1 on the surface of each terminal 2. The semiconductor integrated circuit device 1 is provided on the entire surface including a mounting portion mounted on the circuit board 4 and an end portion including a connection portion to the conductive pattern 5 provided on the printed wiring circuit board 4.
By mounting the tip of each terminal 2 to the conductive pattern 5 provided on the side opposite to the mounting surface of the printed wiring circuit board 4 using solder 6 at the time of mounting on the printed wiring circuit board 4, Is conductive in a working frequency band of less than several tens of MHz.

【0025】このような半導体集積回路素子1では、各
端子2の表面に対して数十MHz未満の使用周波数帯域
で導電性を示し、且つ各端子2に流れる数十MHz〜数
GHz帯域の高周波電流を減衰させる高周波電流抑制体
3が設けられた構成であるため、半導体集積回路素子1
を数十MHz〜数GHz帯域の高い周波数で使用して
も、高周波電流抑制体3が各端子2を流れる高周波電流
を十分に減衰させることにより、電磁干渉の発生を防止
してその悪影響を除去することができる。
In such a semiconductor integrated circuit device 1, the surface of each terminal 2 exhibits conductivity in a working frequency band of less than several tens of MHz, and a high frequency of several tens MHz to several GHz which flows through each terminal 2. Since the high-frequency current suppressor 3 for attenuating the current is provided, the semiconductor integrated circuit device 1
Even when is used at a high frequency of several tens of MHz to several GHz, the high-frequency current suppressor 3 sufficiently attenuates the high-frequency current flowing through each terminal 2 to prevent the occurrence of electromagnetic interference and eliminate its adverse effect. can do.

【0026】ところで、この半導体集積回路素子1にお
ける所定数の端子2に設けられる高周波電流抑制体3の
形態や所定数の端子2自体の形態を変え、例えば図2
(a),(b)に示されるような他の実施例に係る半導
体集積回路素子1,1′のように異なる構成にすること
もできる。
By the way, the form of the high-frequency current suppressor 3 provided on the predetermined number of terminals 2 of the semiconductor integrated circuit device 1 and the form of the predetermined number of terminals 2 themselves are changed.
The semiconductor integrated circuit devices 1 and 1 'according to other embodiments as shown in FIGS.

【0027】即ち、図2(a)を参照すれば、この半導
体集積回路素子1の場合、基本構成上は一実施例のもの
と同じであるが、ここでは一実施例のものの構成と比
べ、所定数の端子2′の表面にそれぞれ設けられた高周
波電流抑制体3′がプリント配線回路基板4に実装され
る実装部分、並びにプリント配線回路基板4に配備され
た導電性パターン5に対する接続部分を含む端部を除い
た箇所に設けられ、これにより露呈された端子露出部2
aが半田6を用いてプリント配線回路基板4の実装面と
は反対側に配備された導電性パターン5に接続された構
成となっている点が相違している。
That is, referring to FIG. 2A, the basic structure of the semiconductor integrated circuit device 1 is the same as that of the embodiment, but here, compared with the structure of the embodiment, A mounting portion where the high-frequency current suppressor 3 ′ provided on the surface of the predetermined number of terminals 2 ′ is mounted on the printed wiring circuit board 4 and a connection portion to the conductive pattern 5 provided on the printed wiring circuit board 4. Terminal exposing portion 2 which is provided at a location except for the end portion including
The difference is that a is connected to the conductive pattern 5 provided on the side opposite to the mounting surface of the printed wiring circuit board 4 using the solder 6.

【0028】又、図2(b)を参照すれば、この半導体
集積回路素子1′の場合、一実施例及び図2(a)の半
導体集積回路素子1とは異なり、所定数の端子2″がプ
リント配線回路基板4の実装面側に配備された導電性パ
ターン5に接続される構成となっており、その他の点は
図2(a)の所定数の端子2′の場合と同様に、所定数
の端子2″の表面にそれぞれ設けられた高周波電流抑制
体3″がプリント配線回路基板4に実装される実装部
分、並びにプリント配線回路基板4に配備された導電性
パターン5に対する接続部分を含む端部を除いた箇所に
設けられ、これにより露呈された端子露出部2aが半田
6を用いてプリント配線回路基板4の実装面側に配備さ
れた導電性パターン5に接続された構成となっている。
Referring to FIG. 2B, the semiconductor integrated circuit device 1 'differs from the semiconductor integrated circuit device 1 of the embodiment and FIG. 2A in that a predetermined number of terminals 2 "are provided. Are connected to the conductive pattern 5 disposed on the mounting surface side of the printed wiring circuit board 4, and the other points are the same as in the case of the predetermined number of terminals 2 'in FIG. A mounting portion where the high-frequency current suppressor 3 ″ provided on the surface of the predetermined number of terminals 2 ″ is mounted on the printed wiring circuit board 4, and a connection portion to the conductive pattern 5 provided on the printed wiring circuit board 4. In this configuration, the exposed terminal exposed portion 2a is provided at a position except for the end portion including the exposed portion, and the exposed terminal exposed portion 2a is connected to the conductive pattern 5 disposed on the mounting surface side of the printed wiring circuit board 4 using the solder 6. ing.

【0029】このような半導体集積回路素子1,1′に
おいても、各端子2′,2″の表面に対して数十MHz
未満の使用周波数帯域で導電性を示し、且つ各端子
2′,2″に流れる数十MHz〜数GHz帯域の高周波
電流を減衰させる高周波電流抑制体3′,3″が設けら
れた構成であるため、半導体集積回路素子1,1′を数
十MHz〜数GHz帯域の高い周波数で使用しても、高
周波電流抑制体3′,3″が各端子2′,2″を流れる
高周波電流を十分に減衰させることにより、電磁干渉の
発生を防止してその悪影響を除去することができる。
In such semiconductor integrated circuit devices 1 and 1 ', several tens of MHz are applied to the surface of each terminal 2' and 2 ".
It has a configuration in which high-frequency current suppressors 3 ', 3 "that exhibit conductivity in a frequency band of use less than and attenuate high-frequency currents in the tens of MHz to several GHz band flowing through each terminal 2', 2" are provided. Therefore, even if the semiconductor integrated circuit elements 1 and 1 'are used at a high frequency in the range of several tens of MHz to several GHz, the high-frequency current suppressors 3' and 3 "can sufficiently supply the high-frequency current flowing through the terminals 2 'and 2". By attenuating this, it is possible to prevent the occurrence of electromagnetic interference and eliminate its adverse effects.

【0030】何れにしても、高周波電流抑制体3,
3′,3″は、厚さが0.3〜20(μm)の範囲にあ
り、且つ全体が数十MHz未満の使用周波数帯域で導電
性を示す薄膜磁性体として端子2,2′,2″にスパッ
タリング法や蒸着法により成膜されて一体的に設けられ
ている。
In any case, the high-frequency current suppressor 3,
3 ', 3 "are terminals 2, 2', 2 as thin-film magnetic materials having a thickness in the range of 0.3 to 20 (μm) and having conductivity as a whole in an operating frequency band of less than several tens of MHz. The film is formed integrally by sputtering or vapor deposition.

【0031】ここで、所定数の端子2,2′,2″の表
面に対して高周波電流抑制体3,3′,3″を成膜する
場合、予め所定数の端子2,2′,2″の作製工程に際
して用いられる金属性母材板上に高周波電流抑制体3,
3′,3″を成膜した上で金属性母材板を切り出すか、
或いは金属性母材板を切り出して所定数の端子2,
2′,2″として形成されたものの表面上に高周波電流
抑制体3,3′,3″を成膜すれば良い。尚、図2
(a)に示す高周波電流抑制体3′や図2(b)に示す
高周波電流抑制体3″の場合であれば、半導体集積回路
素子1,1′をプリント配線回路基板4に実装した後に
半導体集積回路素子1,1′本体と端子2′,2″の実
装部分及び接続部分とをマスクにしてスパッタリング法
や蒸着法により成膜することが可能である。何れにして
も、高周波電流抑制体3,3′,3″の成膜に際して
は、端子2,2′,2″の全体の表面を対象とする他、
端子2,2′,2″の一部のものの表面を対象としても
良く、上述したスパッタリング法や蒸着法の他、化学蒸
着(CVD)法,イオンビーム蒸着法,ガス・デポジシ
ョン法,転写法等を適用することができる。
Here, when the high frequency current suppressors 3, 3 ', 3 "are formed on the surfaces of the predetermined number of terminals 2, 2', 2", the predetermined number of terminals 2, 2 ', 2 "are previously formed. The high frequency current suppressor 3,
3 ′, 3 ″ is formed into a film, and then a metal base plate is cut out.
Alternatively, a predetermined number of terminals 2
The high-frequency current suppressors 3, 3 ', 3 "may be formed on the surface of 2', 2". FIG.
In the case of the high-frequency current suppressor 3 'shown in FIG. 2A or the high-frequency current suppressor 3 "shown in FIG. It is possible to form a film by a sputtering method or a vapor deposition method using the integrated circuit elements 1 and 1 'main bodies and the mounting portions and connection portions of the terminals 2' and 2 "as masks. In any case, when forming the high-frequency current suppressors 3, 3 ', 3 ", the entire surface of the terminals 2, 2', 2" is targeted.
The surface of a part of the terminals 2, 2 ', 2 "may be targeted. In addition to the above-mentioned sputtering method and vapor deposition method, chemical vapor deposition (CVD) method, ion beam vapor deposition method, gas deposition method, transfer method Etc. can be applied.

【0032】ところで、高周波電流抑制体3,3′,
3″として適用可能な材料の一つは、組成分M(但し、
MはFe,Co,Niの少なくとも一種とする),Y
(但し、YはF,N,Oの少なくとも一種とする),及
びX(但し、XはM及びYに含まれる元素以外の元素の
少なくとも一種とする)の混在物によるM−X−Y系の
磁気損失材料であって、透磁率特性における実数部μ′
に対する虚数部μ″を周波数との関係で示した複素透磁
率特性上で虚数部μ″(磁気損失項とも呼ばれる)の最
大値μ″max が周波数100MHz〜10GHzの帯域
範囲に存在し、且つ虚数部μ″にあっての最大値μ″
max に対して50%以上となる周波数帯域をその周波数
帯域の中心周波数で規格化した半幅分相当の半幅値μ″
50が200%以内の挟帯域磁気損失材料である。但し、
この場合の挟帯域磁気損失材料では、飽和磁化の大きさ
が組成分Mのみからなる金属磁性体の飽和磁化の80〜
60(%)の範囲にあり、直流電気抵抗率が100〜7
00(μΩ・cm)の範囲にあるものとする。
Incidentally, the high-frequency current suppressors 3, 3 ',
One of the materials applicable as 3 ″ is a component M (however,
M is at least one of Fe, Co and Ni), Y
(Where Y is at least one of F, N, and O) and X (where X is at least one of the elements other than the elements contained in M and Y). The magnetic loss material of the above, wherein the real part μ ′ in the permeability characteristic
The maximum value μ ″ max of the imaginary part μ ″ (also referred to as a magnetic loss term) on the complex magnetic permeability characteristic in which the imaginary part μ ″ is expressed in relation to the frequency exists in the frequency range of 100 MHz to 10 GHz, and Maximum value μ ″ in part μ ″
A half-width value μ ″ corresponding to a half-width obtained by standardizing a frequency band that is 50% or more of max with the center frequency of the frequency band.
50 is a narrow band magnetic loss material within 200%. However,
In the narrow band magnetic loss material in this case, the magnitude of the saturation magnetization is 80 to 80 of the saturation magnetization of the metal magnetic material composed only of the composition M.
60 (%), and the DC electrical resistivity is 100 to 7
It is assumed to be in the range of 00 (μΩ · cm).

【0033】又、高周波電流抑制体3,3′,3″とし
て適用可能な材料のもう一つは、組成分M(但し、Mは
Fe,Co,Niの少なくとも一種とする),Y(但
し、YはF,N,Oの少なくとも一種とする),及びX
(但し、XはM及びYに含まれる元素以外の元素の少な
くとも一種とする)の混在物によるM−X−Y系の磁気
損失材料であって、透磁率特性における実数部μ′に対
する虚数部μ″を周波数との関係で示した複素透磁率特
性上で虚数部μ″の最大値μ″max が周波数100MH
z〜10GHzの帯域範囲に存在し、且つ虚数部μ″に
あっての最大値μ″max に対して50%以上となる周波
数帯域をその周波数帯域の中心周波数で規格化した半幅
分相当の半幅値μ″50が150%以上の広帯域磁気損失
材料である。但し、この場合の広帯域磁気損失材料で
は、飽和磁化の大きさが組成分Mのみからなる金属磁性
体の飽和磁化の60〜35(%)の範囲にあり、直流電
気抵抗率が500μΩ・cmよりも大きい値のものとす
る。
Another material that can be used as the high-frequency current suppressors 3, 3 ', 3 "is a component M (where M is at least one of Fe, Co and Ni) and Y (where , Y is at least one of F, N, O) and X
(Where X is at least one element other than the elements contained in M and Y) is an M-X-Y-based magnetic loss material, which is an imaginary part with respect to a real part μ ′ in permeability properties. The maximum value μ ″ max of the imaginary part μ ″ is 100 MH on the complex magnetic permeability characteristic showing μ ″ in relation to the frequency.
A half-width corresponding to a half-width that is in the band range of z to 10 GHz and is 50% or more of the maximum value μ ″ max in the imaginary part μ ″, normalized by the center frequency of the frequency band. It is a broadband magnetic loss material having a value μ ″ 50 of 150% or more. However, in this case, in the case of the broadband magnetic loss material, the magnitude of the saturation magnetization is 60 to 35 ( %) And the DC electrical resistivity is a value larger than 500 μΩ · cm.

