JP2001290033A - Method for manufacturing plastic optical transmission material - Google Patents

Method for manufacturing plastic optical transmission material

Info

Publication number
JP2001290033A
JP2001290033A JP2000106523A JP2000106523A JP2001290033A JP 2001290033 A JP2001290033 A JP 2001290033A JP 2000106523 A JP2000106523 A JP 2000106523A JP 2000106523 A JP2000106523 A JP 2000106523A JP 2001290033 A JP2001290033 A JP 2001290033A
Authority
JP
Japan
Prior art keywords
plastic optical
optical transmission
monomers
transmission material
reactivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000106523A
Other languages
Japanese (ja)
Inventor
Maki Ikechi
麻紀 池知
Masahiro Takagi
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000106523A priority Critical patent/JP2001290033A/en
Publication of JP2001290033A publication Critical patent/JP2001290033A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a plastic optical transmission material which is capable of sufficiently degrading the transmission loss in a plastic optical fiber, etc. SOLUTION: In the method for manufacturing the plastic optical transmission material obtained by copolymerizing two kinds of monomers having reactivity ratios r1 and r2 satisfying the following equation r1×r2<0.8 or r1×r2>1.2 and having r1 smaller than 1 and r2 greater than 1, the monomer having the lower reactivity ratio is added to the material at >=20 to <100 pts.wt. when the reactivity ratios r1 and r2 satisfy r1/r2>=10 and at 100 to 500 pts.wt. when the reactivity ratios satisfy r/r2<10 per 100 pts.wt. monomer having the higher reactivity ratio of two kinds of the monomers. Two kinds of the monomers are so copolymerized that the degree of polymerization of the copolymer obtained by the copolymerization reaction of two kinds of the monomers attains <=97 wt.% when the reactivity ratios r1 and r2 satisfy r1/r2>=10 and attains <=92 wt.% when the reactivity ratios satisfy r1/r2<10.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えばプラスチッ
ク光ファイバのコア等に用いられるプラスチック光伝送
材料の製造方法に係り、より詳細には反応性比の異なる
2種類のモノマーの共重合反応により得られるプラスチ
ック光伝送材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a plastic optical transmission material used for, for example, a plastic optical fiber core, and more particularly to a method for producing a plastic optical transmission material by copolymerizing two kinds of monomers having different reactivity ratios. To a method for producing a plastic optical transmission material.

【0002】[0002]

【従来の技術】従来から、反応性比の異なる2種類のモ
ノマーを共重合させて、プラスチック光伝送材料を製造
することは公知である。例えば特公平6−38125号
公報には、屈折率および反応性比の異なる2種類のモノ
マーと光重合開始剤とを含有する材料を容器に入れ、そ
の材料に光を照射することにより2種類のモノマーを共
重合させ、プラスチック光伝送材料を製造する方法が開
示されている。
2. Description of the Related Art It has been known to produce a plastic optical transmission material by copolymerizing two kinds of monomers having different reactivity ratios. For example, Japanese Patent Publication No. Hei 6-38125 discloses that a material containing two types of monomers having different refractive indices and reactivity ratios and a photopolymerization initiator is placed in a container, and the material is irradiated with light. A method for producing a plastic optical transmission material by copolymerizing monomers is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前述し
た従来の公報に記載の製造方法によれば、製造されたプ
ラスチック光伝送材料の散乱損失が大きくなり、その材
料を用いてプラスチック光ファイバのコア等を作製する
と、そのプラスチック光ファイバの伝送損失が大きくな
る場合があった。
However, according to the manufacturing method described in the above-mentioned conventional gazette, the scattering loss of the manufactured plastic optical transmission material becomes large, and the core and the like of the plastic optical fiber are formed by using the material. In some cases, the transmission loss of the plastic optical fiber becomes large.

【0004】本発明は、上記事情に鑑みてなされたもの
で、プラスチック光ファイバ等における伝送損失を十分
に低下させることができるプラスチック光伝送材料の製
造方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a method of manufacturing a plastic optical transmission material capable of sufficiently reducing transmission loss in a plastic optical fiber or the like.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記課題
を解決するため鋭意検討した結果、プラスチック光伝送
材料の散乱損失を増加させる原因が、2種類のモノマー
同士の共重合によってプラスチック光伝送材料にブロッ
クコポリマーやホモポリマー等のドメインが多く形成さ
れることにあることを見出した。更に、こうしたドメイ
ンは、2種類のモノマーの反応性比r1,r2の積(r
1×r2)が0.8〜1.2の範囲を外れるときに多く
形成され、このドメインがプラスチック光伝送材料の散
乱損失を増大させることを見出した。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, the cause of the increase in the scattering loss of the plastic optical transmission material is that the copolymerization of two types of monomers causes plastic optical transmission. It has been found that many domains such as block copolymers and homopolymers are formed in the transmission material. Further, such a domain is the product of the reactivity ratios r1, r2 of the two monomers (r
1 * r2) is formed more when the value is outside the range of 0.8 to 1.2, and it has been found that this domain increases the scattering loss of the plastic optical transmission material.

