JP2001283871A - Disposal method and system of waste cell - Google Patents

Disposal method and system of waste cell

Info

Publication number
JP2001283871A
JP2001283871A JP2000090478A JP2000090478A JP2001283871A JP 2001283871 A JP2001283871 A JP 2001283871A JP 2000090478 A JP2000090478 A JP 2000090478A JP 2000090478 A JP2000090478 A JP 2000090478A JP 2001283871 A JP2001283871 A JP 2001283871A
Authority
JP
Japan
Prior art keywords
container
gas
waste battery
powder
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000090478A
Other languages
Japanese (ja)
Inventor
Natsuo Ishiwatari
夏生 石渡
Yoshiaki Hara
義明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2000090478A priority Critical patent/JP2001283871A/en
Publication of JP2001283871A publication Critical patent/JP2001283871A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a disposal method and its system which makes it possible to separate various metals contained in the waste cell roughly into a concentrated high volatile metal which is zinc, lead, cadmium, mercury or the like, a concentrated low volatile metal which is iron, manganese, copper, or the like, and a material containing alkali and halogen, which is potassium, sodium, chlorine, or the like. SOLUTION: A waste cell is put in a container set inside of a furnace and is heated, and vapor and powder which is generated by decomposition of the waste cell, is discharged with gas separately introduced to the container from the high-temperature container, and after cooing the discharged gas, the above powder and coaggulated powder are separately recovered from the discharged gas, and the waste cell remaining in the container is discharged as a solid material in this disposal method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、廃電池の処理方法
及び処理装置に係わり、詳しくは、人の健康に影響を与
える可能性のある物質を含有する廃電池を、環境に影響
を与えることなく、その後の処理が容易な形態にして回
収する技術である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for treating a waste battery, and more particularly, to a method for treating a waste battery containing a substance which may affect human health. This is a technique for recovering in a form that facilitates subsequent processing.

【0002】[0002]

【従来の技術】現代社会において、電池は様々な形で利
用されている。一般的な電池としては、マンガン電池、
アルカリ電池、水銀電池等の所謂「1次電池」やNi−
Cd電池、鉛蓄電池等の「2次電池」がある。これらの
電池に共通していることは、亜鉛、鉛、カドミュウム、
水銀等の比較的蒸気圧が高い金属と、鉄、銅、ニッケ
ル、マンガン等の蒸気圧の低い金属とが混在しているこ
とである。また、前者の亜鉛、鉛、カドミュウム、水銀
等の金属は、重金属と呼ばれ、人の健康に影響を与える
可能性がある。また、一般に、電池には、ナトリウム、
カリウム、塩素のようなアルカリ金属やハロゲンが多く
含まれているが、これらの物質は、個々に濃化すること
が可能であれば、2次資源として利用できると考えられ
ている。
2. Description of the Related Art In modern society, batteries are used in various forms. Common batteries include manganese batteries,
So-called "primary batteries" such as alkaline batteries and mercury batteries, and Ni-
There are "secondary batteries" such as Cd batteries and lead storage batteries. Common to these batteries is zinc, lead, cadmium,
That is, a metal having a relatively high vapor pressure such as mercury and a metal having a low vapor pressure such as iron, copper, nickel and manganese are mixed. The former metals, such as zinc, lead, cadmium, and mercury, are called heavy metals and may affect human health. In general, batteries include sodium,
Although a large amount of alkali metals such as potassium and chlorine and halogens are contained, it is considered that these substances can be used as secondary resources if they can be individually concentrated.

【0003】このような亜鉛、鉛、カドミュウム、水銀
等を高濃度に含む物質は、従来より種々の方法を用いて
再生、再資源化されてきた。例えば、現在一般に行われ
ているISP法と称される乾式亜鉛精錬(多種の非鉄金
属を含む鉱石、スクラップ、ダスト等を一度に溶融処理
し、それらが含有する非鉄金属を別々に同時に回収する
技術)においては、亜鉛濃度が20〜70質量%のダス
トから、亜鉛濃度99質量%以上の亜鉛を回収してい
る。また、特開平7−173548号公報は、高還元性
雰囲気にした炉で、亜鉛濃度が数質量%から30質量%
のダストを処理して、亜鉛濃度が50〜70質量%程度
の粗酸化亜鉛を回収する技術を提案している。従って、
これらの技術を用いると、廃電池をより利用価値の高い
再生原料にできる可能性がある。また、マンガンについ
ても、より濃化することで再生回収の容易な原料物質と
することができると考えられる。
[0003] Substances containing such high concentrations of zinc, lead, cadmium, mercury and the like have been conventionally regenerated and recycled using various methods. For example, dry zinc refining, which is now commonly performed, is a technique of simultaneously melting and processing ores, scraps, dusts, etc. containing various types of non-ferrous metals, and separately and simultaneously collecting the non-ferrous metals contained therein. In (2), zinc having a zinc concentration of 99% by mass or more is recovered from dust having a zinc concentration of 20 to 70% by mass. JP-A-7-173548 discloses a furnace in a highly reducing atmosphere in which the zinc concentration is from several mass% to 30 mass%.
And a technique for recovering crude zinc oxide having a zinc concentration of about 50 to 70% by mass. Therefore,
If these technologies are used, there is a possibility that a waste battery can be used as a recycled material having higher utility value. It is also considered that manganese can be used as a raw material that can be easily recovered and recovered by further concentrating.

【0004】しかしながら、上記の乾式亜鉛精錬法は、
原料中に鉄、マンガン等の揮発性が低い金属やアルカリ
金属やハロゲン等の不純物が混入することを嫌う。これ
は、還元力を制御して亜鉛を還元しながら鉄分等は還元
しない条件として操業するため、“鉄滓”とよばれる未
還元スラグが多量に発生し、その処理に苦慮するからで
ある。
However, the dry zinc refining method described above
I hate mixing of low volatility metals such as iron and manganese and impurities such as alkali metals and halogens into the raw materials. This is because, since the operation is performed under the condition that the iron and the like are not reduced while reducing the zinc by controlling the reducing power, a large amount of unreduced slag called “iron slag” is generated, and it is difficult to treat the slag.