【0034】更に、これらの高周波電流抑制体3,
3′,3″として適用される挟帯域磁気損失材料や広帯
域磁気損失材料は、何れも組成分XがC,B,Si,A
l,Mg,Ti,Zn,Hf,Sr,Nb,Ta,及び
希土類元素の少なくとも一種であり、組成分Mが組成分
X及び組成分Yによる化合物のマトリックス中に分散さ
れたグラニュラー状の形態で存在し、グラニュラー状の
形態を有する粒子の平均粒子径が1〜40(nm)の範
囲にあって、異方性磁界が47400A/m以下のもの
とする。尚、挟帯域磁気損失材料や広帯域磁気損失材料
のM−X−Y系を具体的に限定すれば、Fe−Al−O
系とするか、或いはFe−Si−O系とすることが好ま
しい。
Further, these high-frequency current suppressors 3,
The narrow band magnetic loss material and the broad band magnetic loss material applied as 3 ′, 3 ″ are all composed of C, B, Si, A
l, Mg, Ti, Zn, Hf, Sr, Nb, Ta, and at least one of the rare earth elements, in a granular form in which the composition M is dispersed in a matrix of a compound having the composition X and the composition Y. It is assumed that the average particle diameter of the existing particles having a granular form is in the range of 1 to 40 (nm) and the anisotropic magnetic field is 47400 A / m or less. In addition, if the M-X-Y system of the narrow band magnetic loss material and the wide band magnetic loss material is specifically limited, Fe-Al-O
Or a Fe-Si-O system.

【0035】図3は、本発明の高周波電流抑制型電子部
品の別の実施例に係る半導体集積回路素子1″の基本構
成を示したもので、同図(a)はプリント配線回路基板
4に実装された状態での一部を透視した斜視図に関する
もの,同図(b)は要部を拡大して一部を断面にした側
面図に関するものである。
FIG. 3 shows the basic structure of a semiconductor integrated circuit device 1 ″ according to another embodiment of the high-frequency current suppression type electronic component of the present invention. FIG. 4B is a side view in which a main part is enlarged and a part is sectioned.

【0036】この半導体集積回路素子1″の場合、上述
した一実施例のものの構成と比べ、所定数の端子自体を
高周波電流抑制体から成る幅広なシート状高周波電流抑
制体7としてリードフレームを構成した点が相違してい
る。
In the case of the semiconductor integrated circuit device 1 ″, a lead frame is formed as a wide sheet-like high-frequency current suppressor 7 having a predetermined number of terminals themselves as compared with the configuration of the above-described embodiment. Is different.

【0037】ここでのシート状高周波電流抑制体7も、
上述した高周波電流抑制体3,3′の場合と同様な組成
の挟帯域磁気損失材料又は広帯域磁気損失材料による薄
膜磁性体であって、挟帯域磁気損失材料や広帯域磁気損
失材料のM−X−Y系がFe−Al−O系か、或いはF
e−Si−O系のものとなっている。
The sheet-like high-frequency current suppressor 7 here also
A thin-film magnetic material made of a narrow-band magnetic loss material or a broad-band magnetic loss material having the same composition as that of the high-frequency current suppressors 3 and 3 'described above. Y system is Fe-Al-O system or F system
It is an e-Si-O type.

【0038】従って、この半導体集積回路素子1″にお
いても、一実施例並びに他の実施例の場合と同様に数十
MHz〜数GHz帯域の高い周波数で使用したときにシ
ート状高周波電流抑制体7がそれ自体を流れる高周波電
流を十分に減衰させるため、電磁干渉の発生を防止して
その悪影響を除去することができる。尚、ここでの半導
体集積回路素子1″においても、シート状高周波電流抑
制体7の先端部を半田6でプリント配線回路基板4の実
装面側に配備された導電性パターン5に接続する構成に
変更することが可能である。
Accordingly, also in this semiconductor integrated circuit device 1 ", the sheet-shaped high-frequency current suppressor 7 is used when used at a high frequency of several tens of MHz to several GHz as in the case of the first and second embodiments. Can sufficiently attenuate the high-frequency current flowing through itself, thereby preventing the occurrence of electromagnetic interference and eliminating its adverse effects. It is possible to change to a configuration in which the tip of the body 7 is connected to the conductive pattern 5 provided on the mounting surface side of the printed circuit board 4 with the solder 6.

【0039】因みに、上述した各実施例では、電子部品
として半導体集積回路素子(IC)1,1′,1″を用
いた場合を説明したが、これに代えて半導体大規模集積
回路素子(LSI)やマイクロプロセッサ(MPU),
中央演算処理装置(CPU),画像プロセッサ算術論理
演算装置(IPALU)等に代表される論理回路素子を
含む半導体能動素子を適用しても同様に有効であるし、
この他にもプリント配線回路基板4上に実装配備される
リードフレームとなる端子を有する電子部品であれば、
それらを対象にして端子に高周波電流抑制体を設けた
り、或いは端子自体をシート状高周波電流抑制体7にす
る構成を適用することにより高周波電流の抑制、並びに
電磁干渉の発生防止の効果が得られる。
In each of the embodiments described above, the case where the semiconductor integrated circuit elements (IC) 1, 1 ', 1 "are used as the electronic components has been described. However, instead of this, a semiconductor large-scale integrated circuit element (LSI) is used. ), Microprocessor (MPU),
It is similarly effective to apply a semiconductor active element including a logic circuit element represented by a central processing unit (CPU), an image processor arithmetic logic unit (IPALU), and the like.
In addition, any electronic component having a terminal serving as a lead frame mounted and arranged on the printed wiring circuit board 4 may be used.
By providing a high-frequency current suppressor at the terminal for them or applying a configuration in which the terminal itself is a sheet-like high-frequency current suppressor 7, the effect of suppressing high-frequency current and preventing the occurrence of electromagnetic interference can be obtained. .

【0040】何れにしても、一実施例並びに他の実施例
で説明した形態の半導体集積回路素子1,1′において
各端子2,2′,2″に設けられた高周波電流抑制体
3,3′,3″や、或いは別の実施例で説明した端子自
体を代用したシート状高周波電流抑制体7には、体積の
小さな薄膜磁性体であって、効果的な不要輻射対策を可
能にした複素透磁率特性における虚数部(以下、磁気損
失項とする)μ″の大きな磁気損失材料が用いられてい
る。
In any case, the high-frequency current suppressors 3, 3 provided at the terminals 2, 2 ', 2 "in the semiconductor integrated circuit devices 1, 1' of the form described in one embodiment and other embodiments. , 3 "or the sheet-like high-frequency current suppressor 7 which is a substitute for the terminal itself described in another embodiment is a complex thin-film magnetic material having a small volume and capable of effectively preventing unnecessary radiation. A magnetic loss material having a large imaginary part (hereinafter referred to as a magnetic loss term) μ ″ in the magnetic permeability characteristic is used.

【0041】そこで、以下はこうした磁気損失材料が研
究開発されるまでの技術的背景を説明する。本発明者等
は、本願出願以前に高周波帯域で磁気損失の大きな特性
の複合磁性体を提案し、これを不要輻射源の近傍に配置
することにより、半導体能動素子に代表される電子部品
から発生する不要輻射を効果的に抑制する方法を見い出
している。
Therefore, the technical background until such a magnetic loss material is researched and developed will be described below. The present inventors have proposed a composite magnetic material having high magnetic loss characteristics in a high frequency band prior to the filing of the present application, and by disposing this in the vicinity of an unnecessary radiation source, a composite magnetic material generated from an electronic component typified by a semiconductor active element. Have found a way to effectively suppress unwanted radiation.

【0042】このような磁性体の磁気損失を利用した不
要輻射減衰の作用については、最近の研究から不要輻射
源となっている電子部品の電子回路に対して等価的な抵
抗成分が付与されるためであることが判っている。ここ
で、等価的な抵抗成分の大きさは、磁性体の磁気損失項
μ″の大きさに依存している。詳述すれば、電子回路に
等価的に挿入される抵抗成分の大きさは、磁性体の面積
が一定の場合には磁気損失項μ″と磁性体の厚さとに略
比例する。従って、一層小さな,或いは薄い磁性体で所
望の不要輻射減衰を得るためには、一層大きな磁気損失
項μ″が必要になる。例えば半導体集積回路素子のモー
ルド内部のような微小領域で磁気損失体を用いて不要輻
射対策を行うためには、磁気損失項μ″が極めて大きな
値である必要があり、従来の磁気損失材料に比べて格段
に大きな磁気損失項μ″を有する磁性体が求められる。
Regarding the function of attenuating unnecessary radiation utilizing the magnetic loss of such a magnetic material, a recent study has provided an equivalent resistance component to an electronic circuit of an electronic component serving as an unnecessary radiation source. It turns out that it is. Here, the magnitude of the equivalent resistance component depends on the magnitude of the magnetic loss term μ ″ of the magnetic material. More specifically, the magnitude of the resistance component equivalently inserted into the electronic circuit is When the area of the magnetic body is constant, the magnetic loss term μ ″ is approximately proportional to the thickness of the magnetic body. Therefore, in order to obtain a desired unnecessary radiation attenuation with a smaller or thinner magnetic material, a larger magnetic loss term μ ″ is required. In order to take measures against unwanted radiation by using a magnetic material, the magnetic loss term μ ″ needs to be an extremely large value, and a magnetic material having a much larger magnetic loss term μ ″ than conventional magnetic loss materials is required. .

【0043】本発明者等はスパッタリング法,或いは蒸
着法による軟磁性体の成膜研究過程において、微小な磁
性金属粒子がセラミックスのような非磁性体中に均質に
分散されて成るグラニュラー磁性体の優れた透磁率特性
に着目し、磁性金属粒子及びそれを囲う非磁性体の微細
構造を研究した結果、グラニュラー磁性体中に占める磁
性金属粒子の濃度が特定の範囲にある場合に高周波領域
において優れた磁気損失特性が得られることを見い出し
た。
The inventors of the present invention have studied the formation of a granular magnetic material in which fine magnetic metal particles are homogeneously dispersed in a non-magnetic material such as ceramics during the process of forming a soft magnetic material by sputtering or vapor deposition. Focusing on the excellent permeability characteristics, we studied the microstructure of magnetic metal particles and the non-magnetic material surrounding them, and found that when the concentration of magnetic metal particles in the granular magnetic material was in a specific range, it was excellent in the high frequency range It has been found that excellent magnetic loss characteristics can be obtained.

【0044】図4は、M−X−Y系のグラニュラー磁性
体の基本構造を模式的に示したものである。M−X−Y
系(但し、ここでの組成分MはFe,Co,Niの少な
くとも一種、組成分YはF,N,Oの少なくとも一種、
組成分Xは組成分M及び組成分Yに含まれる元素以外の
元素の少なくとも一種とする)の組成を有するグラニュ
ラー磁性体については、これまでに多くの研究がなさ
れ、低損失で大きな飽和磁化を有することが知られてい
る。このM−X−Y系のグラニュラー磁性体において、
飽和磁化の大きさは、組成分M11の占める体積率に依
存するので、大きな飽和磁化を得るためには、組成分M
11の比率を高くする必要がある。このため、高周波イ
ンダクタ素子,或いはトランス等の磁芯として用いるよ
うな一般的な用途の場合、M−X−Y系のグラニュラー
磁性体中の組成分M11の割合は、組成分M11のみか
らなるバルク金属磁性体の飽和磁化の概ね80%以上の
飽和磁化が得られる範囲に限られていた。
FIG. 4 schematically shows the basic structure of an MXY granular magnetic material. M-X-Y
System (where the composition M is at least one of Fe, Co, and Ni, and the composition Y is at least one of F, N, and O;
Many studies have been made so far on the granular magnetic material having a composition of which the composition X is at least one element other than the elements contained in the composition M and the composition Y). It is known to have. In this M-X-Y granular magnetic material,
The magnitude of the saturation magnetization depends on the volume ratio occupied by the composition M11.
It is necessary to increase the ratio of 11. For this reason, in the case of a general use such as a high frequency inductor element or a magnetic core of a transformer or the like, the proportion of the composition M11 in the MXY granular magnetic material is such that the bulk composed of only the composition M11 is used. This is limited to a range where a saturation magnetization of about 80% or more of the saturation magnetization of the metal magnetic material can be obtained.

【0045】そこで、本発明者等はM−X−Y系のグラ
ニュラー磁性体において、組成分M11の占める割合を
広い範囲で検討した結果、何れの場合であっても磁性金
属が特定濃度の範囲にあるときに高周波領域で大きな磁
気損失を示すことを見い出した。
The inventors of the present invention have studied the proportion of the composition M11 in the MXY granular magnetic material in a wide range. At high frequencies, they show large magnetic loss.

【0046】一般に、組成分M11の比率が組成分M1
1のみからなるバルク金属磁性体の飽和磁化に対して8
0%以上の飽和磁化を示すような最も高い領域は、従来
より盛んに研究されている高飽和磁化において低損失な
M−X−Y系のグラニュラー磁性体の領域である。この
領域にあるグラニュラー磁性体材料は、透磁率特性にお
ける実数部μ′並びに飽和磁化の値が大きいため、上述
したように高周波インダクタのような高周波マイクロ磁
気デバイスに用いられるが、電気抵抗を左右する組成分
X−Y12の占める割合が少ないので、電気抵抗率が小
さい。このため、膜厚が厚くなると高周波領域での渦電
流損失の発生に伴って高周波での透磁率μが劣化するの
で、ノイズ対策に用いるような比較的厚い磁性膜には不
向きとなっている。
In general, the ratio of the component M11 is
8 for the saturation magnetization of the bulk metal magnetic material consisting of only 1
The highest region exhibiting a saturation magnetization of 0% or more is a region of an MXY granular magnetic material which has been studied extensively conventionally and has a low loss in a high saturation magnetization. The granular magnetic material in this region has a large value of the real part μ ′ in magnetic permeability characteristics and the value of saturation magnetization, and therefore is used for a high-frequency micro-magnetic device such as a high-frequency inductor as described above, but affects the electric resistance. Since the proportion of the composition XY12 is small, the electric resistivity is small. For this reason, when the film thickness increases, the magnetic permeability μ at a high frequency deteriorates due to the occurrence of an eddy current loss in a high frequency region, and is not suitable for a relatively thick magnetic film used for noise suppression.