【0006】そこで、本発明は、反応性比r1、r2が
下記式: r1×r2<0.8、又はr1×r2>1.2 (1) を満たし、且つr1が1より小さくr2が1より大きい
2種類のモノマーを共重合させて得られるプラスチック
光伝送材料の製造方法において、2種類のモノマーのう
ち反応性比の高い方のモノマー100重量部に対し反応
性比の低い方のモノマーを、反応性比r1,r2が次式
r2/r1≧10を満たす場合には20重量部以上10
0重量部未満添加し、反応性比r1,r2が次式r2/
r1<10を満たす場合には100重量部より大きく5
00重量部以下だけ添加する第1工程と、2種類のモノ
マーの共重合反応により得られる生成物の重合度が、反
応性比r1,r2が次式r2/r1≧10を満たす場合
には97wt%以下となるように、反応性比r1,r2
が次式r2/r1<10を満たす場合には92wt%以
下となるように2種類のモノマーを共重合させる第2工
程とを含むことを特徴とするものである。本発明におい
て、重合度は下記式で定義される。
In the present invention, therefore, the reactivity ratios r1 and r2 satisfy the following formula: r1 × r2 <0.8 or r1 × r2> 1.2 (1), and r1 is smaller than 1 and r2 is 1 In a method for producing a plastic optical transmission material obtained by copolymerizing two larger monomers, a monomer having a lower reactivity ratio is used for 100 parts by weight of a monomer having a higher reactivity ratio among the two monomers. When the reactivity ratios r1 and r2 satisfy the following equation, r2 / r1 ≧ 10, 20 parts by weight or more and 10 parts by weight
Less than 0 parts by weight, and the reactivity ratios r1 and r2 become
When r1 <10 is satisfied, it is larger than 100 parts by weight and 5
The first step of adding only 00 parts by weight or less, and the polymerization degree of the product obtained by the copolymerization reaction of the two types of monomers is 97 wt% when the reactivity ratios r1 and r2 satisfy the following formula: r2 / r1 ≧ 10. %, The reactivity ratios r1, r2
When the following formula r2 / r1 <10 is satisfied, a second step of copolymerizing two kinds of monomers so as to be 92 wt% or less is provided. In the present invention, the degree of polymerization is defined by the following formula.

【0007】 重合度(wt%)=100−100×(除去した残存モノマー成分の重量/残 存モノマー成分を除去する前の共重合による生成物の重量) (2) 本発明によれば、反応性比が1より小さいモノマーに対
し、r2/r1の大きさに応じて反応性比が1より大き
いモノマーの添加量を所定範囲とし、且つr2/r1の
大きさに応じ、2種類のモノマーの共重合反応により得
られる生成物の重合度が所定値以下になるよう共重合す
ることで、残存モノマー成分の重合の進行を十分に妨げ
ることが可能となる。従って、残存モノマー成分による
ホモポリマーやブロックコポリマー等のドメインの生成
が十分防止され、得られるプラスチック光伝送材料の散
乱損失が十分低減される。
Degree of polymerization (wt%) = 100−100 × (weight of residual monomer component removed / weight of copolymerization product before removing residual monomer component) (2) According to the present invention, the reaction With respect to a monomer having a reactivity ratio of less than 1, the amount of the monomer having a reactivity ratio of greater than 1 is set in a predetermined range according to the magnitude of r2 / r1, and two types of monomers are added according to the magnitude of r2 / r1. By performing copolymerization so that the degree of polymerization of the product obtained by the copolymerization reaction becomes equal to or less than a predetermined value, it becomes possible to sufficiently prevent the progress of polymerization of the remaining monomer components. Therefore, the generation of domains such as a homopolymer and a block copolymer by the residual monomer component is sufficiently prevented, and the scattering loss of the obtained plastic optical transmission material is sufficiently reduced.