【0005】また、特開平7−173548号公報記載
の技術においては、揮発性の低い金属は炉下部から排出
し、また揮発性の高い金属は炉頂からダスト等として排
出することができ、不純物を含む原料の製錬に対応した
ものではあるが、この場合でも、例えば揮発性の高い金
属である亜鉛へのアルカリの混入を抑えるためには、原
料中のアルカリ金属の量を抑えておくことは有効であ
る。
In the technique described in Japanese Patent Application Laid-Open No. 7-173548, low-volatile metals can be discharged from the lower part of the furnace, and highly volatile metals can be discharged as dust from the furnace top. Although it is compatible with smelting of raw materials containing, even in this case, for example, in order to suppress the incorporation of alkali into zinc, which is a highly volatile metal, it is necessary to reduce the amount of alkali metal in the raw material Is valid.

【0006】本発明は、かかる事情に鑑み、廃電池に含
まれる各種金属を、その後の処理が容易になるよう、亜
鉛、鉛、カドミウム、水銀等の濃化した高揮発性金属
と、鉄、マンガン、銅等の濃化した含む低揮発性金属
と、カリウム、ナトリウム、塩素等のアルカリ及びハロ
ゲンを含む物質とに粗分離可能な廃電池の処理方法及び
処理装置を提案することを目的としている。
The present invention has been made in view of the above circumstances, and has been developed to concentrate various metals contained in a waste battery with a highly volatile metal such as zinc, lead, cadmium, and mercury, and iron, so as to facilitate subsequent processing. It is an object of the present invention to propose a processing method and a processing apparatus for a waste battery that can be roughly separated into a low-volatility metal containing concentrated manganese and copper and a substance containing alkali and halogen such as potassium, sodium and chlorine. .

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意研究を重ね、その成果を本発明に具現化
した。
Means for Solving the Problems The inventor has conducted intensive studies in order to achieve the above object, and has embodied the results in the present invention.

【0008】すなわち、本発明は、炉内に配置した容器
に廃電池を投入して加熱し、該廃電池の分解で生じた蒸
気及び粉末を該容器内へ別途導入するガスに随伴させて
該高温容器から排出し、その排出したガスを冷却した後
に前記粉末及び凝集した粉末を該排ガスより分離回収す
ると共に、前記容器内に残留する廃電池を固形物として
排出することを特徴とする廃電池の処理方法である。そ
の際、前記固形物を篩分けし、篩上を塊状物、篩下を粗
粒物として回収するのが好ましい。このとき容器内の雰
囲気温度は、100℃から900℃にすると好適であ
る。100℃以上とすることで、廃電池に含まれる水分
が急激に蒸発するため、廃電池の爆裂を容易とし、粗粒
物、塊状物の分離が容易となる。ただし、900℃を超
えるような温度とすると、固形物中に溶融物が生じる場
合があり、粗粒物と塊状物の篩分けが困難となることが
あるので、900℃以下が好ましい。また、容器内の雰
囲気温度を500〜900℃とすると、廃電池に含まれ
る亜鉛、アルカリ、カドミウム等の揮発性の高い物質が
揮発分離して前記した別途導入するガスによって容器気
外へ排出され、前記した粉末及ぴ凝集した粉末として回
収されるので、塊状物、粗粒物、粉末としてそれぞれ利
用することができ、より好適である。さらに、前記容器
内へ別途導入するガスが(CO+H2)/(CO2+H2
O)>0.1の還元雰囲気となるように調整すると、前
記した電池の分解で発生した亜鉛が容易に還元され蒸発
し易くなるため、粉末中の亜鉛の濃化が生じ、より好適
に各種物質の分離が可能となる。
That is, according to the present invention, a waste battery is charged into a container placed in a furnace and heated, and steam and powder generated by decomposition of the waste battery are caused to accompany gas separately introduced into the container. A waste battery, wherein the waste gas is discharged from a high-temperature container, and after cooling the discharged gas, the powder and the agglomerated powder are separated and recovered from the exhaust gas, and the waste battery remaining in the container is discharged as a solid substance. Processing method. At that time, it is preferable that the solid is sieved and the lump is collected as a lump above the sieve and the lump is collected below the sieve. At this time, the atmosphere temperature in the container is preferably set to 100 ° C. to 900 ° C. By setting the temperature to 100 ° C. or higher, the water contained in the waste battery evaporates rapidly, so that the explosion of the waste battery is facilitated, and the separation of coarse particles and aggregates is facilitated. However, if the temperature is higher than 900 ° C., a melt may be generated in the solid substance, and it may be difficult to sieve coarse particles and agglomerates. Further, when the atmosphere temperature in the container is set to 500 to 900 ° C., highly volatile substances such as zinc, alkali, and cadmium contained in the waste battery are volatilized and separated and discharged to the outside of the container by the separately introduced gas. Since it is recovered as the above-mentioned powder and agglomerated powder, it can be used as a lump, a coarse particle, and a powder, respectively, which is more preferable. Further, the gas separately introduced into the container is (CO + H 2 ) / (CO 2 + H 2
O) If adjusted so as to have a reducing atmosphere of> 0.1, zinc generated in the above-described decomposition of the battery is easily reduced and easily evaporated, so that zinc in the powder is concentrated, and more preferably Separation of substances becomes possible.

【0009】加えて、本発明は、投入された廃電池を保
持する容器と、該容器内の雰囲気を加熱する加熱手段
と、該容器内ヘガスを導入するガス供給手段と、前記容
器から排出されるガスを冷却するガス冷却装置とを備え
たことを特徴とする廃電池の処理装置である。
In addition, the present invention provides a container for holding a charged waste battery, heating means for heating the atmosphere in the container, gas supply means for introducing gas into the container, and gas discharged from the container. And a gas cooling device for cooling gas.

【0010】本発明では、気流ガスを流通させた容器中
に廃電池を滞留させ、加熱で生じた蒸気から凝縮した粉
末を回収すると共に、容器内の残留物をあらかじめ定め
た粒度で篩分し、篩上を塊状物(以下、塊という)及び
篩下を粗粒物(以下、粗粒という)として回収した後、
粉末、塊状物、粗粒物、それぞれを、その成分に応じ
て、金属製錬原料として再利用できる。しかも、密閉容
器中で加熱及ぴ雰囲気ガス調整により容易に分解処理が
可能であるため、カドミウム、水銀等の人の健康に影響
を与える可能性のある物質も環境に曝すこと無く安全に
処理ができるようになる。
According to the present invention, a waste battery is retained in a container in which an airflow gas is circulated, and powder condensed from steam generated by heating is collected, and the residue in the container is sieved to a predetermined particle size. After collecting the lump on the sieve as a lump (hereinafter, referred to as lump) and the under sieve as a coarse particle (hereinafter, lump),
Powders, lumps, and coarse particles can be reused as metal smelting raw materials depending on their components. Moreover, since decomposition can be easily performed by heating and adjusting the atmosphere gas in a closed container, cadmium, mercury, and other substances that may affect human health can be safely processed without exposure to the environment. become able to.

【0011】また、その際に、加熱雰囲気の温度を10
0℃以上とすることで、廃電池自身に含まれる水分の急
激な蒸発を促して廃電池の塊状物、粗粒物の分離を容易
とすることができ、さらに500℃以上とすることで、
廃電池に含まれる揮発性の高い物質を流通ガス中へ蒸発
分離してそれを凝集させて粉末を得ることで、塊状物、
粗粒物に加えて粉末としての分離を容易とし、各状態へ
分離された種々物質の再利用を容易にする。この場合、
雰囲気温度が900℃を超えると、塊状物、粗粒物中に
溶融する物質ができる場合があり、塊状物、粗粒物の分
離を悪化させる場合があるため、雰囲気の上限温度は9
00℃とする。加えて、容器内の雰囲気ガスとして(C
O+H2)/(CO2+H2O)>0.1のガスを導入し
て、全体に還元雰囲気とすることで、塊状物、粗粒物か
らの亜鉛等の還元を促進することで、揮発分離を助長す
ることもできる。
At this time, the temperature of the heating atmosphere is set at 10
By setting the temperature to 0 ° C. or higher, rapid evaporation of water contained in the waste battery itself can be promoted to facilitate the separation of aggregates and coarse particles of the waste battery. Further, by setting the temperature to 500 ° C. or higher,
By evaporating and separating the highly volatile substance contained in the waste battery into the flowing gas and aggregating it to obtain a powder,
It facilitates separation as a powder in addition to coarse particles, and facilitates reuse of various substances separated into each state. in this case,
When the ambient temperature exceeds 900 ° C., a substance that melts in the lump and the coarse substance may be formed, and the separation of the lump and the coarse substance may be deteriorated.
Set to 00 ° C. In addition, (C
By introducing a gas of O + H 2 ) / (CO 2 + H 2 O)> 0.1 to form a reducing atmosphere as a whole, it promotes the reduction of zinc and the like from lumps and coarse particles. It can also promote volatile separation.

【0012】[0012]

【発明の実施の形態】以下、発明をなすに至った経緯も
交え、本発明の実施の形態を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described with reference to the circumstances leading to the invention.

【0013】発明者は、廃電池の適切な処理方法を見出
すに当たり、乾電池の構造について検討した。図2
(a)及び(b)に,それぞれ一般的なアルカリ電池及
びマンガン電池の構造を示す(これらの図は、財団法人
電池工業会の機関誌より引用)。図2(a)より、マン
ガン電池は、中心に炭素棒12、その周囲に正極として
酸化マンガン及び水分を含む合剤13が取り巻き、その
外側に亜鉛缶14が取り巻いている。ここで、上記合剤
13とは、各種成分を水分等のバインダ(接合物質)で
練り固めたものである。また、アルカリ電池は、図2
(b)より、中心に陰極となる炭素棒12が存在し、そ
の周囲を負極としての亜鉛を含む合剤13が取り囲み、
隔壁(セパレータという)15で隔て、その外周に正極
としてマンガンを含む別の合剤13が存在している。従
って、乾電池では、亜鉛、マンガン等の有価元素は、そ
れぞれ分離されて存在しているので、この特性を利用し
て、以下で説明する簡便な分離方法を検討した。
In order to find an appropriate method for treating a waste battery, the inventors studied the structure of a dry battery. FIG.
(A) and (b) show the structures of general alkaline batteries and manganese batteries, respectively (these figures are quoted from the journal of the Battery Association of Japan). As shown in FIG. 2A, the manganese battery has a carbon rod 12 in the center, a mixture 13 containing manganese oxide and water as a positive electrode around the carbon rod 12, and a zinc can 14 surrounding the outside thereof. Here, the mixture 13 is obtained by kneading various components with a binder (joining substance) such as moisture. The alkaline battery is shown in FIG.
From (b), a carbon rod 12 serving as a cathode exists at the center, and a mixture 13 containing zinc as a negative electrode surrounds the periphery thereof,
Another mixture 13 containing manganese exists as a positive electrode on the outer periphery of the mixture, which is separated by a partition (referred to as a separator) 15. Therefore, in a dry battery, valuable elements such as zinc and manganese are present separately from each other, and a simple separation method described below was studied by utilizing this characteristic.

【0014】まず、発明者は、実験に用いる装置を考え
た。それは、図1に示すように、廃電池を保持する容器
4と、該容器4を囲み、内部の廃電池5を加熱する加熱
炉10と、該容器4内ヘガスを導入するガス供給手段
(図示せず)と、前記容器4から排出されるガスを冷却
するガス冷却装置9とを備えたものである。具体的に
は、容器4は、耐火材からなる筒体で、内部にガスを流
通できるようにガス導入口1とガス排出口8及び廃電池
の投入口17と排出口18を設けたものであれば、如何
なる構造、形状でも良い。加熱炉としては、前記容器の
外周を加熱できる電気炉を用いた。容器4内の雰囲気の
加熱手段としては、この電気炉に限らず、ガスや重油バ
ーナ等により容器を外から加熱する方式も採用できる
し、また該容器4内の流通ガスを高温に保持して供給し
ても良い。ガス供給手段としては、ガスボンベを利用す
るのが一般的であるが、場合によっては各種工場での燃
焼排ガスの配管に直接連結し、それらの排ガスを利用し
ても良い。ガス冷却手段は、通常壁を冷却する手段(冷
却水配管6)を備えた沈降室、サイクロン等が利用でき
る。その他、散水冷却することにより、粉末をスラグと
して回収することもできる。
First, the inventor considered a device used for experiments. As shown in FIG. 1, a container 4 for holding a waste battery, a heating furnace 10 surrounding the container 4 and heating an internal waste battery 5, and gas supply means for introducing gas into the container 4 (FIG. (Not shown) and a gas cooling device 9 for cooling the gas discharged from the container 4. Specifically, the container 4 is a cylindrical body made of a refractory material, and is provided with a gas inlet 1 and a gas outlet 8 and a charging port 17 and a discharge port 18 of a waste battery so that gas can flow therein. Any structure and shape may be used. As the heating furnace, an electric furnace capable of heating the outer periphery of the container was used. The means for heating the atmosphere in the container 4 is not limited to this electric furnace, and a method of heating the container from the outside with a gas, a heavy oil burner, or the like can be adopted. May be supplied. As a gas supply means, a gas cylinder is generally used. However, in some cases, the exhaust gas may be used by directly connecting to a combustion exhaust gas pipe in various factories. As the gas cooling means, a sedimentation chamber provided with a means for cooling the wall (cooling water pipe 6), a cyclone, or the like can be used. In addition, the powder can be collected as slag by water cooling.