【0047】これに対し、組成分M11の比率が、組成
分M11のみからなるバルク金属磁性体の飽和磁化の8
0%以下で60%以上となる飽和磁化を示す領域は、電
気抵抗率が概ね100μΩ・cm以上と比較的大きいた
め、磁性体材料の厚さが数μm程度あっても渦電流によ
る損失が少なく、磁気損失は殆ど自然共鳴による損失と
なる。このため、磁気損失項μ″の周波数分散幅が狭く
なるので、挟帯域な周波数範囲でのノイズ対策(高周波
電流抑制)に適している。組成分M11の比率が組成分
M11のみからなるバルク金属磁性体の飽和磁化の60
%以下で35%以上の飽和磁化を示す領域は、電気抵抗
率が概ね500μΩ・cm以上と更に大きいために、渦
電流による損失は極めて小さく、組成分M11間の磁気
的な相互作用が小さくなることでスピンの熱擾乱が大き
くなり、自然共鳴の生じる周波数に揺らぎが生じ、その
結果として磁気損失項μ″は広い範囲で大きな値を示す
ようになる。従って、こうした適性な組成領域であれば
広帯域な高周波電流の抑制に有効となる。因みに、組成
分M11の比率が適性な組成領域よりも更に小さな領域
は、組成分M11間の磁気的相互作用が殆ど生じなくな
るので超常磁性となる。
On the other hand, the ratio of the composition M11 is 8% of the saturation magnetization of the bulk metal magnetic material composed only of the composition M11.
Since the region exhibiting the saturation magnetization of 60% or more at 0% or less has a relatively large electric resistivity of about 100 μΩ · cm or more, even if the thickness of the magnetic material is about several μm, the loss due to the eddy current is small. The magnetic loss is almost a loss due to natural resonance. For this reason, the frequency dispersion width of the magnetic loss term μ ″ becomes narrow, which is suitable for measures against noise (suppression of high-frequency current) in a narrow frequency range. The ratio of the component M11 is a bulk metal composed only of the component M11. 60 of saturation magnetization of magnetic material
% Or less and 35% or more of saturation magnetization has a much higher electric resistivity of about 500 μΩ · cm or more, so that the loss due to the eddy current is extremely small and the magnetic interaction between the components M11 is small. As a result, the thermal disturbance of the spin increases, and the frequency at which the natural resonance occurs fluctuates, and as a result, the magnetic loss term μ ″ shows a large value in a wide range. In a region where the ratio of the component M11 is smaller than an appropriate composition region, magnetic interaction between the components M11 hardly occurs, and the region becomes superparamagnetic.

【0048】ところで、磁気損失材料を電子回路の直近
に配設して高周波電流を抑制する際の材料設計の目安
は、磁気損失項μ″と磁気損失材料の厚さδとの積μ″
・δで与えられ、数100MHzの周波数の高周波電流
に対して効果的な抑制を得るには、概ねμ″・δ≧10
00(μm)が必要となる。従って、μ″=1000の
磁気損失材料では1μm以上の厚さが必要になり、渦電
流損失の生じ易い低電気抵抗な材料は好ましくなく、電
気抵抗率が100μΩ・cm以上となるような上述した
適性な組成領域(組成分M11の比率が組成分M11の
みからなるバルク金属磁性体の飽和磁化の80%以下と
なる飽和磁化を示し、且つ超常磁性の発現しない領域で
あり、組成分M11のみからなるバルク金属磁性体の飽
和磁化に対して35%以上の飽和磁化を示す領域)が適
している。
Incidentally, when the magnetic loss material is disposed in the immediate vicinity of the electronic circuit to suppress the high-frequency current, the standard of the material design is a product μ ″ of the magnetic loss term μ ″ and the thickness δ of the magnetic loss material.
In order to obtain an effective suppression for a high-frequency current having a frequency of several hundreds of MHz, which is given by δ, approximately μ ″ · δ ≧ 10
00 (μm) is required. Therefore, a magnetic loss material of μ ″ = 1000 requires a thickness of 1 μm or more, and a material having low electric resistance that easily causes eddy current loss is not preferable, and the above-described material having an electric resistivity of 100 μΩ · cm or more is not preferable. Suitable composition region (a region in which the ratio of the composition component M11 shows a saturation magnetization of 80% or less of the saturation magnetization of the bulk metal magnetic material composed only of the composition component M11 and does not exhibit superparamagnetism. (A region exhibiting a saturation magnetization of 35% or more with respect to the saturation magnetization of the bulk metal magnetic material).

【0049】以下は、上述した各実施例の高周波電流抑
制体3,3′,3″やシート状高周波電流抑制体7を得
るときに必要とされる材料であるグラニュラー状の磁気
損失材料をスパッタリング法により異なる条件で幾つか
の試料として製造する工程を具体的に説明する。但し、
各試料の作製に際しては、図5(a)に示されるような
スパッタリング法適用型試料作製装置を用いている。こ
のスパッタリング法適用型試料作製装置は、ガス供給装
置22及び真空ポンプ27が結合された真空容器(チャ
ンバ)18内にシャッタ21を挟んで基板23と組成分
X−Y,或いは組成分Xから成るチップ24を所定の間
隔で配備された組成分Mから成るターゲット25とが対
向して配備され、チップ24及びターゲット25の支持
部側に接地接続された高周波電源装置(RF)26が接
続されて成っている。
In the following, a granular magnetic loss material, which is a material required for obtaining the high-frequency current suppressors 3, 3 ', 3 "and the sheet-like high-frequency current suppressor 7 of each of the above embodiments, is sputtered. The process of producing several samples under different conditions according to the method will be specifically described, provided that:
In manufacturing each sample, a sputtering method applicable sample manufacturing apparatus as shown in FIG. 5A is used. This sample preparation apparatus to which the sputtering method is applied includes a substrate 23 and a composition XY or a composition X with a shutter 21 interposed in a vacuum vessel (chamber) 18 to which a gas supply device 22 and a vacuum pump 27 are connected. A chip 25 is provided facing a target 25 composed of a component M provided at a predetermined interval, and a high-frequency power supply (RF) 26 grounded to the support portion side of the chip 24 and the target 25 is connected. Made up of

【0050】(試料1)ここでは、ガス供給装置22に
より真空容器18内へArガスを供給すると共に、真空
ポンプ27で真空容器18内を真空度約1.33×10
-4Paとなるように保ったArガス雰囲気中でターゲッ
ト25となる直径φ=100mmのFe製円板上にチッ
プ24となる寸法=縦5mm×横5mm×厚さ2mmの
総計120個のAl23 チップを配備した上で高周波
電源装置26により高周波電源を供給した条件下におい
て、スパッタリング法により基板23となるガラス基板
上に磁性薄膜を成膜した後、これにより得られた磁性薄
膜を温度条件300℃の真空磁場中で2時間熱処理を施
すことによって上述したグラニュラー磁性薄膜による試
料1を得た。
(Sample 1) Here, an Ar gas is supplied into the vacuum vessel 18 by the gas supply device 22, and a vacuum degree of about 1.33 × 10
In an Ar gas atmosphere kept at -4 Pa, a chip 25 is formed on a Fe disk having a diameter φ of 100 mm to be a target 25 = dimensions of 5 mm × 5 mm × 2 mm in thickness, and a total of 120 Al particles. A magnetic thin film is formed on a glass substrate serving as the substrate 23 by a sputtering method under a condition where high frequency power is supplied from the high frequency power supply device 26 after the 2 O 3 chip is provided, and the obtained magnetic thin film is By performing a heat treatment in a vacuum magnetic field at a temperature condition of 300 ° C. for 2 hours, the above-mentioned sample 1 of the granular magnetic thin film was obtained.

【0051】この試料1を蛍光X線分析したところ、F
72Al1117の組成を有し、膜厚は2.0μm、直流
抵抗率は530μΩ・cm、異方性磁界Hk は1422
A/mであり、飽和磁化Ms は1.68T(テスラ)、
複素透磁率特性上で磁気損失項μ″にあっての最大値
μ″max に対して50%以上となる周波数帯域をその中
心周波数で規格化した半幅分相当の半幅値μ″50(以下
も同様であるとする)は148%であり、その飽和磁化
s (M−X−Y)と組成分Mのみから成る金属磁性体
の飽和磁化Ms (M)との比率値{Ms (M−X−Y)
/Ms (M)}×100%(以下も同様であるとする)
は72.2%であった。
When this sample 1 was analyzed by X-ray fluorescence, F
e 72 Al 11 O 17 , a film thickness of 2.0 μm, a DC resistivity of 530 μΩ · cm, and an anisotropic magnetic field H k of 1422.
A / m, the saturation magnetization M s is 1.68 T (tesla),
A half-width value μ ″ 50 (hereinafter also referred to as a half-width equivalent to a half-width standardized at the center frequency of a frequency band that is 50% or more of the maximum value μ ″ max in the magnetic loss term μ ″ on the complex magnetic permeability characteristic) Is the same) is 148%, and a ratio value ΔM s (M s (M s (M)) of the saturation magnetization M s (M-X-Y) and the saturation magnetization M s (M) of the metal magnetic material composed only of the component M M-X-Y)
/ M s (M)} × 100% (the same applies hereinafter)
Was 72.2%.

【0052】又、試料1の磁気損失特性を検証するため
に周波数fに対する透磁率μ特性を短冊状に加工した検
出コイルに試料1を挿入してバイアス磁場を印加しなが
らインピーダンスを測定することにより行い、この結果
に基づいて周波数fに対する磁気損失項μ″特性(複素
透磁率特性)を得た。
Also, in order to verify the magnetic loss characteristics of the sample 1, the sample 1 is inserted into a detection coil in which the magnetic permeability μ characteristics with respect to the frequency f are processed into a strip shape, and the impedance is measured while applying a bias magnetic field. Based on this result, a magnetic loss term μ ″ characteristic (complex magnetic permeability characteristic) with respect to the frequency f was obtained.

【0053】図6は、この試料1の周波数f(MHz)
に対する磁気損失項μ″特性(複素透磁率特性)を示し
たものである。図6からは、試料1の磁気損失項μ″の
場合、分散がやや急峻でピーク値が非常に大きくなって
おり、共鳴周波数も700MHz付近と高くなっている
ことが判る。
FIG. 6 shows the frequency f (MHz) of the sample 1.
6 shows the characteristic of the magnetic loss term μ ″ (complex permeability property) with respect to. In FIG. 6, in the case of the magnetic loss term μ ″ of the sample 1, the dispersion is slightly steep and the peak value is very large. It can be seen that the resonance frequency is also high at around 700 MHz.

【0054】(試料2)ここでは、上述した試料1を作
製した場合と比べてAl2 3 チップの数を150個に
代えた以外は全く同様な条件並びに手順でグラニュラー
磁性薄膜による試料2を得た。
(Sample 2) Here, a sample 2 made of a granular magnetic thin film was prepared under exactly the same conditions and procedures as in the case where the above-mentioned sample 1 was manufactured, except that the number of Al 2 O 3 chips was changed to 150. Obtained.

【0055】この試料2を蛍光X線分析したところ、F
44Al2234の組成を有し、膜厚は1.2μm、直流
抵抗率は2400μΩ・cm、異方性磁界Hk は948
0A/mであり、飽和磁化Ms は0.96T、半幅値
μ″50は181%であり、比率値{Ms (M−X−Y)
/Ms (M)}×100%は44.5%であった。
When this sample 2 was subjected to fluorescent X-ray analysis, F
e 44 Al 22 O 34 , a film thickness of 1.2 μm, a DC resistivity of 2400 μΩ · cm, and an anisotropic magnetic field H k of 948.
0A / m, the saturation magnetization M s is 0.96 T, the half-width value μ ″ 50 is 181%, and the ratio value ΔM s (M−X−Y)
/ M s (M)} × 100% was 44.5%.

【0056】図7は、試料2の周波数f(MHz)に対
する磁気損失項μ″特性(複素透磁率特性)を示したも
のである。図7からは、試料2の磁気損失項μ″の場
合、熱擾乱のために分散がなだらかになって広帯域に拡
がり、試料1の場合と同様にピーク値が大きな値となっ
ているが、試料1の場合と比べて直流抵抗率の値が非常
に大きくなっており、共鳴周波数も1GHz付近にピー
クがあって優れた高周波数特性を示していることが判
る。
FIG. 7 shows the characteristic of the magnetic loss term μ ″ (complex permeability characteristic) with respect to the frequency f (MHz) of the sample 2. FIG. 7 shows the case of the magnetic loss term μ ″ of the sample 2. However, the dispersion is gentle due to thermal disturbance and spreads over a wide band, and the peak value is large as in the case of the sample 1. However, the value of the DC resistivity is much larger than that of the sample 1. It can be seen that the resonance frequency also has a peak near 1 GHz and shows excellent high frequency characteristics.

【0057】(試料3)ここでは、上述した試料1を作
製した場合と比べてAl2 3 チップの数を90個に代
えた以外は全く同様な条件並びに手順でグラニュラー磁
性薄膜による第1の比較試料となる試料3を得た。
(Sample 3) Here, the first magnetic granular thin film was formed under exactly the same conditions and procedures as in Example 1 except that the number of Al 2 O 3 chips was changed to 90. Sample 3 as a comparative sample was obtained.

【0058】この試料3を蛍光X線分析したところ、F
86l6 8 の組成を有し、膜厚は1.2μm、直流
抵抗率は74μΩ・cm、異方性磁界Hk は1738A
/mであり、飽和磁化Ms は1.88T、比率値{Ms
(M−X−Y)/Ms (M)}×100%は85.7%
であった。
When this sample 3 was subjected to fluorescent X-ray analysis, F
e 86 Al 6 O 8 , a film thickness of 1.2 μm, a DC resistivity of 74 μΩ · cm, and an anisotropic magnetic field H k of 1738 A
/ M, the saturation magnetization M s is 1.88 T, and the ratio value {M s
(M−X−Y) / M s (M)} × 100% is 85.7%
Met.