【0008】更に上記第2工程の後に、第2工程で得ら
れる生成物中の残存モノマー成分を除去する工程を更に
含むことが好ましい。残存モノマーの存在は、プラスチ
ック光伝送材料を線引するときに気泡発生の要因とな
り、この気泡は、得られるプラスチック光ファイバ等に
おいて光伝送損失増加の要因となる。そこで、第2工程
の後に、第2工程で得られる生成物中の残存モノマー成
分を予め除去することでプラスチック光ファイバ等の伝
送損失の増加をより十分に防止することが可能となる。
Preferably, the method further comprises, after the second step, a step of removing residual monomer components in the product obtained in the second step. The presence of the residual monomer causes air bubbles when drawing the plastic optical transmission material, and the air bubbles cause an increase in optical transmission loss in the obtained plastic optical fiber or the like. Therefore, after the second step, by removing the residual monomer component in the product obtained in the second step in advance, it is possible to more sufficiently prevent an increase in transmission loss of a plastic optical fiber or the like.

【0009】[0009]

【発明の実施の形態】以下、本発明のプラスチック光伝
送材料の製造方法について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a method for producing a plastic optical transmission material according to the present invention will be described.

【0010】本発明の製造方法においては、反応性比の
異なる2種類のモノマー、すなわち1より小さい反応性
比r1を有するモノマーと1より大きい反応性比r2を
有するモノマーを用意する(第1工程)。ここで、本発
明は、反応性比r1、r2が下記式: r1×r2<0.8、又はr1×r2>1.2 (1) を満たす2種類のモノマーを用いる場合に有効である。
これは、r1×r2が上記範囲内にある場合に特にホモ
ポリマーやブロックコポリマー等のドメインが形成され
やすいからである。反応性比が上記(1)式を満たすよ
うな2種類のモノマーの組合せとしては、例えば3,
3,3−トリフルオロ−2−メチル−2−トリフルオロ
メチルプロピルメタクリレート(r1=0.71)及び
ヘキサフルオロイソプロピル−2−フルオロアクリレー
ト(r2=1.08)、安息香酸ビニル(r1=0.0
7)及びメタクリル酸メチル(r2=8.52)、又は
メタクリル酸メチル(r1=0.95)およびメタクリ
ル酸ベンジル(r2=1.07)の組合せ等が挙げられ
る。
In the production method of the present invention, two kinds of monomers having different reactivity ratios, that is, a monomer having a reactivity ratio r1 smaller than 1 and a monomer having a reactivity ratio r2 larger than 1 are prepared (first step). ). Here, the present invention is effective when two kinds of monomers having reactivity ratios r1 and r2 satisfying the following formula: r1 × r2 <0.8 or r1 × r2> 1.2 (1) are used.
This is because a domain such as a homopolymer or a block copolymer is easily formed particularly when r1 × r2 is within the above range. Examples of a combination of two types of monomers having a reactivity ratio satisfying the above formula (1) include, for example, 3,
3,3-trifluoro-2-methyl-2-trifluoromethylpropyl methacrylate (r1 = 0.71), hexafluoroisopropyl-2-fluoroacrylate (r2 = 1.08), vinyl benzoate (r1 = 0. 0
7) and methyl methacrylate (r2 = 8.52), or a combination of methyl methacrylate (r1 = 0.95) and benzyl methacrylate (r2 = 1.07).

【0011】上記2種類のモノマーを共重合させる場
合、反応性比の高い方のモノマーを容器に投入し、反応
性比の高い方のモノマー100重量部に対して反応性比
の低い方のモノマーを、r1に対するr2の比(r2/
r1)の大きさに応じ以下の量だけ添加する(第2工
程)。すなわち反応性比r1,r2が式r2/r1≧1
0を満たす場合には反応性比の低い方のモノマーを20
重量部以上100重量部未満添加する。このようにする
のは、反応性比の低い方のモノマーの添加量が20重量
部未満では、反応性比の高い方のモノマーがホモポリマ
ーを形成して散乱増を招き、100重量部以上では、反
応性比の低い方のモノマーがホモポリマーを形成して散
乱増を招くからである。
In the case of copolymerizing the above two monomers, the monomer having the higher reactivity ratio is charged into a container, and the monomer having the lower reactivity ratio is added to 100 parts by weight of the monomer having the higher reactivity ratio. Is the ratio of r2 to r1 (r2 /
The following amount is added according to the size of r1) (second step). That is, the reactivity ratios r1 and r2 satisfy the equation r2 / r1 ≧ 1.
0, the monomer having the lower reactivity ratio is added to 20
More than 100 parts by weight is added. The reason for this is that if the amount of the monomer having the lower reactivity ratio is less than 20 parts by weight, the monomer having the higher reactivity ratio forms a homopolymer and causes an increase in scattering. The reason is that the monomer having the lower reactivity ratio forms a homopolymer and causes an increase in scattering.

