JP2001283844A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JP2001283844A
JP2001283844A JP2000090036A JP2000090036A JP2001283844A JP 2001283844 A JP2001283844 A JP 2001283844A JP 2000090036 A JP2000090036 A JP 2000090036A JP 2000090036 A JP2000090036 A JP 2000090036A JP 2001283844 A JP2001283844 A JP 2001283844A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
graphite
electrode active
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000090036A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shoji
良浩 小路
Yasufumi Takahashi
康文 高橋
Masatoshi Takahashi
昌利 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000090036A priority Critical patent/JP2001283844A/en
Publication of JP2001283844A publication Critical patent/JP2001283844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte battery which can improve yield of a battery by restraining degradation of adhesion between graphites themselves or a graphite and a core body through restraint of sliding of basal faces, even when electrode plates are milled by a roller press for upgrading filling density of a negative active material. SOLUTION: With a nonaqueous electrolyte battery provided with a negative electrode with a negative active material layer formed with a negative active material, as a main constituent, made of graphite (of Lc value of 150Å or more, and d(002) value of less than 3.38Å) on the surface of a negative electrode core body made of copper foil, a positive electrode equipped with a positive active material layer which can store and release lithium, and a nonaqueous electrolyte, the above graphite is regulated to have a peak intensity ratio (I(002)/I(110)) of (002) face to (110) face by powder X-ray diffraction method using a Cu-Kα line source at 1,000 or less.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅箔から成る負極
芯体の表面に、黒鉛から成る負極活物質を主体とする負
極活物質層が形成された負極と、リチウムを吸蔵、放出
しうる正極活物質層を備えた正極と、非水電解質とを有
する非水電解質電池に関するものである。
The present invention relates to a negative electrode in which a negative electrode active material layer mainly composed of a graphite negative electrode active material is formed on the surface of a negative electrode core made of a copper foil, and capable of inserting and extracting lithium. The present invention relates to a nonaqueous electrolyte battery including a positive electrode having a positive electrode active material layer and a nonaqueous electrolyte.

【0002】[0002]

【従来の技術】近年、LiCoO2 等のリチウム含有遷
移金属酸化物等を正極活物質とする一方、金属リチウム
又はリチウムイオンを吸蔵、放出し得る合金、酸化物又
は黒鉛、コークス等の炭素材料を負極活物質とする非水
電解質電池が、高容量化が可能な電池として注目されて
いる。
2. Description of the Related Art In recent years, while a lithium-containing transition metal oxide such as LiCoO 2 is used as a positive electrode active material, an alloy, an oxide or a carbon material such as graphite or coke capable of occluding and releasing metallic lithium or lithium ions is used. A non-aqueous electrolyte battery used as a negative electrode active material has attracted attention as a battery capable of increasing capacity.

【0003】上記負極活物質のうちリチウム又はリチウ
ムを主体とする材料を用いた場合には、充放電により樹
枝状のリチウムが析出(デンドライトが発生)し、電池
内で短絡するおそれがあるのに対して、炭素材料を負極
材料として用いると、このような欠点を解消することが
できるという利点がある。その中でも、黒鉛を用いた場
合には、放電容量が増大し、且つ、初期の充放電効率が
向上すると共に、電位の平坦性が確保されるという利点
がある。
[0003] When lithium or a material mainly composed of lithium is used among the above-mentioned negative electrode active materials, dendritic lithium is deposited (dendrites are generated) by charge and discharge, which may cause a short circuit in the battery. On the other hand, when a carbon material is used as a negative electrode material, there is an advantage that such a disadvantage can be solved. Among them, when graphite is used, there are advantages that the discharge capacity is increased, the initial charge / discharge efficiency is improved, and the flatness of the potential is ensured.

【0004】ここで、上記黒鉛を用いて負極を作製する
場合には、先ず、黒鉛と結着剤等とを混合してスラリー
を調製した後、このスラリーを銅箔から成る負極芯体に
塗着し、更に、これを乾燥する。最後に、負極活物質の
充填密度を上げるべく、上記のようにして作製した極板
を、ローラープレスによって圧延するというものであ
る。
[0004] When a negative electrode is produced using the above graphite, first, a slurry is prepared by mixing graphite and a binder and the like, and then this slurry is applied to a negative electrode core made of copper foil. And then dried. Finally, in order to increase the packing density of the negative electrode active material, the electrode plate manufactured as described above is rolled by a roller press.