【0059】図8は、試料3(第1の比較試料)の周波
数f(MHz)に対する磁気損失項μ″特性(複素透磁
率特性)を示したものである。図8からは、第1の比較
試料(試料3)の磁気損失項μ″の場合、飽和磁化が大
きいことを反映してピークが大きな値を示しているが、
抵抗値が低いために周波数の増加に伴って渦電流損失が
発生し、これにより低周波数領域から磁気損失特性の劣
化を生じており、試料1,2と比べて高周波での特性が
悪くなっていることが判る。
FIG. 8 shows the magnetic loss term μ ″ characteristic (complex permeability characteristic) with respect to the frequency f (MHz) of the sample 3 (first comparative sample). In the case of the magnetic loss term μ ″ of the comparative sample (sample 3), the peak shows a large value reflecting the large saturation magnetization.
Since the resistance value is low, eddy current loss occurs with an increase in frequency, which causes deterioration of magnetic loss characteristics from a low frequency region, and the characteristics at high frequencies are deteriorated as compared with samples 1 and 2. It turns out that there is.

【0060】(試料4)ここでは、上述した試料1を作
製した場合と比べてAl2 3 チップの数を200個に
代えた以外は全く同様な条件並びに手順でグラニュラー
磁性薄膜による第2の比較試料となる試料4を得た。
(Sample 4) Here, the second example of the granular magnetic thin film was manufactured under the same conditions and procedures as in Example 1 except that the number of Al 2 O 3 chips was changed to 200. Sample 4 serving as a comparative sample was obtained.

【0061】この試料4を蛍光X線分析したところ、F
19Al3447の組成を有し、膜厚は1.3μm、直流
抵抗率は10500μΩ・cm、磁気特性は超常磁性的
な振る舞いを示した。
When this sample 4 was analyzed by X-ray fluorescence, F
It had a composition of e 19 Al 34 O 47 , a film thickness of 1.3 μm, a DC resistivity of 10500 μΩ · cm, and a magnetic property showing superparamagnetic behavior.

【0062】この試料4(第2の比較試料)において
も、周波数fに対する磁気損失項μ″特性(複素透磁率
特性)を得ようと試みたが、試料4の場合には酸化物層
の割合が大きいために抵抗値が非常に大きくなっている
反面、磁性を担う相が少なくて磁性粒子間の磁気的相互
作用も極めて小さくなっているため、結果として超常磁
性的な振る舞いを示し、観測できないことが判った。
Also in this sample 4 (second comparative sample), an attempt was made to obtain a magnetic loss term μ ″ characteristic (complex magnetic permeability characteristic) with respect to the frequency f. Although the resistance value is very large due to the large size, the magnetic interaction between the magnetic particles is very small due to the small number of phases responsible for magnetism, resulting in superparamagnetic behavior and no observation. It turns out.

【0063】これらの結果より、試料1,2のグラニュ
ラー磁性薄膜による磁性体は、高周波領域のみの狭帯域
において非常に大きな磁気損失特性を示し、高周波電流
抑制体として極めて有効であることが判る。
From these results, it can be seen that the magnetic materials made of the granular magnetic thin films of Samples 1 and 2 exhibit extremely large magnetic loss characteristics in a narrow band only in the high frequency region, and are extremely effective as high frequency current suppressors.

【0064】(試料5)ここでは、ガス供給装置22に
より真空容器18内へAr+N2 ガスを供給すると共
に、真空ポンプ27で真空容器18内を真空度約1.3
3×10-4Paとなるように保ったAr+N2 ガス雰囲
気中でターゲット25となる直径φ=100mmのFe
製円板上にチップ24となる寸法=縦5mm×横5mm
×厚さ2mmの総計120個のAlチップを配備した上
で高周波電源装置26により高周波電源を供給した条件
下において、反応性スパッタリング法により基板23と
なるガラス基板上に磁性薄膜を成膜した後、これにより
得られた磁性薄膜を温度条件300℃の真空磁場中で2
時間熱処理を施すことによって上述した組成とは異なる
グラニュラー磁性薄膜による試料5を得た。
(Sample 5) Here, the gas supply device 22 supplies Ar + N 2 gas into the vacuum vessel 18 and the vacuum pump 27 evacuates the interior of the vacuum vessel 18 to a degree of vacuum of about 1.3.
In the Ar + N 2 gas atmosphere maintained at 3 × 10 −4 Pa, Fe having a diameter φ = 100 mm to be the target 25 is used.
Size of chip 24 on a circular plate = 5 mm long x 5 mm wide
X After a magnetic thin film is formed on a glass substrate serving as the substrate 23 by a reactive sputtering method under a condition where a total of 120 Al chips having a thickness of 2 mm are provided and high-frequency power is supplied by the high-frequency power supply device 26. The resulting magnetic thin film is placed in a vacuum magnetic field at a temperature of 300 ° C. for 2 hours.
By subjecting the composition to a heat treatment for a long time, a sample 5 made of a granular magnetic thin film having a composition different from that described above was obtained.

【0065】この試料5の寸法並びに磁気特性を調べた
ところ、膜厚は1.5μmであり、比率値{Ms (M−
X−Y)/Ms (M)}×100%は51.9%であ
り、磁気損失項μ″の最大値μ″max は520であり、
その最大値μ″max =520での周波数f(μ″max
は830MHzであり、半幅値μ″50は175%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 5 were examined, the film thickness was 1.5 μm, and the ratio value ΔM s (M−
X−Y) / M s (M)} × 100% is 51.9%, the maximum value μ ″ max of the magnetic loss term μ ″ is 520,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 520
Was 830 MHz, and the half-width value μ ″ 50 was found to be 175%.

【0066】(試料6)ここでは、ガス供給装置22に
より真空容器18内へArガスを供給すると共に、真空
ポンプ27で真空容器18内を真空度約1.33×10
-4Paとなるように保ったArガス雰囲気中でターゲッ
ト25となる直径φ=100mmのFe製円板上にチッ
プ24となる寸法=縦5mm×横5mm×厚さ2mmの
総計130個のAl2 3 チップを配備した上で高周波
電源装置26により高周波電源を供給した条件下におい
て、スパッタリング法により基板23となるガラス基板
上に磁性薄膜を成膜した後、これにより得られた磁性薄
膜を温度条件300℃の真空磁場中で2時間熱処理を施
すことによってグラニュラー磁性薄膜による試料6を得
た。
(Sample 6) Here, Ar gas is supplied into the vacuum vessel 18 by the gas supply device 22, and the degree of vacuum of about 1.33 × 10
In an Ar gas atmosphere maintained at -4 Pa, a chip 25 is formed on a Fe disk having a diameter φ = 100 mm to be the target 25 = 5 mm × 5 mm × 2 mm in thickness. A magnetic thin film is formed on a glass substrate serving as the substrate 23 by a sputtering method under a condition where high frequency power is supplied from the high frequency power supply device 26 after the 2 O 3 chip is provided, and the obtained magnetic thin film is A heat treatment was performed for 2 hours in a vacuum magnetic field at a temperature of 300 ° C. to obtain a sample 6 of a granular magnetic thin film.

【0067】この試料6の寸法並びに磁気特性を調べた
ところ、膜厚は1.1μmであり、比率値{Ms (M−
X−Y)/Ms (M)}×100%は64.7%であ
り、磁気損失項μ″の最大値μ″max は850であり、
その最大値μ″max =850での周波数f(μ″max
は800MHzであり、半幅値μ″50は157%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 6 were examined, the film thickness was 1.1 μm, and the ratio value ΔM s (M−
XY) / M s (M)} × 100% is 64.7%, the maximum value μ ″ max of the magnetic loss term μ ″ is 850,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 850
Was 800 MHz, and the half-width value μ ″ 50 was found to be 157%.

【0068】(試料7)ここでは、ガス供給装置22に
より真空容器18内へN2 分圧を10%とするAr+N
2 ガスを供給すると共に、真空ポンプ27で真空容器1
8内を真空度約1.33×10-4Paとなるように保っ
たAr+N2 ガス雰囲気中でターゲット25となる直径
φ=100mmのCo製円板上にチップ24となる寸法
=縦5mm×横5mm×厚さ2mmの総計170個のA
lチップを配備した上で高周波電源装置26により高周
波電源を供給した条件下において、反応性スパッタリン
グ法により基板23となるガラス基板上に磁性薄膜を成
膜した後、これにより得られた磁性薄膜を温度条件30
0℃の真空磁場中で2時間熱処理を施すことによってグ
ラニュラー磁性薄膜による試料7を得た。
(Sample 7) Here, Ar + N with a partial pressure of N 2 of 10% was introduced into the vacuum vessel 18 by the gas supply device 22.
2 gas is supplied, and the vacuum
In a Ar + N 2 gas atmosphere maintained at a degree of vacuum of about 1.33 × 10 −4 Pa, the size of the chip 24 on a Co disk having a diameter φ = 100 mm to become the target 25 is 5 mm × length. 170 A in total of 5 mm wide x 2 mm thick
Under the condition that high frequency power is supplied by the high frequency power supply device 26 with the l chip disposed, a magnetic thin film is formed on a glass substrate serving as the substrate 23 by a reactive sputtering method, and the obtained magnetic thin film is Temperature condition 30
Heat treatment was performed for 2 hours in a vacuum magnetic field of 0 ° C. to obtain a sample 7 made of a granular magnetic thin film.

【0069】この試料7の寸法並びに磁気特性を調べた
ところ、膜厚は1.2μmであり、比率値{Ms (M−
X−Y)/Ms (M)}×100%は37.2%であ
り、磁気損失項μ″の最大値μ″max は350であり、
その最大値μ″max =350での周波数f(μ″max
は1GHzであり、半幅値μ″50は191%であること
が判った。
When the dimensions and magnetic characteristics of this sample 7 were examined, the film thickness was 1.2 μm, and the ratio value ΔM s (M−
XY) / M s (M)} × 100% is 37.2%, the maximum value μ ″ max of the magnetic loss term μ ″ is 350,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 350
Was 1 GHz, and the half-width value μ ″ 50 was found to be 191%.

【0070】(試料8)ここでは、ガス供給装置22に
より真空容器18内へArガスを供給すると共に、真空
ポンプ27で真空容器18内を真空度約1.33×10
-4Paとなるように保ったArガス雰囲気中でターゲッ
ト25となる直径φ=100mmのNi製円板上にチッ
プ24となる寸法=縦5mm×横5mm×厚さ2mmの
総計140個のAl2 3 チップを配備した上で高周波
電源装置26により高周波電源を供給した条件下におい
て、スパッタリング法により基板23となるガラス基板
上に磁性薄膜を成膜した後、これにより得られた磁性薄
膜を温度条件300℃の真空磁場中で2時間熱処理を施
すことによってグラニュラー磁性薄膜による試料8を得
た。
(Sample 8) Here, an Ar gas is supplied into the vacuum vessel 18 by the gas supply device 22 and the degree of vacuum of about 1.33 × 10
In an Ar gas atmosphere maintained at −4 Pa, a chip 24 is formed on a Ni disk having a diameter φ = 100 mm serving as a target 25 = dimensions of 5 mm × 5 mm × 2 mm in thickness of 140 Al in total. A magnetic thin film is formed on a glass substrate serving as the substrate 23 by a sputtering method under a condition where high frequency power is supplied from the high frequency power supply device 26 after the 2 O 3 chip is provided, and the obtained magnetic thin film is Heat treatment was performed in a vacuum magnetic field at a temperature of 300 ° C. for 2 hours to obtain a sample 8 of a granular magnetic thin film.

【0071】この試料8の寸法並びに磁気特性を調べた
ところ、膜厚は1.7μmであり、比率値{Ms (M−
X−Y)/Ms (M)}×100%は58.2%であ
り、磁気損失項μ″の最大値μ″max は280であり、
その最大値μ″max =280での周波数f(μ″max
は240MHzであり、半幅値μ″50は169%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 8 were examined, the film thickness was 1.7 μm and the ratio value ΔM s (M−
X−Y) / M s (M)} × 100% is 58.2%, the maximum value μ ″ max of the magnetic loss term μ ″ is 280,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 280
Was found to be 240 MHz, and the half-width value μ ″ 50 was found to be 169%.

【0072】(試料9)ここでは、ガス供給装置22に
より真空容器18内へN2 分圧を10%とするAr+N
2 ガスを供給すると共に、真空ポンプ27で真空容器1
8内を真空度約1.33×10-4Paとなるように保っ
たAr+N2 ガス雰囲気中でターゲット25となる直径
φ=100mmのNi製円板上にチップ24となる寸法
=縦5mm×横5mm×厚さ2mmの総計100個のA
lチップを配備した上で高周波電源装置26により高周
波電源を供給した条件下において、反応性スパッタリン
グ法により基板23となるガラス基板上に磁性薄膜を成
膜した後、これにより得られた磁性薄膜を温度条件30
0℃の真空磁場中で2時間熱処理を施すことによってグ
ラニュラー磁性薄膜による試料9を得た。
(Sample 9) Here, Ar + N with a partial pressure of N 2 of 10% was introduced into the vacuum vessel 18 by the gas supply device 22.
2 gas is supplied, and the vacuum
In the Ar + N 2 gas atmosphere, the inside of 8 was maintained at a degree of vacuum of about 1.33 × 10 −4 Pa, and the size of the chip 24 on the Ni disk having the diameter φ = 100 mm as the target 25 was 5 mm × length. A total of 100 pieces of 5 mm wide x 2 mm thick
Under the condition that high frequency power is supplied by the high frequency power supply device 26 with the l chip disposed, a magnetic thin film is formed on a glass substrate serving as the substrate 23 by a reactive sputtering method, and the obtained magnetic thin film is Temperature condition 30
A sample 9 of a granular magnetic thin film was obtained by performing a heat treatment in a vacuum magnetic field of 0 ° C. for 2 hours.

【0073】この試料9の寸法並びに磁気特性を調べた
ところ、膜厚は1.3μmであり、比率値{Ms (M−
X−Y)/Ms (M)}×100%は76.2%であ
り、磁気損失項μ″の最大値μ″max は410であり、
その最大値μ″max =410での周波数f(μ″max
は170MHzであり、半幅値μ″50は158%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 9 were examined, the film thickness was 1.3 μm and the ratio value ΔM s (M−
XY) / M s (M)} × 100% is 76.2%, the maximum value μ ″ max of the magnetic loss term μ ″ is 410,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 410
Was found to be 170 MHz, and the half-width value μ ″ 50 was found to be 158%.