【0012】また、反応性比r1,r2が次式r2/r
1<10を満たす場合には100重量部より多く500
重量部以下だけ添加する。このようにするのは、反応性
比の低い方のモノマーの添加量が100重量部以下にな
ると、反応性比の高い方のモノマーがホモポリマーを形
成して散乱増を招き、500重量部を超えると、反応性
比の低い方のモノマーがホモポリマーを形成して散乱増
を招くからである。
The reactivity ratios r1 and r2 are given by the following equation: r2 / r
When 1 <10, more than 100 parts by weight and 500
Add only parts by weight or less. This is because, when the amount of the monomer having the lower reactivity ratio is 100 parts by weight or less, the monomer having the higher reactivity ratio forms a homopolymer and causes an increase in scattering. If it exceeds, the monomer having the lower reactivity ratio forms a homopolymer and causes an increase in scattering.

【0013】上記2種類のモノマーの共重合に際して
は、必要に応じて、重合開始剤、連鎖移動剤等を添加す
る。この場合、重合開始剤としては、例えば1,1−ビ
ス(t−ブチルパーオキシ)3,3,5−トリメチルシ
クロヘキサン、ジアルキルパーオキサイド、ジアシルパ
ーオキサイド、パーオキシケタール、ジ−t−ブチルパ
ーオキサイド(パーブチルD)等のパーオキシエステル
系過酸化物等のラジカル重合開始剤が挙げられる。連鎖
移動剤としては、メルカプト基含有化合物、例えばn−
ブチルメルカプタン、ラウリルメルカプタン、n−オク
チルメルカプタン、メルカプト酢酸n−ブチル、メルカ
プト酢酸イソオクチル、メルカプト酢酸メチルなどが挙
げられる。
In the copolymerization of the above two kinds of monomers, a polymerization initiator, a chain transfer agent and the like are added as required. In this case, examples of the polymerization initiator include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, dialkyl peroxide, diacyl peroxide, peroxyketal, and di-t-butyl peroxide. Radical polymerization initiators such as peroxyester-based peroxides such as (perbutyl D). As the chain transfer agent, a mercapto group-containing compound, for example, n-
Butyl mercaptan, lauryl mercaptan, n-octyl mercaptan, n-butyl mercaptoacetate, isooctyl mercaptoacetate, methyl mercaptoacetate and the like.

【0014】2種類のモノマーの共重合は、r1に対す
るr2の比(r2/r1)の大きさに応じ、2種類のモ
ノマーの共重合反応によって得られる生成物の重合度が
以下の範囲となるように行う(第3工程)。すなわち、
反応性比r1,r2が式r2/r1≧10を満たす場合
には、生成物の重合度が97wt%以下となるように共
重合を行う。これは、生成物の重合度が97wt%を超
えるように2種類のモノマーの共重合を行うと、2種類
のモノマー同士の共重合反応が相当程度進行し、光散乱
損失の要因となるブロックコポリマーやホモポリマーが
多く生成するからである。
In the copolymerization of two kinds of monomers, the degree of polymerization of a product obtained by the copolymerization reaction of two kinds of monomers is in the following range according to the ratio of r2 to r1 (r2 / r1). (Third step). That is,
When the reactivity ratios r1 and r2 satisfy the formula r2 / r1 ≧ 10, copolymerization is performed so that the degree of polymerization of the product is 97 wt% or less. This is because, when two types of monomers are copolymerized so that the degree of polymerization of the product exceeds 97 wt%, the copolymerization reaction between the two types of monomers proceeds to a considerable extent, and the block copolymer causes light scattering loss. And a large amount of homopolymers.

【0015】一方、反応性比r1,r2が式r2/r1
<10を満たす場合には、生成物の重合度が92wt%
以下となるように共重合を行う。これは、生成物の重合
度が92wt%を超えるように2種類のモノマーの共重
合を行うと、2種類のモノマー同士の共重合反応が相当
程度進行し、光散乱損失の要因となるブロックコポリマ
ーやホモポリマーが多く生成するからである。生成物の
重合度は、反応性比の比(r2/r1)の大きさによら
ず好ましくは60wt%以上である。重合度が60wt
%未満では、分子量分布が広がって高分子量化せず、生
成物の機械的強度の低下を招く傾向があるからである。
ここで、重合度は下記式で定義される。
On the other hand, the reactivity ratios r1 and r2 are given by the formula r2 / r1
When <10 is satisfied, the degree of polymerization of the product is 92 wt%.
The copolymerization is performed as follows. This is because when two types of monomers are copolymerized so that the degree of polymerization of the product exceeds 92 wt%, the copolymerization reaction between the two types of monomers proceeds to a considerable extent, and the block copolymer causes light scattering loss. And a large amount of homopolymers. The degree of polymerization of the product is preferably not less than 60 wt% irrespective of the magnitude of the reactivity ratio (r2 / r1). Degree of polymerization is 60wt
If it is less than%, the molecular weight distribution is widened and the molecular weight is not increased, and the mechanical strength of the product tends to decrease.
Here, the degree of polymerization is defined by the following equation.

【0016】 重合度(wt%)=100−100×(除去した残存モノマー成分の重量/残 存モノマー成分を除去する前の共重合生成物の重量) (2) 重合度は、例えば重合時間及び重合温度の調整、開始剤
種、反応停止剤の添加等によって所望の値に制御するこ
とが可能である。重合時間および重合温度を調整する場
合、使用するモノマーの種類によっても異なるが、重合
時間は通常は6〜30時間であり、重合温度は通常は6
0〜180℃である。また、反応停止剤としては、例え
ばハイドロキノン等が用いられる。
Degree of polymerization (wt%) = 100−100 × (weight of removed residual monomer component / weight of copolymerized product before removing residual monomer component) (2) The degree of polymerization is, for example, the polymerization time and the polymerization time. The desired value can be controlled by adjusting the polymerization temperature, adding an initiator, and adding a reaction terminator. When adjusting the polymerization time and the polymerization temperature, the polymerization time is usually from 6 to 30 hours, and the polymerization temperature is usually from 6 to 30, although it depends on the type of the monomer used.
0-180 ° C. As the reaction terminator, for example, hydroquinone or the like is used.

【0017】なお、重合度は、例えば残存モノマー成分
を除去する前における生成物中の残存モノマー成分の重
量割合をガスクロマトグラフィー(GC)で測定し、こ
れを上記(2)式に代入することにより算出し、確認す
ることができる。
The degree of polymerization is determined by, for example, measuring the weight ratio of the residual monomer component in the product before removing the residual monomer component by gas chromatography (GC), and substituting the same into the above equation (2). Can be calculated and confirmed.

【0018】こうして2種類のモノマーの共重合を行う
ことによりプラスチック光伝送材料が得られる。このと
き、プラスチック光伝送材料においては重合が完結して
いないので残存モノマー成分が含まれることとなる。残
存モノマー成分がプラスチック光伝送材料中に存在する
と、プラスチック光伝送材料の線引時において気泡発生
の要因となる。そこで、生成物であるプラスチック光伝
送材料の線引前に、生成物中の残存モノマー成分を予め
除去することが好ましい。残存モノマー成分を除去する
ことで線引時における気泡の発生を十分に防止すること
が可能となり、ひいてはプラスチック光ファイバ等の伝
送損失の増加をより十分に防止することが可能となる。
Thus, a plastic optical transmission material can be obtained by copolymerizing two kinds of monomers. At this time, since the polymerization is not completed in the plastic optical transmission material, a residual monomer component is included. If the residual monomer component is present in the plastic optical transmission material, it causes air bubbles when drawing the plastic optical transmission material. Therefore, it is preferable to remove the residual monomer component in the product before drawing the plastic optical transmission material as the product. By removing the residual monomer component, it is possible to sufficiently prevent the generation of bubbles at the time of drawing, and it is possible to more sufficiently prevent the transmission loss of a plastic optical fiber or the like from increasing.

【0019】残存モノマー成分の除去方法としては、例
えばプラスチック光伝送材料を所定の溶媒に溶かした
後、更に別の種類の溶媒を加えてプラスチック光伝送材
料のうちの共重合体を選択的に再沈させる方法が挙げら
れる。
As a method for removing the residual monomer component, for example, after dissolving the plastic optical transmission material in a predetermined solvent, another type of solvent is added and the copolymer among the plastic optical transmission materials is selectively recycled. The method of making it settle is mentioned.

【0020】プラスチック光伝送材料を溶解することが
できる溶媒としては、例えばテトラヒドロフラン(TH
F)、アセトン、メチルエチルケトン(MEK)等が挙
げられる。更にプラスチック光伝送材料のうち共重合体
を選択的に再沈させる溶媒としては、例えばメタノール
が挙げられる。
As a solvent capable of dissolving the plastic optical transmission material, for example, tetrahydrofuran (TH)
F), acetone, methyl ethyl ketone (MEK) and the like. Further, as a solvent for selectively reprecipitating the copolymer among the plastic optical transmission materials, for example, methanol can be mentioned.

【0021】こうして残存モノマー成分が除去されたプ
ラスチック光伝送材料が得られる。このプラスチック光
伝送材料は種々の光伝送体、例えばプラスチック光ファ
イバのコア、クラッド等に適用可能である。こうした光
伝送体は、上記プラスチック光伝送材料を押出法によっ
て押し出すことなどによって得ることができる。
Thus, a plastic optical transmission material from which the residual monomer component has been removed is obtained. This plastic optical transmission material is applicable to various optical transmission bodies, for example, cores and claddings of plastic optical fibers. Such an optical transmission body can be obtained by extruding the plastic optical transmission material by an extrusion method or the like.