【0015】前記の実験装置を用いて廃電池5を加熱す
れば、廃電池5内に含まれる水分を利用して該廃電池5
を爆裂、分解できる。実際に容器4内にマンガン電池あ
るいはアルカリ電池を複数本装入し窒素ガスを流しなが
らそれぞれ個別に加熱実験を行ったところ、容器4内の
雰囲気温度が100度を超えた時点で、いずれの廃電池
5も、内庄が上昇し、構造的に弱い正負極の接点部が爆
裂して内部の炭素棒が飛び出した。この炭素棒が飛び出
すと、中心部に充填され固化している前記各種合剤が水
分の蒸発につれ粉化した。このことは、マンガン電池で
は、酸化マンガンを多量に含む粉粒体(粗粒という)と
亜鉛缶及び金属(鉄)ジャケットよりなる塊とに分離さ
れ、アルカリ電池では、亜鉛を多く含む粉粒体(粗粒と
いう)と酸化マンガン及び金属ジャケット(鉄)からな
る塊とに分離できることを示唆している。つまり、廃電
池の種類により、塊状物と粗粒物との内容は異なるが、
もともと廃電池では陰極、陽極、電解質、ジャケット
等、各機能を有する物の集合体であるから、塊状物と粗
粒物とを分離するだけでも、物質の選別が可能である。
前記の例ではマンガン電池の場合はマンガンと鉄、亜鉛
の分離ができ、またアルカリ電池の場合は亜鉛とマンガ
ン、鉄とに容易に分離できる。
When the waste battery 5 is heated using the above-described experimental apparatus, the waste battery 5 is utilized by utilizing the moisture contained in the waste battery 5.
Can explode and decompose. When a plurality of manganese batteries or alkaline batteries were actually loaded into the container 4 and heating experiments were performed individually while flowing nitrogen gas, when the atmosphere temperature in the container 4 exceeded 100 ° C., In the battery 5 as well, the inner rod rose, the contact points of the positive and negative electrodes, which were structurally weak, exploded, and the carbon rod inside jumped out. When the carbon rod popped out, the above-mentioned various mixtures filled and solidified in the center became powdered as the water evaporated. This means that a manganese battery is divided into a granular material (coarse particle) containing a large amount of manganese oxide and a lump composed of a zinc can and a metal (iron) jacket. (Referred to as coarse particles) and lumps composed of manganese oxide and a metal jacket (iron). In other words, depending on the type of the waste battery, the contents of the lump and the coarse particles are different,
Originally, a waste battery is an aggregate of objects having various functions such as a cathode, an anode, an electrolyte, a jacket, and the like. Therefore, it is possible to sort materials only by separating a lump and a coarse particle.
In the above example, in the case of a manganese battery, manganese, iron, and zinc can be separated, and in the case of an alkaline battery, zinc, manganese, and iron can be easily separated.

【0016】次に、容器4内の雰囲気温度を500℃か
ら900℃に徐々に上昇させたところ、容器内雰囲気中
に多量の一酸化炭素ガスが発生した。また、排気ガスの
前記ガス冷却装置9内に粉末7が溜り、その粉末7は、
高濃度の亜鉛を含んでいた。これは、炉内温度を上昇さ
せると、下記式に示す反応により、アルカリ及びマンガ
ン電池では、亜鉛分が気化、もしくは電極剤の亜鉛等が
還元ガスと反応して還元気化し、冷却で凝縮して微粉末
になったことを示唆している。
Next, when the atmosphere temperature in the container 4 was gradually increased from 500 ° C. to 900 ° C., a large amount of carbon monoxide gas was generated in the atmosphere in the container. Further, powder 7 accumulates in the gas cooling device 9 for the exhaust gas, and the powder 7 is
It contained a high concentration of zinc. This is because when the temperature in the furnace is increased, in the alkaline and manganese batteries, the zinc component is vaporized, or the zinc or the like of the electrode reacts with the reducing gas to be reduced and vaporized by the reaction shown in the following formula, and condensed by cooling. To a fine powder.

【0017】Zn(s)→Zn(g) ZnO+C→Zn(g)+CO ところで、上記反応で得られる亜鉛蒸気は、酸素に対す
る反応性が非常に高く、還元雰囲気もしくは不活性ガス
の気流内でないと、安定的にガス冷却装置9まで到達で
きない恐れがあった。つまり、容器4内(周囲の酸化
物、例えば酸化マンガン等)で再酸化されて固体となっ
て容器4に溜まり,亜鉛として分離できなくなる。その
ため、発明者は、同様の温度条件において、容器4へ導
入するガスに積極的にCOもしくはH2を混入して容器
4内を還元性雰囲気にすることで亜鉛蒸気の安定化を図
ることとした。なお、この還元雰囲気については、後述
の実施例で説明するが、このように加熱処理後の粒径に
よる分離で電池中の有価金属を分離できることが判明し
た。
Zn (s) → Zn (g) ZnO + C → Zn (g) + CO By the way, the zinc vapor obtained by the above reaction has a very high reactivity to oxygen and must be in a reducing atmosphere or in an inert gas stream. However, there is a possibility that the gas cooling device 9 cannot be stably reached. That is, it is re-oxidized in the container 4 (peripheral oxide, for example, manganese oxide or the like), becomes a solid, accumulates in the container 4, and cannot be separated as zinc. Therefore, the inventor aims to stabilize the zinc vapor by making CO or H 2 into the gas introduced into the container 4 and making the inside of the container 4 a reducing atmosphere under the same temperature condition. did. The reducing atmosphere will be described in Examples below, but it has been found that the valuable metal in the battery can be separated by the separation according to the particle size after the heat treatment.