【0074】(試料10)ここでは、ガス供給装置22
により真空容器18内へArガスを供給すると共に、真
空ポンプ27で真空容器18内を真空度約1.33×1
-4Paとなるように保ったArガス雰囲気中でターゲ
ット25となる直径φ=100mmのFe製円板上にチ
ップ24となる寸法=縦5mm×横5mm×厚さ2mm
の総計150個のTiO3 チップを配備した上で高周波
電源装置26により高周波電源を供給した条件下におい
て、スパッタリング法により基板23となるガラス基板
上に磁性薄膜を成膜した後、これにより得られた磁性薄
膜を温度条件300℃の真空磁場中で2時間熱処理を施
すことによってグラニュラー磁性薄膜による試料10を
得た。
(Sample 10) Here, the gas supply device 22
To supply the Ar gas into the vacuum vessel 18, and the vacuum pump 27 evacuates the inside of the vacuum vessel 18 to a degree of vacuum of about 1.33 × 1.
In an Ar gas atmosphere maintained at 0 -4 Pa, a chip 24 is formed on a Fe disk having a diameter of φ = 100 mm to be a target 25 in the Ar gas atmosphere = length 5 mm × width 5 mm × thickness 2 mm.
A magnetic thin film is formed on a glass substrate serving as the substrate 23 by a sputtering method under a condition in which a total of 150 TiO 3 chips are provided and high frequency power is supplied by the high frequency power supply device 26, and then obtained. The magnetic thin film thus obtained was subjected to a heat treatment in a vacuum magnetic field at a temperature condition of 300 ° C. for 2 hours to obtain a sample 10 of a granular magnetic thin film.

【0075】この試料10の寸法並びに磁気特性を調べ
たところ、膜厚は1.4μmであり、比率値{Ms (M
−X−Y)/Ms (M)}×100%は43.6%であ
り、磁気損失項μ″の最大値μ″max は920であり、
その最大値μ″max =920での周波数f(μ″max
は1.5GHzであり、半幅値μ″50は188%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 10 were examined, the film thickness was 1.4 μm, and the ratio value ΔM s (M
−XY) / M s (M)} × 100% is 43.6%, the maximum value μ ″ max of the magnetic loss term μ ″ is 920,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 920
Was 1.5 GHz, and the half-width value μ ″ 50 was found to be 188%.

【0076】(試料11)ここでは、ガス供給装置22
により真空容器18内へO2 分圧を15%とするAr+
2 ガスを供給すると共に、真空ポンプ27で真空容器
18内を真空度約1.33×10-4Paとなるように保
ったAr+O2 ガス雰囲気中でターゲット25となる直
径φ=100mmのFe製円板上にチップ24となる寸
法=縦5mm×横5mm×厚さ2mmの総計130個の
Siチップを配備した上で高周波周波数電源装置26に
より高周波電源を供給した条件下において、反応性スパ
ッタリング法により基板23となるガラス基板上に磁性
薄膜を成膜した後、これにより得られた磁性薄膜を温度
条件300℃の真空磁場中で2時間熱処理を施すことに
よってグラニュラー磁性薄膜による試料11を得た。
(Sample 11) Here, the gas supply device 22
To make the O 2 partial pressure 15% into the vacuum vessel 18 by Ar +
O 2 gas is supplied, and a target 25 is made of Fe having a diameter φ = 100 mm in an Ar + O 2 gas atmosphere in which the vacuum chamber 18 is maintained at a degree of vacuum of about 1.33 × 10 −4 Pa by a vacuum pump 27. Reactive sputtering is performed under the condition that a total of 130 Si chips having dimensions of 5 mm × 5 mm × 2 mm in thickness to become the chip 24 on a circular plate are provided and high-frequency power is supplied by the high-frequency power supply device 26. After a magnetic thin film is formed on a glass substrate serving as the substrate 23 by a method, the obtained magnetic thin film is subjected to a heat treatment in a vacuum magnetic field at a temperature condition of 300 ° C. for 2 hours to obtain a sample 11 made of a granular magnetic thin film. Was.

【0077】この試料11の寸法並びに磁気特性を調べ
たところ、膜厚は1.5μmであり、比率値{Ms (M
−X−Y)/Ms (M)}×100%は55.2%であ
り、磁気損失項μ″の最大値μ″max は920であり、
その最大値μ″max =920での周波数f(μ″max
は1.2GHzであり、半幅値μ″50は182%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 11 were examined, the film thickness was 1.5 μm, and the ratio value ΔM s (M
−XY) / M s (M)} × 100% is 55.2%, the maximum value μ ″ max of the magnetic loss term μ ″ is 920,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 920
Was found to be 1.2 GHz, and the half-width value μ ″ 50 was found to be 182%.

【0078】(試料12)ここでは、ガス供給装置22
により真空容器18内へArガスを供給すると共に、真
空ポンプ27で真空容器18内を真空度約1.33×1
-4Paとなるように保ったArガス雰囲気中でターゲ
ット25となる直径φ=100mmのFe製円板上にチ
ップ24となる寸法=縦5mm×横5mm×厚さ2mm
の総計100個のHfO3 チップを配備した上で高周波
電源装置26により高周波電源を供給した条件下におい
て、スパッタリング法により基板23となるガラス基板
上に磁性薄膜を成膜した後、これにより得られた磁性薄
膜を温度条件300℃の真空磁場中で2時間熱処理を施
すことによってグラニュラー磁性薄膜による試料12を
得た。
(Sample 12) Here, the gas supply device 22
To supply the Ar gas into the vacuum vessel 18, and the vacuum pump 27 evacuates the inside of the vacuum vessel 18 to a degree of vacuum of about 1.33 × 1.
In an Ar gas atmosphere maintained at 0 -4 Pa, a chip 24 is formed on a Fe disk having a diameter of φ = 100 mm to be a target 25 in the Ar gas atmosphere = length 5 mm × width 5 mm × thickness 2 mm.
Under the condition that a total of 100 HfO 3 chips are provided and high-frequency power is supplied by the high-frequency power supply device 26, a magnetic thin film is formed on a glass substrate serving as the substrate 23 by a sputtering method, and then obtained. The magnetic thin film thus obtained was subjected to a heat treatment in a vacuum magnetic field at a temperature condition of 300 ° C. for 2 hours to obtain a sample 12 of a granular magnetic thin film.

【0079】この試料12の寸法並びに磁気特性を調べ
たところ、膜厚は1.8μmであり、比率値{Ms (M
−X−Y)/Ms (M)}×100%は77.4%であ
り、磁気損失項μ″の最大値μ″max は1800であ
り、その最大値μ″max =1800での周波数f(μ″
max )は450MHzであり、半幅値μ″50は171%
であることが判った。
When the dimensions and magnetic properties of this sample 12 were examined, the film thickness was 1.8 μm, and the ratio value ΔM s (M
−XY) / M s (M)} × 100% is 77.4%, the maximum value μ ″ max of the magnetic loss term μ ″ is 1800, and the frequency at the maximum value μ ″ max = 1800 f (μ ″
max ) is 450 MHz and the half-width value μ ″ 50 is 171%
It turned out to be.

【0080】(試料13)ここでは、ガス供給装置22
により真空容器18内へArガスを供給すると共に、真
空ポンプ27で真空容器18内を真空度約1.33×1
-4Paとなるように保ったArガス雰囲気中でターゲ
ット25となる直径φ=100mmのFe製円板上にチ
ップ24となる寸法=縦5mm×横5mm×厚さ2mm
の総計130個のBNチップを配備した上で高周波電源
装置26により高周波電源を供給した条件下において、
スパッタリング法により基板23となるガラス基板上に
磁性薄膜を成膜した後、これにより得られた磁性薄膜を
温度条件300℃の真空磁場中で2時間熱処理を施すこ
とによってグラニュラー磁性薄膜による試料13を得
た。
(Sample 13) Here, the gas supply device 22
To supply the Ar gas into the vacuum vessel 18, and the vacuum pump 27 evacuates the inside of the vacuum vessel 18 to a degree of vacuum of about 1.33 × 1.
In an Ar gas atmosphere maintained at 0 -4 Pa, a chip 24 is formed on a Fe disk having a diameter of φ = 100 mm to be a target 25 in the Ar gas atmosphere = length 5 mm × width 5 mm × thickness 2 mm.
Under the condition that high-frequency power is supplied by the high-frequency power supply device 26 after a total of 130 BN chips are provided,
After forming a magnetic thin film on a glass substrate serving as the substrate 23 by a sputtering method, the resulting magnetic thin film is subjected to a heat treatment in a vacuum magnetic field at a temperature condition of 300 ° C. for 2 hours to obtain a sample 13 of a granular magnetic thin film. Obtained.

【0081】この試料13の寸法並びに磁気特性を調べ
たところ、膜厚は1.9μmであり、比率値{Ms (M
−X−Y)/Ms (M)}×100%は59.3%であ
り、磁気損失項μ″の最大値μ″max は950であり、
その最大値μ″max =950での周波数f(μ″max
は680MHzであり、半幅値μ″50は185%である
ことが判った。
When the dimensions and magnetic properties of this sample 13 were examined, the film thickness was 1.9 μm, and the ratio value ΔM s (M
−XY) / M s (M)} × 100% is 59.3%, the maximum value μ ″ max of the magnetic loss term μ ″ is 950,
Frequency f (μ ″ max ) at its maximum value μ ″ max = 950
Was 680 MHz, and the half-width value μ ″ 50 was found to be 185%.

【0082】(試料14)ここでは、ガス供給装置22
により真空容器18内へArガスを供給すると共に、真
空ポンプ27で真空容器18内を真空度約1.33×1
-4Paとなるように保ったArガス雰囲気中でターゲ
ット25となる直径φ=100mmのFe 50Co50製円
板上にチップ24となる寸法=縦5mm×横5mm×厚
さ2mmの総計130個のAl2 3 チップを配備した
上で高周波電源装置26により高周波電源を供給した条
件下において、スパッタリング法により基板23となる
ガラス基板上に磁性薄膜を成膜した後、これにより得ら
れた磁性薄膜を温度条件300℃の真空磁場中で2時間
熱処理を施すことによってグラニュラー磁性薄膜による
試料14を得た。
(Sample 14) Here, the gas supply device 22
Supply Ar gas into the vacuum vessel 18 by
The vacuum inside the vacuum vessel 18 is about 1.33 × 1 by the empty pump 27.
0-FourTarget in an Ar gas atmosphere maintained to be Pa
Fe having a diameter φ = 100 mm to be a cut 25 50Co50Circle
Dimensions to become chip 24 on board = 5mm long x 5mm wide x thickness
130mm Al in total of 2mmTwoOThreeDeployed chips
The high frequency power supplied by the high frequency power supply 26
Under the above conditions, the substrate 23 is formed by a sputtering method.
After forming a magnetic thin film on a glass substrate,
For 2 hours in a vacuum magnetic field at a temperature of 300 ° C
Due to granular magnetic thin film by heat treatment
Sample 14 was obtained.

【0083】この試料14の寸法並びに磁気特性を調べ
たところ、膜厚は1.6μmであり、比率値{Ms (M
−X−Y)/M(M)}×100%は59.3%であ
り、磁気損失項μ″の最大値μ″max は720であり、
その最大値μ″max =720での周波数f(μ″max
は1.1GHzであり、半幅値μ″50は180%である
ことが判った。
When the dimensions and magnetic characteristics of this sample 14 were examined, the film thickness was 1.6 μm, and the ratio value ΔM s (M
−XY) / M s (M)} × 100% is 59.3%, and the maximum value μ ″ max of the magnetic loss term μ ″ is 720;
Frequency f (μ ″ max ) at its maximum value μ ″ max = 720
Was found to be 1.1 GHz, and the half-width value μ ″ 50 was found to be 180%.

【0084】次に、グラニュラー状の磁気損失材料を蒸
着法により試料として製造する工程を具体的に説明す
る。但し、各試料の作製に際しては、図5(b)に示さ
れるような蒸着法適用型試料作製装置を用いている。こ
の蒸着法適用型試料作製装置は、ガス供給装置22及び
真空ポンプ27が結合された真空容器(チャンバ)19
内にシャッタ21を挟んで基板23と組成分X−Yの合
金母材が充填された坩堝28とが対向して配備されて成
っている。
Next, a process of manufacturing a granular magnetic loss material as a sample by a vapor deposition method will be specifically described. However, in preparing each sample, a sample manufacturing apparatus to which an evaporation method is applied as shown in FIG. 5B is used. This sample preparation apparatus to which the vapor deposition method is applied includes a vacuum container (chamber) 19 to which a gas supply device 22 and a vacuum pump 27 are connected.
A substrate 23 and a crucible 28 filled with an alloy base material of the composition XY are provided facing each other with a shutter 21 interposed therebetween.

【0085】(試料15)ここでは、ガス供給装置22
により真空容器18内へ酸素を流量3.0sccmで供
給すると共に、真空ポンプ27で真空容器18内を真空
度約1.33×10-4Paとなるように保ちながら坩堝
28に充填されたFe70Al30合金母材が溶解されて酸
素に晒される条件下において、蒸着法により基板23と
なるガラス基板上に磁性薄膜を成膜した後、これにより
得られた磁性薄膜を温度条件300℃の真空磁場中で2
時間熱処理を施すことによってグラニュラー磁性薄膜に
よる試料15を得た。
(Sample 15) Here, the gas supply device 22
Is supplied into the vacuum vessel 18 at a flow rate of 3.0 sccm, and the Fe charged in the crucible 28 is maintained by the vacuum pump 27 while keeping the inside of the vacuum vessel 18 at a degree of vacuum of about 1.33 × 10 −4 Pa. Under a condition where the 70 Al 30 alloy base material is dissolved and exposed to oxygen, a magnetic thin film is formed on a glass substrate serving as the substrate 23 by a vapor deposition method, and the obtained magnetic thin film is heated at a temperature of 300 ° C. 2 in a vacuum magnetic field
By subjecting the sample to a heat treatment for a long time, a sample 15 of a granular magnetic thin film was obtained.