【0022】次に、本発明の内容を、実施例を用いてよ
り具体的に説明する。
Next, the contents of the present invention will be described more specifically with reference to examples.

【0023】[0023]

【実施例】(実施例1)2種類のモノマーとして、3,
3,3−トリフルオロ−2−メチル−2−トリフルオロ
メチルプロピルメタクリレート(r1=0.71、以下
「HFNPMA」という)、およびヘキサフルオロイソ
プロピル−2−フルオロアクリレート(r2=1.0
8、以下「HFIP−2FA」という)を用意した。こ
れらのモノマーの反応性比の積r1×r2の値は0.7
78であった。
EXAMPLES (Example 1) As two kinds of monomers, 3,
3,3-trifluoro-2-methyl-2-trifluoromethylpropyl methacrylate (r1 = 0.71, hereinafter referred to as “HFNPMA”), and hexafluoroisopropyl-2-fluoroacrylate (r2 = 1.0
8, hereinafter referred to as “HFIP-2FA”). The value of the product r1 × r2 of the reactivity ratio of these monomers is 0.7
78.

【0024】そして、反応性比が高い方のモノマーであ
るHFIP−2FA20重量部に対し、反応性比が低い
方のモノマーであるHFNPMAを100重量部、重合
開始剤として、1,1−ビス(t−ブチルパーオキシ)
3,3,5−トリメチルシクロヘキサン(パーヘキサ3
M)を0.05wt%、連鎖移動剤としてn−ブチルメ
ルカプタン(n−BM)を0.09wt%を添加し、9
5℃で24時間共重合反応を行った。
Then, based on 20 parts by weight of HFIP-2FA, which is a monomer having a higher reactivity ratio, 100 parts by weight of HFNPMA, which is a monomer having a lower reactivity ratio, and 1,1-bis ( t-butyl peroxy)
3,3,5-trimethylcyclohexane (Perhexa 3
M) of 0.05 wt%, and 0.09 wt% of n-butyl mercaptan (n-BM) as a chain transfer agent.
The copolymerization reaction was performed at 5 ° C. for 24 hours.

【0025】こうしてプラスチック光伝送材料を得た。
この材料について、ガスクロマトグラフィー(GC)を
用いて残存モノマー成分の含有率を測定したところ、プ
ラスチック光伝送材料中の残存モノマー成分の含有率は
8.35wt%であり、プラスチック光伝送材料の重合
度は91.65wt%であった。また、プラスチック光
伝送材料中のHFNP−MA、HFIP−2FAの含有
率はそれぞれ、8.33wt%、0.02wt%であっ
た。
Thus, a plastic optical transmission material was obtained.
When the content of the residual monomer component of this material was measured using gas chromatography (GC), the content of the residual monomer component in the plastic optical transmission material was 8.35 wt%, and the polymerization of the plastic optical transmission material was performed. The degree was 91.65 wt%. The contents of HFNP-MA and HFIP-2FA in the plastic optical transmission material were 8.33 wt% and 0.02 wt%, respectively.

【0026】こうして得られたプラスチック光伝送材料
をTHF溶媒を用いて溶解し、その後メタノールを加え
てプラスチック光伝送材料を再沈させ、プラスチック光
伝送材料を取り出すことによりプラスチック光伝送材料
から残存モノマー成分を除去した。
The plastic optical transmission material thus obtained is dissolved using a THF solvent, and then methanol is added to re-precipitate the plastic optical transmission material. The plastic optical transmission material is taken out to remove residual monomer components from the plastic optical transmission material. Was removed.

【0027】こうして得られたプラスチック光伝送材料
に対し100℃で24時間減圧乾燥を行い、このプラス
チック光伝送材料を押出機に投入し、プラスチック光フ
ァイバのコア材(直径425μm)として押し出した。
一方、HFIP−2FA100重量部に対し、重合開始
剤としてジ−t−ブチルパーオキサイド(パーブチル
D)を0.2wt%、連鎖移動剤としてメルカプト酢酸
イソオクチル0.3wt%を添加して重合させ、この重
合体を押出機に投入し、重合体をクラッド材(内径42
5μm、厚さ500μm)として押出した。このとき、
コア材及びクラッド材は同時に多重押し出しした。
The plastic optical transmission material thus obtained was dried under reduced pressure at 100 ° C. for 24 hours, and the plastic optical transmission material was put into an extruder and extruded as a plastic optical fiber core material (diameter: 425 μm).
On the other hand, based on 100 parts by weight of HFIP-2FA, 0.2% by weight of di-t-butyl peroxide (perbutyl D) as a polymerization initiator and 0.3% by weight of isooctyl mercaptoacetate as a chain transfer agent were added and polymerized. The polymer is charged into an extruder, and the polymer is placed in a cladding material (inner diameter of 42).
(5 μm, thickness 500 μm). At this time,
The core material and the clad material were multiple-extruded simultaneously.

【0028】そして、上記コア材とクラッド材とにより
プラスチック光ファイバを得た。こうして得られたプラ
スチック光ファイバについて、白色光源(安藤電気社
製、AQ−4303B)及びスペクトルアナライザ(安
藤電気社製、AQ−6315B)を用いて650nmの
光に対する光伝送損失を測定した。その結果、光伝送損
失は70dB/kmであり、相当に低くなることが分か
った。
Then, a plastic optical fiber was obtained from the core material and the clad material. With respect to the plastic optical fiber thus obtained, the light transmission loss for 650 nm light was measured using a white light source (AQ-4303B, manufactured by Ando Electric Co., Ltd.) and a spectrum analyzer (AQ-6315B, manufactured by Ando Electric Co., Ltd.). As a result, it was found that the optical transmission loss was 70 dB / km, which was considerably low.

【0029】(比較例1)HFIP−2FAとHFNP
MAとを重合温度120℃、重合時間48時間で共重合
させて共重合反応をほぼ完結させた(重合度99wt
%)以外は実施例1と同様にしてプラスチック光ファイ
バを得た。そして、得られたプラスチック光ファイバに
ついて実施例1と同様にして光伝送損失を測定したとこ
ろ、光伝送損失は250dB/kmであり、実施例1の
場合に比べて相当に大きくなることが分かった。
Comparative Example 1 HFIP-2FA and HFNP
MA was copolymerized at a polymerization temperature of 120 ° C. for a polymerization time of 48 hours to substantially complete the copolymerization reaction (degree of polymerization: 99 wt.
%) Except that a plastic optical fiber was obtained in the same manner as in Example 1. The optical transmission loss of the obtained plastic optical fiber was measured in the same manner as in Example 1. As a result, it was found that the optical transmission loss was 250 dB / km, which was considerably larger than that of Example 1. .

【0030】以上より、共重合反応を完結させると、重
合後期に反応性の低いHFNPMAがドメインを形成
し、このドメインがプラスチック光ファイバの伝送損失
を増加させたものと考えられる。
From the above, it is considered that when the copolymerization reaction is completed, HFNPMA having low reactivity forms a domain in the late stage of the polymerization, and this domain increases the transmission loss of the plastic optical fiber.

【0031】[0031]

【発明の効果】以上説明したように、本発明のプラスチ
ック光伝送材料の製造方法によれば、反応性比の異なる
2種類のモノマーを共重合させるときにホモポリマー或
いはブロックコポリマー等のドメインの生成が十分防止
され、得られるプラスチック光伝送材料の散乱損失が低
下するので、プラスチック光ファイバ等の伝送損失を十
分に低減することができる。
As described above, according to the method for producing a plastic optical transmission material of the present invention, when two types of monomers having different reactivity ratios are copolymerized, formation of a domain such as a homopolymer or a block copolymer occurs. Is sufficiently prevented, and the scattering loss of the obtained plastic optical transmission material is reduced, so that the transmission loss of a plastic optical fiber or the like can be sufficiently reduced.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2H050 AA13 AA15 AB44X AB48X AC03 4J011 AA05 AA07 BB07 4J100 AB07P AL03P AL03Q AL08P AL08Q BA16P BB17P BB18Q BC43Q CA04 GB01 JA35 ──────────────────────────────────────────────────続 き Continued on front page F term (reference) 2H050 AA13 AA15 AB44X AB48X AC03 4J011 AA05 AA07 BB07 4J100 AB07P AL03P AL03Q AL08P AL08Q BA16P BB17P BB18Q BC43Q CA04 GB01 JA35