【0005】しかしながら、従来の黒鉛はリン片状〔C
u−Kα線源を用いた粉末X線回折法による(002)
面とこの(002)面と垂直な(110)面とのピーク
強度比(I(002) /I(110) )が1000より大きい黒
鉛〕で、配向度が高いため、極板の面方向と平行にベイ
サル面が配向される割合が高くなる。この結果、極板を
ローラープレスによって圧延する際、ベイサル面同士が
滑って、黒鉛同士或いは黒鉛と芯体との密着性が低下
し、電池の歩留りが低くなるという課題を有していた。
However, conventional graphite has a flaky shape [C
By powder X-ray diffraction using a u-Kα source (002)
Graphite having a peak intensity ratio (I (002) / I (110) ) of more than 1000] between the surface and the (110) plane perpendicular to the (002) plane, and the degree of orientation is high. The proportion that the basal plane is oriented in parallel increases. As a result, when the electrode plate is rolled by the roller press, the basal surfaces slip, the adhesion between graphite or graphite and the core body is reduced, and the yield of the battery is reduced.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記従来の課
題を考慮したものであって、負極活物質の充填密度を上
げるべく極板をローラープレスによって圧延した場合で
あっても、ベイサル面同士が滑るのを抑制することによ
り、黒鉛同士或いは黒鉛と芯体との密着性が低下するの
を抑えて、電池の歩留りを向上させることができる非水
電解質電池を提供することを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-mentioned conventional problems. Even when the electrode plate is rolled by a roller press in order to increase the packing density of the negative electrode active material, the basal surfaces are not separated from each other. It is an object of the present invention to provide a non-aqueous electrolyte battery capable of suppressing a decrease in adhesion between graphite or between a graphite and a core body by suppressing slippage and improving a battery yield.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明のうちで請求項1記載の発明は、銅箔から成
る負極芯体の表面に、黒鉛(Lc値は150Å以上、d
(002) 値は3.38Å以下)から成る負極活物質を主体
とする負極活物質層が形成された負極と、リチウムを吸
蔵、放出しうる正極活物質層を備えた正極と、非水電解
質とを有する非水電解質電池であって、上記黒鉛が、C
u−Kα線源を用いた粉末X線回折法による(002)
面と(110)面とのピーク強度比(I(002) /I
(110) )が1000以下に規制されることを特徴とす
る。
Means for Solving the Problems In order to achieve the above-mentioned object, the invention according to claim 1 of the present invention provides a method for producing a graphite (Lc value of 150 ° or more, d
(002 value is 3.38 ° or less), a negative electrode having a negative electrode active material layer mainly composed of a negative electrode active material, a positive electrode having a positive electrode active material layer capable of absorbing and releasing lithium, and a non-aqueous electrolyte. A non-aqueous electrolyte battery comprising:
By powder X-ray diffraction using a u-Kα source (002)
Intensity ratio between the (110) plane and the (110) plane (I (002) / I
(110) ) is regulated to 1000 or less.

【0008】上記の如く、黒鉛が、Cu−Kα線源を用
いた粉末X線回折法による(002)面とこの(00
2)面と垂直な(110)面とのピーク強度比(I
(002) /I (110) )が1000以下に規制されていれ
ば、球状の黒鉛となる。したがって、負極活物質の充填
密度を上げるべく極板をローラープレスによって圧延し
た場合であっても、ベイサル面同士が滑るのを抑制する
ことができるので、負極活物質の密着性が低下するのを
抑えることができる。この結果、電池の歩留りを飛躍的
に向上させることが可能となる。
As described above, graphite uses a Cu-Kα radiation source.
(002) plane by powder X-ray diffraction method
2) The peak intensity ratio (I) between the (110) plane and the perpendicular (110) plane
(002)/ I (110)) Is regulated to 1000 or less
If so, it becomes spherical graphite. Therefore, the filling of the negative electrode active material
Roll the plates with a roller press to increase the density
Control the slip between the basal surfaces even if
Can reduce the adhesion of the negative electrode active material.
Can be suppressed. As a result, the battery yield is dramatically improved
Can be improved.

【0009】また、請求項2記載の発明は、請求項1記
載の発明において、前記銅箔から成る負極芯体の厚み
が、5μm以上10μm以下に規制されることを特徴と
する。
A second aspect of the present invention is characterized in that, in the first aspect of the present invention, the thickness of the negative electrode core made of the copper foil is regulated to 5 μm or more and 10 μm or less.

【0010】このように、銅箔から成る負極芯体の厚み
を規制するのは、負極芯体の厚みが5μm未満であれば
負極芯体が破断する場合がある一方、負極芯体の厚みが
10μmを超えると、負極活物質の充填密度を著しく上
げる必要があるため、負荷特性が低下し、しかも負極に
おける密着強度も低下するからである。
[0010] As described above, the thickness of the negative electrode core made of copper foil is regulated because if the thickness of the negative electrode core is less than 5 µm, the negative electrode core may be broken, while the thickness of the negative electrode core may be reduced. If the thickness exceeds 10 μm, the packing density of the negative electrode active material must be significantly increased, so that the load characteristics decrease and the adhesion strength at the negative electrode also decreases.

【0011】また、請求項3記載の発明は、請求項1又
は2記載の発明において、前記負極板における負極活物
質の充填密度が、1.5g/cc以上1.8g/cc以
下に規制されることを特徴とする。
According to a third aspect of the present invention, in the first or second aspect, the packing density of the negative electrode active material in the negative electrode plate is regulated to 1.5 g / cc or more and 1.8 g / cc or less. It is characterized by that.

