JP2001281377A - Method for manufacturing actinoids-containing hydride fuel pellet - Google Patents

Method for manufacturing actinoids-containing hydride fuel pellet

Info

Publication number
JP2001281377A
JP2001281377A JP2000097426A JP2000097426A JP2001281377A JP 2001281377 A JP2001281377 A JP 2001281377A JP 2000097426 A JP2000097426 A JP 2000097426A JP 2000097426 A JP2000097426 A JP 2000097426A JP 2001281377 A JP2001281377 A JP 2001281377A
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen gas
metal
kpa
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000097426A
Other languages
Japanese (ja)
Other versions
JP3778770B2 (en
Inventor
Kazuo Kakiuchi
一雄 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2000097426A priority Critical patent/JP3778770B2/en
Publication of JP2001281377A publication Critical patent/JP2001281377A/en
Application granted granted Critical
Publication of JP3778770B2 publication Critical patent/JP3778770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a satisfactory actinoids- containing hydride fuel pellet free from crack in which an effective actinoids annihilation processing can be realized in an existing reactor. SOLUTION: This method for manufacturing an actinoids-containing hydride pellet for annihilation processing in reactor comprises manufacturing an alloy ingot composed of 20 wt% or less uranium, 50 wt% or less of actionid, and the remainder of zirconium in an arc welding furnace, cutting the ingot into a metal pellet shape having a predetermined dimension, hydrogenating the metal pellet to form a metal hydroxide. In the hydrogenation process, comprises reducing the pressure of a treatment tank containing metal pellet is reduced and hydrogen gas is introduced into the treatment tank up to 1 atmospheric pressure under a temperature condition of 800-1,000 deg.C stepwise.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高速炉での消滅処
理が可能なアクチノイド元素含有水素化物燃料ペレット
の製造法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing actinide element-containing hydride fuel pellets which can be annihilated in a fast reactor.

【0002】[0002]

【従来の技術】原子炉の中では、ウランやプルトニウム
の中性子捕獲反応によって高次のアクチノイド元素が生
成されている。その中には、キュリウムなどの短寿命の
ものもあるが、アメリシウム(Am)やネプツニウム
(Np)等の長寿命の放射性各種が含まれているため、
廃棄物処理上問題になっている。
2. Description of the Related Art In a nuclear reactor, higher-order actinoid elements are produced by a neutron capture reaction of uranium and plutonium. Among them, there are short-lived ones such as curium, but long-lived radioactive species such as americium (Am) and neptunium (Np) are included.
It is a problem in waste disposal.

【0003】現在のところ、これら放射性廃棄物の処理
・処分方法は、ガラス個体化にして環境安全上適切で地
質学的に安定な地層中に埋設して人間環境から隔離する
地層処理法が用いられている。
At present, the method of treating and disposing of these radioactive wastes employs a stratification method in which glass is solidified and buried in a geologically stable stratum suitable for environmental safety and isolated from the human environment. Have been.

【0004】一方、このような地層処理法のために適切
な地層に処理場を設ける負担を軽減するという観点か
ら、放射性廃棄物の消滅処理の研究も進められている。
消滅処理とは、核変換によって長寿命放射性廃棄物を短
寿命化あるいは安定化させる方法である。
[0004] On the other hand, from the viewpoint of reducing the burden of providing a treatment plant in an appropriate stratum for such a stratum treatment method, research on annihilation treatment of radioactive waste has been advanced.
The annihilation treatment is a method for shortening or stabilizing a long-lived radioactive waste by transmutation.

【0005】[0005]

【発明が解決しようとする課題】アクチノイド元素の消
滅処理研究では、アクチノイドを効率的に消滅させるた
めの新たな専用の原子炉の開発が主に研究されていた。
例えば、アクチノイドの直接核分裂を目指した硬い中性
子スペクトルをもつ専焼高速炉、加速器駆動専焼炉が提
案されている。この場合の燃料として、熱的特性および
マイナーアクチノイドの相互溶解度が良く耐アメリシウ
ム安定生に優れた窒化物燃料が採用されていた。
In the research on the extinction treatment of the actinoid element, development of a new dedicated reactor for efficiently extinction of the actinoid has been mainly studied.
For example, a sintering fast reactor and an accelerator driven sintering furnace having a hard neutron spectrum aiming at direct fission of actinoids have been proposed. As the fuel in this case, a nitride fuel having good thermal characteristics and mutual solubility of minor actinoids and excellent in stable americium resistance has been employed.

【0006】しかしながら、この燃料では、効率よくア
クチノイド元素の消滅処理を行うには、中性子束密度を
高くする必要がある。また、このような新たな専用の消
滅処理用原子炉を開発するのは、多大な費用と時間を要
するなど、実用に向けて多くの問題点がある。
However, with this fuel, it is necessary to increase the neutron flux density in order to perform the actinide element annihilation processing efficiently. In addition, developing such a new dedicated annihilation reactor requires a lot of cost and time, and has many problems for practical use.