【0086】この試料15の寸法並びに磁気特性を調べ
たところ、膜厚は1.1μmであり、比率値{Ms (M
−X−Y)/Ms (M)}×100%は41.8%であ
り、磁気損失項μ″の最大値μ″max は590であり、
その最大値μ″max =590での周波数f(μ″max
は520MHzであり、半幅値μ″50は190%である
ことが判った。
When the dimensions and magnetic properties of this sample 15 were examined, the film thickness was 1.1 μm, and the ratio value ΔM s (M
−XY) / M s (M)} × 100% is 41.8%, and the maximum value μ ″ max of the magnetic loss term μ ″ is 590;
Frequency f (μ ″ max ) at its maximum value μ ″ max = 590
Was 520 MHz, and the half-width value μ ″ 50 was found to be 190%.

【0087】上述した各試料1〜15のうちの比較試料
とした試料3,4以外のものは、何れも電子部品におけ
る高周波電流対策に用いる材料として有効である。尚、
各試料1〜15は、スパッタリング法又は真空蒸着法に
より製造した例を示したが、上述したようにイオンビー
ム蒸着法やガス・デポジション法等の他の製法によって
も良く、磁気損失材料が均一に実現できる方法であれ
ば、製法は限定されない。又、各試料1〜15を成膜後
に真空磁場中で熱処理を施して得るものとして説明した
が、アズ・デポジションの膜で同等な性能が得られる組
成,或いは成膜法であれば成膜後処理は説明した場合に
限定されない。
Any of the above-mentioned samples 1 to 15 other than samples 3 and 4, which are comparative samples, are all effective as materials used for countermeasures against high-frequency current in electronic components. still,
Each of the samples 1 to 15 has been described as an example manufactured by a sputtering method or a vacuum evaporation method. However, as described above, another manufacturing method such as an ion beam evaporation method or a gas deposition method may be used. The production method is not limited as long as the method can be realized. Also, it has been described that each of the samples 1 to 15 is obtained by performing a heat treatment in a vacuum magnetic field after forming the film. Post-processing is not limited to the case described.

【0088】次に、各試料1〜15のうちの一例とし
て、図6に示した複素数透磁率特性を有し、膜厚が2.
0μmで一辺が20mmの正方形を成した試料1(半幅
値μ″ 50=148%のもの)の場合、磁気損失項μ″の
最大値μ″max が700MHz付近で約1800であっ
たが、これに対して別な従来技術に係る比較試料として
用意した偏平状センダスト粉末及びポリマーから成る同
面積で同様な形状の複合磁性体シートによる比較試料
(半幅値μ″50=196%のもの)の場合、磁気損失項
μ″の最大値μ″max が700MHz付近で約3.0で
あった。
Next, as an example of each of the samples 1 to 15,
6 has a complex number permeability characteristic shown in FIG.
Sample 1 (half-width, 0 μm square having a side of 20 mm)
Value μ ″ 50= 148%), the magnetic loss term μ ″
Maximum value μ ″maxIs about 1800 around 700 MHz.
However, on the other hand, as a comparative sample according to another prior art,
The same consisting of prepared sendust powder and polymer
Comparative sample with composite magnetic sheet of similar shape in area
(Half-width value μ ″50= 196%), the magnetic loss term
The maximum value of μ ″ μ ″maxIs about 3.0 around 700MHz
there were.

【0089】この結果、試料1の磁気損失項μ″は準マ
イクロ波帯に分散を示し、その大きさは700MHz付
近で最大値μ″max が約1800であり、同じ帯域に磁
気損失項μ″の分散を示す比較試料の最大値μ″max
比べて600倍程も大きくなっており、しかも半幅値
μ″50の中心周波数に対する比率が比較試料に比べて小
さく、狭帯域であることが判る。
As a result, the magnetic loss term μ ″ of the sample 1 shows dispersion in the quasi-microwave band, and its magnitude is around 1800 at around 700 MHz, and the maximum value μ ″ max is about 1800. The ratio is about 600 times larger than the maximum value μ ″ max of the comparative sample showing the dispersion, and the ratio of the half-width value μ ″ 50 to the center frequency is smaller than that of the comparative sample, indicating a narrow band. .

【0090】更に、図9に示すような高周波電流抑制効
果測定装置30を用いて試料1と比較試料(複合磁性体
シート)とにおける高周波電流抑制効果を検証実験し
た。但し、高周波電流抑制効果測定装置30は、線路長
が75mmで特性インピーダンスZc=50Ωのマイク
ロストリップ線路31の長手方向の両側にマイクロスト
リップ線路31と図示されないネットワークアナライザ
(HP8753D)とを接続するための同軸線路32を
配備した上でマイクロストリップ線路31の試料配置部
31aの真上に磁性体試料33を配置することにより、
2ポート間の伝送特性(透磁率特性)を測定可能なもの
である。
Further, a verification experiment was conducted on the high-frequency current suppressing effect of the sample 1 and the comparative sample (composite magnetic material sheet) using a high-frequency current suppressing effect measuring device 30 as shown in FIG. However, the high-frequency current suppression effect measuring device 30 is for connecting the microstrip line 31 to a network analyzer (HP8753D) (not shown) on both sides in the longitudinal direction of the microstrip line 31 having a line length of 75 mm and a characteristic impedance Zc = 50Ω. By disposing the coaxial line 32 and arranging the magnetic sample 33 right above the sample arranging portion 31a of the microstrip line 31,
The transmission characteristic (magnetic permeability characteristic) between two ports can be measured.

【0091】この高周波電流抑制効果測定装置30の構
成のように、伝送路の直近に磁気損失材料を配置して伝
送路に等価的な抵抗成分を付与することで高周波電流を
抑制する場合において、高周波電流の抑制効果の大きさ
は磁気損失項μ″の大きさと磁性体の厚さδとの積μ″
・δにほぼ比例すると考えられるので、試料1と比較試
料(複合磁性体シート)との抑制効果の比較に際して
は、積μ″・δの値が同じオーダーとなる様に比較試料
では磁気損失項μ″を約3とし、磁性体の厚さδを1.
0mmとした。
As in the configuration of the high-frequency current suppression effect measuring device 30, when a high-frequency current is suppressed by arranging a magnetic loss material near the transmission line and imparting an equivalent resistance component to the transmission line, The magnitude of the suppression effect of the high-frequency current is the product μ ″ of the magnitude of the magnetic loss term μ ″ and the thickness δ of the magnetic body.
Since it is considered to be substantially proportional to δ, when comparing the suppression effect between Sample 1 and the comparative sample (composite magnetic material sheet), the magnetic loss term in the comparative sample is such that the value of the product μ ″ · δ is in the same order. μ ″ is about 3, and the thickness δ of the magnetic material is 1.
0 mm.

【0092】図10は、高周波電流抑制効果測定装置3
0により試料磁性体の高周波電流抑制効果を測定した結
果を示す周波数f(MHz)に対する伝送S21(dB)
特性を示したものであり、同図(a)は試料1に関する
もの,同図(b)は従来技術による比較試料(複合磁性
体シート)に関するものである。
FIG. 10 shows a high-frequency current suppression effect measuring device 3
Transmission S 21 (dB) for frequency f (MHz) indicating the result of measuring the high-frequency current suppression effect of the sample magnetic material with 0
FIG. 7A shows the characteristics, and FIG. 7B shows the characteristics of a comparative sample (composite magnetic sheet) according to the prior art.

【0093】図10(a),(b)からは、試料1の伝
送S21特性の場合、100MHz以上から減少し、2G
Hz近くで−10dBの極小値を示した後に増加してい
るのに対し、比較試料の伝送S21特性の場合、数100
MHzから単調に減少し、3GHzで約−10dBを示
しており、これらの結果により伝送S21特性が何れも磁
性体の磁気損失項μ″の分散に依存すると共に、抑制効
果の大きさが上述した積μ″・δに依存することが判
る。
10 (a) and 10 (b), the transmission S 21 characteristic of the sample 1 decreases from 100 MHz or more to 2G.
Hz near contrast has increased after showing the minimum value of -10 dB, when the transmission S 21 characteristics of the comparison sample, the number 100
The frequency decreases monotonically from MHz to show about −10 dB at 3 GHz. From these results, the transmission S 21 characteristic depends on the dispersion of the magnetic loss term μ ″ of the magnetic material, and the magnitude of the suppression effect is as described above. It can be seen that it depends on the product μ ″ · δ.

【0094】ところで、試料1や比較試料のような磁性
体は、図11に示されるように、寸法がlであって、透
磁率μ,誘電率εの分布定数線路として構成されるもの
とみなした場合、単位長さ(Δl)当たりの等価回路定
数として直列接続された形態のインダクタンスΔL,抵
抗ΔR、並びにこれらと接地線との間に介在される静電
容量ΔC,コンダクタンスΔG(抵抗ΔRの逆数)を有
するが、これらを伝送S21特性に基づいて試料寸法lに
換算した場合、等価回路定数としてインダクタンスL,
抵抗R、並びに静電容量C,コンダクタンスG(抵抗R
の逆数)を有する等価回路として構成される。
By the way, as shown in FIG. 11, it is assumed that the magnetic material such as the sample 1 and the comparative sample has a dimension 1 and is configured as a distributed constant line having a magnetic permeability μ and a dielectric constant ε. In this case, the inductance ΔL and the resistance ΔR are connected in series as equivalent circuit constants per unit length (Δl), and the capacitance ΔC and the conductance ΔG (the resistance ΔR When these are converted to the sample size 1 based on the transmission S21 characteristic, the inductance L,
Resistance R, capacitance C, conductance G (resistance R
(The reciprocal of the above).

【0095】ここでの高周波電流の抑制効果の検討のよ
うに、磁性体をマイクロストリップ線路31上に配置し
た場合、伝送S21特性の変化は等価回路において主にイ
ンダクタンスLに対して直列に付加される抵抗Rの成分
によるものであることから、抵抗Rの値を求めてその周
波数依存性を調べることができる。
When the magnetic material is disposed on the microstrip line 31 as in the examination of the effect of suppressing the high-frequency current, the change in the transmission S 21 characteristic is mainly added in series with the inductance L in the equivalent circuit. Since it depends on the component of the resistor R, the value of the resistor R can be obtained and its frequency dependence can be examined.

【0096】図12は、図10に示した伝送S21特性に
おいて図11に示した等価回路のインダクタンスLに対
して直列に付加される抵抗Rの値に基づいて算出した周
波数fに対する抵抗値R(Ω)特性を示したもので、同
図(a)は試料1に関するもの,同図(b)は従来技術
による比較試料(複合磁性体シート)に関するものであ
る。
FIG. 12 is a graph showing the resistance R with respect to the frequency f calculated based on the value of the resistor R added in series to the inductance L of the equivalent circuit shown in FIG. 11 in the transmission S 21 characteristic shown in FIG. FIG. 4A shows the characteristics of the sample 1 and FIG. 4B shows the characteristics of a comparative sample (composite magnetic sheet) according to the prior art.

【0097】図12(a),(b)からは、抵抗値Rは
何れの場合も準マイクロ波帯の領域で単調に増加し、3
GHzでは数10Ωとなり、その周波数依存性は何れも
1GHz付近に極大を持った磁気損失項μ″の周波数分
散とは異なる傾向になっていることが判る。これは上述
した積μ″・δに加えて波長に対する試料寸法の比率が
単調増加することを反映している結果と考えられる。
12 (a) and 12 (b), the resistance value R monotonically increases in the quasi-microwave band region in any case, and
At GHz, it is several tens of Ω, and it can be seen that the frequency dependence tends to be different from the frequency dispersion of the magnetic loss term μ ″ having a maximum near 1 GHz. In addition, it is considered that the result reflects that the ratio of the sample size to the wavelength monotonically increases.

【0098】以上の結果から、準マイクロ波帯に磁気損
失項μ″分散を示す試料は、厚さが約500倍の比較試
料(複合磁性体シート)と同等の高周波電流抑制効果を
示すため、1GHzに近い高速クロックで動作するよう
な半導体能動素子等の電子部品における高周波電流対策
へ適用することが有効であるとできる。
From the above results, the sample exhibiting the magnetic loss term μ ″ dispersion in the quasi-microwave band exhibits the same high-frequency current suppressing effect as the comparative sample (composite magnetic sheet) having a thickness of about 500 times. It can be said that it is effective to apply to a high-frequency current countermeasure in an electronic component such as a semiconductor active element that operates with a high-speed clock near 1 GHz.

【0099】[0099]

【発明の効果】以上に述べた通り、本発明の高周波電流
抑制型電子部品によれば、電子部品に備えられる所定数
の端子のうちの一部又は全体に対して端子自体に流れる
高周波電流を減衰させる高周波電流抑制体を設けるか、
或いは所定数の端子自体のうちの一部又は全体を同様な
高周波電流抑制体としているので、電子部品を数十MH
z〜数GHz帯域の高い周波数で使用しても、高周波電
流抑制体が高周波電流を十分に減衰させることにより、
電磁干渉の発生を防止してその悪影響を除去することが
できるようになる。従って、特に電子部品として将来的
に一層高周波数を用いて高速動作させる傾向がある半導
体能動素子であり、しかも高集積化,実装に際しての高
密度化が回避されない半導体集積回路素子(IC)や半
導体大規模集積回路素子(LSI)、或いはマイクロプ
ロセッサ(MPU),中央演算処理装置(CPU),画
像プロセッサ算術論理演算装置(IPALU)等に代表
される論理回路素子の端子を対象にして高周波電流抑制
体を設ければ、有効に高周波電流抑制対策(電磁干渉対
策)を計り得るようになる。
As described above, according to the high-frequency current suppressing type electronic component of the present invention, the high-frequency current flowing through the terminal itself is supplied to some or all of the predetermined number of terminals provided in the electronic component. Providing a high frequency current suppressor to attenuate,
Alternatively, some or all of the predetermined number of terminals themselves are similar high-frequency current suppressors.
Even when used at a high frequency in the z to several GHz band, the high-frequency current suppressor sufficiently attenuates the high-frequency current,
Electromagnetic interference can be prevented from occurring and its adverse effects can be eliminated. Accordingly, the semiconductor active device is a semiconductor active device which tends to operate at a higher speed using a higher frequency in the future, particularly as an electronic component, and furthermore, a semiconductor integrated circuit device (IC) or a semiconductor in which high integration and high density during mounting cannot be avoided. High-frequency current suppression for terminals of large-scale integrated circuit (LSI) or logic circuit elements represented by microprocessor (MPU), central processing unit (CPU), image processor arithmetic and logic unit (IPALU), etc. If the body is provided, it becomes possible to effectively take measures against high-frequency current suppression (measures against electromagnetic interference).