【0018】さらに、発明者は、マンガン及びアルカリ
電池以外の鉛蓄電池及びニッケル−カドミニウム電池に
ついても、上記と同様の実験をおこない、同様な結果に
なることを確認した。つまり、マンガンやアルカリ電池
で粉末及び粗粒中に蒸気圧の高い亜鉛、塊中に鉄、マン
ガンが濃化したのと同様に、鉛畜電池では、粉末及び粗
粒中に鉛が、塊中に鉄が濃化され、ニッケル−カドミニ
ウム電池では、粉末及び粗粒中にカドミニウムが、塊中
にニッケル、鉄が濃化される。また、その後の調査で、
粗粒及び粉末中には、亜鉛と同時にカリウム、塩素のよ
うなアルカリ金属及びハロゲン元素が濃化することを知
った。これらの元素は、その後に行なわれる亜鉛再生回
収工程での障害となる恐れがあるので、回収した粉末や
粗粒は、水洗等により脱ハロゲン及び脱アルカリ金属の
処理を行ってから使用されるのが望ましいことも知っ
た。
Further, the inventor conducted similar experiments to lead storage batteries and nickel-cadmium batteries other than manganese and alkaline batteries, and confirmed that similar results were obtained. In other words, in the same way as manganese and zinc, which have high vapor pressure in powder and coarse particles in alkaline batteries and iron and manganese in lumps are concentrated, lead in lead batteries and In a nickel-cadmium battery, cadmium is concentrated in powder and coarse particles, and nickel and iron are concentrated in a lump. In a subsequent investigation,
It was found that in the coarse particles and the powder, alkali metals such as potassium and chlorine and a halogen element were concentrated at the same time as zinc. Since these elements may hinder the subsequent zinc recovery and recovery process, the recovered powder and coarse particles may be used after being subjected to dehalogenation and dealkalization metal treatment by washing with water or the like. I knew it was desirable.

【0019】そこで、発明者は、これらの実験結果を整
理し、前記したように、「炉内に配置した容器に廃電池
を投入して加熱し、該廃電池の分解で生じた蒸気及び粉
末を該容器内へ別途導入するガスに随伴させて該高温容
器から排出し、その排出したガスを冷却した後に前記粉
末及び凝集した粉末を該排ガスより分離回収すると共
に、前記容器内に残留する廃電池を固形物として排出す
る」という処理方法を想到すると共に、上記実験装置を
ベースにした処理装置を本発明としたのである。
Then, the inventor arranged these experimental results, and as described above, stated that "a waste battery was put into a container arranged in a furnace and heated, and steam and powder generated by decomposition of the waste battery were charged. Is discharged from the high-temperature container with the gas separately introduced into the container, and after the discharged gas is cooled, the powder and the agglomerated powder are separated and recovered from the exhaust gas, and the waste remaining in the container is removed. The present invention has conceived a processing method of “discharging a battery as a solid substance”, and has provided a processing apparatus based on the above experimental apparatus.

【0020】なお、本発明では、加熱処理の終了後に炉
内に残留している廃電池を固形物として排出するが、そ
れは、篩目が3〜5mm程度の篩で分級し、篩上を塊、
篩下を粗粒として回収することになる。また、本発明で
は、前記容器内の雰囲気温度を500〜900℃とする
のが好ましい。その理由は、500℃を超えると、前記
したように、アルカリ電池の亜鉛蒸発量が一段と増加す
るからである。一方、900℃を超えると、炉内残留物
に溶融するものが生じ、粗粒と塊との分級に支障が出る
ので、その900℃を上限とするのが好ましい。さら
に、本発明では、上記した各種電池から同種のものだけ
分別して炉内へ投入するのが好ましい。得られる各回収
物の成分を一定にし易いからである。しかし、本発明で
は、多種の電池を混合して投入しても良い。回収物の後
処理工程の製錬能力に応じて、回収物の組成を決めれば
良いからである。
In the present invention, the waste batteries remaining in the furnace after the completion of the heat treatment are discharged as solids, which are classified by a sieve having a sieve of about 3 to 5 mm, and a lump is placed on the sieve. ,
The under sieve will be recovered as coarse particles. In the present invention, it is preferable that the atmosphere temperature in the container is set to 500 to 900 ° C. The reason is that, when the temperature exceeds 500 ° C., as described above, the amount of zinc evaporated in the alkaline battery further increases. On the other hand, if the temperature exceeds 900 ° C., what is melted in the furnace residue is generated, which hinders the classification of coarse particles and lumps. Therefore, the upper limit is preferably 900 ° C. Further, in the present invention, it is preferable that only the same type of batteries are separated from the above-mentioned various batteries and then charged into the furnace. This is because it is easy to make the components of the obtained recovered products constant. However, in the present invention, various types of batteries may be mixed and charged. This is because the composition of the recovered material may be determined according to the smelting capacity of the post-processing step of the recovered material.

【0021】以上のように、回収すべき金属の種類に応
じて塊状物、粗粒物、粉末のいずれかに濃縮するよう
に、容器内の雰囲気温度、組成を適宜選択して廃電池の
分解処理ができるので、分解して分別した塊状物、粗粒
物、粉末のそれぞれの組成を確認して適切な後処理を行
うことが可能になる。
As described above, the atmosphere temperature and composition in the container are appropriately selected so that the waste battery is decomposed so as to be concentrated into any of a lump, a coarse particle, and a powder according to the type of metal to be recovered. Since the treatment can be performed, it is possible to confirm the respective compositions of the lump, the coarse particles, and the powder that have been decomposed and separated, and to perform an appropriate post-treatment.

【0022】[0022]

【実施例】表1に示すアルカリ電池とマンガン電池(単
三)とをそれぞれ100gずつ混合し、図1に示した内
容積10リットルの容器4に投入した。ガス供給手段
(ガスボンベ及び配管)を用い、窒素ガスを1リットル
/分の流速で該容器4に導入、流通させると共に、容器
4を囲む加熱炉10の電源を入れ、加熱を開始した。容
器4内の雰囲気温度は、1時間で所定温度にまで上昇さ
せ、その温度で1時間にわたり一定に保持した後、30
分間で常温まで降温した。なお、所定温度は、25、1
00、300,500、700及び900℃の6水準と
した。
EXAMPLE An alkaline battery and a manganese battery (AA) shown in Table 1 were mixed in an amount of 100 g each and charged into a container 4 having a capacity of 10 liters shown in FIG. Using a gas supply means (gas cylinder and piping), nitrogen gas was introduced into and circulated through the vessel 4 at a flow rate of 1 liter / min, and the heating furnace 10 surrounding the vessel 4 was turned on to start heating. The temperature of the atmosphere in the container 4 is raised to a predetermined temperature in one hour, and is kept constant at that temperature for one hour.
The temperature was lowered to room temperature in minutes. The predetermined temperature is 25, 1
Six levels of 00, 300, 500, 700 and 900 ° C were set.

【0023】[0023]

【表1】 [Table 1]

【0024】その後、ガス冷却装置9の内壁に付着した
粉末7は、剥離して回収し、炉内残留物は、3mmの篩
を用いて分け、前記粗粒物と塊状物に分離した。回収し
た粉末7の組成を表2に、粗粒の組成を表3に、塊の組
成を表4に示し、それぞれの回収量を重量で表5に一括
して示す。
Thereafter, the powder 7 adhering to the inner wall of the gas cooling device 9 was separated and collected, and the residue in the furnace was separated using a 3 mm sieve to separate the coarse particles and the lump. The composition of the recovered powder 7 is shown in Table 2, the composition of the coarse particles is shown in Table 3, the composition of the lump is shown in Table 4, and the amount of each collected is shown in Table 5 by weight.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【表4】 [Table 4]

【0028】[0028]

【表5】 [Table 5]

【0029】これらの表より、塊にマンガンと鉄分が濃
化され、粗粒及び粉末に亜鉛が濃化されていることがわ
かる。表に示す程度に各成分が濃化されれば、例えば、
冷却装置での回収粉末は、亜鉛製錬用原料に使用でき、
塊は、フエロマンガン製造用原料に利用することができ
る。塊へのマンガン及び鉄分の歩留りと冷却装置回収粉
末及び粗粒への亜鉛の歩留りを、一括して表6に示して
おく。
From these tables, it can be seen that manganese and iron are concentrated in the lump and zinc is concentrated in the coarse particles and the powder. If each component is concentrated to the degree shown in the table, for example,
The recovered powder in the cooling device can be used as a raw material for zinc smelting,
The lump can be used as a raw material for producing ferromanganese. Table 6 summarizes the yield of manganese and iron in the lump and the yield of zinc in the cooling device recovered powder and coarse particles.

【0030】[0030]

【表6】 [Table 6]

【0031】また、上記した各温度での排ガス中の一酸
化炭素濃度を表7に示し、各温度での容器内雰囲気ガス
の組成、冷却装置での回収粉、粗粒及び塊の重量を図3
に示す。図3より、容器内の雰囲気温度が500℃以上
になると、ガス中に一酸化炭素濃度が上昇し、回収粉末
量が急激に増加することがわかる。これは、炭素による
亜鉛分の還元反応で亜鉛蒸気が発生し、粉末の亜鉛濃度
が高くなったためであり、該粉末の亜鉛再生用原料とし
て価値が高くなっていることを示している。
Table 7 shows the concentration of carbon monoxide in the exhaust gas at each of the above temperatures, and shows the composition of the atmosphere gas in the container at each temperature, and the weight of the recovered powder, coarse particles and lump in the cooling device. 3
Shown in FIG. 3 shows that when the atmosphere temperature in the container becomes 500 ° C. or higher, the concentration of carbon monoxide in the gas increases, and the amount of the recovered powder sharply increases. This is because zinc vapor was generated by the reduction reaction of zinc by carbon and the zinc concentration of the powder was increased, indicating that the value of the powder as a raw material for regenerating zinc was increased.

【0032】[0032]

【表7】 [Table 7]

【0033】次に、容器4内に導入するガスを代え、C
O及びCO2の混合ガスを、CO/CO2の比が0.0
1、0.1、10になるように変更しながら、10リッ
トル/分の流速で導入し、流通させ、上記同様の実験を
行なった。その結果、回収物の重量を表8に、塊へのマ
ンガン、鉄分の歩留りと冷却装置回収紛末及び粗粒への
亜鉛の歩留りを表9及び図4に示す。
Next, the gas introduced into the container 4 is changed and C
The mixed gas of O and CO 2 is mixed at a CO / CO 2 ratio of 0.0
While changing the flow rate to 1, 0.1, and 10, the flow was introduced at a flow rate of 10 liters / minute, and circulated. As a result, the weight of the recovered material is shown in Table 8, and the yields of manganese and iron in the lump and the yields of zinc in the powder collected by the cooling device and the coarse particles are shown in Table 9 and FIG.

【0034】[0034]

【表8】 [Table 8]

【0035】[0035]

【表9】 [Table 9]

【0036】表8及び図4に示すように、CO/CO2
=0.01のガスでは、亜鉛歩留りが低下した。これ
は、直接還元によって発生した亜鉛蒸気が酸化され、塊
に付着してしまったためと考えられる。これに対して、
CO/CO2を0.01より増加させるにつれて、亜鉛
歩留りは順次上昇している。これは、炉内が還元雰囲気
となったために亜鉛蒸気が安定化し、冷却装置まで搬送
されてから酸化もしくは凝固するためと考えられる。ま
た、還元ガスとして、天然ガスを空気で部分燃焼させ
(CO+H2)/(CO2+H2O)の値を調整して前記
容器内へ導入し、同様の試験を行った。これによる回収
物中の塊へのマンガン、鉄分の歩留りと冷却装置回収粉
末及ぴ粗粒への亜鉛の歩留りを表10に示す。この試験
の場合もCO及びCO2の混合ガスの実験とほぼ同様の
結果を得た。このことより、本発明では、前記容器内へ
別途導入するガスが、(CO+H2)/(CO2+H
2O)>0.1の関係を満足すると一層良いとしたので
ある。
As shown in Table 8 and FIG. 4, CO / CO 2
With a gas of = 0.01, the zinc yield was reduced. This is probably because the zinc vapor generated by the direct reduction was oxidized and attached to the lump. On the contrary,
As CO / CO 2 is increased above 0.01, the zinc yield is progressively increasing. This is considered to be because zinc atmosphere was stabilized because the inside of the furnace became a reducing atmosphere, and oxidized or solidified after being transported to the cooling device. Further, as a reducing gas, natural gas was partially burned with air, the value of (CO + H 2 ) / (CO 2 + H 2 O) was adjusted and introduced into the vessel, and the same test was performed. Table 10 shows the yield of manganese and iron in the lump in the collected material and the yield of zinc in the powder collected by the cooling device and the coarse particles. In this test, almost the same results were obtained as in the experiment using a mixed gas of CO and CO 2 . Accordingly, in the present invention, the gas separately introduced into the container is (CO + H 2 ) / (CO 2 + H
It was determined that it was better if the relationship of 2 O)> 0.1 was satisfied.

【0037】[0037]

【表10】 [Table 10]

【0038】以上述べた実施結果をまとめると、廃電池
内の有価金属成分を、環境に悪影響を与えることなく分
離して、より再生し易い2次資源にできることが明らか
である。なお、本発明法によって回収された粉末は、亜
鉛溶鉱炉以外にも、コークス充填層型2段羽口式溶融還
元炉や亜鉛回収装置を備えたキュポラ真空加熱炉ロータ
リーキルンや電気炉、回転炉床ガス加熱式の溶融炉での
使用も可能である。また、電気分解等の湿式製錬におい
ても有効に利用することができる。
From the above-mentioned results, it is clear that the valuable metal component in the waste battery can be separated without adversely affecting the environment and can be used as a secondary resource which can be more easily regenerated. The powder recovered by the method of the present invention is not limited to a zinc smelting furnace, but may be a coke packed bed type two-stage tuyere smelting reduction furnace, a cupola vacuum heating furnace rotary kiln equipped with a zinc recovery device, an electric furnace, or a rotary hearth gas. Use in a heating type melting furnace is also possible. It can also be effectively used in hydrometallurgy such as electrolysis.

【0039】[0039]

【発明の効果】以上述べたように、本発明により、廃電
池に含まれる各種金属を、その後の処理が容易になるよ
う、亜鉛、鉛、カドミウム、水銀等の濃化した高揮発性
金属と、鉄、マンガン、銅等の濃化した含む低揮発性金
属と、カリウム、ナトリウム、塩素等のアルカリ及びハ
ロゲンを含む物質とに粗分離できるようになった。
As described above, according to the present invention, various metals contained in a waste battery are mixed with a highly volatile metal such as zinc, lead, cadmium, and mercury so as to facilitate the subsequent treatment. , Iron, manganese, copper and the like, and low-concentration and low-volatile metals, and potassium, sodium, chlorine and other alkali and halogen-containing substances.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る廃乾電池の処理装置を示す縦断面
図である。
FIG. 1 is a vertical sectional view showing a waste dry battery processing apparatus according to the present invention.

【図2】乾電池の一般的な構造を示す縦断面図であり、
(a)はマンガン電池、(b)はアルカリ電池である。
FIG. 2 is a longitudinal sectional view showing a general structure of a dry battery;
(A) is a manganese battery, (b) is an alkaline battery.

【図3】本発明の実施で得た回収物重量の加熱温度によ
る変化を示す図である。
FIG. 3 is a diagram showing a change in the weight of a collected product obtained in the practice of the present invention depending on a heating temperature.

【図4】本発明の実施で得た回収物重量の導入ガス組成
による変化を示す図である。
FIG. 4 is a diagram showing a change in the weight of the recovered material obtained in the practice of the present invention depending on the composition of the introduced gas.

【符号の説明】[Explanation of symbols]

1 ガス導入口 2 発熱体 3 断熱材 4 容器 5 廃電池 6 冷却水配管 7 粉末 8 排ガス排出口 9 ガス冷却装置 10 加熱炉 11 廃電池投入口あるいは排出口 12 炭素棒 13 合剤 14 亜鉛缶 15 隔壁(セパレータ) 16 ガスの流れ方向を示す矢印 DESCRIPTION OF SYMBOLS 1 Gas inlet 2 Heating element 3 Insulation material 4 Container 5 Waste battery 6 Cooling water pipe 7 Powder 8 Exhaust gas exhaust port 9 Gas cooling device 10 Heating furnace 11 Waste battery inlet or outlet 12 Carbon rod 13 Mixture 14 Zinc can 15 Partition (separator) 16 Arrow indicating gas flow direction

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22B 7/00 C22B 9/02 5H031 H01M 10/54 9/02 C22B 19/04 H01M 10/54 19/34 // C22B 19/04 B01D 53/34 136Z 19/34 B09B 5/00 ZABA Fターム(参考) 4D002 AA28 AA29 AA31 AC10 BA06 BA13 DA35 DA54 DA55 EA13 GA01 GA03 GB03 GB08 HA01 4D004 AA23 AB03 BA05 CA08 CA24 CA37 CB32 CC01 CC03 DA02 DA03 DA06 DA10 4D021 FA09 GA18 GA23 GB10 HA10 4K001 AA06 AA09 AA10 AA14 AA16 AA20 AA30 AA34 AA35 BA22 CA02 DA06 DA07 DA10 EA03 GA15 GB02 GB09 GB11 HA09 5H025 BB01 MM10 5H031 AA01 AA03 RR00 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22B 7/00 C22B 9/02 5H031 H01M 10/54 9/02 C22B 19/04 H01M 10/54 19/34 // C22B 19/04 B01D 53/34 136Z 19/34 B09B 5/00 ZABA F term (reference) 4D002 AA28 AA29 AA31 AC10 BA06 BA13 DA35 DA54 DA55 EA13 GA01 GA03 GB03 GB08 HA01 4D004 AA23 AB03 BA05 CA08 CA24 CA03 CB32 CC01 CC DA02 DA03 DA06 DA10 4D021 FA09 GA18 GA23 GB10 HA10 4K001 AA06 AA09 AA10 AA14 AA16 AA20 AA30 AA34 AA35 BA22 CA02 DA06 DA07 DA10 EA03 GA15 GB02 GB09 GB11 HA09 5H025 BB01 MM10 5H031 AA01 AA03RR

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 炉内に配置した容器に廃電池を投入して
加熱し、該廃電池の分解で生じた蒸気及び粉末を該容器
内へ別途導入するガスに随伴させて該容器から排出し、
その排出したガスを冷却した後に前記粉末及び凝集した
粉末を該排ガスより分離回収すると共に、前記容器内に
残留する廃電池を固形物として排出することを特徴とす
る廃電池の処理方法。
1. A waste battery is charged into a container placed in a furnace and heated, and steam and powder generated by decomposition of the waste battery are discharged from the container along with gas separately introduced into the container. ,
A method for treating a waste battery, comprising: cooling the discharged gas, separating and collecting the powder and the agglomerated powder from the exhaust gas, and discharging a waste battery remaining in the container as a solid.
【請求項2】 前記固形物を篩分けし、篩上を塊状物、
篩下を粗粒物として回収することを特徴とする請求項1
記載の廃電池の処理方法。
2. The solid matter is sieved, and the mass on the sieve is
2. The method according to claim 1, wherein the undersize is collected as coarse particles.
A method for treating a waste battery as described in the above.
【請求項3】 前記容器内の雰囲気温度を100〜90
0℃とすることを特徴とする請求項1又は2記載の廃電
池の処理方法。
3. The atmosphere temperature in the container is 100 to 90.
The method for treating a waste battery according to claim 1 or 2, wherein the temperature is set to 0 ° C.
【請求項4】 前記容器内の雰囲気温度を500〜90
0℃とすることを特徴とする請求項1又は2記載の廃電
池の処理方法。
4. An atmosphere temperature in said container is 500 to 90.
The method for treating a waste battery according to claim 1 or 2, wherein the temperature is set to 0 ° C.
【請求項5】 前記容器内へ別途導入するガスがCO及
び/又はH2並びにCO2及び/又はH2Oを含み、それ
らの関係が(CO+H2)/(CO2+H2O)>0.1
を満足することを特徴とする請求項1又は2記載の廃電
池の処理方法。
5. A includes a gas separately introduced into the vessel CO and / or H 2 and CO 2 and / or H 2 O, their relationship is (CO + H 2) / ( CO 2 + H 2 O)> 0 .1
The method for treating a waste battery according to claim 1 or 2, wherein the following condition is satisfied.
【請求項6】 投入された廃電池を保持する容器と、該
容器内の雰囲気を加熱する加熱手段と、該容器内ヘガス
を導入するガス供給手段と、前記容器から排出されるガ
スを冷却するガス冷却装置とを備えたことを特徴とする
廃電池の処理装置。
6. A container for holding the inserted waste battery, heating means for heating the atmosphere in the container, gas supply means for introducing gas into the container, and cooling gas discharged from the container. A waste battery processing device comprising a gas cooling device.
JP2000090478A 2000-03-29 2000-03-29 Disposal method and system of waste cell Withdrawn JP2001283871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090478A JP2001283871A (en) 2000-03-29 2000-03-29 Disposal method and system of waste cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090478A JP2001283871A (en) 2000-03-29 2000-03-29 Disposal method and system of waste cell

Publications (1)

Publication Number Publication Date
JP2001283871A true JP2001283871A (en) 2001-10-12

Family

ID=18606081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090478A Withdrawn JP2001283871A (en) 2000-03-29 2000-03-29 Disposal method and system of waste cell

Country Status (1)

Country Link
JP (1) JP2001283871A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323451C (en) * 2001-11-01 2007-06-27 王宗良 Comprehensive utilization treatment process for waste batteries
JP2011094206A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for recovering valuable metal from waste battery or the like
JP2012204000A (en) * 2011-03-23 2012-10-22 Toyota Motor Corp Recycling method and processing unit of battery pack
JP2013004299A (en) * 2011-06-16 2013-01-07 Mitsubishi Materials Corp Recycling method of lithium ion secondary battery
CN103247837A (en) * 2013-05-08 2013-08-14 国家电网公司 Method for treating waste lithium battery by microwave pyrolysis
JP2016207648A (en) * 2015-04-17 2016-12-08 Jx金属株式会社 Processing method of lithium ion battery
CN106876821A (en) * 2017-03-10 2017-06-20 广东纳玛逊科技有限公司 A kind of new energy resource power battery Dismantlement equipment
JP2017131795A (en) * 2016-01-25 2017-08-03 太平洋セメント株式会社 Treatment equipment and treatment method for discarded lithium ion battery
CN109326841A (en) * 2018-09-03 2019-02-12 丁柳朋 One kind, which is recycled used batteries, uses vacuum heating apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323451C (en) * 2001-11-01 2007-06-27 王宗良 Comprehensive utilization treatment process for waste batteries
JP2011094206A (en) * 2009-10-30 2011-05-12 Jfe Steel Corp Method for recovering valuable metal from waste battery or the like
JP2012204000A (en) * 2011-03-23 2012-10-22 Toyota Motor Corp Recycling method and processing unit of battery pack
US9509025B2 (en) 2011-03-23 2016-11-29 Toyota Jidosha Kabushiki Kaisha Recycling method and treatment device for battery pack
JP2013004299A (en) * 2011-06-16 2013-01-07 Mitsubishi Materials Corp Recycling method of lithium ion secondary battery
CN103247837A (en) * 2013-05-08 2013-08-14 国家电网公司 Method for treating waste lithium battery by microwave pyrolysis
JP2016207648A (en) * 2015-04-17 2016-12-08 Jx金属株式会社 Processing method of lithium ion battery
US10727546B2 (en) 2015-04-17 2020-07-28 Jx Nippon Mining & Metals Corporation Method for treating lithium ion battery
US11145915B2 (en) 2015-04-17 2021-10-12 Jx Nippon Mining & Metals Corporation Method for treating lithium ion battery
JP2017131795A (en) * 2016-01-25 2017-08-03 太平洋セメント株式会社 Treatment equipment and treatment method for discarded lithium ion battery
CN106876821A (en) * 2017-03-10 2017-06-20 广东纳玛逊科技有限公司 A kind of new energy resource power battery Dismantlement equipment
CN109326841A (en) * 2018-09-03 2019-02-12 丁柳朋 One kind, which is recycled used batteries, uses vacuum heating apparatus

Similar Documents

Publication Publication Date Title
WO2020013294A1 (en) Method for recovering valuable metals from waste lithium ion batteries
US4957551A (en) Method for treatment of dust recovered from off gases in metallurgical processes
KR101735425B1 (en) System and method for aluminium black dross recycling
WO2022009657A1 (en) Method for recovering valuable metal
JP7363207B2 (en) How to recover valuable metals
JP2001283871A (en) Disposal method and system of waste cell
KR101735493B1 (en) System and method for aluminium black dross recycling
US6932853B2 (en) Mechanical separation of volatile metals at high temperatures
WO2022009656A1 (en) Method for recovering valuable metal
JPH11152511A (en) Treatment of steelmaking furnace dust and dust pellet
WO2021205903A1 (en) Method for recovering valuable metal
JP2009256741A (en) Method of recovering valuable metal from waste battery
JP7359062B2 (en) Method for recovering valuable metals from waste lithium-ion batteries
JP7220841B2 (en) Valuable metal manufacturing method
WO2022009742A1 (en) Method for recovering valuable metal
WO2023286386A1 (en) Method for producing valuable metal
WO2023026769A1 (en) Method for recovering valuable metals
CN116829744A (en) Method for recovering valuable metals
CA3230561A1 (en) Method for producing valuable metal
TW202410522A (en) Method for recovery of valuable metals from spent secondary batteries
CN117897854A (en) Method for recovering valuable metals from waste secondary batteries
JP2022085446A (en) Method for recovering valuable metal
CN117242195A (en) Valuable substance recovery method
WO2023228538A1 (en) Lithium-containing slag and method for producing valuable metal
JP2024034820A (en) How to recover valuable metals

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605