【0007】そこで、アクチノイド元素の水素化物燃料
を使用すれば、燃料自体に減速材である水素を含有する
ために高速中性子が減速され、吸収されやすい熱中性子
および熱外中性子により効率よくアクチノイド元素の消
滅処理が発電用の高速炉を用いて行える可能性があるこ
とに着目し、経済的に開発費用の軽減や開発期間の短縮
化が期待される既存の原子炉での消滅処理の開発が望ま
れている。
Therefore, if a hydride fuel of an actinoid element is used, fast neutrons are slowed down because the fuel itself contains hydrogen as a moderator, and thermal neutrons and epithermal neutrons, which are easily absorbed, efficiently convert the actinoid element. Focusing on the possibility that the annihilation treatment can be performed using a fast reactor for power generation, it is desirable to develop an annihilation treatment in an existing nuclear reactor, which is expected to economically reduce development costs and shorten the development period. It is rare.

【0008】この場合、まずは、原子炉へ装荷可能な形
態として、実用に適したアクチノイド元素含有水素化物
燃料ペレットを製造することが必要である。アクチノイ
ド元素含有水素化物燃料ペレットの製造方法としては、
例えば、アクチノイド元素を含有する合金インゴットを
作製し、ペレット状に加工した後、水素化処理を行う工
程が簡便であるが、単に水素化させると材料が著しく脆
化してペレットにクラックが発生し易くなるなど、未
だ、実用に適した良好な燃料ペレットとして、アクチノ
イド元素含有水素化物燃料ペレットを得る方法は開発さ
れていない。
In this case, first, it is necessary to produce actinide element-containing hydride fuel pellets suitable for practical use in a form that can be loaded into a nuclear reactor. As a method for producing actinide element-containing hydride fuel pellets,
For example, the process of preparing an alloy ingot containing an actinoid element and processing it into pellets, and then performing a hydrogenation treatment is simple, but simply hydrogenating the material significantly embrittles the material and cracks easily occur in the pellets. For example, a method for obtaining a hydride fuel pellet containing an actinoid element as a good fuel pellet suitable for practical use has not yet been developed.

【0009】本発明の目的は、上記問題点に鑑み、既存
の原子炉での効率的なアクチノイド消滅処理を実現し得
るクラックのない良好なアクチノイド元素含有水素化物
燃料ペレットを製造する方法を提供することにある。
In view of the above problems, an object of the present invention is to provide a method for producing a good actinide element-containing hydride fuel pellet free of cracks, which can realize efficient actinide annihilation treatment in an existing nuclear reactor. It is in.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、請求項1に記載の発明に係るアクチノイド元素含有
水素化物燃料ペレットの製造法は、ウラン20wt%以
下およびアクチノイド元素50wt%以下、残部ジルコ
ニウムの組成からなる合金インゴットをアーク溶解炉に
より製造するインゴトット製造工程と、前記インゴット
を予め定められた寸法の金属ペレット状に切断加工する
インゴット加工工程と、前記金属ペレットの水素化を行
って金属水素化物とする水素化工程と、を備えた原子炉
消滅処理用のアクチノイド元素含有水素化物燃料ペレッ
トの製造法であって、前記水素化工程は、前記金属ペレ
ットが収容されている処理槽を減圧後、800〜100
0℃の温度条件下にて、該処理槽内へ水素ガスを1気圧
まで段階的に導入するものである。
In order to achieve the above object, a method for producing a hydride fuel pellet containing an actinide element according to the first aspect of the present invention comprises: An ingot manufacturing step of manufacturing an alloy ingot having the composition of an ingot by an arc melting furnace, an ingot processing step of cutting the ingot into a metal pellet having a predetermined size, and hydrogenating the metal pellet to obtain a metal hydrogen. A method for producing an actinide element-containing hydride fuel pellet for nuclear reactor annihilation treatment, the method comprising the steps of: , 800-100
Under a temperature condition of 0 ° C., hydrogen gas is stepwise introduced into the processing tank up to 1 atm.

【0011】また、請求項2に記載の発明に係るアクチ
ノイド元素含有水素化物燃料ペレットの製造法は、請求
項1に記載のアクチノイド元素含有水素化物燃料ペレッ
トの製造法において、前記水素ガスの段階的導入開始
後、処理槽内の金属ペレットに水素化物相が生成され、
水素平衡圧が一定となるプラトー領域に達した際に、水
素ガスの段階的導入圧を減少調節するものである。
Further, according to a second aspect of the present invention, there is provided a method for producing an actinide-element-containing hydride fuel pellet according to the first aspect of the present invention. After the start of introduction, a hydride phase is generated in the metal pellets in the processing tank,
When the hydrogen equilibrium pressure reaches a plateau region where the hydrogen equilibrium pressure becomes constant, the stepwise introduction pressure of hydrogen gas is reduced and adjusted.

【0012】また、請求項3に記載の発明に係るアクチ
ノイド元素含有水素化物燃料ペレットの製造法は、請求
項2に記載のアクチノイド元素含有水素化物燃料ペレッ
トの製造法において、前記プラトー領域では水素ガスを
2.67kPa〜6.67kPa以下ずつ導入し、非プラト
ー領域では水素ガスを6.67kPa〜20.0kPaずつ
導入するものである。
According to a third aspect of the present invention, there is provided a method for producing an actinide element-containing hydride fuel pellet according to the second aspect of the present invention. Is introduced by 2.67 kPa to 6.67 kPa or less, and in the non-plateau region, hydrogen gas is introduced by 6.67 kPa to 20.0 kPa.

【0013】[0013]

【発明の実施の形態】本発明によれば、後述の実施例で
示す通り、アクチノイド元素含有のウラン・ジルコニウ
ム(U−A−Zr,A:アクチノイド元素)合金インゴ
ットを切断加工してなる金属ペレットに、処理槽内にお
いて段階的に水素ガスを導入することによって、クラッ
クの発生し難い水素化物燃料ペレットを製造することが
できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS According to the present invention, as shown in the examples described later, metal pellets obtained by cutting an uranium-zirconium (UAZr, A: actinoid element) alloy ingot containing an actinoid element. By introducing hydrogen gas stepwise in the treatment tank, hydride fuel pellets that are less likely to crack can be manufactured.

【0014】特に、水素ガス導入開始後、水素化物相が
生成し、水素平衡圧が一定となるプラトー領域に達した
際に段階的水素ガスの導入圧を減少調節することによっ
てクラックの生じない良好な燃料ペレットを製造するこ
とができる。
In particular, when the hydride phase is formed after the start of the introduction of hydrogen gas and the plateau reaches a plateau region where the hydrogen equilibrium pressure is constant, the introduction pressure of the stepwise hydrogen gas is reduced and adjusted so that cracks do not occur. Fuel pellets can be produced.

【0015】これは、金属ペレットの水素吸蔵が水素導
入圧と水素平衡圧との差分であることから、水素平衡圧
が水素濃度の増大に伴わないで一定となるプラトー領域
に達した状態、即ち水素化物生成状態であるとき、水素
導入圧力が水素平衡圧に比べて大きいと、その分、金属
ペレットに吸蔵される水素量が多くなって膨張も大きく
急激となるため、燃料にクラックが生じると考えられ、
水素ガスの導入圧を少しずつ段階的に行うことによっ
て、金属ペレットの急激な水素吸蔵を回避することによ
ってクラックの発生防止を可能としたものである。
This is because the hydrogen absorption of the metal pellet is the difference between the hydrogen introduction pressure and the hydrogen equilibrium pressure, so that the hydrogen equilibrium pressure reaches a plateau region where the hydrogen equilibrium pressure becomes constant without increasing the hydrogen concentration. When the hydrogen introduction pressure is higher than the hydrogen equilibrium pressure in the hydride generation state, the amount of hydrogen stored in the metal pellets increases and the expansion becomes large and sharp, so cracks occur in the fuel. Thought,
By gradually introducing the introduction pressure of the hydrogen gas little by little, it is possible to prevent the generation of cracks by avoiding rapid hydrogen occlusion of the metal pellets.

【0016】上記のように、水素ガス導入工程におい
て、水素平衡圧が一定なプラトー領域は、部分的な期間
であるため、その他の期間、即ち、水素平衡圧も水素濃
度の増加に伴って大きくなる領域期間では、金属ペレッ
トへ吸蔵される水素量も比較的小さくなるので、プラト
ー領域のレベルほど水素ガス導入圧を小さくする必要は
なく、非プラトー領域では段階的水素ガスの導入圧を比
較的高くし、プラトー領域に達したら、水素ガス導入圧
を減少調節しておけば、水素化工程の効率向上が図れ
る。
As described above, since the plateau region where the hydrogen equilibrium pressure is constant is a partial period in the hydrogen gas introduction step, the other period, that is, the hydrogen equilibrium pressure also increases with the increase in the hydrogen concentration. Since the amount of hydrogen occluded in the metal pellets is relatively small during the region period, it is not necessary to reduce the hydrogen gas introduction pressure as much as the plateau region level. If the pressure is increased and reaches the plateau region, the efficiency of the hydrogenation process can be improved by reducing and adjusting the hydrogen gas introduction pressure.

【0017】例えば、減圧真空とした処理槽内で、80
0〜1000℃の温度条件下で1気圧(101.3kP
a)まで水素ガスを導入して前記金属ペレットの水素化
を行う場合、水素ガスの段階的な導入圧を非プラトー領
域期間では1度に6.67〜20.0kPa(50〜15
0Torr)程度の範囲内とし、プラトー領域期間では
2.67〜6.67kPa(20〜50Torr)以下ず
つとなるよう導入圧を減少調節すれば、クラックの生じ
ない良好なアクチノイド元素含有水素化物燃料ペレット
が得られる。
For example, in a processing tank under reduced pressure vacuum, 80
1 atmosphere (101.3 kP) under the temperature condition of 0 to 1000 ° C.
When hydrogenation of the metal pellets is performed by introducing hydrogen gas until a), the stepwise introduction pressure of hydrogen gas is set to 6.67 to 20.0 kPa (50 to 15 kPa) at a time in the non-plateau region period.
0 Torr), and if the introduction pressure is reduced and adjusted so as to be 2.67 to 6.67 kPa (20 to 50 Torr) or less in the plateau region period, good actinoid element-containing hydride fuel pellets free from cracks Is obtained.

【0018】なお、本発明におけるU−A−Zr合金イ
ンゴットの組成は、U:20wt%以下、A:50wt
%以下、Zr:残部とする。アクチノイド元素含有率を
50wt%以下でウラン含有率を20wt%以下とする
のは、ウランは本発明の温度条件下では水素吸収性が小
さいので、水素吸蔵効率を高くするためである。また、
本発明におけるアクチノイド元素とは、トリウム、ネプ
ツニウム、アメリシウムである。また、金属ペレット加
工寸法は、後の水素吸収による約5%以下の体積膨張を
見込んで適宜小さめに設定しておく。
The composition of the UA-Zr alloy ingot in the present invention is as follows: U: 20 wt% or less, A: 50 wt%
% Or less, Zr: balance. The reason that the actinide element content is 50 wt% or less and the uranium content is 20 wt% or less is because uranium has a small hydrogen absorption under the temperature conditions of the present invention, and therefore, increases the hydrogen storage efficiency. Also,
The actinoid element in the present invention is thorium, neptunium, and americium. The metal pellet processing size is set appropriately small in consideration of the volume expansion of about 5% or less due to hydrogen absorption later.

【0019】上記のプラトー領域は、予め、予備試料を
用いて試料中の水素濃度と水素平衡圧力との関係から決
定しておけばよい。試料への水素吸収量は、試料を収容
した処理槽内へ導入した当初の所定圧力分を計測してお
き、試料中への水素吸収が進行し、水素吸収が終了して
平衡圧となった時点での圧力減少分に基づいて計算値が
求められる。
The above-mentioned plateau region may be determined in advance from a relationship between the hydrogen concentration in the sample and the hydrogen equilibrium pressure using a preliminary sample. The amount of hydrogen absorbed into the sample was measured at a predetermined pressure initially introduced into the processing tank containing the sample, and the absorption of hydrogen into the sample progressed, and the absorption of hydrogen was completed to reach an equilibrium pressure. A calculated value is determined based on the pressure decrease at the time.

【0020】これによって、例えば、図3に●(黒丸)
で示したような曲線が得られ、そのカーブから、試料中
の水素濃度に応じたプラトー領域、即ち、水素濃度の増
大に伴って水素平衡圧が増大しない領域を判定すること
ができる。従って、金属ペレットの水素化工程の際に
は、工程中の金属ペレット水素吸収量を測定しながら、
段階的な水素ガス導入を進め、前記判定結果に基づい
て、プラトー領域到達に相当する水素濃度に達した時点
以降の水素ガス導入は、導入圧を減少調節して工程を進
めれば良い。
As a result, for example, in FIG.
A plateau region corresponding to the hydrogen concentration in the sample, that is, a region where the hydrogen equilibrium pressure does not increase with an increase in the hydrogen concentration can be determined from the curve. Therefore, during the metal pellet hydrogenation step, while measuring the metal pellet hydrogen absorption during the process,
The stepwise introduction of hydrogen gas is advanced, and based on the above determination result, the introduction of hydrogen gas after the point at which the hydrogen concentration reaches the plateau region can be achieved by reducing and adjusting the introduction pressure.

【0021】なお、このような水素ガスの導入圧力の測
定、調節をしながらの金属ペレットの水素化は、水素吸
収試験装置を用いれば容易に行える。一般的な水素吸収
試験装置は、図2の概略構成図に例示するように、主
に、試料Sが収容される石英管11と、ターボ分子ポン
プ18を備えた減圧系と、水素ガスボンベ13および水
素圧力計測用のバラトロン圧力計16を備えた水素ガス
供給系とから構成されるものである。
The hydrogenation of the metal pellets while measuring and adjusting the pressure for introducing the hydrogen gas can be easily performed by using a hydrogen absorption test apparatus. As illustrated in the schematic configuration diagram of FIG. 2, a general hydrogen absorption test apparatus mainly includes a quartz tube 11 containing a sample S, a decompression system including a turbo molecular pump 18, a hydrogen gas cylinder 13, And a hydrogen gas supply system having a Baratron pressure gauge 16 for measuring hydrogen pressure.

【0022】このような装置による水素吸収試験は、試
料Sを収容した石英管11内を、ロータリポンプ19で
駆動されるターボ分子ポンプ18によって減圧し、真空
度を電離真空計17で確認し、外周に設置された電気炉
12で加熱して所定温度環境としたのち、水素ガスボン
ベ13から水素精製器14を介してリザーバタンク15
内へ水素ガスを所定圧力分のみ導入して水素ガスボンベ
バルブVHを閉じると共に石英管導入バルブV1を開い
てリザーバタンク15と石英管11の系内を均一圧とし
て水素圧力(P1)をバラトロン圧力計16で計測し、
試料Sに水素を吸収させ、試料Sが水素吸収を終わって
平衡状態になったら、水素平衡圧力(P2)を計測し、
水素圧力の減少分(P1−P2)に基づいて、配管や石
英管11の容積等を考慮して計算すれば、試料の水素吸
収量を求めることができる。
In the hydrogen absorption test using such an apparatus, the inside of the quartz tube 11 containing the sample S is depressurized by a turbo molecular pump 18 driven by a rotary pump 19, and the degree of vacuum is confirmed by an ionization vacuum gauge 17. After heating in an electric furnace 12 installed on the outer periphery to set a predetermined temperature environment, a reservoir tank 15 is supplied from a hydrogen gas cylinder 13 through a hydrogen purifier 14.
Hydrogen gas is introduced into the inside only at a predetermined pressure, the hydrogen gas cylinder valve VH is closed, and the quartz tube introduction valve V1 is opened to make the pressure in the system of the reservoir tank 15 and the quartz tube 11 uniform, and the hydrogen pressure (P1) is measured with a Baratron manometer. Measured at 16,
When hydrogen is absorbed by the sample S and the sample S has absorbed hydrogen and is in an equilibrium state, a hydrogen equilibrium pressure (P2) is measured,
The amount of hydrogen absorbed by the sample can be obtained by calculating based on the decrease in hydrogen pressure (P1-P2) in consideration of the volume of the pipe and the quartz tube 11 and the like.

【0023】前記図3に●で示した予備試料を用いたプ
ラトー領域の判定は、この水素吸収試験装置を用いて行
ったものである。即ち、上記試料の水素吸収操作に従っ
て水素ガスをリザーバタンク15内へ6.67kPa〜1
3.33kPa(50〜100Torr)の範囲内へ水素
を導入し、予備試料の水素吸収を行い、水素ガス導入当
初の圧力と、吸収後の平衡圧力との減少差から予備試料
の水素吸収量を求めるという、水素ガス導入・吸収操作
を段階的に繰り返し、これら測定結果を横軸に予備試料
の水素濃度(wt%)として図3にまとめたものであ
る。
The determination of the plateau region using the preliminary sample indicated by ● in FIG. 3 was made using this hydrogen absorption test apparatus. That is, the hydrogen gas is introduced into the reservoir tank 15 according to the hydrogen absorption operation of the sample from 6.67 kPa to 1 kPa.
Hydrogen is introduced into the range of 3.33 kPa (50 to 100 Torr) to absorb the hydrogen of the preliminary sample, and the amount of hydrogen absorption of the preliminary sample is determined from the difference between the initial pressure of hydrogen gas introduction and the equilibrium pressure after the absorption. The operation of introducing and absorbing hydrogen gas, which is to be determined, is repeated stepwise, and the measurement results are summarized in FIG. 3 as the hydrogen concentration (wt%) of the preliminary sample on the horizontal axis.

【0024】ここで用いた予備試料は、後述の実施例で
用いた金属ペレットと同一組成(アクチノイド元素とし
てトリウム含有)、同一工程を経たものであり、この●
の並びから得られるカーブに基づいて、図3中の領域B
をプラトー領域と判定した。なお、この予備試験におい
て得られた水素化物燃料ペレットには、クラックが生じ
ていた。
The preliminary sample used here had the same composition (containing thorium as an actinoid element) and the same process as the metal pellets used in Examples described later.
Area B in FIG. 3 based on the curve obtained from the
Was determined to be a plateau region. The hydride fuel pellets obtained in this preliminary test had cracks.

【0025】[0025]

【実施例】本発明の一実施例として、アクチノイド元素
の代替元素としてトリウム(Th)を用いた水素化物燃
料ペレットの製造を、水素化工程では前記図3に示した
プラトー領域に基づいて図2に示した水素吸収試験装置
を用いて行った場合を以下に説明する。図1は、本実施
例によるアクチノイド元素含有水素化物燃料ペレットの
製造工程を示すフローチャート図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS As one embodiment of the present invention, the production of hydride fuel pellets using thorium (Th) as an alternative element to the actinoid element is described in the hydrogenation step based on the plateau region shown in FIG. The case of using the hydrogen absorption test apparatus shown in FIG. FIG. 1 is a flow chart showing a process for producing actinide element-containing hydride fuel pellets according to the present embodiment.

【0026】まず、インゴット製造工程(1)におい
て、アーク溶解炉を用いて、組成が11wt%ウラン,
45wt%トリウム,44wt%ジルコニウムからなる
U−Th−Zr合金インゴットを作製した。
First, in the ingot manufacturing step (1), uranium having a composition of 11 wt%
A U-Th-Zr alloy ingot made of 45 wt% thorium and 44 wt% zirconium was produced.

【0027】次に、インゴット加工工程(2)におい
て、上記合金インゴットを、カッターおよび旋盤を用い
て所定寸法の金属ペレット状に切断加工したのち、これ
ら金属ペレットについて、水素化工程(3)において図
2の水素吸収試験装置を用いて水素添加・吸収操作を行
い、水素化物燃料ペレットを得た。
Next, in the ingot processing step (2), the alloy ingot is cut into metal pellets of a predetermined size using a cutter and a lathe, and the metal pellets are cut in a hydrogenation step (3). Hydrogen addition / absorption operation was performed using the hydrogen absorption test apparatus No. 2 to obtain hydride fuel pellets.

【0028】この水素化工程(3)では、石英管11内
で真空から1気圧(101.3kPa)に達するまで段階
的に水素ガス導入を行った。但し、プラトー領域期間に
おいては水素導入圧を2.67〜5.33kPa(20〜
40Torr)の範囲に減少調節して行った。
In the hydrogenation step (3), hydrogen gas was introduced stepwise from the vacuum to 1 atm (101.3 kPa) in the quartz tube 11. However, during the plateau region period, the hydrogen introduction pressure was 2.67 to 5.33 kPa (20 to 5.33 kPa).
(40 Torr).

【0029】具体的には、まず石英管11内に前記金属
ペレットを収容し、電離真空計17で真空度を確認しな
がらロータリポンプ19で駆動されるターボ分子ポンプ
18によって石英管11内を真空としたのち、金属ペレ
ットの脱ガスと加工歪みを取り除くための焼鈍も兼ねて
電気炉12で石英管11内を約900℃に2時間程度加
熱した。
Specifically, the metal pellets are first accommodated in a quartz tube 11, and the inside of the quartz tube 11 is evacuated by a turbo molecular pump 18 driven by a rotary pump 19 while confirming the degree of vacuum with an ionization vacuum gauge 17. After that, the inside of the quartz tube 11 was heated to about 900 ° C. for about 2 hours in the electric furnace 12, also serving as degassing of the metal pellet and annealing for removing the processing distortion.

【0030】その後、水素ガスボンベ13から水素精製
器14を介してリザーバタンク15内へ水素ガスを6.
67〜13.33kPa(50〜100Torr)の範囲
内で導入して水素ガスボンベバルブVHを閉じると共に
石英管導入バルブV1を開いてリザーバタンク15と石
英管11の系内を均一圧とし、水素圧力(P1)をバラ
トロン圧力計16で計測し、金属ペレットSに水素を吸
収させる。金属ペレットが水素吸収を終わって平衡状態
になったら、石英管導入バルブV1を閉じて水素平衡圧
力(P2)を計測し、水素圧力の減少分(P1−P2)
に基づいて、配管や石英管11の容積等を考慮して金属
ペレットの水素吸収量を計算した。
Thereafter, hydrogen gas is supplied from the hydrogen gas cylinder 13 into the reservoir tank 15 through the hydrogen purifier 14.
The hydrogen gas is introduced within a range of 67 to 13.33 kPa (50 to 100 Torr), the hydrogen gas cylinder valve VH is closed, and the quartz tube introduction valve V1 is opened to make the system of the reservoir tank 15 and the quartz tube 11 uniform, and the hydrogen pressure ( P1) is measured by the Baratron pressure gauge 16, and the metal pellet S absorbs hydrogen. When the metal pellets have absorbed hydrogen and are in an equilibrium state, the quartz tube introduction valve V1 is closed and the hydrogen equilibrium pressure (P2) is measured, and the hydrogen pressure is reduced (P1-P2).
Based on the above, the hydrogen absorption amount of the metal pellet was calculated in consideration of the volume of the pipe and the quartz tube 11 and the like.

【0031】以上の段階的水素ガス導入・金属水素化操
作を水素導入圧6.67〜13.33kPa(50〜10
0Torr)で繰り返し、各段階での金属ペレットの水
素吸収量に基づく水素濃度(wt%)を求めた。この結
果は、図3中に○(白丸)示した。
The above-described stepwise hydrogen gas introduction / metal hydrogenation operation is performed at a hydrogen introduction pressure of 6.67 to 13.33 kPa (50 to 10 3 kPa).
(0 Torr), and the hydrogen concentration (wt%) based on the amount of hydrogen absorbed by the metal pellet at each stage was determined. The results are indicated by a circle (open circle) in FIG.

【0032】以上の操作を繰り返し、水素濃度が図3中
プラトー領域と判定した領域B相当に達したら、次の操
作(段階的水素導入の第4回目)前に水素導入圧を減少
調節して2.67〜5.33kPa(20〜40Tor
r)とした。水素導入圧の変更後、同様の段階的水素ガ
ス導入・金属水素化操作を繰り返し、金属ペレットの水
素濃度がプラトー領域を脱して領域C相当に達したら、
次回操作(段階的水素導入の第8回目)前に水素導入圧
を再び高く調節して13.33kPa(100Torr)
とし、同様の段階的水素ガス導入・金属水素化操作を、
1気圧に達するまで繰り返した。
When the above operation is repeated and the hydrogen concentration reaches the region B determined to be the plateau region in FIG. 3, the hydrogen introduction pressure is reduced and adjusted before the next operation (the fourth step of stepwise hydrogen introduction). 2.67 to 5.33 kPa (20 to 40 Torr)
r). After the change of the hydrogen introduction pressure, the same stepwise hydrogen gas introduction / metal hydrogenation operation is repeated.
Before the next operation (the eighth stepwise hydrogen introduction), the hydrogen introduction pressure was adjusted again to 13.33 kPa (100 Torr).
And the same stepwise hydrogen gas introduction and metal hydrogenation operations,
Repeated until 1 atm was reached.