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の高周波電流抑制型電子部品の一実施例
に係る半導体集積回路素子1の基本構成を示したもので
あり、(a)はプリント配線回路基板に実装された状態
での一部を透視した斜視図に関するもの,(b)は要部
を拡大して一部を断面にした側面図に関するものであ
る。
FIG. 1 shows a basic configuration of a semiconductor integrated circuit device 1 according to an embodiment of a high-frequency current suppression type electronic component of the present invention. FIG. FIG. 2B is a side view in which a main part is enlarged and a part is sectioned.

【図2】本発明の高周波電流抑制型電子部品の他の実施
例に係る半導体集積回路素子の基本構成をプリント配線
回路基板に実装された状態で要部を拡大して一部を断面
にして示した側面図であり、(a)は半導体集積回路素
子の端子に設けられる高周波電流抑制体の形態を変えた
場合に関するもの,(b)は半導体集積回路素子の端子
自体の形態を変えた場合に関するものである。
FIG. 2 is an enlarged view of a main part of a basic structure of a semiconductor integrated circuit element according to another embodiment of the high frequency current suppression type electronic component of the present invention mounted on a printed circuit board, and showing a part of the cross section. 4A is a side view showing the case where the form of the high-frequency current suppressor provided at the terminal of the semiconductor integrated circuit element is changed, and FIG. 4B is the case where the form of the terminal itself of the semiconductor integrated circuit element is changed; It is about.

【図3】本発明の高周波電流抑制型電子部品の別の実施
例に係る半導体集積回路素子の基本構成を示したもので
あり、(a)はプリント配線回路基板に実装された状態
での一部を透視した斜視図に関するもの,(b)は要部
を拡大して一部を断面にした側面図に関するものであ
る。
FIG. 3 shows a basic configuration of a semiconductor integrated circuit device according to another embodiment of the high-frequency current suppressing type electronic component of the present invention, wherein (a) shows a state in which the component is mounted on a printed circuit board. FIG. 2B is a side view in which a main part is enlarged and a part is sectioned.

【図4】図1〜図3に示す半導体集積回路素子に用いら
れた高周波電流抑制体材料であるグラニュラー磁性体の
基本構造を模式的に示したものである。
FIG. 4 schematically shows a basic structure of a granular magnetic material which is a high-frequency current suppressing material used in the semiconductor integrated circuit device shown in FIGS.

【図5】図4により説明したグラニュラー磁性体の試料
を作製するために用いられる置の基本構成を示したもの
であり、(a)はスパッタリング法適用型試料作製装置
に関するもの,(b)は蒸着法適用型試料作製装置に関
するものである。
5A and 5B show a basic configuration of a device used for producing a sample of the granular magnetic material described with reference to FIGS. 4A and 4B, wherein FIG. The present invention relates to a sample preparation apparatus to which an evaporation method can be applied.

【図6】図5(a)に示すスパッタリング法適用型試料
作製装置を用いて作製した試料1の周波数に対する磁気
損失項特性(複素透磁率特性)を示したものである。
6 shows a magnetic loss term characteristic (complex magnetic permeability characteristic) with respect to a frequency of a sample 1 manufactured using the sputtering method applicable sample manufacturing apparatus shown in FIG. 5 (a).

【図7】図5(a)に示すスパッタリング法適用型試料
作製装置を用いて作製した試料2の周波数に対する磁気
損失項特性(複素透磁率特性)を示したものである。
FIG. 7 shows a magnetic loss term characteristic (complex magnetic permeability characteristic) with respect to a frequency of a sample 2 manufactured by using the sputtering method applicable sample manufacturing apparatus shown in FIG. 5 (a).

【図8】図5(a)に示すスパッタリング法適用型試料
作製装置を用いて作製した試料3(第1の比較試料)の
周波数に対する磁気損失項特性(複素透磁率特性)を示
したものである。
8 shows a magnetic loss term characteristic (complex magnetic permeability characteristic) with respect to the frequency of a sample 3 (first comparative sample) manufactured using the sputtering method applicable sample manufacturing apparatus shown in FIG. 5 (a). is there.

【図9】図5(a)に示すスパッタリング法適用型試料
作製装置並びに図5(b)に示す蒸着法適用型試料作製
装置を用いて作製した各試料の高周波電流抑制効果を測
定するための高周波電流抑制効果測定装置の基本構成を
示した斜視図である。
9A and 9B are diagrams for measuring the high-frequency current suppression effect of each sample manufactured using the sputtering method-applied sample manufacturing apparatus illustrated in FIG. 5A and the vapor deposition method-based sample manufacturing apparatus illustrated in FIG. 5B. It is the perspective view which showed the basic structure of the high frequency electric current suppression effect measuring device.

【図10】図9に示した高周波電流抑制効果測定装置に
より試料磁性体の高周波電流抑制効果を測定した結果を
示す周波数に対する伝送特性を示したものであり、
(a)は試料1に関するもの,(b)は従来技術による
比較試料(複合磁性体シート)に関するものである。
10 is a graph showing transmission characteristics with respect to frequency, showing the results of measuring the high-frequency current suppression effect of the sample magnetic material using the high-frequency current suppression effect measurement device shown in FIG. 9;
(A) relates to sample 1 and (b) relates to a comparative sample (composite magnetic sheet) according to the prior art.

【図11】図10(a)に示した試料1並びに図10
(b)に示した比較試料を含む磁性体の伝送特性を等価
回路として模式的に示したものである。
FIG. 11 shows the sample 1 shown in FIG.
FIG. 5B schematically shows the transmission characteristics of the magnetic material including the comparative sample shown in FIG. 6B as an equivalent circuit.

【図12】図10に示した伝送特性において図11に示
した等価回路のインダクタンスに対して直列に付加され
る抵抗に基づいて算出した周波数に対する抵抗値特性を
示したものであり、(a)は試料1に関するもの,
(b)は従来技術による比較試料(複合磁性体シート)
に関するものである。
12 shows resistance value characteristics with respect to frequency calculated based on the resistance added in series to the inductance of the equivalent circuit shown in FIG. 11 in the transmission characteristics shown in FIG. 10, and FIG. Is for sample 1,
(B) is a comparative sample (composite magnetic sheet) according to the prior art.
It is about.

【符号の説明】[Explanation of symbols]

1,1′,1″ 半導体集積回路(IC) 2,2′,2″ 端子 2a 端子露出部 3,3′,3″ 高周波電流抑制体 4 プリント配線回路基板 5 導電性パターン 6 半田 7 シート状高周波電流抑制体 11 組成分M 12 組成分X−Y 18,19 真空容器(チャンバ) 21 シャッタ 22 ガス供給装置 23 基板 24 チップ 25 ターゲット 26 高周波電源装置(RF) 27 真空ポンプ 28 坩堝 30 高周波電流抑制効果測定装置 31 マイクロストリップ線路 31a 試料配置部 32 同軸線路 33 磁性体試料 1, 1 ', 1 "semiconductor integrated circuit (IC) 2, 2', 2" terminal 2a terminal exposed portion 3, 3 ', 3 "high frequency current suppressor 4 printed wiring circuit board 5 conductive pattern 6 solder 7 sheet shape High frequency current suppressor 11 Composition M 12 Composition XY 18, 19 Vacuum container (chamber) 21 Shutter 22 Gas supply device 23 Substrate 24 Chip 25 Target 26 High frequency power supply (RF) 27 Vacuum pump 28 Crucible 30 High frequency current suppression Effect measurement device 31 Microstrip line 31a Sample placement part 32 Coaxial line 33 Magnetic sample

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小野 裕司 宮城県仙台市太白区郡山六丁目7番1号 株式会社トーキン内 Fターム(参考) 5E049 AA01 AA04 AA07 AA09 AC00 BA11 5E070 AA01 AB03 AB10 BA16 BA20 BB01 CA07 DB01 DB10 5F067 AA00 BC00 CD00  ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuji Ono 6-7-1, Koriyama, Taishiro-ku, Sendai-shi, Miyagi Prefecture F-term (reference) 5E049 AA01 AA04 AA07 AA09 AC00 BA11 5E070 AA01 AB03 AB10 BA16 BA20 BB01 CA07 DB01 DB10 5F067 AA00 BC00 CD00

Claims (25)

【特許請求の範囲】[Claims] 【請求項1】 信号処理用に供される所定数の端子を備
えた電子部品において、前記所定数の端子のうちの一部
又は全部には、該端子自体に流れる数十MHz〜数GH
z帯域の高周波電流を減衰させる高周波電流抑制体が設
けられたことを特徴とする高周波電流抑制型電子部品。
1. An electronic component having a predetermined number of terminals provided for signal processing, wherein some or all of the predetermined number of terminals have tens of MHz to several GH flowing through the terminals themselves.
A high-frequency current suppression type electronic component, comprising: a high-frequency current suppressor that attenuates a high-frequency current in a z-band.
【請求項2】 請求項1記載の高周波電流抑制型電子部
品において、前記高周波電流抑制体は、前記所定数の端
子のうちの一部又は全部の表面に対して少なくとも前記
電子部品を実装するための回路基板に実装される実装部
分、並びに該回路基板に配備された導電性パターンに対
する接続部分を含む端部を除いた箇所に設けられたこと
を特徴とする高周波電流抑制型電子部品。
2. The high-frequency current suppression type electronic component according to claim 1, wherein the high-frequency current suppression body mounts at least the electronic component on a part or all of the surface of the predetermined number of terminals. A high-frequency current suppression type electronic component provided at a location other than a mounting portion mounted on the circuit board and an end including a connection portion to a conductive pattern provided on the circuit board.
【請求項3】 請求項1又は2記載の高周波電流抑制型
電子部品において、前記高周波電流抑制体は、少なくと
も前記電子部品を実装するための回路基板に実装される
実装部分の近傍が数十MHz未満の使用周波数帯域で導
電性を示すことを特徴とする高周波電流抑制型電子部
品。
3. The high-frequency current suppressing type electronic component according to claim 1, wherein the high-frequency current suppressing body has a frequency of at least several tens of MHz near a mounting portion mounted on a circuit board for mounting the electronic component. A high-frequency current suppression type electronic component, which exhibits conductivity in a frequency band of use less than.
【請求項4】 請求項1〜3の何れか一つに記載の高周
波電流抑制型電子部品において、前記高周波電流抑制体
は、スパッタリング法により前記所定数の端子のうちの
一部又は全部の表面上に成膜されたことを特徴とする高
周波電流抑制型電子部品。
4. The high-frequency current suppressing type electronic component according to claim 1, wherein the high-frequency current suppressing body has a surface that is part or all of the predetermined number of terminals by a sputtering method. A high-frequency current suppression type electronic component characterized by being formed on a film.
【請求項5】 請求項1〜3の何れか一つに記載の高周
波電流抑制型電子部品において、前記高周波電流抑制体
は、蒸着法により前記所定数の端子のうちの一部又は全
部の表面上に成膜されたことを特徴とする高周波電流抑
制型電子部品。
5. The high-frequency current suppressing type electronic component according to claim 1, wherein the high-frequency current suppressing body is partially or entirely formed on the surface of the predetermined number of terminals by a vapor deposition method. A high-frequency current suppression type electronic component characterized by being formed on a film.
【請求項6】 請求項4又は5記載の高周波電流抑制型
電子部品において、前記高周波電流抑制体は、予め前記
所定数の端子の作製工程で用いられる金属性母材板上の
一部又は全体に成膜されて成ることを特徴とする高周波
電流抑制型電子部品。
6. The high-frequency current suppressing type electronic component according to claim 4, wherein the high-frequency current suppressing body is partially or entirely on a metal base material plate used in a process of manufacturing the predetermined number of terminals in advance. A high-frequency current suppression type electronic component characterized by being formed on a substrate.
【請求項7】 請求項4又は5記載の高周波電流抑制型
電子部品において、前記高周波電流抑制体は、前記所定
数の端子の作製工程で用いられる金属性母材板を切り出
して該所定数の端子として形成されたもののうちの一部
又は全部の表面上に成膜されて成ることを特徴とする高
周波電流抑制型電子部品。
7. The high-frequency current suppressing type electronic component according to claim 4, wherein the high-frequency current suppressing body cuts out a metal base material plate used in a manufacturing process of the predetermined number of terminals and cuts the predetermined number of metal base plates. A high-frequency current suppression type electronic component, which is formed on a part or all of the surfaces formed as terminals.
【請求項8】 信号処理に供される所定数の端子を備え
た電子部品において、前記所定数の端子のうちの一部又
は全部は、数十MHz未満の使用周波数帯域で導電性を
示すと共に、該端子自体に流れる数十MHz〜数GHz
帯域の高周波電流を減衰させる高周波電流抑制体から成
ることを特徴とする高周波電流抑制型電子部品。
8. An electronic component having a predetermined number of terminals provided for signal processing, wherein some or all of the predetermined number of terminals exhibit conductivity in a working frequency band of less than several tens of MHz. , Several tens MHz to several GHz flowing through the terminal itself
A high-frequency current suppression type electronic component comprising a high-frequency current suppressor that attenuates a high-frequency current in a band.
【請求項9】 請求項8記載の高周波電流抑制型電子部
品において、前記高周波電流抑制体は、スパッタリング
法により作製されたことを特徴とする高周波電流抑制型
電子部品。
9. The high-frequency current suppression type electronic component according to claim 8, wherein said high-frequency current suppression body is manufactured by a sputtering method.
【請求項10】 請求項8記載の高周波電流抑制型電子
部品において、前記高周波電流抑制体は、蒸着法により
作製されたことを特徴とする高周波電流抑制型電子部
品。
10. The high-frequency current suppression type electronic component according to claim 8, wherein said high-frequency current suppression body is manufactured by a vapor deposition method.
【請求項11】 請求項1〜10の何れか一つに記載の
高周波電流抑制型電子部品において、前記高周波電流抑
制体は、厚さが0.3〜20(μm)の範囲にあること
を特徴とする高周波電流抑制型電子部品。
11. The high-frequency current suppression type electronic component according to claim 1, wherein the high-frequency current suppression body has a thickness in a range of 0.3 to 20 (μm). Characterized high-frequency current suppression type electronic components.
【請求項12】 請求項1〜11の何れか一つに記載の
高周波電流抑制型電子部品において、前記高周波電流抑
制体は、薄膜磁性体であることを特徴とする高周波電流
抑制型電子部品。
12. The high-frequency current suppressing electronic component according to claim 1, wherein said high-frequency current suppressing body is a thin-film magnetic material.
【請求項13】 請求項1〜12の何れか一つに記載の
高周波電流抑制型電子部品において、前記高周波電流抑
制体は、組成分M(但し、MはFe,Co,Niの少な
くとも一種とする),Y(但し、YはF,N,Oの少な
くとも一種とする),及びX(但し、XはM及びYに含
まれる元素以外の元素の少なくとも一種とする)の混在
物によるM−X−Y系の磁気損失材料であって、透磁率
特性における実数部μ′に対する虚数部μ″を周波数と
の関係で示した複素透磁率特性上で該虚数部μ″の最大
値μ″max が周波数100MHz〜10GHzの帯域範
囲に存在し、且つ該虚数部μ″にあっての該最大値μ″
max に対して50%以上となる周波数帯域を該周波数帯
域の中心周波数で規格化した半幅分相当の半幅値μ″50
が200%以内である挟帯域磁気損失材料から成ること
を特徴とする高周波電流抑制型電子部品。
13. The high-frequency current suppressing type electronic component according to claim 1, wherein the high-frequency current suppressing body has a composition M (where M is at least one of Fe, Co, and Ni). ), Y (where Y is at least one of F, N, and O), and X (where X is at least one of the elements other than the elements contained in M and Y). A magnetic loss material of the XY system, wherein the maximum value μ ″ max of the imaginary part μ ″ on the complex magnetic permeability characteristic in which the imaginary part μ ″ relative to the real part μ ′ in the magnetic permeability characteristic is shown in relation to frequency. Exists in a frequency range of 100 MHz to 10 GHz, and the maximum value μ ″ in the imaginary part μ ″.
A half-width value μ ″ 50 corresponding to a half-width obtained by standardizing a frequency band that is 50% or more of max with the center frequency of the frequency band.
A high-frequency current suppression type electronic component, comprising a narrow band magnetic loss material having a ratio of less than 200%.
【請求項14】 請求項13記載の高周波電流抑制型電
子部品において、前記挟帯域磁気損失材料は、飽和磁化
の大きさが前記組成分Mのみからなる金属磁性体の飽和
磁化の80〜60(%)の範囲にあることを特徴とする
高周波電流抑制型電子部品。
14. The high-frequency current suppression type electronic component according to claim 13, wherein the narrow band magnetic loss material has a saturation magnetization of 80 to 60 (80 to 60) of the saturation magnetization of a metal magnetic material including only the composition M. %) In the range of (%).
【請求項15】 請求項13又は14記載の高周波電流
抑制型電子部品において、前記挟帯域磁気損失材料は、
直流電気抵抗率が100〜700(μΩ・cm)の範囲
にあることを特徴とする高周波電流抑制型電子部品。
15. The high-frequency current suppression type electronic component according to claim 13, wherein the narrow band magnetic loss material comprises:
A high-frequency current suppression type electronic component having a DC electric resistivity in a range of 100 to 700 (μΩ · cm).
【請求項16】 請求項1〜12の何れか一つに記載の
高周波電流抑制型電子部品において、前記高周波電流抑
制体は、組成分M(但し、MはFe,Co,Niの少な
くとも一種とする),Y(但し、YはF,N,Oの少な
くとも一種とする),及びX(但し、XはM及びYに含
まれる元素以外の元素の少なくとも一種とする)の混在
物によるM−X−Y系の磁気損失材料であって、透磁率
特性における実数部μ′に対する虚数部μ″を周波数と
の関係で示した複素透磁率特性上で該虚数部μ″の最大
値μ″max が周波数100MHz〜10GHzの帯域範
囲に存在し、且つ該虚数部μ″にあっての該最大値μ″
max に対して50%以上となる周波数帯域を該周波数帯
域の中心周波数で規格化した半幅分相当の半幅値μ″50
が150%以上である広帯域磁気損失材料から成ること
を特徴とする高周波電流抑制型電子部品。
16. The high-frequency current suppressing type electronic component according to claim 1, wherein the high-frequency current suppressing body has a composition M (where M is at least one of Fe, Co, and Ni). ), Y (where Y is at least one of F, N, and O), and X (where X is at least one of the elements other than the elements contained in M and Y). A magnetic loss material of the XY system, wherein the maximum value μ ″ max of the imaginary part μ ″ on the complex magnetic permeability characteristic in which the imaginary part μ ″ relative to the real part μ ′ in the magnetic permeability characteristic is shown in relation to frequency. Exists in a frequency range of 100 MHz to 10 GHz, and the maximum value μ ″ in the imaginary part μ ″.
A half-width value μ ″ 50 corresponding to a half-width obtained by standardizing a frequency band that is 50% or more of max with the center frequency of the frequency band.
A high-frequency current-suppressing electronic component, comprising a broadband magnetic loss material having a ratio of not less than 150%.
【請求項17】 請求項16記載の高周波電流抑制型電
子部品において、前記広帯域磁気損失材料は、飽和磁化
の大きさが前記組成分Mのみからなる金属磁性体の飽和
磁化の60〜35(%)の範囲にあることを特徴とする
高周波電流抑制型電子部品。
17. The high-frequency current suppressing type electronic component according to claim 16, wherein the magnitude of the saturation magnetization of the broadband magnetic loss material is 60 to 35% (%) of the saturation magnetization of the metal magnetic material including only the composition M. A high-frequency current suppression type electronic component characterized by being in the range of (1).
【請求項18】 請求項16又は17記載の高周波電流
抑制型電子部品において、前記広帯域磁気損失材料は、
直流電気抵抗率が500μΩ・cmよりも大きい値であ
ることを特徴とする高周波電流抑制型電子部品。
18. The high-frequency current suppressing type electronic component according to claim 16, wherein the broadband magnetic loss material comprises:
A high-frequency current suppression type electronic component having a DC electric resistivity of more than 500 μΩ · cm.
【請求項19】 請求項13〜18の何れか一つに記載
の高周波電流抑制型電子部品において、前記挟帯域磁気
損失材料又は前記広帯域磁気損失材料は、前記組成分X
がC,B,Si,Al,Mg,Ti,Zn,Hf,S
r,Nb,Ta,及び希土類元素の少なくとも一種であ
ることを特徴とする高周波電流抑制型電子部品。
19. The high-frequency current suppression type electronic component according to claim 13, wherein said narrow band magnetic loss material or said wide band magnetic loss material has the composition X
Are C, B, Si, Al, Mg, Ti, Zn, Hf, S
A high-frequency current suppression type electronic component, which is at least one of r, Nb, Ta, and a rare earth element.
【請求項20】 請求項13〜19の何れか一つに記載
の高周波電流抑制型電子部品において、前記挟帯域磁気
損失材料又は前記広帯域磁気損失材料は、前記組成分M
が前記組成分X及び前記組成分Yによる化合物のマトリ
ックス中に分散されたグラニュラー状の形態で存在する
ことを特徴とする高周波電流抑制型電子部品。
20. The high-frequency current suppressing type electronic component according to claim 13, wherein the narrow band magnetic loss material or the wide band magnetic loss material has the composition component M.
Is present in a granular form dispersed in a matrix of the compound of the composition X and the composition Y.
【請求項21】 請求項20記載の高周波電流抑制型電
子部品において、前記挟帯域磁気損失材料又は前記広帯
域磁気損失材料は、前記グラニュラー状の形態を有する
粒子の平均粒子径が1〜40(nm)の範囲にあること
を特徴とする高周波電流抑制型電子部品。
21. The high-frequency current suppressing type electronic component according to claim 20, wherein the narrow band magnetic loss material or the wide band magnetic loss material has an average particle diameter of the particles having the granular form of 1 to 40 (nm). A high-frequency current suppression type electronic component characterized by being in the range of (1).
【請求項22】 請求項13〜21の何れか一つに記載
の高周波電流抑制型電子部品において、前記挟帯域磁気
損失材料又は前記広帯域磁気損失材料は、異方性磁界が
47400A/m以下であることを特徴とする高周波電
流抑制型電子部品。
22. The high-frequency current suppressing electronic component according to claim 13, wherein the narrow band magnetic loss material or the wide band magnetic loss material has an anisotropic magnetic field of 47400 A / m or less. A high-frequency current suppression type electronic component, comprising:
【請求項23】 請求項13〜22の何れか一つに記載
の高周波電流抑制型電子部品において、前記M−X−Y
系は、Fe−Al−O系であることを特徴とする高周波
電流抑制型電子部品。
23. The high-frequency current suppression type electronic component according to claim 13, wherein the M-X-Y
The system is a high frequency current suppression type electronic component, wherein the system is an Fe-Al-O system.
【請求項24】 請求項12〜22の何れか一つに記載
の高周波電流抑制型電子部品において、前記M−X−Y
系は、Fe−Si−O系であることを特徴とする高周波
電流抑制型電子部品。
24. The high-frequency current suppressing type electronic component according to claim 12, wherein said M-X-Y
The system is a high-frequency current suppression type electronic component, wherein the system is an Fe-Si-O system.
【請求項25】 請求項1〜24の何れか一つに記載の
高周波電流抑制型電子部品において、前記電子部品は、
高い周波数帯域で使用されて高速動作する半導体能動素
子であると共に、半導体集積回路素子,半導体大規模集
積回路素子,及び論理回路素子の何れか一つであること
を特徴とする高周波電流抑制型電子部品。
25. The high-frequency current suppression type electronic component according to claim 1, wherein the electronic component comprises:
A high-frequency current suppression type electronic device characterized by being a semiconductor active device used in a high frequency band and operating at high speed, and being any one of a semiconductor integrated circuit device, a semiconductor large-scale integrated circuit device, and a logic circuit device. parts.
JP2000103025A 2000-04-04 2000-04-05 High frequency current suppression type electronic components Expired - Fee Related JP4398057B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2000103025A JP4398057B2 (en) 2000-04-05 2000-04-05 High frequency current suppression type electronic components
SG200101994A SG96612A1 (en) 2000-04-04 2001-04-03 Electronic component of a high frequency current suppression type and bonding wire for the same
NO20011677A NO20011677L (en) 2000-04-04 2001-04-03 Electronic component for high frequency attenuation and connection cable for the component
KR1020010017564A KR20010095252A (en) 2000-04-04 2001-04-03 Electronic component of a high frequency current suppression type and bonding wire for the same
EP01108482A EP1146637B1 (en) 2000-04-04 2001-04-04 Electronic component of a high frequency current suppression type and bonding wire for the same
TW090108099A TW503495B (en) 2000-04-04 2001-04-04 Electronic component of a high frequency current suppression type and bonding wire for the same
DE60104470T DE60104470T2 (en) 2000-04-04 2001-04-04 Electronic component in which high-frequency currents are suppressed and bonding wire for it
CN01119279A CN1317829A (en) 2000-04-04 2001-04-04 High frequency current inhibiting type electronic component and its conjunction wire
MYPI20011616A MY128653A (en) 2000-04-04 2001-04-04 Electronic component of a high frequency current suppression type and bonding wire for the same
US09/826,436 US6635961B2 (en) 2000-04-04 2001-04-04 Electronic component of a high frequency current suppression type and bonding wire for the same
US10/355,593 US6903440B2 (en) 2000-04-04 2003-01-31 Electronic component of a high frequency current suppression type and bonding wire for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000103025A JP4398057B2 (en) 2000-04-05 2000-04-05 High frequency current suppression type electronic components

Publications (2)

Publication Number Publication Date
JP2001291816A true JP2001291816A (en) 2001-10-19
JP4398057B2 JP4398057B2 (en) 2010-01-13

Family

ID=18616797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000103025A Expired - Fee Related JP4398057B2 (en) 2000-04-04 2000-04-05 High frequency current suppression type electronic components

Country Status (1)

Country Link
JP (1) JP4398057B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006067989A1 (en) * 2004-12-20 2006-06-29 Toppan Forms Co., Ltd. Noncontact data receiver/transmitter
US8042742B2 (en) 2004-10-13 2011-10-25 Toppan Forms Co., Ltd. Noncontact IC label and method and apparatus for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8042742B2 (en) 2004-10-13 2011-10-25 Toppan Forms Co., Ltd. Noncontact IC label and method and apparatus for manufacturing the same
WO2006067989A1 (en) * 2004-12-20 2006-06-29 Toppan Forms Co., Ltd. Noncontact data receiver/transmitter
US8020772B2 (en) 2004-12-20 2011-09-20 Toppan Forms Co., Ltd. Noncontact data receiver/transmiter

Also Published As

Publication number Publication date
JP4398057B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
JP4434422B2 (en) High frequency current suppression type connector
JP4210016B2 (en) communication cable
KR100908356B1 (en) Electromagnetic noise suppression body and electromagnetic noise suppression method using the same
JP4398056B2 (en) Resin mold body
TW502261B (en) Electronic component comprising a metallic case provided with a magnetic loss material
US6635961B2 (en) Electronic component of a high frequency current suppression type and bonding wire for the same
JP4417521B2 (en) Wiring board
JP4287020B2 (en) High frequency current suppression type heat sink
JP2001291816A (en) High frequency current suppressing electronic component
KR100749679B1 (en) Magnetic substance with maximum complex permeability in quasi-microwave band and method for production of the same
JP4271825B2 (en) Semiconductor bare chip and semiconductor wafer
JP4243000B2 (en) High frequency current suppressing bonding wire for electronic components and electronic component including the same
JP2001284755A (en) Wiring board
JP4191888B2 (en) Electromagnetic noise suppressor and electromagnetic noise suppression method using the same
JP2001284698A (en) Light emitting element
JP2001284947A (en) Antenna using high frequency current suppression body
JP2001284132A (en) Magnetic core

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060804

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20080917

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A521 Written amendment

Effective date: 20090713

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20091022

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20121030

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees