JP2001288483A - Lead-free gasoline composition and its preparation method - Google Patents

Lead-free gasoline composition and its preparation method

Info

Publication number
JP2001288483A
JP2001288483A JP2000106908A JP2000106908A JP2001288483A JP 2001288483 A JP2001288483 A JP 2001288483A JP 2000106908 A JP2000106908 A JP 2000106908A JP 2000106908 A JP2000106908 A JP 2000106908A JP 2001288483 A JP2001288483 A JP 2001288483A
Authority
JP
Japan
Prior art keywords
gasoline
less
catalytic cracking
gasoline composition
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000106908A
Other languages
Japanese (ja)
Other versions
JP3942794B2 (en
Inventor
Kenichi Koizumi
健一 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JOMO TECHNICAL RES CT KK
JOMO TECHNICAL RESEARCH CENTER KK
Original Assignee
JOMO TECHNICAL RES CT KK
JOMO TECHNICAL RESEARCH CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JOMO TECHNICAL RES CT KK, JOMO TECHNICAL RESEARCH CENTER KK filed Critical JOMO TECHNICAL RES CT KK
Priority to JP2000106908A priority Critical patent/JP3942794B2/en
Publication of JP2001288483A publication Critical patent/JP2001288483A/en
Application granted granted Critical
Publication of JP3942794B2 publication Critical patent/JP3942794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a unleaded gasoline composition and its manufacturing method which is excellent in antiknock property under actual driving conditions and incorporates a due consideration to the environments such as the suppression of photochemical oxidants. SOLUTION: The unleaded gasoline composition comprises a content of benzene of <=1.0 vol.%, Reid method vapor pressure of 40.0 to 65.0 kPa, motor method octane number of 80.0 to 86.0 and distribution method octane number of 88.0 to 95.0, and preferably research octane number of 89.0 to 91.0 and a sulfur content of <=50 mass ppm. Further, the preparation method of the lead- free gasoline composition comprises compounding a heavy-duty catalytic cracking gasoline base of 40 to 80 vol.%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は環境への影響を低減
した無鉛ガソリン組成物に関し、詳しくは光化学オキシ
ダントを低減するなど環境問題に配慮しつつかつ実走行
時のアンチノック性を確保した無鉛ガソリン組成物およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unleaded gasoline composition having a reduced effect on the environment, and more particularly, to an unleaded gasoline which is environmentally friendly, such as reducing photochemical oxidants, and which ensures anti-knock property during actual driving. The present invention relates to a composition and a method for producing the composition.

【0002】[0002]

【従来の技術】近年、環境問題の高まりからガソリン自
動車技術に種々の工夫が加えられ、これに呼応してガソ
リン品質も改良されてきていることは周知のとおりであ
る。このなかでガソリン中に含まれるベンゼンについて
は、既に1999年にJISが改正され、2000年1月よりこの含
有量が1.0容量%以下に低減された。
2. Description of the Related Art In recent years, it is well known that various improvements have been made to gasoline automobile technology in response to increasing environmental problems, and gasoline quality has been improved in response thereto. Among them, the JIS for benzene contained in gasoline was already revised in 1999, and this content was reduced to less than 1.0% by volume from January 2000.

【0003】現在、最も環境基準適合率が低い光化学オ
キシダント対策の一環として、自動車からの燃料蒸発ガ
スを低減することが検討されている。この低減のために
は、自動車構造の改善とともに、ガソリンの蒸気圧を低
減することが考えられ、具体的な手段としては、ガソリ
ン中のブタン配合比率を下げる方法がある。
[0003] At present, reduction of fuel evaporative gas from automobiles is being studied as a part of countermeasures against photochemical oxidants having the lowest compliance rate with environmental standards. In order to reduce this, it is conceivable to reduce the vapor pressure of gasoline as well as to improve the structure of the automobile. As a specific means, there is a method of lowering the butane mixture ratio in gasoline.

【0004】また、硫黄分について、自動車排ガス中の
NOx濃度を低減するためのリーンNOx触媒は硫黄化合物に
よって被毒されることから、ガソリン中の硫黄分を下げ
ることが好ましい。硫黄分を低減する方法としては、硫
黄分が比較的高いガソリン基材である接触分解ガソリン
基材を脱硫するか、あるいはその配合比率を制限するこ
とが考えられる。
[0004] In addition, regarding the sulfur content,
Since lean NOx catalysts for reducing NOx concentration are poisoned by sulfur compounds, it is preferable to reduce the sulfur content in gasoline. As a method for reducing the sulfur content, it is conceivable to desulfurize a catalytic cracking gasoline base material, which is a gasoline base material having a relatively high sulfur content, or to limit the compounding ratio.

【0005】ところが、これらベンゼン、ブタンおよび
接触分解ガソリン基材は、全て、アンチノック性を向上
させる有用なガソリン基材でもある。したがって、上述
のような成分の含有量の減少により、ガソリンとして不
可欠な品質であるオクタン価の低下が憂慮される。
However, these benzene, butane and catalytic cracking gasoline base materials are all useful gasoline base materials for improving antiknock property. Therefore, a decrease in the octane number, which is an essential quality for gasoline, due to a decrease in the content of the above-described components is a concern.

【0006】自動車ガソリンのアンチノック性の指標と
して、JIS K 2280「石油製品−燃料油−オクタン価及び
セタン価試験方法並びにセタン指数算出方法」のリサー
チ法オクタン価(以下、RONという。)が採用され、JIS
K 2202「自動車ガソリン」における規格値は89.0以上
と定められている。したがって、前述の如くガソリン基
材の構成が変化しアンチノック性が悪化するとしても一
定の歯止めがあるはずである。
As an index of anti-knock property of automobile gasoline, a research octane number (hereinafter referred to as RON) of JIS K 2280 "Petroleum products-fuel oil-Octane number and cetane number test method and cetane index calculation method" is adopted. JIS
The standard value in K 2202 "Auto gasoline" is set to 89.0 or more. Therefore, even if the composition of the gasoline base material changes as described above and the anti-knock property deteriorates, there must be a certain stop.

【0007】しかし、上述のRONは、規定回転数(600rp
m)に設定した特殊な単気筒エンジンを用いて、標準燃
料と試料のノック強度を比較しアンチノック性を決定す
る実験室オクタン価であり、実際のガソリン自動車は、
負荷やエンジン回転数が刻々変化する走行条件でもノッ
キングを起こさないアンチノック性が求められる。RON
は、このようなアンチノック性の実用性能を総合的に表
わす指標として十分でなく、従来から問題視されてき
た。このため、RONの規格値を満足するだけでは、実用
的な実走行時のアンチノック性を確保することは難し
い。
[0007] However, the above-mentioned RON is a specified rotation speed (600 rp).
m) is a laboratory octane number that determines the anti-knock property by comparing the knock strength of a standard fuel and a sample using a special single-cylinder engine set in m).
An anti-knock property that does not cause knocking even under running conditions where the load and the engine speed change every moment is required. RON
Is not sufficient as an index to comprehensively express such practical performance of antiknock property, and has been regarded as a problem in the past. For this reason, it is difficult to ensure practical anti-knock performance during actual driving only by satisfying the RON standard value.

【0008】[0008]

【発明が解決しようとする課題】前述のとおり、ベンゼ
ン含有量が低く、蒸気圧が低いなどの特徴を有する環境
対応ガソリンは、実走行時のアンチノック性が十分に確
保されておらず、また、十分な実用性能を確保した環境
対応ガソリンの製造方法は未だ確立されていない。そこ
で、本発明は、これらの問題を解決するものであり、光
化学オキシダントの発生の抑制などの環境問題に配慮し
つつ、かつ実走行条件でのアンチノック性に優れた無鉛
ガソリン組成物およびその製造方法を提供するものであ
る。
As described above, environmentally friendly gasoline, which has characteristics such as low benzene content and low vapor pressure, does not have sufficient anti-knock property during actual running. However, a method for producing environmentally friendly gasoline with sufficient practical performance has not yet been established. Therefore, the present invention is to solve these problems, and while taking into account environmental issues such as suppression of the generation of photochemical oxidants, and having excellent anti-knock properties under actual running conditions, and a production method thereof. It provides a method.

【0009】[0009]

【課題を解決するための手段】本発明者は、種々の環境
対応ガソリンを試作し、実車を用いてアンチノック性を
評価したところ、ブタンなどの基材構成が変化したガソ
リンにおいては、RONが従来と殆ど変わらなくても実走
行時のアンチノック性が劣る場合があることを見出し
た。
Means for Solving the Problems The present inventor produced various environmentally friendly gasoline and evaluated the anti-knock property using an actual vehicle. It has been found that the anti-knock property at the time of actual running may be inferior even if it is almost the same as the conventional case.

【0010】さらに、本発明者は、実験室オクタン価と
してはRON以外に、JIS K 2280のモータ法オクタン価
(以下、MONという。)、ASTM D 2886-86「Test Method
for Knock Characteristics of Motor Fuels by the D
istribution Octane Number (DON ) Method」のディス
トリビューション法オクタン価(以下、DONという。)
などがあることから、試作した前記環境対応ガソリンに
関し、これらのオクタン価についても評価した。MON
は、RON同様に単気筒エンジンを用いる実験室オクタン
価であるが、規定回転数(900rpm)が高いため高速走行
時のアンチノック性の評価に適している。一方DONは、
規定回転数(600rpm)はRONと同じであるが、キャブレ
ターとインテークポートの間に水冷ディストリビューシ
ョンマニホールドを備え、ガソリン中の前留部のアンチ
ノック性を評価できるので、特に高負荷低エンジン回転
数時のアンチノック性を評価できる利点がある。
Further, the present inventor has proposed that the laboratory octane number besides RON, JIS K 2280 motor method octane number (hereinafter referred to as MON), ASTM D 2886-86 “Test Method”.
for Knock Characteristics of Motor Fuels by the D
octane number (hereinafter referred to as DON) of the istribution Octane Number (DON) Method.
Therefore, the octane number of the prototype eco-friendly gasoline was also evaluated. MON
Is a laboratory octane number using a single-cylinder engine like RON, but is suitable for evaluation of anti-knock property at high speed running due to its high specified rotation speed (900 rpm). On the other hand, DON
The specified rotation speed (600 rpm) is the same as RON, but a water-cooled distribution manifold is installed between the carburetor and the intake port, and the anti-knock property of the forehead in gasoline can be evaluated. There is an advantage that the anti-knock property at the time can be evaluated.

【0011】本発明者は、上述のようにそれぞれの実験
室オクタン価は特徴を有することに鑑み、これらを組み
合わせて特定すれば実走行時のアンチノック性に優れた
ガソリン組成物を調製することができるとの着想を持
ち、種々の環境対応ガソリンを試作し、それらの実走行
時のアンチノック性とRON、MONおよびDONの相関を検討
したところ、(1)実走行時のアンチノック性は、MONお
よびDONと強い相関が認められ、これらを組み合わせそ
れぞれ一定範囲に制御すれば優れたアンチノック性を確
保できること、(2)実走行時のアンチノック性は、RON
との相関は弱いこと、などを見出し、本発明に想到し
た。
In view of the fact that the laboratory octane numbers have characteristics as described above, the present inventor can prepare a gasoline composition having excellent anti-knock property during actual running by specifying these in combination. With the idea of being able to do so, prototypes of various environmentally friendly gasolines were made, and their anti-knock properties during actual running and the correlation between RON, MON, and DON were examined. A strong correlation with MON and DON is recognized, and it is possible to secure excellent anti-knock properties by controlling the combination of these in a certain range. (2) The anti-knock property during actual running is RON
Were found to have a weak correlation with the present invention, and came to the present invention.

【0012】すなわち、本発明の無鉛ガソリン組成物
は、ベンゼン含有量が1.0容量%以下、リード法蒸気圧
が40.0kPa以上65.0kPa以下の無鉛ガソリンであって、MO
Nが80.0以上86.0以下かつDONが88.0以上95.0以下である
ことを特徴とする。本発明において、RONが89.0以上91.
0以下の場合でも、前述のMON、DONが規定範囲内であれ
ば十分な実走行時のアンチノック性を確保できる。ま
た、硫黄分は50質量ppm以下であれば一層好ましい。
That is, the unleaded gasoline composition of the present invention is an unleaded gasoline having a benzene content of 1.0% by volume or less and a Reid process vapor pressure of 40.0 kPa or more and 65.0 kPa or less.
N is 80.0 or more and 86.0 or less, and DON is 88.0 or more and 95.0 or less. In the present invention, RON is 89.0 or more 91.
Even in the case of 0 or less, if the above-mentioned MON and DON are within the specified ranges, sufficient anti-knock property during actual traveling can be secured. Further, the sulfur content is more preferably 50 mass ppm or less.