【0012】このように、負極活物質の充填密度を規制
するのは、負極活物質の充填密度が1.5g/cc未満
になると、単位体積当たりの負極容量が低下する一方、
負極活物質の充填密度が1.8g/ccを超えると、負
荷特性が低下すると共に負極における密着強度が低下す
るからである。
As described above, the packing density of the negative electrode active material is regulated when the packing density of the negative electrode active material is less than 1.5 g / cc, while the capacity of the negative electrode per unit volume decreases,
If the packing density of the negative electrode active material exceeds 1.8 g / cc, the load characteristics decrease and the adhesion strength at the negative electrode decreases.

【0013】また、請求項4記載の発明は、請求項1、
2又は3記載の発明において、前記負極活物質は、ジェ
ットミルにて高圧ガスを噴出させることにより球状化す
ることを特徴とする。
[0013] The invention described in claim 4 is based on claim 1,
In the invention described in 2 or 3, the negative electrode active material is formed into a sphere by ejecting a high-pressure gas by a jet mill.

【0014】このような製造方法により、球状黒鉛を得
ることができるが、本発明はこのような方法に限定する
ものではない。
Although spherical graphite can be obtained by such a production method, the present invention is not limited to such a method.

【0015】[0015]

【発明の実施の形態】(正極の作製)先ず、正極活物質
としてのLiCoO2 粉末(平均粒径:5μm)と、導
電剤としての人造黒鉛粉末とを、重量比で9:1の割合
で混合して正極合剤を作製した。次に、この正極合剤
と、結着剤としてのポリフッ化ビニリデンが5重量%溶
解されたN−メチル−2−ピロリドン(NMP)溶液と
を、固形分重量比が95:5となるように混合してスラ
リーを調製した後、このスラリーを正極芯体としてのア
ルミニウム箔の両面にドクターブレード法により塗布し
た(厚みは各面100μmである)。その後、溶剤を乾
燥し、ローラーで所定の厚みにまで圧縮した後、150
℃で2時間真空乾燥させて、正極(活物質の充填密度:
3.0g/cc)を作製した。 (負極の作製)先ず、リン片状の天然黒鉛〔Cu−Kα
線源を用いた粉末X線回折法による(002)面と(1
10)面とのピーク強度比(I(002) /I(110) )(以
下、ピーク強度比と略する)が500、Lc値:780
Å、d(002) 値:3.358Å、平均粒径:40μm〕
をカウンタージェットミルに500g装填し、空気圧4
kg/cm2 、噴出ノズル径5mmφに設定して、カウ
ンタージェットミルを20分間運転することにより、ピ
ーク強度比が500の球状黒鉛〔Lc値:780Å、d
(002) 値:3.358Å、平均粒径:20μm〕を作製
した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS (Preparation of Positive Electrode) First, LiCoO 2 powder (average particle size: 5 μm) as a positive electrode active material and artificial graphite powder as a conductive agent were mixed at a weight ratio of 9: 1. The mixture was mixed to produce a positive electrode mixture. Next, this positive electrode mixture and an N-methyl-2-pyrrolidone (NMP) solution in which 5% by weight of polyvinylidene fluoride as a binder were dissolved, so that the solid content weight ratio was 95: 5. After mixing to prepare a slurry, the slurry was applied to both sides of an aluminum foil as a positive electrode core by a doctor blade method (the thickness was 100 μm on each side). Thereafter, the solvent was dried and compressed to a predetermined thickness with a roller.
C. for 2 hours under vacuum to form a positive electrode (filling density of active material:
3.0 g / cc). (Preparation of negative electrode) First, flaky natural graphite [Cu-Kα
(002) plane and (1) by powder X-ray diffraction using a radiation source.
10) The peak intensity ratio to the plane (I (002) / I (110) ) (hereinafter abbreviated as peak intensity ratio) is 500, and the Lc value is 780.
{, D (002) value: 3.358}, average particle size: 40 μm]
Into a counter jet mill and air pressure 4
kg / cm 2, by setting the ejection nozzle diameter 5 mm.phi, by operating the counter jet mill 20 min, the peak intensity ratio 500 of spheroidal graphite [Lc value: 780 Å, d
(002) value: 3.358 °, average particle size: 20 μm].