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 反応性比r1、r2が下記式: r1×r2<0.8、又はr1×r2>1.2 (1) を満たし、且つr1が1より小さくr2が1より大きい
2種類のモノマーを共重合させて得られるプラスチック
光伝送材料の製造方法において、 前記2種類のモノマーのうち反応性比の高い方のモノマ
ー100重量部に対し反応性比の低い方のモノマーを、
反応性比r1,r2が次式r2/r1≧10を満たす場
合には20重量部以上100重量部未満添加し、反応性
比r1,r2が次式r2/r1<10を満たす場合には
100重量部より大きく500重量部以下だけ添加する
第1工程と、 前記2種類のモノマーの共重合反応により得られる生成
物の重合度が、反応性比r1,r2が次式r2/r1≧
10を満たす場合には97wt%以下となるように、反
応性比r1,r2が次式r2/r1<10を満たす場合
には92wt%以下となるように前記2種類のモノマー
を共重合させる第2工程と、を含むことを特徴とするプ
ラスチック光伝送材料の製造方法。
1. Two types of reactive ratios r1 and r2 satisfy the following formula: r1 × r2 <0.8 or r1 × r2> 1.2 (1), and r1 is smaller than 1 and r2 is larger than 1. In the method for producing a plastic optical transmission material obtained by copolymerizing the monomers of the above, the monomer of the lower reactivity ratio to 100 parts by weight of the higher reactivity monomer of the two types of monomers,
When the reactivity ratios r1 and r2 satisfy the following formula r2 / r1 ≧ 10, they are added in an amount of 20 to less than 100 parts by weight. When the reactivity ratios r1 and r2 satisfy the following formula r2 / r1 <10, 100 is added. A first step of adding more than 500 parts by weight and more than 5 parts by weight, and a degree of polymerization of a product obtained by a copolymerization reaction of the two types of monomers, wherein the reactivity ratios r1 and r2 satisfy the following formula: r2 / r1 ≧
When the two types of monomers are copolymerized, the reactivity ratios r1 and r2 become 92 wt% or less when the following formula r2 / r1 <10 is satisfied. A method for producing a plastic optical transmission material, comprising: two steps.
【請求項2】 前記第2工程の後に、前記第2工程で得
られる生成物中の残存モノマー成分を除去する工程を更
に含むことを特徴とする請求項1に記載のプラスチック
光伝送材料の製造方法。
2. The production of a plastic optical transmission material according to claim 1, further comprising, after the second step, a step of removing a residual monomer component in a product obtained in the second step. Method.
JP2000106523A 2000-04-07 2000-04-07 Method for manufacturing plastic optical transmission material Pending JP2001290033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106523A JP2001290033A (en) 2000-04-07 2000-04-07 Method for manufacturing plastic optical transmission material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106523A JP2001290033A (en) 2000-04-07 2000-04-07 Method for manufacturing plastic optical transmission material

Publications (1)

Publication Number Publication Date
JP2001290033A true JP2001290033A (en) 2001-10-19

Family

ID=18619677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106523A Pending JP2001290033A (en) 2000-04-07 2000-04-07 Method for manufacturing plastic optical transmission material

Country Status (1)

Country Link
JP (1) JP2001290033A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104058A1 (en) * 2003-05-23 2004-12-02 Daikin Industries, Ltd. Heat-resistant, fluorine-containing optical material and optical transmission medium using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104058A1 (en) * 2003-05-23 2004-12-02 Daikin Industries, Ltd. Heat-resistant, fluorine-containing optical material and optical transmission medium using same

Similar Documents

Publication Publication Date Title
CN110845671B (en) Toughening agent introduced with dendritic macromolecule and preparation method and application thereof
EP2662391B1 (en) Methyl methacrylate polymer production method
US4984870A (en) Optical waveguide
JPH01314206A (en) Light waveguide
JP2684592B2 (en) Transparent thermoplastic composition based on polymethylmethacrylate with improved heat and impact resistance
JP2001290033A (en) Method for manufacturing plastic optical transmission material
US6054069A (en) Method of manufacturing a preform for a refractive index distributed type plastic optical fiber
JP3319485B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JPH0129217B2 (en)
US20030218154A1 (en) Optical members, compositions, methods and S-containing compounds for producing them
JPS61151212A (en) Methacrylate copolymer and its production
JP3319484B2 (en) Method for producing methacrylic resin having thermal decomposition resistance
JP2008513808A (en) Plastic optical fiber preform and manufacturing method thereof
JP4052309B2 (en) Fluorine-containing optical material and fluorine-containing copolymer
JP2009227787A (en) Method for producing methyl methacrylate-based copolymer, and method for producing plastic optical fiber
JPS60235817A (en) Copolymer for cladding
US20060255485A1 (en) Method for fabricating optical preform
JP3319483B2 (en) Methacrylic resin having thermal decomposition resistance and method for producing the same
KR100409074B1 (en) Method for preparing rubber-modified styrene transparent resin having superior fluidity
KR20170122558A (en) Resin composition, optical film comprising the same and polarizing plate comprising the same
JPS60168709A (en) Heat-resistant vinyl copolymer resin
JPS6317915A (en) Low-hygroscopic methacrylic resin
JPH11500835A (en) Copolymer for optical fiber
Nicolas et al. NMP of Methacrylic Esters: How to Circumvent a Long-time Obstacle
JP2001151827A (en) Method for producing acrylic syrup