【0013】さらに、本発明者は、重質接触分解ガソリ
ン基材を特定量配合すれば、前記本発明の無鉛ガソリン
組成物を容易に製造できることを見出した。すなわち、
本発明は、重質接触分解ガソリン基材を40容量%以上80
容量%以下配合して上記の無鉛ガソリン組成物を製造す
るものである。さらに、かかる重質接触分解ガソリン基
材は、ベンゼン含有量1.0容量%以下、リード法蒸気圧6
0.0kPa以下、硫黄分50質量ppm以下、かつ未洗実在ガム2
mg/100ml以下の性状を有することがより好ましい。
Further, the present inventor has found that the above-mentioned unleaded gasoline composition of the present invention can be easily produced by blending a heavy catalytic cracking gasoline base material in a specific amount. That is,
The present invention relates to a method for converting a heavy catalytic cracking gasoline
The above-mentioned lead-free gasoline composition is manufactured by blending the content of the gas in an amount of not more than% by volume. Further, such a heavy catalytic cracking gasoline base material has a benzene content of 1.0% by volume or less and a vapor pressure of 6% by the Reed method.
0.0 kPa or less, sulfur content 50 mass ppm or less, and unwashed real gum 2
More preferably, it has a property of mg / 100 ml or less.

【0014】[0014]

【発明の実施の形態】本発明による無鉛ガソリン組成物
は、ベンゼン含有量が1.0容量%以下、リード法蒸気圧
が40.0kPa以上65.0kPa以下であって、MONが80.0以上86.
0以下かつDONが88.0以上95.0以下である。ここで、ベン
ゼン含有量は、JIS K 2536「石油製品−成分試験方法」
により測定できる。ベンゼン含有量は1.0容量%以下、
好ましくは0.9容量%以下であり、低いほど好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The unleaded gasoline composition according to the present invention has a benzene content of 1.0% by volume or less, a vapor pressure of Reed method of 40.0 kPa or more and 65.0 kPa or less, and a MON of 80.0 or more.
0 or less and DON is 88.0 or more and 95.0 or less. Here, the benzene content is based on JIS K 2536 “Petroleum products-Component testing method”.
Can be measured. Benzene content is below 1.0% by volume,
It is preferably 0.9% by volume or less, and the lower the better, the better.

【0015】リード法蒸気圧は、JIS K 2258「原油及び
燃料油蒸気圧試験方法(リード法)」により測定でき
る。リード法蒸気圧は40.0kPa以上65.0kPa以下、好まし
くは40.0kPa以上60.0kPa以下、さらに好ましくは50.0kP
a以上60.0kPa以下である。リード法蒸気圧がこの範囲よ
り低い場合は、特に冬期において始動不良やドライバビ
リティー悪化を引き起こすので好ましくない。
[0015] The vapor pressure of the Reed method can be measured by JIS K 2258 "Test method for crude oil and fuel oil vapor pressure (Reed method)". Reed method vapor pressure is 40.0 kPa or more and 65.0 kPa or less, preferably 40.0 kPa or more and 60.0 kPa or less, more preferably 50.0 kP or less.
It is not less than a and not more than 60.0 kPa. When the vapor pressure of the Reed method is lower than this range, it is not preferable because starting failure and deterioration of drivability are caused particularly in winter.

【0016】MONは、JIS K 2280のモータ法オクタン価
試験方法により測定できる。MONは80.0以上86.0以下、
好ましくは80.5以上85.0以下、さらに好ましくは81.0以
上83.0以下である。MONがこの範囲より高い場合は特段
の不具合はないが、ガソリン製造コストが掛かりすぎま
たコストに見合った実用性能が得られないので好ましく
ない。
MON can be measured by the motor method octane number test method of JIS K 2280. MON is 80.0 or more and 86.0 or less,
It is preferably from 80.5 to 85.0, more preferably from 81.0 to 83.0. When MON is higher than this range, there is no particular problem, but it is not preferable because gasoline production cost is too high and practical performance commensurate with cost cannot be obtained.

【0017】DONは、ASTM D 2886-86のディストリビュ
ーション法オクタン価試験方法で測定できる。このなか
で水冷ディストリビューションマニホールドとしては、
米国のWaukesha社(Waukesha Engine Div., Fuel Resea
rch Dept., Waukesha, Wis.53186)製の他、ASTM D 288
6-86の仕様に合致していれば他社のものでも使用でき
る。DONは88.0以上95.0以下、好ましくは88.0以上94.0
以下、さらに好ましくは89.0以上94.0以下である。DON
がこの値より高い場合は、相対的に後留部の芳香族性が
低下し燃料噴射ノズルの固着やデポジット生成傾向が現
れるので好ましくない。
DON can be measured by the distribution method octane number test method of ASTM D 2886-86. Among them, as a water-cooled distribution manifold,
Waukesha of the United States (Waukesha Engine Div., Fuel Resea
rch Dept., Waukesha, Wis. 53186) and ASTM D 288
Other brands can be used if they meet the specifications of 6-86. DON is 88.0 or more and 95.0 or less, preferably 88.0 or more and 94.0 or less
And more preferably 89.0 or more and 94.0 or less. DON
Is higher than this value, the aromaticity of the trailing portion is relatively reduced, and sticking of the fuel injection nozzle and the tendency of deposit formation appear, which is not preferable.

【0018】RONは、JIS K 2280のリサーチ法オクタン
価試験方法により測定できる。RONは実走行時のアンチ
ノック性との相関は弱いが、89.0以上96.0以下、特に8
9.0以上94.0以下、更には89.0以上92.0以下が好まし
い。RONがこの範囲より高い場合は、ガソリン製造に係
るコストアップに見合う性能向上が得られずまた高RON
基材の偏用によってガソリンの蒸留性状がいびつになる
ので好ましくなく、一方低すぎる場合は、とりわけ登坂
加速時にノッキングしやすくなるので好ましくない。RO
Nは、MON、DONが上述の規定範囲内にあれば、89.0以上9
1.0以下でも十分な実走行時のアンチノック性を達成で
きる。
RON can be measured by the octane number test method of the research method of JIS K 2280. RON has a weak correlation with anti-knock property during actual driving, but it is 89.0 or more and 96.0 or less, especially 8
It is preferably from 9.0 to 94.0, more preferably from 89.0 to 92.0. If RON is higher than this range, performance improvement corresponding to the increase in cost related to gasoline production cannot be obtained and high RON
Unfavorable use of the base material is not preferable because the gasoline's distillation properties are distorted. On the other hand, if the gasoline is too low, it is not preferable because knocking tends to occur particularly during acceleration on a hill. RO
N is 89.0 or more if MON and DON are within the above specified range.
Even with 1.0 or less, sufficient anti-knock property during actual driving can be achieved.

【0019】また、硫黄分は50質量ppm以下であれば一
層好ましい。本発明の無鉛ガソリン組成物は、上述以外
の性状について特に限定するものではないが、内燃機関
用燃料として、密度(15℃)が0.71〜0.75g/cm3、蒸留
性状が20〜220℃、酸化安定度が400min以上、銅板腐食
が1以下であることが望ましい。
The sulfur content is more preferably 50 ppm by mass or less. The unleaded gasoline composition of the present invention is not particularly limited with respect to properties other than those described above.As a fuel for an internal combustion engine, the density (15 ° C.) is 0.71 to 0.75 g / cm 3 , and the distillation property is 20 to 220 ° C. It is desirable that the oxidation stability is 400 min or more and the corrosion of the copper plate is 1 or less.

【0020】本発明の無鉛ガソリン組成物の製造方法に
用いる重質接触分解ガソリン基材は、接触分解装置にて
原料油を接触分解することにより得られる接触分解ガソ
リン基材のうち、重質なガソリン留分である。重質接触
分解ガソリン基材の性状として、好ましい蒸留性状は、
90%留出温度が175℃以上、好ましくは175〜190℃であ
り、50%留出温度が95℃以上、好ましくは95〜120℃で
あり、10%留出温度が55℃以上、好ましくは55〜70℃で
ある。他の性状は、密度(15℃)が0.73〜0.76g/cm3
リード法蒸気圧が40〜60kPa、RONが91〜94、留出温度範
囲が30〜210℃程度、硫黄分が50質量ppm以下である他、
ベンゼン含有量が1.0容量%以下、JIS K2261「石油製品
−自動車ガソリン及び航空燃料油−実在ガム試験方法−
噴射蒸発法」による未洗実在ガムが2mg/100ml以下であ
ることが好ましい。
The heavy catalytic cracking gasoline base material used in the method for producing a lead-free gasoline composition of the present invention is one of the heavy catalytic cracking gasoline base materials obtained by catalytically cracking the feed oil in a catalytic cracking device. It is a gasoline fraction. As the properties of the heavy catalytic cracking gasoline base material, preferred distillation properties are:
90% distilling temperature is 175 ° C or higher, preferably 175 to 190 ° C, 50% distilling temperature is 95 ° C or higher, preferably 95 to 120 ° C, and 10% distilling temperature is 55 ° C or higher, preferably 55-70 ° C. Other properties are density (15 ° C) 0.73-0.76 g / cm 3 ,
Reed method vapor pressure is 40 ~ 60kPa, RON is 91 ~ 94, distillation temperature range is about 30 ~ 210 ° C, sulfur content is 50 mass ppm or less,
Benzene content of 1.0% by volume or less, JIS K2261 "Petroleum products-Automotive gasoline and aviation fuel oil-Real gum test method-
It is preferable that the unwashed real gum by the “jet evaporation method” is 2 mg / 100 ml or less.

【0021】本発明に用いる重質接触分解ガソリン基材
を製造するプロセスは、接触分解装置、原料油、運転条
件を特に限定するものでなく、公知の任意の製造工程を
採用できる。接触分解装置は、無定形シリカアルミナ、
ゼオライトなどの触媒を使用して、軽油から減圧軽油ま
での石油留分の他、重油間接脱硫装置から得られる間脱
軽油、重油直接脱硫装置から得られる直脱重油、常圧残
さ油などを接触分解して高オクタン価ガソリン基材を得
る装置である。例えば、石油学会編「新石油精製プロセ
ス」に記載のあるUOP接触分解法、フレキシクラッキン
グ法、ウルトラ・オルソフロー法、テキサコ流動接触分
解法などの流動接触分解法、RCC法、HOC法などの残油流
動接触分解法などがある。
The process for producing the heavy catalytic cracking gasoline base material used in the present invention is not particularly limited to a catalytic cracking device, a feedstock, and operating conditions, and any known production process can be adopted. The catalytic cracking device is amorphous silica alumina,
Using a catalyst such as zeolite, in addition to petroleum fractions from gas oil to reduced pressure gas oil, contact with degassed oil obtained from heavy oil indirect desulfurization unit, directly desulfurized oil obtained from heavy oil direct desulfurization unit, normal pressure residue oil, etc. This is a device to obtain a high octane gasoline base material by cracking. For example, the fluid catalytic cracking methods such as the UOP catalytic cracking method, flexicracking method, ultra-ortho-flow method, and Texaco fluid catalytic cracking method described in the Petroleum Institute's “New Petroleum Refining Process”, RCC method, HOC method, etc. There is an oil fluidized catalytic cracking method and the like.

【0022】接触分解装置から得られる接触分解ガソリ
ン基材の一般的な性状は、密度(15℃)が0.72〜0.76g/
cm3、リード法蒸気圧が40〜70kPa、RONが92〜95、蒸留
性状が20〜210℃程度である。本発明に規定する重質接
触分解ガソリン基材は、代表的には、接触分解ガソリン
基材を蒸留し軽質接触分解ガソリン基材を除去した後の
重質な留分として、また、この重質留分を接触分解ガソ
リン基材に配合して重質留分の割合を多くしたものとし
て得ることもできる。なお、接触分解ガソリン基材から
分離された軽質接触分解ガソリン基材の性状は、密度
(15℃)が0.60〜0.70g/ cm3、リード法蒸気圧が90〜11
0kPa、RONが93〜96、留出温度範囲が20〜110℃程度であ
って、プレミアムガソリンなどの製造に用いることがで
きる。
The general properties of the catalytic cracking gasoline base material obtained from the catalytic cracking device are as follows: the density (15 ° C.) is 0.72 to 0.76 g /
cm 3 , Reed method vapor pressure is 40-70 kPa, RON is 92-95, and distillation property is about 20-210 ° C. The heavy catalytic cracking gasoline base material specified in the present invention is typically used as a heavy fraction obtained by distilling the catalytic cracking gasoline base material and removing the light catalytic cracking gasoline base material. The fraction can also be obtained by mixing the fraction with a catalytic cracking gasoline base material to increase the ratio of the heavy fraction. The properties of the light catalytic cracked gasoline base material separated from the catalytic cracked gasoline base material were as follows: density (15 ° C): 0.60 to 0.70 g / cm 3 ;
It has 0 kPa, RON of 93 to 96, and a distillation temperature range of about 20 to 110 ° C., and can be used for producing premium gasoline and the like.

【0023】重質接触分解ガソリン基材の配合量は、ガ
ソリン全量基準で40容量%以上80容量%以下が好まし
く、特に40〜75容量%、さらに好ましくは45〜70容量%
である。重質接触分解ガソリン基材の配合量がこの範囲
を下回る場合は実走行時のアンチノック性の改善効果が
弱く、またこれを超える場合は酸化安定性が悪化する恐
れがあり好ましくない。
The compounding amount of the heavy catalytic cracking gasoline base material is preferably 40% by volume or more and 80% by volume or less, particularly 40 to 75% by volume, more preferably 45 to 70% by volume based on the total amount of gasoline.
It is. If the amount of the heavy catalytic cracking gasoline base material is below this range, the effect of improving antiknock properties during actual running is weak, and if it exceeds this range, the oxidation stability may deteriorate, which is not preferable.

【0024】他のガソリン基材としては、原油を常圧
蒸留した直留ナフサ、直留ナフサを脱硫処理した脱硫
ナフサ、脱硫重質ナフサを接触改質処理して得られる
改質ガソリン、軽油から減圧軽油までの石油留分や重
油間接脱硫装置から得られる間脱軽油、重油直接脱硫装
置から得られる直脱重油、常圧残さ油などを接触分解し
て得られる接触分解ガソリン基材、低級オレフィンと
イソブタンを酸触媒下で反応させて得られるアルキレー
ト、軽質ナフサを接触処理し、異性化してオクタン価
を高めたアイソメレート、原油や各種の2次精製装置
から回収されるLPG留分や軽質ナフサなどを精密蒸留し
て得られるブタン、イソペンタンなどがあり、これらを
適宜選択して適宜の割合で混合し本発明の無鉛ガソリン
組成物を製造することができる。これらの基材の配合量
は本発明の趣旨を逸脱しない限り任意であるが、ガソリ
ン全量に対して合計量で、20容量%以上60容量%以下が
好ましく、25〜60容量%がより好ましく、30〜55容量%
がさらに好ましい。また、メチルターシャリーブチルエ
ーテル、エチルターシャリーブチルエーテル、ターシャ
リーアミルメチルエーテルなどの含酸素化合物からなる
ガソリン基材も用いることができる。含酸素化合物を配
合する場合、その配合量は1〜10容量%程度とすること
が好ましい。
Other gasoline base materials include straight run naphtha obtained by distilling crude oil at normal pressure, desulfurized naphtha obtained by desulfurizing straight run naphtha, reformed gasoline obtained by subjecting desulfurized heavy naphtha to catalytic reforming, and light oil. Catalytic cracking gasoline base material, low-grade olefin obtained by catalytic cracking of petroleum fractions up to vacuum gas oil or oil obtained from indirect desulfurization equipment for heavy oil, direct desulfurization oil obtained from direct desulfurization equipment for heavy oil, and residual oil under atmospheric pressure Alkylate and light naphtha obtained by reacting benzene and isobutane in the presence of an acid catalyst, and isomerate with high octane value by isomerization, LPG fraction and light naphtha recovered from crude oil and various secondary refiners There are butane, isopentane, and the like obtained by precision distillation of these, and these can be appropriately selected and mixed at an appropriate ratio to produce the unleaded gasoline composition of the present invention. The blending amount of these base materials is arbitrary as long as it does not deviate from the gist of the present invention, but is preferably from 20% by volume to 60% by volume, more preferably from 25 to 60% by volume, based on the total amount of gasoline, 30-55% by volume
Is more preferred. Further, a gasoline base material composed of an oxygen-containing compound such as methyl tertiary butyl ether, ethyl tertiary butyl ether, and tertiary amyl methyl ether can also be used. When the oxygen-containing compound is blended, the blending amount is preferably about 1 to 10% by volume.

【0025】本発明の無鉛ガソリン組成物には、必要に
応じて公知の燃料添加剤を配合することができる。これ
らの配合量は適宜選べるが、通常は添加剤の合計量とし
て0.1重量%以下とすることが好ましい。本発明の無鉛
ガソリン組成物で使用可能な添加剤を例示すれば、アミ
ン系、フェノール系、アミノフェノール系などの酸化防
止剤、シッフ型化合物、チオアミド型化合物などの金属
不活性化剤、有機リン系化合物などの表面着火防止剤、
コハク酸イミド、ポリアルキルアミン、ポリエーテルア
ミンなどの清浄分散剤、多価アルコールやそのエーテル
などの氷結防止剤、有機酸のアルカリ金属塩やアルカリ
土類金属塩、高級アルコールの硫酸エステルなどの助燃
剤、アニオン系界面活性剤、カチオン系界面活性剤、両
性界面活性剤などの帯電防止剤、アルケニルコハク酸エ
ステルなどのさび止め剤、キニザリン、クマリンなどの
識別剤、アゾ染料などの着色剤を挙げることができる。
Known fuel additives can be added to the unleaded gasoline composition of the present invention, if necessary. The amount of these additives can be selected as appropriate, but it is usually preferable to set the total amount of additives to 0.1% by weight or less. Examples of additives that can be used in the lead-free gasoline composition of the present invention include amine-based, phenol-based, aminophenol-based antioxidants, Schiff-type compounds, metal deactivators such as thioamide-type compounds, and organic phosphorus. Surface ignition inhibitors such as
Detergents and dispersants such as succinimide, polyalkylamines and polyetheramines; deicing agents such as polyhydric alcohols and their ethers; alkali metal and alkaline earth metal salts of organic acids; and sulfuric esters of higher alcohols. Examples include flame retardants, anionic surfactants, cationic surfactants, antistatic agents such as amphoteric surfactants, rust inhibitors such as alkenyl succinates, discriminants such as quinizarin, coumarin, and coloring agents such as azo dyes. be able to.

【0026】[0026]

【実施例】以下に本発明を実施例および比較例に基い
て、より具体的に説明するが、本発明はこれらの例によ
って何ら限定されるものではない。
EXAMPLES The present invention will be described in more detail below with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0027】実施例および比較例の無鉛ガソリン組成物
の製造に用いた接触分解ガソリン、重質接触分解ガソリ
ン、改質ガソリン、直留軽質ナフサ、脱硫軽質ナフサお
よび分解ブタンの各ガソリン基材の性状を表1に示す。
重質接触分解ガソリン基材は、硫黄分0.29質量%の脱硫
減圧重質軽油を接触分解して得た接触分解ガソリン基材
からプレミアムガソリン製造用基材である軽質接触分解
ガソリン基材を精留除去したものを、接触分解ガソリン
基材に調合して製造したものである。この重質接触分解
ガソリン基材の90%留出温度は181.0℃、50%留出温度
は、111.5℃、10%留出温は61.0℃である。
Properties of gasoline base materials of catalytic cracked gasoline, heavy catalytic cracked gasoline, reformed gasoline, straight run light naphtha, desulfurized light naphtha and cracked butane used in the production of the lead-free gasoline compositions of Examples and Comparative Examples Are shown in Table 1.
The heavy catalytic cracking gasoline base material rectifies a light catalytic cracking gasoline base material that is a base material for premium gasoline production from a catalytic cracking gasoline base material obtained by catalytically cracking desulfurized heavy gas oil having a sulfur content of 0.29% by mass. It is produced by mixing the removed product with a catalytic cracking gasoline base material. The 90% distillation temperature of this heavy catalytic cracking gasoline base material is 181.0 ° C, the 50% distillation temperature is 111.5 ° C, and the 10% distillation temperature is 61.0 ° C.

【0028】[0028]

【表1】 [Table 1]

【0029】表1のガソリン基材を用いて、表2および
表3に示す実施例1〜3および比較例1〜4の無鉛ガソ
リン組成物を調製した。実施例1の無鉛ガソリン組成物
は、容量割合で、接触分解ガソリン3部、重質接触分解
ガソリン57部、改質ガソリン22部、直留軽質ナフサ5
部、脱硫軽質ナフサ12部および分解ブタン1部を、実施
例2は、重質接触分解ガソリン60部、改質ガソリン27
部、および脱硫軽質ナフサ13部を、また実施例3は、重
質接触分解ガソリン60部、改質ガソリン20部、直留軽質
ナフサ5部、および脱硫軽質ナフサ15部を配合した。
Using the gasoline base material of Table 1, lead-free gasoline compositions of Examples 1 to 3 and Comparative Examples 1 to 4 shown in Tables 2 and 3 were prepared. The unleaded gasoline composition of Example 1 was composed of 3 parts of catalytic cracking gasoline, 57 parts of heavy catalytic cracking gasoline, 22 parts of reformed gasoline, and 5 parts of straight run light naphtha 5 by volume.
In Example 2, 60 parts of heavy catalytic cracking gasoline and 27 parts of reformed gasoline were used.
In Example 3, 60 parts of heavy catalytic cracking gasoline, 20 parts of reformed gasoline, 5 parts of straight-run light naphtha, and 15 parts of desulfurized light naphtha were blended.

【0030】表3に示す比較例1の無鉛ガソリン組成物
は、接触分解ガソリン35部、重質接触分解ガソリン29
部、改質ガソリン20部、および脱硫軽質ナフサ16部を、
比較例2は、接触分解ガソリン35部、重質接触分解ガソ
リン38部、改質ガソリン8部、直留軽質ナフサ18部、お
よび脱硫軽質ナフサ1部を、比較例3は、接触分解ガソ
リン基材44部、重質接触分解ガソリン基材26部、改質ガ
ソリン15部、直留軽質ナフサ9部、および脱硫軽質ナフ
サ6部を、また比較例4は、接触分解ガソリン34部、重
質接触分解ガソリン35部、改質ガソリン12部、および脱
硫軽質ナフサ19部を配合した。なお、実施例および比較
例の無鉛ガソリン組成物には、着色剤(シラド化学製CL
-53)2mg/l、酸化防止剤(住友化学工業製スミライザー
4ML)20mg/lを添加し、さらに実施例1には、清浄分散
剤(ビーエーエスエフ製Keropur AP-95)100mg/lを添加
した。
The unleaded gasoline composition of Comparative Example 1 shown in Table 3 was composed of 35 parts of catalytic cracked gasoline and 29 parts of heavy catalytic cracked gasoline.
Parts, 20 parts of reformed gasoline, and 16 parts of desulfurized light naphtha,
Comparative Example 2 included 35 parts of catalytic cracking gasoline, 38 parts of heavy catalytic cracking gasoline, 8 parts of reformed gasoline, 18 parts of straight-run light naphtha, and 1 part of desulfurized light naphtha. Comparative Example 3 included a catalytic cracking gasoline base material. 44 parts, heavy catalytic cracking gasoline base material 26 parts, reformed gasoline 15 parts, straight-run light naphtha 9 parts, desulfurized light naphtha 6 parts, and Comparative Example 4 shows 34 parts of catalytic cracking gasoline, heavy catalytic cracking 35 parts of gasoline, 12 parts of reformed gasoline, and 19 parts of desulfurized light naphtha were blended. The lead-free gasoline compositions of Examples and Comparative Examples include a coloring agent (CL, manufactured by Shirad Chemical Co., Ltd.).
-53) 2mg / l, antioxidant (Sumitomo Chemical Industries Sumilizer
4ML) 20 mg / l, and in Example 1, 100 mg / l of a detergent / dispersant (Keropur AP-95 manufactured by BSF) was added.

【0031】上記のようにして調製した実施例1〜3お
よび比較例1〜4の無鉛ガソリン組成物の密度(15
℃)、蒸留性状、ベンゼン含有量、リード法蒸気圧、硫
黄分、未洗実在ガム、RON、MON、DONおよび走行オクタ
ン価(以下、RdONという。)を次に示す方法で測定し評
価した。RdONは、実走行時のアンチノック性を評価する
指標である。
The density (15%) of the unleaded gasoline compositions of Examples 1 to 3 and Comparative Examples 1 to 4 prepared as described above
° C), distillation properties, benzene content, Reed method vapor pressure, sulfur content, unwashed real gum, RON, MON, DON and running octane number (hereinafter referred to as RdON) were measured and evaluated by the following methods. RdON is an index for evaluating anti-knock property during actual running.

【0032】密度(15℃)はJIS K 2249「原油及び石油
製品−密度試験方法及び密度・質量・容量換算表」の振
動式密度試験方法により、蒸留性状はJIS K 2254「石油
製品−蒸留試験方法」の常圧法蒸留試験方法(減失加
算)により、ベンゼン含有量はJIS K 2536のタンデム式
ガスクロによる成分試験方法により、リード法蒸気圧は
JIS K 2258により、硫黄分はJIS K 2541「原油及び石油
製品−硫黄分試験方法」の微量電量滴定式酸化法によ
り、未洗実在ガムはJIS K 2261により、RONはJIS K2280
のリサーチ法オクタン価試験方法により、MONはJIS K 2
280のモータ法オクタン価試験方法により、またDONはAS
TM D 2886-86により求めた。
The density (15 ° C.) is determined by the vibration type density test method of JIS K 2249 “Crude oil and petroleum products-Density test method and density / mass / volume conversion table”. The benzene content is determined by the JIS K 2536 tandem gas chromatography component test method, and the Reed method vapor pressure is determined by the normal pressure distillation test method (addition loss) in
According to JIS K 2258, sulfur content is determined by microcoulometric titration oxidation method of JIS K 2541 `` Crude oil and petroleum products-Sulfur content test method '', unwashed real gum is JIS K 2261, RON is JIS K 2280
According to the research octane number test method of MON, JIS K 2
280 motor method octane test method, DON is AS
Determined by TM D 2886-86.

【0033】RdONは、CRC F28-70の修正ユニオンタウン
法(modified uniontown method)により求めた。修正
ユニオンタウン法は、実際に車両を用い、アイドル時の
点火時期を変えることにより、加速中の点火時期を進め
て走行中にノッキングを起こさせ、実走行時のオクタン
価を求める方法である。本実施例においては、シングル
ポイントインジェクション仕様のエンジンを搭載し、ト
ランスミッションタイプはマニュアルである排気量1,60
0ccの国産小型乗用車を供試車輌として用い、シャーシ
ダイナモメータ上で走行負荷をアスファルト平坦路走行
負荷相当に設定し、吸入空気温度・湿度を一定に制御す
ることにより測定した。また、加速はフルスロットルに
て、またエンジン回転数範囲は1000〜3000rpmで評価し
た。本実施例におけるRdONの判定基準は 88.0 とし、こ
れ以上を良好とした。
RdON was determined by the modified uniontown method of CRC F28-70. The modified Uniontown method is a method of actually using a vehicle and changing the ignition timing at the time of idling, thereby advancing the ignition timing during acceleration to cause knocking during traveling, and obtaining an octane number during actual traveling. In this embodiment, the engine is equipped with a single point injection specification, and the transmission type is a manual displacement of 1,60.
Using a 0cc domestic small passenger car as a test vehicle, the traveling load was set on a chassis dynamometer equivalent to the traveling load on an asphalt flat road, and the measurement was performed by controlling the intake air temperature and humidity to be constant. The acceleration was evaluated at full throttle and the engine speed range was from 1000 to 3000 rpm. The criterion for determining RdON in this example was 88.0, and a value higher than this was regarded as good.

【0034】実施例1〜3および比較例1〜4の測定お
よび評価結果を表2および表3にそれぞれ示す。
Tables 2 and 3 show the measurement and evaluation results of Examples 1 to 3 and Comparative Examples 1 to 4, respectively.

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【表3】 [Table 3]

【0037】表2の実施例1〜3から、ベンゼン含有量
が1.0容量%以下、リード法蒸気圧が40.0kPa以上65.0kP
a以下であって、MONが80.0以上86.0以下かつDONが88.0
以上95.0以下である無鉛ガソリン組成物はRdONが優れて
いることが明らかである。また、RONが89.0以上91.0以
下であっても上記の無鉛ガソリン組成物はアンチノック
性が良好であることが分かる。比較例の無鉛ガソリン組
成物は、基材構成の相違により、MONまたはDON の値が
本発明の範囲を外れることから、RdONが低いため、実走
行時に不具合が生じる恐れがある。
From Examples 1 to 3 in Table 2, the benzene content is 1.0% by volume or less, and the vapor pressure of Reed method is 40.0 kPa to 65.0 kP.
a or less, MON is 80.0 or more and 86.0 or less, and DON is 88.0
It is clear that the unleaded gasoline composition having a value of 95.0 or less has an excellent RdON. In addition, it can be seen that even when the RON is 89.0 or more and 91.0 or less, the above-mentioned unleaded gasoline composition has good anti-knock property. The unleaded gasoline composition of the comparative example has a low RdON because the value of MON or DON is out of the range of the present invention due to a difference in the base material composition, so that a problem may occur during actual running.

【0038】[0038]

【発明の効果】本発明による無鉛ガソリン組成物は、ベ
ンゼン含有量が1.0容量%以下、リード法蒸気圧が40.0
〜65.0kPa、モータ法オクタン価が80.0〜86.0かつディ
ストリビューション法オクタン価が88.0〜95.0であり、
光化学オキシダントなどの環境問題に配慮した燃料であ
り、同時に、負荷・エンジン回転数が刻々変化する実際
のガソリン自動車に用いた場合に総合的に良好なアンチ
ノック特性を発揮するものであり、ガソリンエンジン用
燃料として有用である。また、本発明による前記無鉛ガ
ソリン組成物の製造方法は、重質接触分解ガソリン基材
を40〜80容量%配合するものであり、これによれば、環
境問題に配慮しつつかつ良好な実走行時のアンチノック
性を示す無鉛ガソリン組成物を容易に製造することがで
きる。
The unleaded gasoline composition according to the present invention has a benzene content of 1.0% by volume or less and a vapor pressure of the Reed method of 40.0%.
~ 65.0kPa, motor method octane number is 80.0 ~ 86.0 and distribution method octane number is 88.0 ~ 95.0,
It is a fuel that takes environmental issues into consideration, such as photochemical oxidants, and at the same time, exhibits good anti-knock characteristics when used in actual gasoline vehicles whose load and engine speed change every moment. It is useful as a fuel for use. Further, the method for producing a lead-free gasoline composition according to the present invention comprises mixing 40 to 80% by volume of a heavy catalytic cracking gasoline base material. A lead-free gasoline composition exhibiting antiknock properties at the time can be easily produced.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ベンゼン含有量が1.0容量%以下、リー
ド法蒸気圧が40.0kPa以上65.0kPa以下、モータ法オクタ
ン価が80.0以上86.0以下かつディストリビューション法
オクタン価が88.0以上95.0以下であることを特徴とする
無鉛ガソリン組成物。
1. A benzene content of 1.0% by volume or less, a vapor pressure of a Reed method of 40.0 kPa or more and 65.0 kPa or less, an octane number of a motor method of 80.0 or more and 86.0 or less, and an octane value of a distribution method of 88.0 or more and 95.0 or less. Unleaded gasoline composition.
【請求項2】 リサーチ法オクタン価が89.0以上91.0以
下である請求項1記載の無鉛ガソリン組成物。
2. The unleaded gasoline composition according to claim 1, which has a research octane number of 89.0 or more and 91.0 or less.
【請求項3】 硫黄分が50質量ppm以下である請求項1
または2記載の無鉛ガソリン組成物。
3. The method according to claim 1, wherein the sulfur content is 50 ppm by mass or less.
Or the unleaded gasoline composition according to 2.
【請求項4】 重質接触分解ガソリン基材を40容量%以
上80容量%以下配合して請求項1、2または3記載の無
鉛ガソリン組成物を製造することを特徴とする無鉛ガソ
リン組成物の製造方法。
4. The unleaded gasoline composition according to claim 1, wherein the heavy catalytic cracking gasoline base material is blended in an amount of 40% by volume or more and 80% by volume or less. Production method.
【請求項5】 重質接触分解ガソリン基材が、ベンゼン
含有量1.0容量%以下、リード法蒸気圧60.0kPa以下、硫
黄分50質量ppm以下、かつ未洗実在ガム2mg/100ml以下の
性状を有するものである請求項4記載の無鉛ガソリン組
成物の製造方法。
5. The heavy catalytic cracking gasoline base material has a benzene content of 1.0% by volume or less, a vapor pressure of Reid method of 60.0 kPa or less, a sulfur content of 50 mass ppm or less, and an unwashed real gum of 2 mg / 100 ml or less. The method for producing a lead-free gasoline composition according to claim 4.
JP2000106908A 2000-04-07 2000-04-07 Unleaded gasoline composition and method for producing the same Expired - Lifetime JP3942794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000106908A JP3942794B2 (en) 2000-04-07 2000-04-07 Unleaded gasoline composition and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000106908A JP3942794B2 (en) 2000-04-07 2000-04-07 Unleaded gasoline composition and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001288483A true JP2001288483A (en) 2001-10-16
JP3942794B2 JP3942794B2 (en) 2007-07-11

Family

ID=18620002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000106908A Expired - Lifetime JP3942794B2 (en) 2000-04-07 2000-04-07 Unleaded gasoline composition and method for producing the same

Country Status (1)

Country Link
JP (1) JP3942794B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899098A (en) * 2012-09-27 2013-01-30 启东市华亚工业配套有限公司 Composite unleaded gasoline
CN103320187A (en) * 2013-07-05 2013-09-25 西北民族大学 Corrosion preventing and inhibiting agent for bio-based methanol gasoline and preparation method of corrosion preventing and inhibiting agent
CN103540370A (en) * 2013-10-17 2014-01-29 中国石油化工股份有限公司 Gasoline oxidation stabilizing agent and preparation method thereof
CN104789278A (en) * 2015-04-01 2015-07-22 胡万勋 M30 methanol gasoline and preparation method thereof
CN105255526A (en) * 2015-10-30 2016-01-20 汉阴县富源清洁能源科技开发有限责任公司 Synthesized environment-friendly automobile gasoline and preparation method thereof
CN106398783A (en) * 2016-10-20 2017-02-15 华东理工大学 100# lead-free aviation gasoline and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102899098A (en) * 2012-09-27 2013-01-30 启东市华亚工业配套有限公司 Composite unleaded gasoline
CN103320187A (en) * 2013-07-05 2013-09-25 西北民族大学 Corrosion preventing and inhibiting agent for bio-based methanol gasoline and preparation method of corrosion preventing and inhibiting agent
CN103320187B (en) * 2013-07-05 2015-07-22 西北民族大学 Corrosion preventing and inhibiting agent for bio-based methanol gasoline and preparation method of corrosion preventing and inhibiting agent
CN103540370A (en) * 2013-10-17 2014-01-29 中国石油化工股份有限公司 Gasoline oxidation stabilizing agent and preparation method thereof
CN103540370B (en) * 2013-10-17 2016-02-03 中国石油化工股份有限公司 A kind of gasoline oxidation tranquilizer and preparation method thereof
CN104789278A (en) * 2015-04-01 2015-07-22 胡万勋 M30 methanol gasoline and preparation method thereof
CN105255526A (en) * 2015-10-30 2016-01-20 汉阴县富源清洁能源科技开发有限责任公司 Synthesized environment-friendly automobile gasoline and preparation method thereof
CN106398783A (en) * 2016-10-20 2017-02-15 华东理工大学 100# lead-free aviation gasoline and preparation method thereof
CN106398783B (en) * 2016-10-20 2018-04-20 华东理工大学 A kind of No. 100 unleaded aviation gasoline and preparation method thereof

Also Published As

Publication number Publication date
JP3942794B2 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
EP0596611B1 (en) Lead-free, high-octane gasoline
JP2005054102A (en) Gasoline
JP5019802B2 (en) Fuel for premixed compression self-ignition engines
JP3945768B2 (en) Unleaded gasoline composition and method for producing the same
JP4585176B2 (en) gasoline
JP3942794B2 (en) Unleaded gasoline composition and method for producing the same
JP3841905B2 (en) Unleaded gasoline composition
JP4026980B2 (en) gasoline
JP4237287B2 (en) Unleaded gasoline composition
JP3797503B2 (en) Fuel oil for gasoline engines
US8895789B2 (en) Fuel composition for use in gasoline engines
JP4629991B2 (en) gasoline
JP5328585B2 (en) Gasoline composition
JP4881638B2 (en) Unleaded high octane gasoline and method for producing the same
JPS63317591A (en) High-powered fuel oil
JP4007528B2 (en) gasoline
JP2005054103A (en) Gasoline
JP4881639B2 (en) Unleaded high octane gasoline and method for producing the same
JP4804972B2 (en) Unleaded gasoline and method for producing the same
JPS63289094A (en) Lead-free, high-octane gasoline
JP4804971B2 (en) Unleaded gasoline and method for producing the same
JP4804970B2 (en) Unleaded high octane gasoline and method for producing the same
US8876920B2 (en) Fuel composition for use in gasoline engines
JP4913430B2 (en) Unleaded high octane gasoline
JP4804973B2 (en) Unleaded gasoline and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3942794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term