【0016】次に、上記球状黒鉛と、結着剤としてのス
チレン−ブタジエンゴム(SBR)のディスパージョン
(固形分:48%)とを水に分散させ、更に、増粘剤で
あるカルボキシメチルセルロース(CMC)を添加し
て、スラリーを調製した。尚、上記球状黒鉛と、SBR
と、CMCとの混合割合は、負極乾燥後の重量比が、球
状黒鉛:SBR:CMC=100:3:2となるように
混合した。この後、上記スラリーを負極芯体としての銅
箔(厚み:8μm)の両面にドクターブレード法により
塗布した(厚みは各面100μmである)。しかる後、
溶剤を乾燥し、ローラーで所定の厚みにまで圧縮した
後、110℃で2時間真空乾燥させて、負極(活物質の
充填密度:1.5g/cc)を作製した。 (電解液の調製)電解液としては、EC(エチレンカー
ボネート)とDEC(ジエチルカーボネート)とが体積
比で50:50の割合で混合された混合溶媒に、LiP
6 が1M(モル/リットル)の割合で溶解された非水
電解液を用いた。 (電池の作製)上記正極と負極とをポリプロピレン製の
微多孔膜から成るセパレータを介して巻回して発電要素
を作製した後、この発電要素を有底筒状の外装缶内に挿
入した。最後に、上記電解液を外装缶内に注入した後、
封口板を外装缶の開口部に取り付けることにより、円筒
形の電池(AAサイズ、理論容量:600mA)を作製
した。
Next, the above spherical graphite and a dispersion (solid content: 48%) of styrene-butadiene rubber (SBR) as a binder are dispersed in water, and carboxymethyl cellulose (a thickener) is dispersed. CMC) was added to prepare a slurry. In addition, the above-mentioned spherical graphite, SBR
And CMC were mixed such that the weight ratio after drying of the negative electrode became spherical graphite: SBR: CMC = 100: 3: 2. Thereafter, the slurry was applied to both surfaces of a copper foil (thickness: 8 μm) as a negative electrode core by a doctor blade method (the thickness was 100 μm on each surface). After a while
After drying the solvent and compressing it to a predetermined thickness with a roller, it was vacuum-dried at 110 ° C. for 2 hours to prepare a negative electrode (filling density of active material: 1.5 g / cc). (Preparation of Electrolyte Solution) As an electrolyte solution, a mixed solvent of EC (ethylene carbonate) and DEC (diethyl carbonate) mixed at a volume ratio of 50:50 was mixed with LiP.
A non-aqueous electrolyte in which F 6 was dissolved at a rate of 1 M (mol / liter) was used. (Preparation of Battery) After the positive electrode and the negative electrode were wound through a separator made of a microporous polypropylene film to produce a power generating element, the power generating element was inserted into a bottomed cylindrical outer can. Finally, after injecting the above electrolyte into the outer can,
A cylindrical battery (AA size, theoretical capacity: 600 mA) was produced by attaching the sealing plate to the opening of the outer can.

【0017】尚、上記発明の実施の形態では出発材料と
しての黒鉛として天然黒鉛を用いたが、これに限定され
るものではなく、人造黒鉛を用いることも可能である。
In the embodiment of the present invention, natural graphite is used as a starting material. However, the present invention is not limited to this, and artificial graphite may be used.

【0018】また、正極材料としては上記LiCoO2
に限定されるものではなく、その他のリチウム含有金属
複合酸化物(金属として、Co、Mn、Ni、V、Nb
から選択される少なくとも1種を用いる)等を用いるこ
とが可能である。
The above-mentioned LiCoO 2 is used as a cathode material.
However, other lithium-containing metal composite oxides (metals such as Co, Mn, Ni, V, and Nb
Or at least one selected from the following) can be used.

【0019】更に、電解液の溶媒としては上記のものに
限らず、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、ビニレンカーボネート、シ
クロペンタノン、スルホラン、3−メチルスルホラン、
2,4−ジメチルスルホラン、3−メチル1,3−オキ
サゾリジン−2−オン、γ−ブチロラクトン、ジメチル
カーボネート、ジエチルカーボネート、エチルメチルカ
ーボネート、メチルプロピルカーボネート、ブチルメチ
ルカーボネート、エチルプロピルカーボネート、ブチル
エチルカーボネート、ジプロピルカーボネート、1,2
−ジメトキシエタン、テトラヒドロフラン、2−メチル
テトラヒドロフラン、1,3−ジオキソラン、酢酸メチ
ル、酢酸エチル等の単体、或いは2成分及び3成分混合
物であっても良い。
Further, the solvent of the electrolytic solution is not limited to those described above, but may be ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane,
2,4-dimethylsulfolane, 3-methyl-1,3-oxazolidin-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, butyl ethyl carbonate, Dipropyl carbonate, 1,2
It may be a simple substance such as dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolan, methyl acetate, ethyl acetate, or a mixture of two and three components.

【0020】加えて、電解液の溶質としては上記のもの
に限らず、LiBF4 、LiCF3SO3 、LiAsF
6 、LiN(CF3 SO2 2 、LiClO4 等であっ
ても良い。
In addition, the solutes of the electrolytic solution are not limited to those described above, but may be LiBF 4 , LiCF 3 SO 3 , LiAsF
6 , LiN (CF 3 SO 2 ) 2 , LiClO 4, etc.

【0021】また、結着剤としては、上記のものに限定
するものではなく、メチル(メタ)アクリレート、エチ
ル(メタ)アクリレート、ブチル(メタ)アクリレー
ト、(メタ)アクリロニトリル、ヒドロキシエチル(メ
タ)アクリレート等のエチレン性不飽和カルボン酸エス
テル、或いは、アクリル酸、メタクリル酸、イタコン
酸、フマル酸、マレイン酸等のエチレン性不飽和カルボ
ン酸を使用することもできる。
The binder is not limited to those described above, but may be methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, or hydroxyethyl (meth) acrylate. And the like, or ethylenically unsaturated carboxylic acid esters such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid.

【0022】[0022]

【実施例】(第1実施例) 〔実施例1〕実施例1としては、上記発明の実施の形態
に示す方法と同様の方法にて作製した電池を用いた。
EXAMPLES (First Example) [Example 1] In Example 1, a battery manufactured by a method similar to the method described in the above embodiment of the present invention was used.

【0023】このようにして作製した電池を、以下、本
発明電池A1と称する。 〔実施例2〜4〕負極活物質の充填密度を、各々1.4
g/cc、1.8g/cc、1.9g/ccとする他
は、上記実施例1と同様にして電池を作製した。
The battery fabricated in this manner is hereinafter referred to as Battery A1 of the present invention. Examples 2 to 4 Each of the packing densities of the negative electrode active materials was 1.4.
A battery was fabricated in the same manner as in Example 1 except that the g / cc was 1.8 g / cc and 1.9 g / cc.

【0024】このようにして作製した電池を、以下、そ
れぞれ本発明電池A2〜A4と称する。 〔実施例5〜8〕ピーク強度比を300とする他は、各
々上記実施例1〜実施例4と同様にして電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as Batteries A2 to A4 of the present invention, respectively. [Examples 5 to 8] Batteries were produced in the same manner as in Examples 1 to 4 except that the peak intensity ratio was set to 300.

【0025】このようにして作製した電池を、以下、そ
れぞれ本発明電池A11〜A14と称する。 〔実施例5〜8〕ピーク強度比を1000とする他は、
各々上記実施例1〜実施例4と同様にして電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as Batteries A11 to A14 of the present invention, respectively. [Examples 5 to 8] Except that the peak intensity ratio was 1000,
Batteries were produced in the same manner as in Examples 1 to 4, respectively.

【0026】このようにして作製した電池を、以下、そ
れぞれ本発明電池A21〜A24と称する。 〔比較例1〜4〕ピーク強度比を1500とする他は、
各々上記実施例1〜実施例4と同様にして電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as Batteries A21 to A24 of the present invention, respectively. [Comparative Examples 1-4] Except that the peak intensity ratio was 1500,
Batteries were produced in the same manner as in Examples 1 to 4, respectively.

【0027】このようにして作製した電池を、以下、そ
れぞれ比較電池X1〜X4と称する。 〔比較例5〜8〕ピーク強度比を2000とする他は、
各々上記実施例1〜実施例4と同様にして電池を作製し
た。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X1 to X4, respectively. [Comparative Examples 5 to 8] Except that the peak intensity ratio was 2000,
Batteries were produced in the same manner as in Examples 1 to 4, respectively.

【0028】このようにして作製した電池を、以下、そ
れぞれ比較電池X11〜X14と称する。 〔実験〕本発明電池A1〜A4、A11〜A14、A2
1〜A24及び比較電池X1〜X4、X11〜X14に
おける負極を用いて、負極の密着強度を調べたので、そ
の結果を表1に示す。尚、負極の密着強度の測定方法
は、1cm2 の両面テープを各負極に貼り付け、負極平
面に対して垂直方向に引き上げるときの荷重を調べるこ
とにより行い、また、表1においては、負極活物質の充
填密度が1.4g/ccでピーク強度比が300のとき
の荷重を100%として示している。
The batteries fabricated in this manner are hereinafter referred to as comparative batteries X11 to X14, respectively. [Experiment] Batteries A1 to A4, A11 to A14 and A2 of the present invention
The adhesion strength of the negative electrodes was examined using the negative electrodes of Nos. 1 to A24 and Comparative Batteries X1 to X4 and X11 to X14, and the results are shown in Table 1. The adhesion strength of the negative electrode was measured by attaching a 1 cm 2 double-sided tape to each negative electrode and examining the load when pulling up in the direction perpendicular to the negative electrode plane. The load when the packing density of the substance is 1.4 g / cc and the peak intensity ratio is 300 is shown as 100%.

【0029】[0029]

【表1】 [Table 1]

【0030】上記表1から明らかなように、本発明電池
A1〜A4、A11〜A14、A21〜A24は比較電
池X1〜X4、X11〜X14に比べて、負極の密着強
度が大きくなっていることが認められる。したがって、
負極の密着強度という面からは、ピーク強度比が100
0以下の球状黒鉛を負極活物質として用いることが望ま
しいことがわかる。
As is clear from Table 1, the batteries A1 to A4, A11 to A14, and A21 to A24 of the present invention have a greater negative electrode adhesion strength than the comparative batteries X1 to X4 and X11 to X14. Is recognized. Therefore,
From the viewpoint of the adhesion strength of the negative electrode, the peak intensity ratio is 100%.
It is understood that it is desirable to use spherical graphite of 0 or less as the negative electrode active material.

【0031】また、本発明電池A1〜A3、A11〜A
13、A21〜A23は、本発明電池A4、A14、A
24にに比べて、負極の密着強度が更に大きくなってい
ることが認められる。その一方、上記表1には示してい
ないが、負極活物質の充填密度が1.5g/cc未満に
なると、単位体積当たりの負極容量が低下することが認
められた。したがって、負極の密着強度を更に向上させ
つつ、負極容量の低下を防止するには、ピーク強度比が
1000以下の球状黒鉛を負極活物質として用い、しか
も負極活物質の充填密度を1.5g/cc〜1.8g/
ccに規制することが望ましいことがわかる。
The batteries A1 to A3, A11 to A3 of the present invention
13, A21 to A23 correspond to the batteries A4, A14, A of the present invention.
It can be seen that the adhesion strength of the negative electrode was further increased as compared with 24. On the other hand, although not shown in Table 1 above, it was recognized that when the packing density of the negative electrode active material was less than 1.5 g / cc, the negative electrode capacity per unit volume was reduced. Therefore, in order to further improve the adhesive strength of the negative electrode and prevent a decrease in the negative electrode capacity, spherical graphite having a peak intensity ratio of 1000 or less is used as the negative electrode active material, and the packing density of the negative electrode active material is 1.5 g / g. cc to 1.8 g /
It can be seen that it is desirable to regulate to cc.

【0032】(第2実施例) 〔実施例1〜6〕下記表2に示すように、負極芯体であ
る銅箔の厚みと負極活物質の充填密度とを変化させる他
は、上記第1実施例の実施例1と同様にして電池を作製
した。尚、各負極の厚みは、上記第1実施例の実施例1
に示す負極と同じである。
(Example 2) [Examples 1 to 6] As shown in Table 2 below, except that the thickness of the copper foil serving as the anode core and the packing density of the anode active material were changed, A battery was produced in the same manner as in Example 1 of the example. The thickness of each negative electrode is the same as that of Example 1 of the first embodiment.
This is the same as the negative electrode shown in FIG.

【0033】このようにして作製した電池を、以下、そ
れぞれ本発明電池B1〜B6と称する。 〔実験〕前記第1実施例に示す本発明電池A1及び上記
本発明電池B1〜B6の負荷特性を調べたので、その結
果を表2に示す。尚、負荷特性は、下記の条件で充放電
を行い、電流1C(600mA)での放電容量(温度:
25℃)に対する電流2C(1200mA)での放電容
量(温度:25℃)の割合〔電流1Cでの放電容量/電
流2Cでの放電容量×100(%)〕で示される。
The batteries fabricated in this manner are hereinafter referred to as Batteries B1 to B6 of the present invention, respectively. [Experiment] The load characteristics of the battery A1 of the present invention and the batteries B1 to B6 of the present invention shown in the first embodiment were examined. The results are shown in Table 2. The load characteristics are as follows: charge and discharge are performed under the following conditions, and the discharge capacity (temperature:
The ratio of the discharge capacity (temperature: 25 ° C.) at a current of 2 C (1200 mA) to the discharge capacity at 25 ° C. [discharge capacity at a current of 1 C / discharge capacity at a current of 2 C × 100 (%)].

【0034】充電条件:電流1Cで電池電圧が4.1V
になるまで充電した後、4.1Vの定電圧充電で電流が
10mA低下するまで充電。
Charge condition: battery voltage is 4.1 V at current 1 C
After the battery was charged until it became, the battery was charged at a constant voltage of 4.1 V until the current dropped by 10 mA.

【0035】放電条件:電流1C又は2Cで電池電圧が
2.75Vになるまで放電。
Discharge conditions: Discharge at a current of 1 C or 2 C until the battery voltage reaches 2.75 V.

【0036】[0036]

【表2】 [Table 2]

【0037】上記表2から明らかなように、負極芯体で
ある銅箔の厚みが10μmを超える本発明電池B4〜B
6では、負極活物質の充填密度を大きくする必要がある
ため、負荷特性が低下し、また銅箔の厚みが5μm未満
の本発明電池B1では、負極芯体が薄すぎて負極が破断
するという問題がある。これに対して、本発明電池A
1、B2、B3では負極が破断するという問題はなく、
しかも負荷特性に優れる。
As is clear from Table 2, the batteries B4 to B of the present invention in which the thickness of the copper foil as the negative electrode core exceeds 10 μm.
In No. 6, since the packing density of the negative electrode active material needs to be increased, the load characteristics are reduced, and in the battery B1 of the present invention in which the thickness of the copper foil is less than 5 μm, the negative electrode core is too thin and the negative electrode is broken. There's a problem. On the other hand, the battery A of the present invention
In 1, B2 and B3, there is no problem that the negative electrode is broken,
Moreover, it has excellent load characteristics.

【0038】したがって、負極の破断を防止しつつ負荷
特性の向上を図るには、負極芯体である銅箔の厚みを5
〜10μmに規制するのが望ましい。
Therefore, in order to improve the load characteristics while preventing the negative electrode from breaking, the thickness of the copper foil as the negative electrode core must be 5
It is desirable to regulate to 10 μm.

【0039】[0039]

【発明の効果】以上説明したように、本発明によれば、
負極活物質の充填密度を上げるべく極板をローラープレ
スによって圧延した場合であっても、ベイサル面同士が
滑るのを抑制することにより、黒鉛同士或いは黒鉛と芯
体との密着性が低下するのを抑えて、電池の歩留りを向
上させることができるといった優れた効果を奏する。
As described above, according to the present invention,
Even when the electrode plate is rolled by a roller press in order to increase the packing density of the negative electrode active material, by suppressing the sliding between the basal surfaces, the adhesion between graphite or between graphite and the core decreases. And an excellent effect that battery yield can be improved.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高橋 昌利 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H017 AA03 AS02 CC01 EE01 HH03 5H029 AJ14 AK03 AL07 AM03 AM05 AM07 CJ01 CJ23 DJ07 DJ11 EJ01 HJ04 HJ08 HJ13 5H050 AA19 BA17 CA07 CA08 CA09 CB08 DA03 DA07 FA17 GA05 HA04 HA13  ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Masatoshi Takahashi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H017 AA03 AS02 CC01 EE01 HH03 5H029 AJ14 AK03 AL07 AM03 AM05 AM07 CJ01 CJ23 DJ07 DJ11 EJ01 HJ04 HJ08 HJ13 5H050 AA19 BA17 CA07 CA08 CA09 CB08 DA03 DA07 FA17 GA05 HA04 HA13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 銅箔から成る負極芯体の表面に、黒鉛
(Lc値は150Å以上、d(002) 値は3.38Å以
下)から成る負極活物質を主体とする負極活物質層が形
成された負極と、リチウムを吸蔵、放出しうる正極活物
質層を備えた正極と、非水電解質とを有する非水電解質
電池において、 上記黒鉛は、Cu−Kα線源を用いた粉末X線回折法に
よる(002)面と(110)面とのピーク強度比(I
(002) /I(110) )が1000以下に規制されることを
特徴とする非水電解質電池。
1. A negative electrode active material layer mainly composed of a negative electrode active material made of graphite (Lc value is 150 ° or more and d (002) value is 3.38 ° or less) is formed on the surface of a negative electrode core made of copper foil. A non-aqueous electrolyte battery having a negative electrode, a positive electrode having a positive electrode active material layer capable of inserting and extracting lithium, and a non-aqueous electrolyte, wherein the graphite is powder X-ray diffraction using a Cu-Kα ray source. Peak intensity ratio (I) between the (002) plane and the (110) plane
(002) / I (110) ) is regulated to 1000 or less.
【請求項2】 前記銅箔から成る負極芯体の厚みが、5
μm以上10μm以下に規制される、請求項1記載の非
水電解質電池。
2. The negative electrode core comprising a copper foil having a thickness of 5
The non-aqueous electrolyte battery according to claim 1, wherein the non-aqueous electrolyte battery is regulated to not less than μm and not more than 10 μm.
【請求項3】 前記負極板における負極活物質の充填密
度が、1.5g/cc以上1.8g/cc以下に規制さ
れる、請求項1又は2記載の非水電解質電池。
3. The non-aqueous electrolyte battery according to claim 1, wherein a packing density of the negative electrode active material in the negative electrode plate is regulated to 1.5 g / cc or more and 1.8 g / cc or less.
【請求項4】 前記負極活物質は、ジェットミルにて高
圧ガスを噴出させることにより球状化する、請求項1、
2又は3記載の非水電解質電池。
4. The negative electrode active material is spheroidized by jetting a high-pressure gas with a jet mill.
4. The non-aqueous electrolyte battery according to 2 or 3.
JP2000090036A 2000-03-29 2000-03-29 Nonaqueous electrolyte battery Pending JP2001283844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000090036A JP2001283844A (en) 2000-03-29 2000-03-29 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000090036A JP2001283844A (en) 2000-03-29 2000-03-29 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JP2001283844A true JP2001283844A (en) 2001-10-12

Family

ID=18605699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000090036A Pending JP2001283844A (en) 2000-03-29 2000-03-29 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP2001283844A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151555A (en) * 2001-11-08 2003-05-23 Petoca Materials Ltd Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
KR100454028B1 (en) * 2001-12-21 2004-10-20 삼성에스디아이 주식회사 Composition comprising graphite, negative electrode for lithium secondary battery, and lithium secondary battery
JP2005294078A (en) * 2004-03-31 2005-10-20 Nec Corp Negative electrode for secondary battery, and secondary battery
US7326497B2 (en) * 2001-12-21 2008-02-05 Samsung Sdi Co., Ltd. Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
JP2009038037A (en) * 2008-10-14 2009-02-19 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
WO2009125909A1 (en) * 2008-04-10 2009-10-15 Ls Mtron Ltd. Negative active material for secondary battery, and electrode and secondary battery including the same
JP2010267629A (en) * 2010-07-26 2010-11-25 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
US7906240B2 (en) * 2004-01-16 2011-03-15 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
JP2012109280A (en) * 2012-03-12 2012-06-07 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2013211279A (en) * 2013-06-12 2013-10-10 Hitachi Chemical Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2014209495A (en) * 2014-07-08 2014-11-06 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP2015144142A (en) * 2015-05-11 2015-08-06 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP2017033945A (en) * 2016-10-12 2017-02-09 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP2017157575A (en) * 2017-06-15 2017-09-07 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
CN110249459A (en) * 2017-01-31 2019-09-17 株式会社村田制作所 Secondary battery cathode, secondary cell, battery pack, electric vehicle, accumulating system, electric tool and electronic equipment
CN110885083A (en) * 2018-09-07 2020-03-17 三星Sdi株式会社 Negative active material, method of preparing the same, negative electrode and rechargeable lithium battery
US11641013B2 (en) 2020-03-03 2023-05-02 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151555A (en) * 2001-11-08 2003-05-23 Petoca Materials Ltd Coating composite for negative electrode, negative- electrode board, its manufacturing method, and non- aqueous electrolyte secondary battery
US7326497B2 (en) * 2001-12-21 2008-02-05 Samsung Sdi Co., Ltd. Graphite-containing composition, negative electrode for a lithium secondary battery, and lithium secondary battery
KR100454028B1 (en) * 2001-12-21 2004-10-20 삼성에스디아이 주식회사 Composition comprising graphite, negative electrode for lithium secondary battery, and lithium secondary battery
US7906240B2 (en) * 2004-01-16 2011-03-15 Hitachi Chemical Co., Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
KR101074210B1 (en) 2004-01-16 2011-10-14 히다치 가세고교 가부시끼가이샤 Negative electrode for lithium secondary battery and lithium secondary battery
JP4513385B2 (en) * 2004-03-31 2010-07-28 日本電気株式会社 Negative electrode for secondary battery and secondary battery
JP2005294078A (en) * 2004-03-31 2005-10-20 Nec Corp Negative electrode for secondary battery, and secondary battery
WO2009125909A1 (en) * 2008-04-10 2009-10-15 Ls Mtron Ltd. Negative active material for secondary battery, and electrode and secondary battery including the same
KR100936571B1 (en) 2008-04-10 2010-01-13 엘에스엠트론 주식회사 Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same
JP2009038037A (en) * 2008-10-14 2009-02-19 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2010267629A (en) * 2010-07-26 2010-11-25 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2012109280A (en) * 2012-03-12 2012-06-07 Hitachi Chem Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2013211279A (en) * 2013-06-12 2013-10-10 Hitachi Chemical Co Ltd Negative electrode for lithium secondary battery, and lithium secondary battery
JP2014209495A (en) * 2014-07-08 2014-11-06 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP2015144142A (en) * 2015-05-11 2015-08-06 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
JP2017033945A (en) * 2016-10-12 2017-02-09 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
CN110249459A (en) * 2017-01-31 2019-09-17 株式会社村田制作所 Secondary battery cathode, secondary cell, battery pack, electric vehicle, accumulating system, electric tool and electronic equipment
CN110249459B (en) * 2017-01-31 2022-11-18 株式会社村田制作所 Negative electrode for secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device
JP2017157575A (en) * 2017-06-15 2017-09-07 日立化成株式会社 Negative electrode for lithium secondary battery and lithium secondary battery
CN110885083A (en) * 2018-09-07 2020-03-17 三星Sdi株式会社 Negative active material, method of preparing the same, negative electrode and rechargeable lithium battery
US11276859B2 (en) 2018-09-07 2022-03-15 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, negative electrode including the same and rechargeable lithium battery including same
CN110885083B (en) * 2018-09-07 2023-01-17 三星Sdi株式会社 Negative active material, method of preparing the same, negative electrode and rechargeable lithium battery
US11641013B2 (en) 2020-03-03 2023-05-02 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery and rechargeable lithium battery including same

Similar Documents

Publication Publication Date Title
JP4667373B2 (en) Lithium ion secondary battery and its charge / discharge control system
KR100770518B1 (en) Lithium ion secondary battery
JPH0997625A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP2001283844A (en) Nonaqueous electrolyte battery
US20060134517A1 (en) Lithium secondary battery
JP5263954B2 (en) Lithium ion secondary battery and manufacturing method thereof
WO2016201942A1 (en) Lithium ion battery having high-rate charge-discharge performance
WO2011001665A1 (en) Negative electrode for nonaqueous electrolyte secondary cells, manufacturing method therefor, and nonaqueous electrolyte secondary cell
JP2007179864A (en) Negative electrode for nonaqueous secondary battery, its manufacturing method, and nonaqueous secondary battery
WO2006082719A1 (en) Positive electrode and nonaqueous electrolyte secondary battery
EP3425702B1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP4988169B2 (en) Lithium secondary battery
JP4565811B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP4852824B2 (en) Negative electrode for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2003223887A (en) Nonaqueous system secondary battery
JP3561628B2 (en) Non-aqueous electrolyte secondary battery
JP7053255B2 (en) Binder for secondary battery, binder resin composition for secondary battery, electrode for secondary battery, and secondary battery
JP2001351612A (en) Non-aqueous electrolyte secondary battery
JP4242997B2 (en) Non-aqueous electrolyte battery
JPH11204145A (en) Lithium secondary battery
WO2015146079A1 (en) Negative electrode plate for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2014068905A1 (en) Electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery using same, and manufacturing method for same
KR101116551B1 (en) Negative electrode for lithium secondary battery and lithium secondary battery comprising same
JP2017021941A (en) Nonaqueous electrolyte secondary battery
JP5181607B2 (en) Method for producing electrode plate for negative electrode of non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522