【0033】その後、石英管バルブV1を閉じて100
℃/hの冷却速度で室温まで冷却する。この冷却過程に
よって、石英管11内の水素は全て金属ペレット中に吸
収させることができ、最終的に目的の水素濃度とするこ
とができる。
Thereafter, the quartz tube valve V1 is closed and 100
Cool to room temperature at a cooling rate of ° C / h. By this cooling process, all the hydrogen in the quartz tube 11 can be absorbed in the metal pellets, and finally the target hydrogen concentration can be achieved.

【0034】以上の操作によって水素化されたトリウム
含有水素化物燃料ペレットは、検査工程(4)で外観、
寸法、重量等を測定する。本実施例で得られたアクチノ
イド元素含有水素化物燃料ペレットは、クラックが生じ
ることはなかった。
[0034] The thorium-containing hydride fuel pellets hydrogenated by the above-described operations are subjected to the inspection and appearance in the inspection step (4).
Measure dimensions, weight, etc. The actinide element-containing hydride fuel pellets obtained in this example did not crack.

【0035】なお、上記実施例では水素化工程に水素吸
収試験装置を用いたが、本発明においてはこれに限ら
ず、金属ペレットが収容されている処理槽に対して、減
圧して真空にできる機構と、段階的に所望導入圧で水素
ガスを導入できるとともに、水素ガス圧力を測定できる
機構を備えているものであれば良い。
In the above embodiment, a hydrogen absorption test apparatus was used in the hydrogenation step. However, the present invention is not limited to this, and the pressure in the processing tank containing metal pellets can be reduced and evacuated. Any mechanism may be used as long as it has a mechanism and a mechanism that can introduce hydrogen gas at a desired introduction pressure in a stepwise manner and measure the hydrogen gas pressure.

【0036】[0036]

【発明の効果】以上説明した通り、本発明によれば、ク
ラックの生じない良好なアクチノイド元素含有水素化物
燃料ペレットが製造できるため、該ペレットを用いて、
長寿命放射性廃棄物であるアクチノイドの既存高速炉で
の効率的な消滅処理が可能となるという効果がある。
As described above, according to the present invention, a good actinoid element-containing hydride fuel pellet free from cracks can be produced.
There is an effect that the actinoids, which are long-lived radioactive wastes, can be efficiently eliminated in the existing fast reactor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例によるアクチノイド元素含有水
素化物燃料ペレットの製造工程を説明する概略フローチ
ャート図である。
FIG. 1 is a schematic flowchart illustrating a production process of an actinoid element-containing hydride fuel pellet according to an embodiment of the present invention.

【図2】本発明の実施例における水素化工程で用いた水
素吸収試験装置の概略構成図である。
FIG. 2 is a schematic configuration diagram of a hydrogen absorption test apparatus used in a hydrogenation step in an example of the present invention.

【図3】本発明の実施例による水素化工程およびそのた
めの予備水素化工程における、試料の水素濃度(横軸:
wt%)と水素平衡圧力(縦軸:Torr)との関係を
示すグラフ図である。
FIG. 3 shows the hydrogen concentration of a sample in the hydrogenation step and the pre-hydrogenation step for the hydrogenation step (horizontal axis:
FIG. 4 is a graph showing the relationship between the hydrogen equilibrium pressure (wt%) and the hydrogen equilibrium pressure (vertical axis: Torr).

【符号の説明】 1:インゴット製造工程 2:インゴット加工工程 3:水素化工程 4:検査工程 11:石英管 12:電気炉 13:水素ガスボンベ 14:水素精製器 15:リザーバタンク 16:バラトロン圧力計 17:電離真空計 18:ターボ分子ポンプ 19:ロータリポンプ V1:石英管導入バルブ VH:水素ガスボンベバルブ[Description of Signs] 1: Ingot manufacturing process 2: Ingot processing process 3: Hydrogenation process 4: Inspection process 11: Quartz tube 12: Electric furnace 13: Hydrogen gas cylinder 14: Hydrogen purifier 15: Reservoir tank 16: Baratron pressure gauge 17: Ionization vacuum gauge 18: Turbo molecular pump 19: Rotary pump V1: Quartz tube introduction valve VH: Hydrogen gas cylinder valve

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ウラン20wt%以下およびアクチノイ
ド元素50wt%以下、残部ジルコニウムの組成からな
る合金インゴットをアーク溶解炉により製造するインゴ
ット製造工程と、 前記インゴットを予め定められた寸法の金属ペレット状
に切断加工するインゴット加工工程と、 前記金属ペレットの水素化を行って金属水素化物とする
水素化工程と、を備えた原子炉消滅処理用のアクチノイ
ド元素含有水素化物燃料ペレットの製造法であって、 前記水素化工程は、前記金属ペレットが収容されている
処理槽を減圧後、800〜1000℃の温度条件下に
て、該処理槽内へ水素ガスを1気圧まで段階的に導入す
ることを特徴とするアクチノイド元素含有水素化物燃料
ペレットの製造法。
1. An ingot manufacturing process for manufacturing an alloy ingot having a composition of 20 wt% or less of uranium and 50 wt% or less of an actinoid element and a balance of zirconium by an arc melting furnace, and cutting the ingot into metal pellets having predetermined dimensions. An ingot processing step of processing, and a hydrogenation step of hydrogenating the metal pellets to obtain a metal hydride, comprising: The hydrogenation step is characterized in that, after decompressing the treatment tank in which the metal pellets are accommodated, under a temperature condition of 800 to 1000 ° C., hydrogen gas is stepwise introduced into the treatment tank to 1 atm. For producing actinide element-containing hydride fuel pellets.
【請求項2】 前記水素ガスの段階的導入開始後、処理
槽内の金属ペレットに水素化物相が生成され、水素平衡
圧が一定となるプラトー領域に達した際に、水素ガスの
段階的導入圧を減少調節することを特徴とする請求項1
に記載のアクチノイド元素含有水素化物燃料ペレットの
製造法。
2. After the stepwise introduction of the hydrogen gas, when a hydride phase is generated in the metal pellets in the processing tank and reaches a plateau region where the hydrogen equilibrium pressure becomes constant, the stepwise introduction of the hydrogen gas is performed. The pressure is reduced and adjusted.
3. A method for producing a hydride fuel pellet containing an actinoid element according to item 1.
【請求項3】 前記プラトー領域では水素ガスを2.6
7kPa〜6.67kPa以下ずつ導入し、非プラトー領域
では水素ガスを6.67kPa〜20.0kPaずつ導入す
ることを特徴とする請求項2に記載のアクチノイド元素
含有水素化物燃料ペレットの製造法。
3. In the plateau region, hydrogen gas is supplied at 2.6.
The method for producing actinide element-containing hydride fuel pellets according to claim 2, wherein the hydrogen gas is introduced at a rate of 7 kPa to 6.67 kPa or less, and the hydrogen gas is introduced at a rate of 6.67 kPa to 20.0 kPa in the non-plateau region.
JP2000097426A 2000-03-31 2000-03-31 Process for producing actinide element-containing hydride fuel pellets Expired - Fee Related JP3778770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000097426A JP3778770B2 (en) 2000-03-31 2000-03-31 Process for producing actinide element-containing hydride fuel pellets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097426A JP3778770B2 (en) 2000-03-31 2000-03-31 Process for producing actinide element-containing hydride fuel pellets

Publications (2)

Publication Number Publication Date
JP2001281377A true JP2001281377A (en) 2001-10-10
JP3778770B2 JP3778770B2 (en) 2006-05-24

Family

ID=18612048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097426A Expired - Fee Related JP3778770B2 (en) 2000-03-31 2000-03-31 Process for producing actinide element-containing hydride fuel pellets

Country Status (1)

Country Link
JP (1) JP3778770B2 (en)

Also Published As

Publication number Publication date
JP3778770B2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
Kinoshita Polygonization and high burnup structure in nuclear fuels
Ferry et al. Specific outcomes of the research on the spent fuel long-term evolution in interim dry storage and deep geological disposal
RU2627682C2 (en) Nitride nuclear fuel and method of production thereof
Une et al. Fission gas behavior during postirradiation annealing of large grained UO2 fuels irradiated to 23 GWd/t
Stehle Performance of oxide nuclear fuel in water-cooled power reactors
JP2001281377A (en) Method for manufacturing actinoids-containing hydride fuel pellet
Kwast et al. Tritium retention in neutron-irradiated carbon-based materials and beryllium
AU2014280928B2 (en) Method for preparing ual2 powder and ual2 powder prepared according to the same
Rogozkin et al. Results of U 0.55 Pu 0.45 N and U 0.4 Pu 0.6 N mixed mononitride fuel tests in a bor-60 reactor to burnup 12% ha
Hastings et al. Transient fission product release during dryout in operating U0 2 fuel
Wasywich Characteristics of used CANDU fuel relevant to the Canadian nuclear fuel waste management program
Reynolds The diffusion of fission krypton from metallic uranium
Chikalla Studies on the Oxides of Plutonium
Piron et al. Spent nuclear fuel evolution in a closed system
Eichenberg et al. Irradiation of UO2 Fuel Rods: The X-1-L Experiment
Porollo et al. Investigation of Fission Product Release from Irradiated Oxide and Nitride Nuclear Fuel on High-Temperature Heating in Helium Flow
JP2011529191A (en) Method for removing polymer encapsulating nuclear fuel pellets
Bart et al. Zirconium alloys for fuel element structures
Sasajima et al. Behavior of irradiated PWR fuel under a simulated RIA condition. Results of NSRR Test MH-3
Maffei Effect of lithium hydroxide leakage on the high-temperature corrosion of Zircaloy-2
RU2379773C1 (en) Hydride fuel for nuclear reactor and method of producing said fuel
Feraday et al. A collapse mode of failure in powder-filled fuel elements
Spalaris et al. Residual and Fission Gas Release from Uranium Dioxide
Keller PROGRESS ON DEVELOPMENT OF FUELS AND TECHNOLOGY FOR ADVANCED REACTORS DURING OCTOBER--DECEMBER 1970. Progress Report.
USH599H (en) Apparatus and method for simulating material damage from a fusion reactor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees